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Prof. Jakobović is a senior member of IEEE and ACM. He is a member of a journal editorial

board, serves as a technical reviewer for various international journals and a program committee

member for several conferences.

Stjepan Picek was born in Rijeka in 1984. Stjepan finished his Ph.D. in 2015 with a topic

on cryptology and evolutionary computation techniques. Moreover, he has several years of

experience working in industry and government.

He is an associate professor in the Digital Security Group at Radboud University, The

Netherlands. His research interests are security/cryptography, machine learning, and evolu-

tionary computation. Before the associate professor position, Stjepan was an assistant professor

at TU Delft, The Netherlands, a postdoctoral researcher at MIT, USA, and KU Leuven, Bel-

gium. Up to now, Stjepan has given more than 30 invited talks at conferences and summer

schools and published more than 140 refereed papers.

Stjepan is a member of the organization committee for the International Summer School in

Cryptography. He is a program committee member and reviewer for several conferences and

journals and a senior IEEE member.



O mentorima:
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1996., 2001. odnosno 2005. godine.

Od travnja 1997. godine radi na Zavodu za elektroniku, mikroelektroniku, računalne i in-
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Stjepan je član organizacijskog odbora Med̄unarodne ljetne škole kriptografije, te član pro-
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Abstract

In the field of cryptography, Boolean functions and their generalizations, known as vectorial

Boolean functions or S-boxes, play a crucial role in symmetric key cryptography. The use of

carefully selected S-boxes is essential for ensuring the security of ciphers, as without them,

the ciphers would be susceptible to attacks. Symmetric key cryptography can be classified

into stream ciphers and block ciphers, both of which use Boolean functions (including vecto-

rial Boolean functions) for different purposes but with the common goal of improving cipher

resilience against various cryptanalyses. Since other ciphers have additional requirements for

Boolean functions or S-boxes, designing a cipher is a complex process that requires adherence

to multiple principles to create a strong cipher. During the design phase, one must consider the

properties of cryptographic primitives and the complete cipher and test them against many pos-

sible attacks to ensure their strength. While computers are heavily used in the design process

for testing specific aspects of the cipher, modern ciphers are exclusively designed by human

experts. However, poor implementation choices can lead to side-channel leakage, making even

mathematically secure ciphers vulnerable to attackers.

This thesis aims to achieve several objectives. Firstly, we demonstrate that it is possible

to construct Boolean functions that satisfy the cryptographic criterion of non-linearity using a

non-binary base. Secondly, we aim to build S-boxes with output dimensions smaller than input

dimensions, meeting cryptographic criteria such as non-linearity and differential uniformity.

The first two goals are considered challenging optimization problems, which we solve using

evolutionary computing. Thirdly, we show how to automatically construct a symmetric block

algorithm without requiring the intervention of human experts. Finally, we explore how to

make side-channel attacks more successful by utilizing machine learning and neuroevolutionary

computing.

Keywords: Boolean functions, S-boxes, bent functions, evolutionary algorithms, automatic

cipher construction, symmetric cryptography, side-channel attack, machine learning, semi-

supervised learning, neuroevolution



Prošireni sažetak

Strojno učenje i evolucijsko računarstvo u oblikovanju i analizi
kriptografskih algoritama sa simetričnim ključem

Uvod

U 21. stoljeću digitalna tehnologija snažno je ušla u život pojedinaca. Gotovo je nemoguće za-

misliti život današnjice bez uporabe računala. Čovječanstvo je izabralo vlastiti razvoj i napredak

temeljiti na digitalnoj tehnologiji. Povećanjem razine digitalizacije društva pojavljuju se i prijet-

nje koje mogu ugroziti informacijsku sigurnost. Jedna od komponenti informacijske sigurnosti

jest kriptografija. Pojednostavljeno, kriptografija ili tajnopis je umijeće pisanja poruka u takvom

obliku da samo onaj kome su namijenjene može pročitati. U digitalnom komunikacijskom

lancu, čiji dionici su većina ljudske populacije, postoje pošiljatelji poruke, primatelji poruke

te napadači. Napadači su one osobe koje namjerno pokušavaju presresti poruku te je proči-

tati. Ako pošiljatelj poruku nije dovoljno dobro osigurao neovlašteno čitanje poruke, posljedice

mogu biti katastrofalne.

Povijest kriptografije seže u doba antike. Već su stari Grci znali da informacija ima na-

jveću cijenu. Stoljećima su se razvijale sofisticirane metode koje su neprestano unaprjed̄ivale

načine skrivanja poruka. Paralelno s razvojem metoda skrivanja poruka, napadači su razvijali

sve domišljatije metode kako pročitati skrivene poruke. Ta igra skrivanja i razotkrivanja poruka

traje i dan danas. Svakodnevno svjedočimo medijskim vijestima koje objavljuju razne tajne

podatke. Svijest pojedinaca o posljedicama otkrivanja tajnih digitalnih informacija postaje sve

jača jer upravo oni sve češće postaju žrtvama.

Komunikacijski lanac ne čine samo ljudi, već i strojevi. Većina digitalnih ured̄aja koja se

danas proizvodi, spaja se na internet i komunicira s drugim strojevima ili ljudima. Budući

da računala postaju sve manja i lakše prenosiva, s ciljem boljeg praćenja, nosiva računala se

ugrad̄uju u/na životinje ili biljke. Općenito govoreći, živimo u svijetu opće komunikacije gdje

gotovo svatko može komunicirati s bilo kime ili bilo čime.

Već je Alan Turing krajem 2. svjetskog rata pokazao da ljudi nisu učinkoviti napadači na

skrivene poruke, već strojevi. Razotkrivanje skrivenih poruka vrlo je težak problem, a zadaća

mu je napasti slabosti postupka ili algoritma kojim je poruka skrivena. Dugi niz stoljeća, da

bi se osigurala tajnost poruka u komunikacijskom lancu, skrivao se kriptoalgoritam - postupak

kojim je pošiljatelj sakrio poruku. U 19. stoljeću, nizozemski kriptograf Auguste Kerchoff

rekao je da kriptosustav mora ostati siguran čak i ako je sve o sustavu poznato, osim tajnog

ključa. Navedena izjava nadovezuje se na izjavu francuskog kriptografa Jean Robert du Carleta

koji je rekao da samo tajni ključevi moraju ostati tajnima - "ars ipsi secreta magistro". U

simetričnom kriptoalgoritmu glavna ideja napadača kod čitanja skrivenih poruka jest otkriti



ključ koji se koristio u algoritmu šifriranja. Jednom kada napadač otkrije tajni ključ, nesmetano

može presretati i čitati poruke u komunikacijskom lancu izmed̄u pošiljatelja i primatelja poruke.

Svi moderni kriptoalgoritmi javno su poznati, a kriptografi neprekidno poboljšavaju svojstva

kriptoalgoritma. Prilikom izgradnje novog kriptografskog algoritma, ljudski eksperti moraju is-

tovremeno zadovoljiti više kriptografskih kriterija da bi se algoritam smatrao sigurnim. Načelno

govoreći, simetrične algoritme koje danas koristimo, možemo smatrati sigurnima. Med̄utim,

igra skrivanja i razotkrivanja poruka prebačena je na drugi teren. Naime, umjesto da se danas

napada ranjivost kriptoalgoritma, napada se implementacija kriptoalgoritma na ured̄aju na ko-

jem se izvodi. Svaki stroj koji izvodi kriptoalgoritam proizvodi sporedne informacije koje mogu

napadaču osigurati uspješan napad. Te sporedne informacije očituju se u potrošnji električne

energije, proizvedenoj toplinskoj energiji ili zvuku, vremenskom čekanju na izvod̄enje iduće

računske operacije i slično. Budući da su takvi napadi već poznati, prilikom oblikovanja krip-

toalgoritma ne ulažu se samo napori u istovremeno zadovoljavanje kriptografskih kriterija, već

se vodi računa i o implementaciji algoritma na stroju te skrivanju proizvedenih sporednih in-

formacija. Med̄utim, sporedna informacija uvijek će postojati, samo je pitanje koliko će ta

informacija biti vrijedna napadaču u otkrivanju tajnog ključa.

Evolucijsko računarstvo i strojno učenje dva su velika područja unutar umjetne inteligen-

cije. Evolucijsko računarstvo pokazalo se kao moćan alat u rješavanju optimizacijskih prob-

lema. Upravo je istovremeno zadovoljavanje različitih kriptografskih kriterija optimizacijski

problem. Dodatno, većina kriptografskih kriterija mogu se opisati kao optimizacijski problem,

kao što je, na primjer, visoka nelinearnost. Postoje mnogobrojna istraživanja koja su potvrdila

opravdanost, unatoč skepsi matematičara i kriptografa, korištenja algoritama evolucijskog raču-

narstva u konstrukciji kriptografskih primitiva.

S druge strane, razvojem računalne moći, strojno učenje pokazuje se kao snažan alat u sig-

urnosnim napadima na sporedna svojstva ured̄aja. Naime, danas su profilirani napadi najmoćniji

u kategoriji sigurnosnih napada na sporedna svojstva ured̄aja. U takvom napadu, napadač do-

biva pristup ured̄aju za izgradnju preciznog modela strojnog učenja koji se koristi za napad na

drugi istovjetan ured̄aj. Pritom se koristi pretpostavka da napadač ima vrlo velike mogućnosti

u fazi profiliranja, dok je faza napada ograničena. Zadatak modela strojnog učenja jest naučiti

prepoznavati sporednu informaciju ured̄aja - trag - te je povezati s dijelom tajnog ključa koji se

nalazi na računalu na kojem se izvodi kriptoalgoritam.

Iako je u području primjene evolucijskog računarstva u konstrukciji kriptografskih primitiva

učinjeno mnogo, postoje mnogobrojna neodgovorena pitanja. Osim što su se algoritmi evolu-

cijskog računarstva koristili u izgradnji kriptografskih primitiva, dosad nije poznat pokušaj ko-

rištenja evolucijskog računarstva u automatskoj izgradnji kriptografskih algoritama. S druge

strane, unatoč tome što postoji puno istraživanja u domeni profiliranih napada, postavlja se pi-

tanje uspješnosti takvog napada pod uvjetom da je napadač tijekom faze profiliranja ograničen



brojem tragova. Posljednje, dosad su se u profiliranim sigurnosnim napadima na pozadinska

svojstva ured̄aja koristili fundamentalni algoritmi strojnog učenja i neuronske mreže. Dosad

ostaje otvoreno pitanje može li spoj evolucijskog računarstva i neuronskih mreža pospješiti

učinkovitost napada.

Motivacija

Glavna motivacija disertacije jest ostvariti novi znanstveni doprinos u području oblikovanja i

analize kriptografskih algoritama sa simetričnim ključem, koristeći strojno učenje i evolucijsko

računarstvo, koja do sada u postojećoj literaturi nisu bila prikladno istražena. Područja od

značaja u ovoj disertaciji su:

1.konstrukcije kriptografskih primitiva,

(a)konstrukcija visoko nelinearnih Booleovih funkcija u binarnoj i kvaternarnoj bazi

korištenjem algoritama evolucijskog računarstva,

(b)konstrukcija S-kutija izri čito manje dimenzije izlaza nego ulaza korištenjem algori-

tama evolucijskog računarstva,

2.automatska izgradnja kriptografskog algoritma sa simetri čnim ključem korištenjem algo-

ritama evolucijskog računarstva,

3.izgradnja modela strojnog u čenja u profiliranom sigurnosnom napadu na sporedna svo-

jstva ured̄aja,

(a)izgradnja modela korištenjem polunadziranog u čenja,

(b)korištenje neuroevolucije u modelu višeslojnog perceptrona i duboke neuronske

mreže.

Booleove funkcije predstavljaju ključan faktor u oblikovanju kriptografskih algoritama.

Iako postoje mnogobrojne primjene Booleovih funkcija u kriptografiji, naš fokus je na krip-

tografskim algoritmima tokova podataka. Da bi Booleove funkcije imale praktičnu primjenu

u kriptografiji, one moraju zadovoljavati mnoga kriptografska svojstva. Jedno od tih svojstava

jest visoka nelinearnost, kojom se pospješuje obrana od linearne kriptoanalize. Svojstvo ne-

linearnosti govori koliko je funkcija udaljena od svih afinih funkcija. Funkcija čija udaljenost

je najveća od svih afinih funkcija naziva se maksimalno nelinearna funkcija (engl. bent func-

tion). Ovaj problem jest kombinatorički problem jer prostor pretrage raste eksponencijalno, i

s obzirom na broj ulaznih varijabli n, prostor pretrage iznosi 22n. Postoji više radova koji su

konstrukciju kriptografskih primitiva promatrali kao kombinatoričku optimizaciju te rješavali

navedeni problem algoritmima evolucijskog računarstva. Prvotna motivacija jest pokušati kon-

struirati maksimalno nelinearne funkcije dimenzije ulaza do n = 12, koristeći genetski algori-

tam i genetsko programiranje, te usporediti oba rezultate oba algoritma s teorijskim vrijednos-

tima. Osim visoke nelinearnosti, jedan od kriptografskih kriterija jest balansiranost Booleove

funkcije. Stoga, nadogradnja početne ideje jest konstruirati visoko nelinearnu balansiranu



Booleovu funkciju. Budući da su rezultati pokazali da se uspješno može konstruirati visoko

nelinearna balansirana Booleova funkcija, postavilo se pitanje kako cijeli proces konstrukcije

učiniti uspješnijim za veće ulazne dimenzije n. Zbog toga smo odlučili provesti eksperimente

s kvaternarnim Booleovim funkcijama - funkcijama s vrijednostima 0, 1, 2 i 3. Posljedica

promjene baze jest povećanje prostora pretrage visoko nelinearne funkcije 44n, ali ako se u

takvom prostoru pronad̄e visoko nelinearna funkcija, tada postoji mapiranje u binarnu Booleovu

funkciju ulazne dimenzije 2n.

Prirodna nadogradnja na Booleove funkcije su vektorske Booleove funkcije ili supstitucijske

kutije (S-kutije). S-kutije imaju značajnu ulogu u kriptografskim algoritmima sa simetričnim

ključem. Iako postoje različite strategije dizajna kriptografskih algoritama, zajedničko im je da

implementiraju principe konfuzije i difuzije. Princip konfuzije znači da izlaz iz kriptografskog

algoritma ne smije ovisiti o ulazu, odnosno da ne postoji linearna veza izmed̄u ulaza i izlaza u

kriptografski algoritam. Princip difuzije znači da promjena jednog bita na ulazu u kriptograf-

ski algoritam za posljedicu ima promjenu više bitova na izlazu iz algoritma. Jedan od načina

osiguravanja principa konfuzije jest korištenje S-kutija. Jedno od praktičnih neodgovorenih pi-

tanja jest kako konstruirati maksimalno nelinearnu S-kutiju kod koje je dimenzija izlaza nužno

manja od dimenzije ulaza. Dodatan otvoreni problem jest pitanje postojanja S-kutija dimenz-

ija (n,n− k), gdje je k = 2, a čija diferencijalna uniformnost je manja od 8 ako je dimenzija

ulaza veća ili jednaka 5. Ovo pitanje zanimljivo je s optimizacijskog stajališta, a s druge strane,

diferencijalna uniformnost povezana je s diferencijalnom kriptoanalizom. Za rješavanje ovih

problema, takod̄er se koriste algoritmi evolucijskog računarstva.

Nakon istraživanja i eksperimentiranja s kriptografskim primitivima, postavilo se pitanje o

mogućnosti automatiziranog dizajna kriptografskog algoritma. Dizajniranje kriptografskog al-

goritma vrlo je složen proces jer dizajneri algoritma moraju slijediti više kriptografskih principa

ne bi li stvorili kriptoalgoritam otporan na napade. Tijekom dizajniranja, mora se voditi računa

o svojstvima korištenih kriptografskih primitiva te o potpunom algoritmu. Da bi se dizajni-

rani kriptografski algoritam pokazao dovoljno otpornim na napade, nad algoritmom se provode

različiti napadi, kao što su diferencijalna ili linearna kriptoanaliza. Do danas, kriptografske

algoritme isključivo dizajniraju ljudski eksperti. Iako od 2000. godine postaje aktivno po-

dručje kriptografije bazirane na neuronskim mrežama, jedan od nedostataka u takvom pristupu

jest manjak interpretabilnosti. Budući da dosad nitko nije razmatrao korištenje evolucijskih al-

goritama u konstrukciji kriptografskih algoritama, ovaj problem ispituje moguća ograničenja

evolucijskih algoritama u ovoj domeni. Dodatno, budući da unaprijed nisu postavljena nikakva

ograničenja na dizajn kriptografskog algoritma, postoji mogućnost pronalaska novih primitiva.

Takod̄er, s obzirom na to da se sustav sastoji od pošiljatelja, primatelja te napadača, postavlja se

pitanje kakvu strategiju će koristiti napadač s ciljem otkrivanja tajnog ključa. Još jedna od moti-

vacija za razvoj automatiziranog dizajna kriptografskog algoritma jest mogućnost prilagodbe na



nove sigurnosne prijetnje. Prilagodba algoritma svodi se na promjenu optimizacijske funkcije

algoritma evolucijskog računanja.

Nakon početne motivacije konstrukcije kriptografskih primitiva i kriptografskog algoritma

sa simetričnim ključem uporabom algoritama evolucijskog računarstva, stavljamo se u pozi-

ciju napadača koji pokušava doći do tajnog ključa u simetričnom kriptografskom algoritmu

koristeći sporedna svojstva ured̄aja. Kod sigurnosnih napada na pozadinska svojstva ured̄aja,

profilirani napadi smatraju se najsnažnijim napadima. Smatra se da u fazi profiliranja, napadač

ima neograničene mogućnosti, odnosno može imati veliku količinu tragova na temelju kojih

može naučiti model strojnog učenja. Iz ovoga proizlazi motivacija za istraživanjem slučaja kod

kojeg je napadač u fazi profiliranja ograničen, a u fazi napada može prikupiti dovoljno veliku

količinu tragova. Zbog takvog scenarija, proučava se primjena polunadziranog učenja tako da se

u fazi profiliranja koristi mali broj označenih tragova, a zatim se model neprestano poboljšava

koristeći neoznačene tragove iz faze napada. Koliko je poznato, dosad je napravljeno jedno

istraživanje s identičnim scenarijem, ali zaključci provedenog istraživanja u potpunoj su suprot-

nosti s našim rezultatima. Istraživanje je provedeno na javno dostupnim skupovima podataka

dobivenih na temelju fizičke implementacije kriptografskog algoritma AES.

Posljednji dio istraživanja motiviran je korištenjem neuronskih mreža u profiliranim sig-

urnosnim napadima na sporedna svojstva ured̄aja. Izbor aktivacijske funkcije može snažno

utjecati na učinkovitost rada neuronske mreže. Mnogi radovi neprestano ispituju i predlažu

nove aktivacijske funkcije čija svojstva mogu doprinijeti uspješnosti učenja modela neuron-

skih mreža. Koliko znamo, dosad nitko nije pokušao razviti aktivacijsku funkciju za neuronske

mreže za sigurnosni napad na sporedna svojstva ured̄aja. Rezultat genetskog programiranja

jest simbolički prikaz funkcije koja se može koristiti kao aktivacijska funkcija. Spoj algoritma

evolucijskog računanja i neuroračunarstva naziva se neuroevolucijsko računarstvo. Početni do-

biveni rezultati opravdali su korištenje neuroevolucije, kod višeslojnog perceptrona i konvolu-

cijske neuronske mreže, kod napada na sporedna svojstva ured̄aja. Za eksperimentiranje je

korišten javno dostupan skup podataka fizičke implementacije kriptografskog algoritma AES.

Pregled disertacije

Disertacija je podijeljena na osam poglavlja: uvod, teorijske pretpostavke o evolucijskom raču-

narstvu, strojnom učenju, kriptografiji i implementacijskim napadima, konstrukcija Booleovih

funkcija, konstrukcija vektorskih Booleovih funkcija, automatska izgradnja kriptografskog al-

goritma, strojno učenje u sigurnosnim napadima na sporedna svojstva ured̄aja, neuroevolucija

u sigurnosnim napadima na sporedna svojstva ured̄aja i zaključak.

Prvo poglavlje daje kratak uvod u disertaciju. U navedenom poglavlju ukratko je izložena

motivacija za proučavanje problema kod kriptografskih algoritama sa simetričnim ključem.

Kroz poglavlje je istaknuto nekoliko otvorenih pitanja u tom području koja su proučavana u



okviru disertacije. U poglavlju je takod̄er dan i pregled izvornog znanstvenog doprinosa koji je

ostvaren u sklopu disertacije. Konačno, poglavlje je zaključeno kratkim pregledom disertacije.

U drugom poglavlju ukratko su opisani pojmovi i teorijski koncepti korišteni u disertaciji.

Potpoglavlje o evolucijskom računarstvu definira pojam optimizacije te opisuje evolucijske op-

eratore korištene u evolucijskim algoritmima. Opisuje se rad genetskog algoritma, genetskog

programiranja i Kartezijskog genetskog programiranja. Za svaki od algoritama objašnjava se

prikaz rješenja. U potpoglavlju o strojnom učenju opisuju se vrste učenja: nadzirano učenje, ne-

nadzirano učenje, polunadzirano učenje i podržano učenje. Ukratko su opisani fundamentalni

algoritmi korišteni u disertaciji: algoritam naivnog Bayesa, stroj potpornih vektora, višeslo-

jni perceptron te konvolucijska neuronska mreža. Dodatno je objašnjena uloga aktivacijskih

funkcija u neuronskim mrežama. U potpoglavlju o kriptografiji posebno se opisuju svojstva

kriptografskog algoritma sa simetričnim i asimetričnim ključem. Posljednje potpoglavlje ob-

jašnjava pojam implementacijskih napada, razlog nastanka sporednih svojstva ured̄aja na ko-

jima se kriptografski algoritam izvodi te razliku izmed̄u profiliranih i neprofiliranih sigurnosnih

napada.

Treće poglavlje opisuje konstrukciju Booleovih funkcija korištenjem genetskog algoritma i

genetskog programiranja, s ciljem optimizacije svojstva visoke nelinearnosti i balansiranosti.

U poglavlju se razmatraju Booleove funkcije binarne i kvaternarne baze. U obje baze ko-

risti se Walsh-Hadamardova transformacija funkcija s ciljem pronalaska maksimalno nelin-

earnih funkcija (bent functions). U ovom poglavlju ostvaren je izvorni znanstveni doprinos

u konstrukciji Booleovih funkcija s prilagodljivim kriptografskim svojstvima. Pokazano je da

unatoč tome što je prostor pretrage maksimalno nelinearnih funkcija u kvaternarnoj bazi puno

veći, genetsko programiranje uspješno pronalazi kvaternarne bent funkcije ulazne dimenzije n

koje se Grayevim mapiranjem transformiraju u Booleove funkcije ulazne dimenzije 2n. Na taj

način pokazana je uspješna primjena genetskog programiranja u pronalaženju bent Booleovih

funkcija do ulazne dimenzije 16.

U četvrtom poglavlju opisuje se konstrukcija S-kutija različitih kriptografskih svojstava.

Prvi problem koji se rješava jest konstrukcija bent(n,m) S-kutije kod koje je m ≤ n
2 , odnosno

izlazna dimenzija striktno je manja od ulazne dimenzije. Navedeni problem rješava se koris-

teći genetski algoritam i genetsko programiranje. U genetskom algoritmu eksperimentira se

različitim prikazima: niz bitova i niz brojeva s pomičnom točkom. Optimiziraju se tri različite

funkcije, od kojih je jedna kompozicija derivacija Booleovih funkcija. Eksperimenti su prove-

deni do ulazne dimenzije 12. Rezultati istraživanja potvrd̄uju da evolucijski algoritmi mogu

uspješno konstruirati S-kutiju različitih ulaznih dimenzija, gdje najbolje rezultate postiže genet-

sko programiranje. Dodatno, zaključujemo da genetsko programiranje postiže najučinkovitije

rezultate zbog načina prikaza rješenja. Dodatno, istražujemo mogu li algoritmi evolucijskog

računarstva generirati S-kutiju dimenzija (n,n− 2) i kod koje je vrijednost diferencijalne uni-



formnosti jednaka 6. Zbog veličine prostora pretrage, ovaj problem pokazuje se vrlo izazovnim.

Globalne optimume postižemo za dimenzije (4,2) i (5,3), a zanimljivo je da optimume u ra-

zličitim dimenzijama postižu različiti prikazi rješenja. Prilikom rješavanja ovog problema,

eksperimentira se s različitim prikazima rješenja: prikaz cijelim brojevima, permutacijski prikaz

rješenja, četverostruka permutacija te prikaz brojevima s pomičnom točkom. Rezultati ukazuju

da najbolja rješenja postiže genetsko programiranje te genetski algoritam s prikazima rješenja

cijelim brojem ili brojem s pomičnom točkom. U okviru ovog poglavlja ostvaren je izvorni

znanstveni doprinos u konstrukciji vektorskih Booleovih funkcija s prilagodljivim kriptograf-

skim svojstvima.

Peto poglavlje istražuje automatsku konstrukciju kriptografskog algoritma sa simetričnim

ključem. Problem se promatra kao optimizacijski problem kod kojeg se želi konstruirati takav

kriptografski algoritam koji ima visoku nelinearnost, da bi bio otporan na linearnu kriptoanal-

izu, poštuje princip difuzije te je bijektivan. Algoritam koristi dvorazinsku optimizaciju, kod

koje je optimizacijska funkcija pošiljatelja vanjska optimizacijska funkcija, a optimizacijska

funkcija napadača unutarnja optimizacijska funkcija. U optimizacijskom postupku koristi se

Kartezijsko genetsko programiranje zbog interpretabilnosti, paralelne izgradnje rješenja te in-

herentno riješenog problema prekomjernog rasta jedinke. Razmatra se pet scenarija, s obzirom

na mogućnosti pošiljatelja, primatelja te napadača. Napadač koristi napad po modelu poznatog

otvorenog teksta. U eksperimentima se koriste umjetno stvoreni blokovi teksta veličine 4 i 8

bitova. Rezultati pokazuju da je prosječna uspješnost napadača u otkrivanju tajnog ključa jed-

naka nasumičnom pogad̄anju, iz čega zaključujemo da algoritmi evolucijskog računarstva imaju

potencijal biti korišteni u automatskoj izgradnji kriptografskog algoritma. U ovom poglavlju

ostvaren je izvorni znanstveni doprinos automatske izgradnje kriptografskih algoritama prim-

jenom dinamike napadača i obrane u sigurnosnoj domeni.

U šestom poglavlju razmatra se profilirani sigurnosni napad na sporedna svojstva ured̄aja.

Istražuje se scenarij u kojem je napadač ograničen u fazi profiliranja s malim brojem označenih

tragova, dok u fazi napada ima mogućnost prikupljanja većeg broja tragova. U poglavlju se is-

tražuje kako polunadzirano učenje može pospješiti učinkovitost modela. Kao modeli koriste se

algoritam naivnog Bayesa, stroj potpornih vektora, a napadač koristi napad predloškom (engl.

template attack). Eksperimenti su provedeni na javno dostupnim skupovima podataka DPAv2 i

DPAv4 fizičke implementacije algoritma AES. Rezultati potvrd̄uju početnu hipotezu, a tragovi

iz faze napada mogu, polunadziranim učenjem, učiniti model učinkovitijim. U ovom poglavlju

ostvaren je izvorni znanstveni doprinos području algoritama strojnog učenja u sigurnosnim na-

padima na sporedna svojstva ured̄aja.

Sedmo poglavlje razmatra mogućnost da se u profiliranim sigurnosnim napadima na sporedna

svojstva ured̄aja koriste neuronske mreže: višeslojni perceptron i konvolucijska neuronska

mreža. Budući da izbor aktivacijske funkcije uvelike utječe na učinkovitost rada neuronske



mreže, u poglavlju se koristi genetsko programiranje kao optimizacijski evolucijski algoritam.

Zadatak genetskog programiranja jest stvoriti prihvatljivu aktivacijsku funkciju koja sman-

juje funkciju gubitka, odnosno pospješuje učinkovitost napada. Istraživanje je provedeno na

javno dostupnom skupu podataka ASCAD fizičke implementacije algoritma AES. Eksperimenti

pokazuju da evolucija aktivacijskih funkcija ostvaruje bolje rezultate na jednostavnijem skupu

podataka što upućuje na mogućnost dodatnih napora u istraživanju. U ovom poglavlju ostvaren

je izvorni znanstveni doprinos korištenjem postupaka neuroevolucije za optimiziranje arhitek-

ture neuronskih mreža u sigurnosnoj domeni.

Zaključak

Glavni cilj disertacije je pokazati primjenu strojnog učenja i evolucijskog računarstva u obliko-

vanju i analizi kriptografskih algoritama sa simetričnim ključem. U sklopu disertacije ostvaren

je znanstveni doprinos koji se sastoji od četiri točke:

•Evolucijski algoritmi za konstrukciju skalarnih i vektorskih Booleovih funkcija s pri-

lagodljivim kriptografskim svojstvima

•Automatska izgradnja kriptografskih algoritama primjenom dinamike napada ča i obrane

u sigurnosnoj domeni

•Algoritmi strojnog u čenja u sigurnosnim napadima na sporedna svojstva ured̄aja

•Postupci neuroevolucije za optimiziranje arhitekture neuronskih mreža u sigurnosnoj domeni

Kroz postignute rezultate može se zaključiti kako evolucijski algoritmi, u odred̄enim sluča-

jevima, mogu biti jednako učinkoviti kao i konstruktivni algoritmi za konstrukciju Booleovih

i vektorskih Booleovih funkcija. S obzirom na optimizacijski problem, različiti algoritmi i

različiti prikazi rješenja pokazuju bolje ponašanje, a što je očekivano s obzirom na No Free

Lunch teorem. Korištenjem Kartezijskog genetskog programiranja uspješno je automatski iz-

grad̄en kriptografski algoritam u kojoj napadač nije bio uspješniji od nasumičnog pogad̄anja

ključa. Polunadzirano učenje pokazuje se kao uspješna metoda učenja u profiliranim sigurnos-

nim napadima na sporedna svojstva ured̄aja, kod kojih je napadač ograničen brojem tragova

u fazi profiliranja. Konačno, korištenje neuroevolucije s ciljem izgradnje aktivacijske funkcije

neuronskih mreža, može doprinijeti uspješnijem profiliranom sigurnosnom napadu na sporedna

svojstva ured̄aja.

Ključne riječi: Booleove funkcije, S-kutije, funkcije s najvećom nelinearnošću (engl. bent

functions), evolucijski algoritmi, automatizirana izgradnja kriptografskih algoritma sa simetričnim

ključem, simetrična kriptografija, sigurnosni napadi na sporedna svojstva ured̄aja (engl. side-

channel attacks), strojno učenje, polunadzirano učenje, neuroevolucija
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Chapter 1

Introduction

In the 21st century, digital technology has firmly entered the lives of individuals. It is almost

impossible to imagine life today without the use of computers. Humanity has chosen to base its

development and progress on digital technology. With the increase in the level of digitization

of society, challenges appear that can threaten information security. One of the components

of information security is cryptography. Cryptography is the art of writing messages in such a

form that only the intended recipient can read them. In the digital communication chain, whose

stakeholders are the majority of the human population, there are message senders, receivers,

and attackers. Attackers are those people who deliberately try to intercept the message and read

it. If the message’s sender has not sufficiently secured the unauthorized reading of the message,

the consequences can be catastrophic.

The history of cryptography goes back to ancient times. The ancient Greeks already knew

that information had the highest price. For centuries, sophisticated methods were developed that

constantly improved the ways of hiding messages. In parallel with the development of methods

of hiding messages, attackers have been growing increasingly ingenious methods to read hidden

messages. That game of hiding and revealing messages continues to this day. Every day we

witness media news that publishes various secret information. The awareness of individuals

about the consequences of revealing confidential digital data is becoming more vital because it

is they who are becoming victims more and more often.

The communication chain consists not only of people but also of machines. Most digital

devices connect to the Internet and communicate with other machines or people. As computers

are getting smaller and more portable, wearable computers are being implanted in/on animals or

plants for better monitoring. Generally speaking, we live in a world of general communication

where almost anyone can communicate with anyone or anything.

At the end of World War II, Alan Turing already showed that humans are not effective

attackers of hidden messages, but machines are. Uncovering hidden messages is a challenging

problem, and its task is to attack the weaknesses of the procedure or algorithm by which the
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message is hidden. For many centuries, to ensure the secrecy of messages in the communication

chain, a crypto-algorithm was hidden - the procedure by which the sender hid the message. In

the 19th century, Dutch cryptographer Auguste Kerckhoff said that a cryptosystem must remain

secure even if everything about the system is known except the secret key. The statement above

follows the French cryptographer Jean Robert du Carlet, who said that only private keys must

remain secret - "ars ipsi secreta magistro." In a symmetric crypto-algorithm, the attacker’s main

idea when reading hidden messages is to discover the key used in the encryption algorithm.

Once an attacker finds the secret key, he can easily intercept and read the messages in the

communication chain between the sender and receiver of the message.

All modern crypto algorithms are publicly known, and cryptographers are constantly im-

proving crypto algorithms’ properties. When building a new cryptographic algorithm, human

experts must simultaneously satisfy multiple cryptographic criteria for the algorithm to be con-

sidered secure. We hope the symmetric algorithms we use today are safe. However, the game

of hiding and revealing the messages have been transferred to another field. Indeed, instead of

attacking the vulnerability of a crypto algorithm, one attacks the implementation of the crypto

algorithm on the device on which it runs. Any machine running a crypto algorithm produces

secondary information that can provide an attacker with a successful attack. This secondary in-

formation is reflected in the consumption of electricity, produced thermal energy or sound, time

waiting for the next calculation operation to be performed, etc. Since such attacks are already

known, when designing a crypto algorithm, efforts are made to satisfy cryptographic criteria

simultaneously. Measures are also taken to implement the algorithm on the machine and hide

the secondary information produced. However, secondary information will always exist. The

only question is how valuable this information will be to an attacker in discovering the secret

key.

Evolutionary computing and machine learning are two major fields within artificial intel-

ligence. Evolutionary computing has proven to be a powerful tool in solving optimization

problems. It is precisely the simultaneous satisfaction of different cryptographic criteria that is

an optimization problem. Additionally, most cryptographic criteria can be described as an op-

timization problem, such as, for example, high nonlinearity. Numerous studies have confirmed

the justification of using evolutionary computing algorithms in constructing cryptographic prim-

itives despite the skepticism of mathematicians and cryptographers.

On the other hand, with the development of computing capability, machine learning is prov-

ing to be a powerful tool in security attacks against secondary device properties. Indeed, today

profiled attacks are the most powerful side-channel attacks. In such an attack, an attacker gains

access to a device to build a precise machine learning model used to attack another identical

(similar) device. In doing so, the assumption is made that the attacker has many possibilities in

the profiling phase, while the attack phase is limited. The task of the machine learning model
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is to learn to recognize the secondary information of the device - the trace - and connect it with

part of the secret key located on the computer on which the crypto algorithm is executed.

Although much has been done in evolutionary computing in constructing cryptographic

primitives, many unanswered questions exist. Apart from evolutionary computing algorithms

being used in the construction of cryptographic primitives, there is no known attempt to use

evolutionary computing in the automatic construction of cryptographic algorithms. On the other

hand, even though there is a lot of research in the domain of profiling attacks, the question arises

of the success of such an attack, provided that the number of traces limits the attacker during

the profiling phase. Finally, fundamental machine learning algorithms and neural networks

have been used in profiled side-channel attacks. So far, it remains an open question whether the

combination of evolutionary computing and neural networks can improve the effectiveness of

attacks.

1.1 Research Motivation

The main motivation of the dissertation is to achieve new scientific contribution in the design

and analysis of symmetric key cryptographic algorithms, using machine learning and evolution-

ary computing, which have not been properly investigated in the existing literature. The areas

of importance in this dissertation are:

1.construction of cryptographic primitives,

(a)construction of bent Boolean functions in the binary and quaternary base using al-

gorithms of evolutionary computing,

(b)construction of S-boxes with explicitly smaller output than input dimensions using

evolutionary computing algorithms,

2.automatic construction of a cryptographic algorithm with a symmetric key using evolu-

tionary computing algorithms,

3.building a machine learning model in a profiled side-channel attack,

(a)model building using semi-supervised learning,

(b)using neuroevolution in a multi-layer perceptron and deep neural network model.

Boolean functions stand as a crucial factor in the design of cryptographic algorithms. Al-

though there are many applications of Boolean functions in cryptography, our focus is on stream

cryptographic algorithms. Boolean functions must satisfy many cryptographic properties to

have practical application in cryptography. One of these properties is high nonlinearity, which

improves defense against linear cryptanalysis. The nonlinearity property tells how far the func-

tion is from all affine functions. The function whose distance is the largest of all affine func-

tions is called a maximally nonlinear function (bent function). This problem is combinatorial

because the search space grows super-exponentially, and given the number of input variables n,
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the search space is 22n. Several works looked at the construction of cryptographic primitives

as combinatorial optimization and solved the mentioned problem with evolutionary comput-

ing algorithms. The original motivation is to construct bent input dimension functions up to

n = 12, using genetic algorithm and genetic programming, and to compare the results of both

algorithms with theoretical values. In addition to high nonlinearity, one of the cryptographic

criteria is the balancedness of the Boolean function. Therefore, an extension of the initial idea

is to construct a highly nonlinear balanced Boolean function. Since the results showed that

evolutionary algorithms could successfully build a highly nonlinear balanced Boolean function,

the question arose about how to make the entire construction process more successful for larger

input dimensions n. That is why we decided to experiment with quaternary Boolean functions

with output values 0, 1, 2, and 3. The consequence of the base change is the increase of the

search space of the highly nonlinear function 44n. Still, if a highly nonlinear function is found

in such a space, then there is a mapping into a binary Boolean function of input dimension 2n.

A natural extension of Boolean functions is vectorial Boolean functions or substitution

boxes (S-boxes). S-boxes play a significant role in symmetric key cryptographic algorithms.

Although cryptographic algorithms have different design strategies, they all have in common

that they implement the principles of confusion and diffusion. The principle of confusion means

that the output of the cryptographic algorithm must not depend on the input. There is no linear

connection between the cryptographic algorithm’s input and output. The principle of diffusion

means that a change of one bit at the input to the cryptographic algorithm results in a change

of several bits at the algorithm’s output. One way to ensure the principle of confusion is to use

S-boxes. One of the practical unanswered questions is how to construct a maximally nonlinear

S-box where the dimension of the output is necessarily smaller than the dimension of the input.

An additional open problem is the question of the existence of S-boxes of sizes (n,n−k), where

k = 2, and whose differential uniformity is less than 8 if the input dimension is greater than or

equal to 5. This question is interesting from an optimization point of view, and on the other

hand, differential uniformity is related to differential cryptanalysis. Evolutionary computing

algorithms are also used to solve these problems.

After researching and experimenting with cryptographic primitives, the question arose about

the possibility of automated cryptographic algorithm design. Designing a cryptographic algo-

rithm is very complex because algorithm designers must follow multiple cryptographic princi-

ples to create a cryptographic algorithm resistant to attacks. During the design, the properties of

the cryptographic primitives are used, and designers must consider the complete algorithm. Var-

ious attacks are performed on the algorithm to show that the designed cryptographic algorithm

is sufficiently resistant to attacks, such as differential or linear cryptanalysis. To date, crypto-

graphic algorithms are exclusively designed by human experts. Although cryptography based

on neural networks has become an active area since 2000, one of the disadvantages of such an
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approach is the lack of interpretability[1]. Since no one has considered the use of evolutionary

algorithms in constructing cryptographic algorithms, this problem examines the possible limi-

tations of evolutionary algorithms in this domain. Additionally, since no constraints are set in

advance on the design of the cryptographic algorithm, there is the possibility of finding new

primitives. What is more, considering that the system consists of a sender, a receiver, and an

attacker, the question arises as to what strategy the attacker will use to discover the secret key.

Another motivation for the development of automated cryptographic algorithm design is the

ability to adapt to new security threats. Adaptation of the algorithm is reduced to changing the

optimization function of the algorithm of evolutionary computation.

After the initial motivation of the construction of cryptographic primitives and a crypto-

graphic algorithm with a symmetric key using evolutionary computing algorithms, we put our-

selves in the position of an attacker who tries to get the secret key in a symmetric cryptographic

algorithm using secondary properties of the device. In side-channel attacks, profiling attacks

are considered the most powerful attacks. It is considered that in the profiling phase, the at-

tacker has unlimited possibilities, i.e., one can have a large number of traces based on which he

can train the machine learning model. From this comes the motivation to investigate the case

where the attacker is limited in the profiling phase and can collect a sufficiently large amount

of traces in the attack phase. In such a scenario, the application of semi-supervised learning is

studied by using a small number of labeled traces in the profiling phase and then continuously

improving the model using unlabeled traces from the attack phase. As far as we know, only one

research has been done with an identical scenario, but the conclusions of the conducted research

contradict our results. We conducted the research on publicly available data sets obtained based

on the physical implementation of the AES cryptographic algorithm.

The last part of the research is motivated by using neural networks in profiled side-channel

attacks. The choice of the activation function can strongly influence the neural network’s per-

formance. Many papers examine and propose new activation functions whose properties can

contribute to the learning success of neural network models. To our knowledge, no one has

attempted to develop an activation function for neural networks for a security attack on sec-

ondary device properties. The result of genetic programming is a symbolic representation of a

function that can be used as an activation function. The combination of evolutionary comput-

ing algorithms and neurocomputing is called neuroevolutionary computing. The initial results

justified using neuroevolution, with a multilayer perceptron and a convolutional neural network

in side-channel attacks. For experimentation, a publicly available dataset of the physical imple-

mentation of the AES cryptographic algorithm was used.
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1.2 Outline of the Thesis

The dissertation is divided into eight chapters: introduction, background on evolutionary com-

puting, machine learning, cryptography, and implementation attacks, construction of Boolean

functions, construction of vectorial Boolean functions, automatic construction of a crypto-

graphic algorithm, machine learning in side-channel attacks, neuroevolution in side-channel

attacks, and conclusion.

The first chapter briefly introduces the dissertation and presents the motivation for studying

problems with cryptographic algorithms with a symmetric key. Throughout the chapter, several

open questions in that area were highlighted, which were studied in the framework of the dis-

sertation. The chapter also provides an overview of the original scientific contribution as part

of the dissertation. Finally, the chapter is concluded with a brief overview of the dissertation.

The terms and theories used in the dissertation are briefly described in the second chapter.

The subsection on evolutionary computing defines optimization and describes the evolution-

ary operators used in evolutionary algorithms. Genetic algorithm, genetic programming, and

Cartesian genetic programming are described. The representation of the solution is explained

for each of the algorithms. The subchapter on machine learning describes the types of learning:

supervised, unsupervised, semi-supervised, and supported learning. Fundamental algorithms

used in the dissertation are briefly described: Naive Bayes algorithm, support vector machine,

multilayer perceptron, and convolutional neural network. The role of activation functions in

neural networks is additionally explained. In the subchapter on cryptography, the properties of

cryptographic algorithms with symmetric and asymmetric keys are specifically described. The

last subchapter explains the concept of implementation attacks, the reason for the emergence of

side-channel properties of the devices on which the cryptographic algorithm is performed, and

the difference between profiled and non-profiled side-channel attacks.

The third chapter describes the construction of Boolean functions using the genetic algo-

rithm and genetic programming to optimize the properties of high nonlinearity and balance.

The chapter discusses Boolean functions of binary and quaternary bases. In both bases, the

Walsh-Hadamard transformation of functions is used to find bent functions. In this chapter,

we made an original scientific contribution to constructing Boolean functions with adaptive

cryptographic properties. It is shown that although the search space for bent functions in the

quaternary base is much larger, genetic programming successfully finds quaternary bent func-

tions of input dimension n, which are transformed into Boolean functions of input dimension

2n with Gray mapping. In this way, we demonstrated the successful application of genetic

programming in finding bent Boolean functions up to the input dimension 16.

The fourth chapter describes the construction of S-boxes with different cryptographic prop-

erties. The first problem to be solved is the construction of a bent(n,m) S-box where m ≤ n
2 ,
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that is, the output dimension is strictly smaller than the input dimension. The mentioned prob-

lem is solved using a genetic algorithm and genetic programming. In the genetic algorithm,

different representations are experimented with: a series of bits and a series of floating-point

numbers. Three different functions are optimized, one of which is a composition of derivatives

of Boolean functions. The experiments were conducted up to an input dimension of 12. The

research results confirm that evolutionary algorithms can successfully construct an S-box with

different input dimensions, where genetic programming achieves the best results. We conclude

that genetic programming achieves the most efficient results due to the presented solution. Fur-

thermore, we investigate whether evolutionary computing algorithms can generate an S-box of

dimensions (n,n− 2) and where the differential uniformity value equals 6. Due to the search

space size, this problem proves to be very challenging. We achieve global optima for the di-

mensions (4,2) and (5,3), and, interestingly, different representations of the solution achieve

the optima in different sizes. When solving this problem, we experiment with different solution

representations: integer representation, permutation representation, quadruple permutation, and

floating-point representation. The results indicate that the best solutions are achieved by ge-

netic programming and a genetic algorithm with integer or floating-point encoding. Within this

chapter, we made an original scientific contribution to constructing vectorial Boolean functions

with adaptive cryptographic properties.

The fifth chapter explores the automatic construction of a symmetric key cryptographic

algorithm. The problem is viewed as an optimization problem where one wants to construct

a cryptographic algorithm with high nonlinearity, is resistant to linear cryptanalysis, respects

the principle of diffusion, and is bijective. The algorithm uses bi-level optimization, where

the sender’s optimization function is outer, and the attacker’s optimization function is an inner

optimization function. Cartesian genetic programming is used in the optimization procedure

due to interpretability, parallel construction of multiple solutions, and the inherently solved

problem of excessive individual growth - bloat. Five scenarios are considered, considering the

capabilities of the sender, receiver, and attacker. The attacker uses a known-plaintext attack.

The experiments use artificially created text blocks of sizes 4 and 8 bits. The results show that

the average success of the attacker in discovering the secret key is equal to random guessing,

from which we conclude that evolutionary computing algorithms have the potential to be used

in the automatic construction of a cryptographic algorithm. In this chapter, we realized the

original scientific contribution of the automatic construction of cryptographic algorithms by

using attacker and defense dynamics in the security domain.

In the sixth chapter, a profiled side-channel attack is considered. A scenario is explored

in which the attacker is limited in the profiling phase with a small number of labeled traces,

while in the attack phase, he can collect a larger number of traces. The chapter explores how

semi-supervised learning can improve model performance. We use the Naive Bayes algorithm,
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the support vector machine, and the attacker uses a template attack. The experiments were

performed on the publicly available datasets DPAv2 and DPAv4 of the physical implementation

of the AES algorithm. The results confirm the initial hypothesis, and traces from the attack

phase can, through semi-supervised learning, make the model more efficient. In this chapter,

we made an original scientific contribution to the field of machine learning algorithms in side-

channel attacks.

The seventh chapter considers the possibility of using neural networks in profiled side-

channel attacks: multilayer perceptron and convolutional neural network. Since the choice

of the activation function significantly affects the efficiency of the neural network, the chapter

uses genetic programming as an evolutionary optimization algorithm. The task of genetic pro-

gramming is to create a proper activation function that reduces the loss function and improves

the effectiveness of the attack. We researched a publicly available dataset of the ASCAD phys-

ical implementation of the AES algorithm. Experiments show that the evolution of activation

functions achieves better results on a more straightforward dataset, which indicates the possi-

bility of additional research efforts. In this chapter, an original scientific contribution was made

using neuroevolutionary procedures for optimizing neural network architecture in the security

domain.

Finally, in the eighth chapter, we provide conclusions where we again emphasize our contri-

bution and the conclusions we made, and we list a number of possible future research directions.

1.3 Contribution

The main goal of the dissertation is to demonstrate the application of machine learning and

evolutionary computing in the design and analysis of symmetric key cryptographic algorithms.

The dissertation has achieved a scientific contribution consisting of four points:

•Evolutionary algorithms for the construction of scalar and vectorial Boolean functions

with adaptive cryptographic properties −→ Chapter 3 and Chapter 4

•Automatic construction of cryptographic algorithms by using attacker and defense dy-

namics in the security domain −→ Chapter 5

•Machine learning algorithms in side-channel attacks −→ Chapter 6

•Neuroevolutionary procedures for optimization of neural network architecture in the se-

curity domain −→ Chapter 7
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Chapter 2

Background

This chapter serves as a concise overview of the topics explored in this thesis. Given the mul-

tidisciplinary nature of our study, we will refrain from delving into details that are commonly

known or readily accessible in the literature. Instead, we will focus on the techniques and

questions we aim to address.

Our research endeavors to provide answers to several important questions. Firstly, can evo-

lutionary computing techniques be used to construct cryptographic primitives? Secondly, is

it feasible to automatically generate symmetric cryptographic algorithms that meet specific re-

quirements? Lastly, how can machine learning techniques be employed to enhance implementa-

tion attacks, and how can evolutionary computing and machine learning be combined to achieve

better success in these attacks? To facilitate comprehension of the remainder of this thesis, this

chapter introduces the essential concepts relevant to the aforementioned questions.

The subsequent sections are arranged as follows: Chapter 2.1 offers a brief yet compre-

hensive overview of evolutionary computing, explicitly focusing on the algorithms employed

in this study. Chapter 2.2 covers the fundamental principles of machine learning, emphasiz-

ing supervised and semi-supervised learning and various models used in the learning process.

Chapter 2.3 introduces cryptography with a focus on symmetric cryptography. Finally, Chapter

2.4 delves into implementation attacks.

2.1 Evolutionary Computation

With the development of computing and the increase in the processing power of computers,

people began to solve highly complex problems that were unsolvable until then, simply by using

the technique of exhaustive search, that is, by searching the entire solution space. To speed up

the search, a family of directed search algorithms was developed, which includes algorithms

that are guided during the search by information about the problem they are solving and by

estimating the distance from the current one to the desired target solution. This information is
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taken into account to direct the search and end it sooner. Unfortunately, we cannot solve many

problems in the previously described way.

To describe evolutionary computation, it is necessary to understand the taxonomy of al-

gorithms. Algorithms are divided into deterministic and non-deterministic algorithms. Deter-

ministic algorithms are those that give a specific output for specific input. On the other hand,

non-deterministic algorithms are those algorithms that can provide an arbitrary output for a

given input. One version of non-deterministic algorithms are probabilistic algorithms, which

have a built-in stochastic process. Probabilistic algorithms are divided into Monte Carlo and

Las Vegas algorithms. The difference between the above two types of algorithms is that Las

Vegas algorithms always end up with the correct output, while Monte Carlo algorithms can give

an incorrect output.

2.1.1 Optimization

Optimization refers to enhancing a system by reducing the demands on resources such as time,

memory, and other system properties. The discipline of optimization can be classified into two

main categories: single-objective optimization and multi-objective optimization problems. In

the context of single-objective optimization, the objective function space is one-dimensional,

so each solution can be mapped to a numerical value that denotes its quality. Conversely, in

multi-objective optimization, the objective function space is multi-dimensional, and solutions

are mapped into a vector of numerical values.

Optimization algorithms refer to those designed to solve optimization problems and are

commonly categorized into two distinct types: exact and approximate algorithms. The former

pertains to algorithms that can identify the optimal solution and guarantee its optimality, while

the latter denotes algorithms that generate solutions of sufficient quality but cannot ensure op-

timality. The key trade-off between these two types lies in the execution time of the algorithm,

with approximate algorithms typically demonstrating much faster execution times.

Heuristic algorithms are classified as approximate algorithms and are characterized by pro-

viding solutions that lack a provable quality. Typically, heuristics are employed as a constituent

element of optimization algorithms, particularly in instances where data can be gathered to

evaluate the current solution status or in the creation of the next solution.

Heuristics can be categorized into two main groups: specific heuristics and metaheuristics,

with the former being tailored to solve particular problems. At the same time, the latter com-

prises algorithmic frameworks designed to generate heuristics that can be applied to a diverse

range of problems. Metaheuristics are regarded as general-purpose heuristics whose function

is to guide problem-specific heuristics toward the region in the solution space where viable

solutions can be located.

Metaheuristics can be divided into two large classes of algorithms: single-solution-based
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and population-based metaheuristics, which work with sets of solutions. Evolutionary comput-

ing algorithms belong to the latter family of algorithms.

When discussing optimization, it is necessary to define local and global optimums. In

single-objective optimization, the global optimum on the entire domain can be a minimum

or a maximum. A local optimum is an optimum on a subset of the domain, and it can be a

local minimum or a local maximum. Local optima represent a severe problem in optimization

algorithms.

2.1.2 Solution Representation and Operators

The initial step in solving any optimization problem is crucial as it involves determining the

appropriate method for representing a specific solution to the computer. The efficiency and

effectiveness of the optimization algorithm depend on this decision.

The solutions are subjected to a series of actions, including evaluation, modification, com-

bination, generation of a neighborhood of solutions, and selection.

This series of operations performed on solutions is called evolution, and an individual rep-

resents one solution in this process. A genotype represents each individual, which serves as a

means of presenting a solution. On the other hand, the phenotype is a behavioral expression of

the genotype in a specific environment. Whether the display is genotypic or phenotypic depends

on the problem being solved. Representation is a way of encoding a genotype, and an allele is a

possible value that can appear at a particular place in the chromosome. A position in a chromo-

some is called a locus, and a chromosome represents a solution to a problem. A chromosome

consists of building blocks called genes. An individual is a data structure corresponding to an

element in the search space and consists of a chromosome and additional information, such as

a fitness function.

The fitness function represents the definition of the problem that needs to be solved by

evolutionary computation. It is a function whose value is associated with each possible solution.

The fitness function is sometimes called the objective function. The set of individuals used in

the optimization process is called a population. A generation represents individuals in one

iteration of evolutionary computation. The process that ensures that the individual with the best

fitness value does not disappear from the population is called elitism.

The solution representation can be categorized into various types: a string of bits, floating-

point vectors or fields, permutations and matrices, trees, and other complex data structures.

Figure 2.1 illustrates the floating-point encoding.

How the solution is displayed determines how we will implement the variation operators.

Variation operators are the name for all recombination and mutation operators. Namely, re-

combination or crossover creates a new individual by combining information from two or more

individuals. A mutation is an operator that makes a random change over an individual’s geno-
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Figure 2.1: Floating point representation of the solution.

type, ensuring that the solution still belongs to the domain of the problem [2]. The mutation

value parameter Pm defines the mutation rate.

One can generate the initial population in several ways, of which the four most common

strategies are:

•random generation: pseudo-random (generation of independent values) or quasi-random

(generation of independent but intentionally scattered values),

•sequential diversification: a uniform sampling of the solution space; solutions are gener-

ated in sequences to optimize diversification,

•parallel diversification: solutions are generated in a parallel independent way,

•heuristic generation: solutions are generated using heuristics.

Examples of binary genotype variation operators are:

•crossover: one-point crossover, N-point crossover, uniform crossover.

•mutation: simple mutation, complete circulating mutation.

Examples of floating point genotype variation operators are:

•crossover: discrete recombination, simple arithmetic recombination, single arithmetic

recombination, whole arithmetic recombination.

•mutation: simple mutation.

2.1.3 Selections

Evolutionary algorithms use a selection mechanism to select individuals that will participate

in recombination. Selection is a process that allows individuals to be differentiated according

to their fitness and it enables the transmission of better genetic material from generation to

generation. The common property of all types of selection is a higher probability of selecting

better individuals for reproduction. According to the method of transferring the genetic material

of better individuals to the next iteration, selection procedures are divided into:

•of generational selection: selection directly selects better individuals whose genetic ma-

terial will be transferred to the next iteration i

•elimination selection: bad individuals are selected for elimination, and better individuals

survive the selection process.

The previously mentioned two selections determine the typical implementations of the evolu-

tionary algorithm: the steady-state algorithm and the generational algorithm.

In the case of the steady-state algorithm, in each generation, two or more parents are selected
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from the entire population on which the crossing is performed, resulting in the creation of new

offspring. The offspring is then mutated and inserted into the population. Since the size of the

population must be constant, insertion is performed so that the offspring replaces an individual

from the population (for example, the worst). Algorithm 1 shows the steady-state algorithm.

Algorithm 1 Steady-state evolutionary algorithm.
Input: Parameters of the algorithm
Output: Optimal solution set
Initialize population: P←CreateInitialPopulation()
Evaluate population: Evaluate(P)
while ¬TerminationCriterion do

Select parents from population: Q← SelectMechanism(P)
Apply variation operators on selected parents: C← VariationOperators(Q)
Evaluate offspring: Evaluate(C)
Insert offspring into new population: P← InsertIntoPopulation(C, P)

end while
return OptimalSolutionSet(P)

Unlike the previously described algorithm where there is no clear boundary between parents

and offspring, the generational algorithm from generation to generation from the population of

parents creates a population of offspring who then become parents — the old population of

parents thus immediately dies out. Algorithm 2 shows the generational genetic algorithm.

Algorithm 2 Generational evolutionary algorithm.
Input: Parameters of the algorithm
Output: Optimal solution set
Initialize population: P←CreateInitialPopulation
Evaluate population: Evaluate(P)
while ¬TerminationCriterion do

Create an empty population: P′← NewEmptyPopulation
while Size(P′)< Size(P) do

Select parents from population: Q← SelectMechanism(P)
Apply variation operators on selected parents: C←VariationOperators(Q)
Evaluate offspring: Evaluate(C)
Insert offspring into new population: InsertIntoPopulation(C,P′)

end while
Update population: P← P′

end while

Selections differ according to the method of determining the value of the probability of se-

lecting a particular individual. Proportional or roulette-wheel selection selects individuals with

a chance proportionate to the fitness of the individual - the probability of selection depends

on the ratio of the individual’s fitness and the population’s average fitness. Ranking selections

select individuals with a chance that depends on the individual’s position in the order of indi-

viduals sorted by fitness. Ranking selections are divided into sorting and tournament selections.
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Figure 2.2: An example of roulette-wheel selection.

Sorting selections are linear selection, µ-λ , and truncated selection. Tournament selections

are divided according to the number of individuals participating in the tournament. Figure 2.2

shows the example of roulette-wheel selection.

Pseudocode 3 shows steady-state tournament selection. k individuals are selected for re-

combination, and the k− µ worst individuals are replaced with offspring. Here, k denotes the

tournament size, and µ is the number of surviving individuals. The thesis always considers the

scenario with two parents.

Algorithm 3 Steady-state tournament selection.
Input: The population of candidate solutions P, the number of individuals k in the tourna-
ment, and the probability of mutation pm
Output: Optimal solution set
for i = 1 to k do

randomly select an individual xi from P
end for
remove the individual with the worst fitness value from x1, ...,xk
randomly select two parents p1, p2 from x1, ...,xk
create an offspring o through crossover between p1 and p2
mutate the offspring o with probability pm
return the parents p1, p2 and the offspring o

2.1.4 Evolutionary Algorithms

Evolutionary algorithms can be broadly categorized into four different approaches: genetic al-

gorithms [3], genetic programming [4], evolutionary strategies [5], and evolutionary program-

ming [6]. Evolutionary algorithms are based on the Darwinian theory of evolution[7].
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Figure 2.3: An example of tournament selection.

The optimization process involves a population of individuals that represent possible solu-

tions. The population evolves towards a better solution through the application of evolutionary

operators. The fitness function, which is always dependent on the specific problem, is used

to evaluate the quality of a solution. Initially, the evolution begins from a pool of randomly

selected individuals, and utilizing evolutionary operators generates a new and better population.

The main difference between the various evolutionary algorithms lies in the method of indi-

vidual encoding and the implementation of evolutionary operators. The algorithms used in this

thesis are briefly explained in the following.

Genetic Algorithm

In 1975, H. J. Holland presented the genetic algorithm[8], which drew inspiration from Dar-

win’s theory of the origin of species. The genetic algorithm is a type of evolutionary algorithm

that typically employs a binary string, a floating-point number array, or a permutation vector to

represent the elements of the search space.

The genetic algorithm commonly utilizes a recombination operator and a mutation operator.

The recombination operator facilitates a local search, while the mutation operator promotes

diversity within the population. However, it is essential to note that a mutation rate that is too

high can lead to a random search. The implementation of the variation operator depends on the

genotype representation.

When discussing a genetic algorithm, it is imperative to specify the parameters utilized in

the algorithm, such as the selection operator’s type and parameters, population size, mutation

type and parameters, recombination type, and parameters, termination criterion, and the number

of trials.

In this thesis, the genetic algorithm is employed to optimize the cryptographic properties of

Boolean functions and vectorial Boolean functions. The author has explored the application of

genetic algorithms to a variety of problems in the cryptography field in [9].
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Genetic Programming

Genetic programming (GP) is an optimization process for automatically generating computer

programs to solve complex problems encountered in computing and everyday life. The concept

is derived from general ideas from the theory of genetic algorithms and other evolutionary

methods. The goal of GP is to create a universal computer program that can find solutions to

problems described only by input data and desired results.

In 1992, J.R. Koza introduced GP [11]. GP is similar to genetic algorithms, but instead of a

chromosome representing a candidate solution, it means a program that solves a given problem.

A tree is a typical data structure used in genetic programming to describe chromosomes. The

tree consists of functional nodes (inner nodes) and terminals (leaves or variables) collectively

called primitives. The tree representation in memory can be realized in several ways, resulting

in different versions of genetic programming.

When we talk about the tree, the syntax tree is often used in genetic programming. Syntax

trees are built according to context-free grammar, have a root, and are ordered. The depth of

the tree is an additional parameter of the genetic algorithm. The tree depth limits the excessive

growth of individuals, also called bloat.

In this thesis, genetic programming is used to optimize the cryptographic properties of

Boolean and vectorial Boolean functions.

Cartesian Genetic Programming

J.F. Miller presented in 1990 a new version of genetic programming that uses a directed graph

instead of a tree representation[12]. Since then, various versions of Cartesian Genetic Program-

ming (CGP) have been developed, and certain advantages over genetic programming have been

shown.

In CGP, an individual’s genotype is represented by a directed graph, and the phenotype is the

program. The terminal set (inputs) and node outputs are numbered sequentially. Node functions

are also numbered separately. CGP has three parameters to be chosen by the user; number of

rows nr, number of columns nc, and levels-back l [13].

Genotype is of constant size and consists of integer values. Integer values uniquely deter-

mine the node, the function that the node performs, the inputs to the node, and the output nodes.

A node that contains a function is called a functional node. In addition to the graph, the picture

2.4 also shows an example of a genotype. When decoding the genotype, some nodes may be ex-

cluded from the solution. Unconnected nodes are those that are not on the path from the output

to the input of the graph. Nodes that affect the phenotype change are called active nodes.[13].

After decoding, the phenotype can consist of all the nodes defined by the size of the geno-

type or even none. The phenotype will not have any functional node if the inputs are directly
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Figure 2.4: Phenotype and genotype representation of CGP.

connected to the outputs, and this is called a shortcut connection.[14].

The length of the genotype is determined by the Equation 2.1, where nn is number of node

input connections and no number of graph output connections.

One of the significant advantages of genetic programming is limited genotype length be-

cause there is no fear of noticeable and sudden growth of the genotype during evolution, called

bloat. CGP has shown the most success in learning logical functions because it provides a

large amount of local search, unlike genetic programming [12], but it has various applications.

Authors in [15] use CGP as a classifier, and to enhance the model capacity, they introduce an

amplitude.

genotype_length = nr ·nc · (nn + l)+no (2.1)

CGP as an optimization procedure usually uses the evolutionary strategy (µ +λ ), where

µ = 1 and λ = 4. In [12], it was shown that the crossover operator does not contribute to the

improvement of the individual, so it is not used. The only operator for creating new individuals

is mutation. There are several ways of implementing the mutation operator, the most common

of which are: probabilistic mutation, probabilistic mutation of active nodes and single muta-

tion [13]. The advantage of point mutation of an active node over other implementations is that

no mutation probability parameter is required. In [16], it is stated that this type of mutation

achieves the best results.

2.2 Machine Learning

Machine learning is a subfield of computer science that aims to develop algorithms capable

of effectively learning from a collection of examples of some phenomenon. The samples can
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be obtained from various sources, such as nature, human-crafted data, or generated through an

algorithmic process.

More formally, machine learning can be characterized as gathering a dataset and developing

a statistical model using algorithms specifically designed to identify patterns and relationships

within the data. The statistical model is then used to solve practical problems in some way, such

as making predictions, classification, or optimization.

2.2.1 Types of Learning

Learning can be supervised, semi-supervised, unsupervised and reinforcement.

Supervised Learning

In supervised learning, the dataset is the collection of labeled examples {(~xi,yi)}N
i=1. Each

element ~xi among N is called a feature vector. A feature vector is a vector in which each

dimension j = 1, ...,n contains a value that describes the example somehow. That value is

called feature and is denoted as~x( j). The label yi can be either an element belonging to a finite

set of classes 1,2, ...,C, a real number, or a more complex structure, like a vector, a matrix, a

tree, or a graph[17].

The goal of a supervised learning algorithm is to use the dataset to produce a model that

takes a feature vector as input and outputs information that allows deducing the label for this

feature vector.

Unsupervised Learning

In the context of machine learning, unsupervised learning pertains to the task of modeling a

dataset consisting of unlabeled examples {~xi}N
i=1, where ~x denotes the feature vector. The ob-

jective of an unsupervised learning algorithm is to generate a model that takes a feature vector

x as input, and either transforms it into another vector or a value that can be leveraged to solve

a practical problem.

For instance, in clustering, the model identifies the cluster identifier corresponding to each

feature vector in the dataset, while in dimensionality reduction, the model’s output is a feature

vector containing fewer features than the input~x[17].

Semi-Supervised Learning

Semi-supervised learning involves a dataset comprising labeled and unlabeled examples, where

the quantity of unlabeled examples is typically much larger than that of labeled ones. Despite

this imbalance, the goal of a semi-supervised learning algorithm remains the same as that of
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a supervised learning algorithm: to produce a model capable of deducing the label for a given

feature vector.

At first, incorporating more unlabeled examples into the learning process might seem coun-

terintuitive, as it introduces more uncertainty to the problem. However, adding unlabeled exam-

ples can provide additional information about the problem, as a larger sample size better reflects

the underlying probability distribution of the labeled data. Theoretically, a learning algorithm

can exploit this additional information to improve its model [17].

Reinforcement Learning

Reinforcement learning is a subfield of machine learning that involves an agent operating within

an environment and receiving feedback in the form of rewards based on the actions it takes. The

agent perceives the state of the environment as a vector of features and can execute actions in

response to this state. Each action has an associated reward and may also result in a transition

to a new state. The objective of a reinforcement learning algorithm is to learn a policy that

maps each state to an optimal action, where optimality is defined as maximizing the expected

cumulative reward over a long-term horizon[17].

The policy function takes the state feature vector as input and outputs the recommended

action. This paradigm is well-suited to sequential decision-making problems with long-term

goals.

2.2.2 Fundamental Algorithms

Classification is a supervised machine learning technique that seeks to assign an example to

the class to which it belongs. If the value associated with the example is nominal, the task is

referred to as classification, whereas if the value is continuous, it is referred to as regression.

An example is a feature vector, ~x = (x1,x2, ...,xn)
T , where n is the dimensionality of the

space in which the example is located. The space in which the example is located is called

the input space or the example space. Let X be the set of all possible examples. All machine

learning algorithms assume that the samples from X are sampled independently and from the

same common distribution P(~x,y). In supervised learning, the class label to which the example

~x from the learning set belongs is known in advance. If it is true that y ∈ {0,1} then it is

a binary classification, and if y ∈ {0, ...,n} then it is it multi-class classification. The set of

learning examples D consists of pairs of examples and associated labels.

The classification algorithm seeks to determine the hypothesis h : X→{0,1}which predicts

whether the example ~x belongs to the class C or not. The set of all possible hypotheses H is

called a model or hypothesis space.

The main components of the supervised learning algorithm are: the model, the loss function,
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and the optimization procedure. The loss function for model parameters θ calculates the loss

difference of the target value y(i) and its approximation h
(
~x(i)|θ

)
. The optimization procedure

finds the values of θ ∗ for which the empirical error is the smallest, as shown by the Equation

2.2.

θ
∗ = argmin

θ

E (θ |D) (2.2)

Here, we describe the fundamental machine learning algorithms used in this thesis.

Naive Bayes

The Naive Bayes (NB) classifier is representative of generative models [18]. Classification of

examples is achieved using the Bayes rule, which for each class gives the probability that the

sample belongs to that class. The NB is a parametric model, assuming that the examples obey

some theoretical probability distribution. The parameters of this distribution are unknown and

need to be learned based on learning examples.

The NB classifies the example~x based on the calculated posterior probability P
(
Y =C j|X = x

)
.

This probability is calculated indirectly based on the joint density p
(
~x,C j

)
of the exemplary

Bayes rule described by the Equation 2.3.

P
(
C j|~x

)
=

p
(
~x|C j

)
P
(
C j
)

∑
K
k=1 p(~x|Ck)P(Ck)

(2.3)

The marginal probability P
(
C j
)

is called the a priori probability of the class, and the condi-

tional density p
(
~x|C j

)
is called the class conditional density or class likelihood [18]. The opti-

mal classification decision is the one that maximizes the posterior probability p
(
C j|~x

)
. Such a

hypothesis is called the maximum a posteriori hypothesis and is described by the Equation 2.4.

h(~x) = arg max
Ck

p(~x|Ck)P(Ck) (2.4)

If the examples are discrete variables, then the corresponding values are used instead of the

class’s conditional density and a priori probability. If the samples are continuous variables, the

class probabilities are usually modeled by a Gaussian normal distribution. The main reason is

analytical simplicity. It is noted here that normal variables are not always normally distributed

and that there are statistical tests that can be used to determine whether the attributes of an

example obey a normal distribution.

The likelihood of a class for a multidimensional continuous random variable is modeled by

the multivariate Gaussian distribution shown by the Equation 2.5.
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p
(
~x|C j

)
=

1

(2π)
n
2
∣∣Σ j
∣∣ 1

2
e−

1
2(~x−~µ j)

T
Σ j
−1(~x−~µ j) (2.5)

The vector µ j describes the prototypical value of the example in the class C j, while the covari-

ance matrix Σ j describes the amount of noise in each variable and the correlation between noise

sources. This distribution generates a model defined by the formula 2.6.

h j (~x) =−
n
2

ln 2π− 1
2

ln
∣∣Σ j
∣∣− 1

2
(
~x− ~µ j

)T
Σ j
−1 (~x− ~µ j

)
+ ln P

(
C j
)

(2.6)

Support Vector Machines

Support vector machines (SVM) is a discriminative model of machine learning. Unlike the

Bayesian classifier, this model does not have any probabilistic interpretation. SVM solves the

problem of an arbitrary hypothesis that separates examples of two classes by introducing a

maximum margin criterion. The name support vector machine comes from the hyperplane that

separates examples of different classes and can be represented as a combination of selected

sample vectors from the training set. Additional efficiency of SVM is achieved by applying

kernel functions, which classify this model into a group called kernel machines.

A linear model for binary classification is defined by the formula 2.7

h(~x) = sgn
(
~wT~x+w0

)
(2.7)

where sgn(·) denotes the signum function. If the examples are linearly separable, the constraints

2.8 and 2.9 apply.

yi (~wT~xi +w0
)
> 1, (2.8)

dmargin =
2
‖~w‖

(2.9)

where 2.9 represents the maximum margin width value. To solve the optimization with con-

straints, the optimization using the method of Lagrange multipliers is used. The Equation 2.10

describes the primary problem whose solution represents a minimum and is located in the saddle

of the function L.

L(~w,w0,α) =
1
2
‖~w‖2−

N

∑
i=1

αi{yi (~wT~xi +w0
)
−1} (2.10)

For a more straightforward solution and reduced computational complexity, the primary prob-

lem is transformed into a dual problem whose goal is to maximize the expression 2.11.
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L(α) =
N

∑
i=1

αi−
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j (~xi)T
~x j (2.11)

After the model is trained, new examples are classified according to the Equation 2.7.

In the previous discussion, the assumption was that the examples are linearly separable.

However, in practice, such cases rarely occur. The solution to this problem is introducing a soft

margin that allows some examples to be misclassified. With a soft margin, the wrong classi-

fication is allowed, but in the training process, the classifier will be penalized more the more

examples are wrongly classified. Penalization is achieved by introducing reserve variables ξ .

ξ = 0 is valid for examples~x that are on the correct side of the classifier, while ξi =
∣∣yi−h

(
~xi)∣∣

for misclassified examples. Examples inside the margin but on the correct side of the boundary,

or lie right on the decision boundary, will be penalized by 0 < ξi 6 1. Examples on the wrong

side of the decision boundary will be penalized by ξ > 1.

Soft margin limits can be defined by the formulas 2.12 and 2.13.

yi (~wT~xi +w0
)
> 1−ξi, i ∈ {1, ...,N}, (2.12)

f itness =
1
2
‖~w‖2 +C

N

∑
i=1

ξi (2.13)

The parameter C determines the trade-off between the size of the margin and the total penalty.

A larger C leads to a more significant misclassification penalty, a consequence of more complex

models.

SVM can also become a non-linear model[19]. The idea is based on Cover’s theorem. If

the linear models are good enough for n� N, then the examples can be mapped to a higher-

dimensional space where they are more likely to be linearly separable. So, instead of transform-

ing the model, SVM transforms the problem. In the Equation 2.11 the example~x appears in the

form of a scalar product. This allows the scalar product to be replaced by the Equation 2.14

κ (~x,~x∗) = φ (~x)T
φ (~x)∗ (2.14)

where κ represents the kernel function and φ is the attribute mapping function. There are a

number of standard kernel functions, some basic ones are 2.15, 2.16 and 2.17.

κlinear (~x,~x∗) =~xT~x∗, (2.15)

κpolinomial (~x,~x∗) =
(
~xT~x∗+1

)p
, (2.16)

κradial (~x,~x∗) = κ
(
‖~xT~x∗‖

)
. (2.17)
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The Equation 2.15 represents a linear kernel, 2.16 a polynomial kernel, and 2.17 a homoge-

neous kernel or radial basis function.

The SMO algorithm (sequential minimal optimization) is used to implement SVM [20, 21].

SMO solves the quadratic programming optimization problem. Since SMO is a binary classifi-

cation algorithm, n×(n−1)
2 binary SVM classifiers are used for multiclass classification.

2.2.3 Artificial Neural Network

Artificial neural networks (ANNs) are a class of computational systems inspired by biological

neural networks. ANNs are widely used in machine learning as they can learn from examples.

In an ANN, artificial neurons are arranged in multiple layers, interconnected to transmit signals.

A fundamental type of ANN is known as a perceptron. A perceptron is a linear binary clas-

sifier that operates on a feature vector to determine whether it belongs to a particular categorical

class. The perceptron associates a weight wi with each input vector component and has a thresh-

old value q. The output of a perceptron is equal to 1 if the weighted sum of the input vector

is greater than the threshold value and −1 otherwise. However, perceptron classifiers can only

handle linearly separable data, meaning they can only classify data when there is a hyperplane

that can separate all the positive points from all the negative points [22].

Multilayer Perceptron

We obtain a multilayer perceptron algorithm by integrating more layers into a perceptron. Mul-

tilayer perceptron (MLP) is a feed-forward neural network that maps sets of inputs onto sets of

appropriate outputs. Unlike linear perceptron, MLP can distinguish data that are not linearly

separable. MLP consists of multiple layers of nodes in a directed graph, where each layer is

connected to the next. Consequently, each node in one layer connects with a specific weight w

to every node in the following layer. The multilayer perceptron algorithm consists of at least

three layers: one input layer, one output layer, and one hidden layer. Those layers must consist

of nonlinearly activating nodes [23]. The backpropagation algorithm is utilized for training the

network, which is a generalization of the least mean squares algorithm in the linear percep-

tron. The gradient descent optimization algorithm uses backpropagation to adjust the weight of

neurons by calculating the gradient of the loss function [22].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a type of neural network first designed for

2-dimensional convolutions as it was inspired by the biological processes of animals’ visual

cortex [24, 25]. From the operational perspective, CNNs are similar to ordinary neural networks

(e.g., multilayer perceptron). More precisely, they consist of several layers, and each layer
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is composed of neurons. CNNs use three main layers: convolutional layers, pooling layers,

and fully-connected layers. Convolutional layers are linear layers that share weights across

space. Pooling layers are nonlinear layers that minimize the spatial size to inhibit the number

of neurons. Fully-connected layers are layers where every neuron is connected with all the

neurons in the neighborhood layer (as in the MLP). For additional information about CNNs, we

refer interested readers to [26].

Activation Functions

An activation function of a node is a function g defining the output of a node given an input or

set of inputs from a layer of linear nodes, as denoted in Eq. (2.18). To enable replications of non-

trivial functions with ANNs using a small number of nodes, one requires nonlinear activation

functions:

y = activation
( |inputs|

∑
i=1

(weighti · inputi)+bias
)
. (2.18)

Changes to the bias value allow the activation function to be shifted across the input do-

main, while changes to the weights alter the activation function’s steepness. Combined with the

backpropagation algorithm, this enables the ANN to model the data automatically.

There are three activation functions: binary step function, linear activation function, and

nonlinear activation function. The problem with the first one is that it does not allow multi-

value outputs, which prohibits multi-classification. A linear activation function suffers from

two significant issues: it cannot use gradient descent to train the model because the function’s

derivative is a constant, and all layers of the neural network collapse into one. Note, a lin-

ear combination of linear functions is still a linear function, and such an activation function

transforms the neural network into a single layer [26].

As a result, modern neural network models use nonlinear activation functions. They allow

the model to create complex mappings between the network’s inputs and outputs, essential for

learning and modeling complex data or data with high dimensionality. Nonlinear functions

address the problems of linear activation functions. First, they allow backpropagation learning

because they have a derivative function related to the inputs. Moreover, they will enable the

stacking of multiple layers of neurons to create a deep neural network.

There is no clear rule for selecting an activation function. In practice, activation functions

are selected by empirical results and speed of execution. Although some functions have theo-

retically substantiated properties, that is not the best approach. Typically, ReLU is often used,

and for the hidden layers of recursive models, tanh is commonly selected, e.g., [27].
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2.3 Cryptography

Cryptography is the study of mathematical techniques for all aspects of information security.

Moreover, cryptography can be defined as a science of secret writing to hide the meaning of a

message [28]. One uses cryptographic algorithms, commonly known as ciphers to ensure that

goal. The security of information encompasses the fundamental aspects: confidentiality, data

integrity, authentication, and non-repudiation. To ensure all the previous aspects, cryptographic

algorithms and modes should satisfy many criteria, which can be regarded as a multi-objective

combinatorial optimization problem[29].

Modern cryptography designs cryptographic algorithms that are assumed to be hard to break

by an adversary. It is divided into symmetric key cryptography, asymmetric key cryptography,

and hash functions [30] .

2.3.1 Asymmetric Key Cryptography

This type cryptography is also known as public key cryptography. This approach employs two

distinct keys: one for encryption and another for decryption. The encryption key is public, while

the decryption key is private. Public key cryptography can be classified into three categories:

•cryptosystems founded on the factorization problem,

•cryptosystems founded on the discrete logarithm problem,

•other cryptosystems.

Among these cryptosystems, the RSA algorithm is particularly well-known and derives its name

from its inventors [31].Its security is rooted in the difficulty of the integer factorization problem.

During encryption, the process of modular exponentiation is utilized. Assuming p and q are

prime numbers, then n = pq, where p,q ∈ Z, de≡ 1 mod ϕ (n), and ϕ (n) is the Euler function.

The public key is (n,e), and the private key is (p,q,d). The RSA algorithm is believed to be

secured as long as large p and q are used. As of 2021, the National Institute of Standards and

Technology (NIST) recommends key sizes of at least 3072 bits for RSA encryption to provide

a reasonable level of security for most applications[32].

Other famous cryptosystems or protocols founded on the discrete logarithm problem in-

clude Diffie-Hellman[33] or ElGamal [34]. Another large family cryptosystems are based

on elliptic curve discrete logarithm problems (ECDLP). One representative of that family is

Menzes-Vanstone cryptsystem [35]. Other public key cryptosystems are Merkle-Hellman[36],

McEliece[37] and NTRU[38].
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2.3.2 Symmetric Key Cryptography

Symmetric key cryptography, also known as secret key cryptography, uses the same key for both

encryption and decryption, necessitating a mechanism to maintain the secrecy of the key [39].

This cryptography is called symmetric since communication parties share the same secret key.

The primary advantage of symmetric key cryptography over asymmetric key cryptography is

its significantly faster processing. Symmetric key cryptography can be categorized into block

ciphers and stream ciphers.

Block ciphers accept a plaintext block and a key as input, producing a ciphertext block the

same size as the plaintext. On the other hand, stream ciphers generate an arbitrarily long stream

of key material, which is combined with the plaintext bit by bit. The output of a stream cipher

is generated using a hidden internal state that changes as the cipher progresses [40].

The design of block ciphers rests on two fundamental principles: confusion and diffusion.

Confusion means that each digit of ciphertext should depend on several parts of the key. Diffu-

sion means that if a single bit of a plaintext is changed, then, statistically, half of the bits in the

ciphertext should change and vice versa.

An S-box or a substitution box is a basic component of symmetric key algorithms. The main

purpose of using an S-box is to introduce a confusion. The nonlinearity property of S-boxes

is one of the most important cryptographic criteria because cryptographic algorithm should be

resistant to linear cryptanalysis [41]. S-box (n,m) consists of n input variables and m output

variables. These m outputs can be viewed like m Boolean functions. If nonlinearity of a Boolean

function is equal to maximum then it is called bent function. The nonlinearity bound is called

the covering radius bound and is strict for bent Boolean functions.

Stream ciphers usually work by producing a keystream that is added modulo two (XOR)

with plaintext bits. To obtain such a keystream, one well researched way is to employ linear

feedback shift register (LFSR). However, the output from an LFSR is linear and there exist easy

cryptanalysis techniques against it [42]. To add nonlinearity to the cipher, and consequently

make the cryptanalysis more difficult, one can for instance add one or more Boolean functions.

Two well explored approaches are to use combiner or filter generators. In a combiner generator,

outputs from several LFSRs serve as an input to a Boolean function. In a filter generator, the

output is obtained by a nonlinear combination of a number of positions in one longer LFSR [43].

Other criteria which is considered in Boolean or vectorial functions are algebraic degree,

balancedness, resiliency, algebraic immunity, and others [41]. If all criteria are used simulta-

neously then the problem of finding the best Boolean function or an S-box is a multi-objective

problem. To inform more about definitions or mathematics background see [43, 44].

In the context of cryptography, communication between two parties, Alice and Bob, often

involves transmitting sensitive information, which must be protected from unauthorized access.

To achieve this, Alice encrypts the plaintext P using a cryptographic algorithm, or cipher, to
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produce the ciphertext C. The process of encryption involves applying a transformation E to

the plaintext P, such that only authorized parties can decipher the message. Encryption can be

expressed as E(P) =C.

Once Bob receives the ciphertext, he must be able to decipher it to obtain the original plain-

text. This process, called decryption, involves applying a transformation D to the ciphertext C

such that D(C) = P. The transformation D is typically the inverse of the transformation E so

that the original plaintext can be recovered. It is important to note that only parties authorized

to access the secret key used in the encryption process can successfully decrypt the ciphertext.

A cryptographic primitive is a part of a cryptographic tool used to provide information

security, i.e., a low-level cryptographic algorithm that is frequently used to build cryptographic

protocols. A cryptographic algorithm (cipher) is a mathematical function used for encryption,

decryption (ciphers are also used for other actions but those are outside the scope of this thesis).

From the attacker side, there are several models one can consider on the basis of his access

to the system under attack. For instance, the attacker can have access only to the ciphertext

(commonly known as Ciphertext-only attack). However, we can consider a more powerful

attacker that has access to both ciphertexts and accompanying plaintexts. Such a model is called

the Known Plaintext Attack (KPA) model and is the model we use in this paper. Note, there

are more powerful models than KPA but we consider them less relevant here since such models

use specific attacks that Eve does not know. Additionally, we emphasize that very powerful

cryptanalysis technique called Linear cryptanalysis is actually KPA.

Assuming Alice and Bob intend to communicate confidentially while utilizing an insecure

channel, they may choose to encrypt their messages to preclude unauthorized reading by third

parties. After encrypting her message, Alice may send it over the insecure channel to Bob. Bob,

provided that he shares the same key with Alice, can then decipher and access the contents of

the message, while any attempts by Eve to decode the message would prove unsuccessful in

the absence of the key. To ensure the confidentiality of their communication, Alice and Bob

must keep either the key or the algorithm used for encryption confidential. A. Kerchoff, as early

as the 19th century, stated that a cryptosystem should remain secure even if all details of the

system, except for the key, are disclosed to the public. [45].

For a computationally secure cryptosystem, C. Shannon deduced it should follow the confu-

sion and diffusion principles [46]. The confusion principle means that the cipher output statis-

tics should depend on the cipher input statistics in a manner too complicated to be exploited

by the attacker. The confusion principle is related to the notion of nonlinearity since the at-

tacker cannot easily approximate a cipher with a set of linear equations if the cipher possesses

enough nonlinearity. More precisely, if a system is linear (i.e., S is a linear transformation) then

S(a)+S(b) = S(a+b) while if S is a nonlinear transformation then S(a)+S(b) 6= S(a+b) and

in general, even if we know the result of S(a) and S(b), we do not know the result of S(a+b).
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To measure the nonlinearity of a function, we need to measure its distance (e.g., Hamming dis-

tance) to all linear and affine functions [44]. The diffusion principle relates to the fact that each

digit of the input and each digit of the secret key should influence many digits of the output.

This principle can be modeled through a general concept of avalanche criterion: a single bit

change at the input must change at least half of the bits of the output (in the case exactly half of

the bits must change then we talk about strict avalanche criterion [47]). Symmetric key cryp-

tography can be divided into block and stream ciphers. The main differences between those two

types is that given a message M and a ciphertext C when working with block ciphers it is hard to

reconstruct the encryption transformation. When working with stream ciphers, the encryption

transformation is easy and the security relies on the changing of that transformation for every

symbol. One-time pad (OTP) is the only cryptographic system that ensures the perfect secrecy,

i.e., that no attacker can break it, provided that some rules are enforced: the keys need to be 1)

at least the same size as the plaintext, 2) random, 3) kept in secrecy, and 4) never reused.

2.4 Implementation Attacks

Implementation attacks refer to attacks that exploit vulnerabilities in implementing a crypto-

graphic system on a device. If usability, price, or efficiency parameters are considered, imple-

mentation attacks are one of the most dominant attacks on cryptographic devices [48]. Imple-

mentation attacks are divided into active and passive. Passive attacks involve a situation where

the cryptographic device operates following its specifications. In such attacks, the secret key is

revealed by analyzing the device’s physical characteristics, such as the time it takes to execute

cryptographic operations or energy consumption. Active attacks, on the other hand, involve

physical modifications to the device to enable it to function outside the boundaries specified

in the device’s behavior. As a result, the secret key is revealed through the device’s undefined

behavior in active attacks.

In addition to the division into active and passive attacks, implementation attacks can also be

divided according to the level of invasiveness. In a non-invasive attack, there is no mechanical

action on the cryptographic device. In a semi-invasive attack, the attacker removes only the

external parts of the cryptographic device, while in an invasive attack, the attacker changes the

circuitry of the cryptographic device [48].

The most common types of implementation attacks are side-channel attacks (SCA), fault

attacks (FA), and probing attacks [49].

SCA belongs to passive or non-invasive attacks. In such attacks, to discover the secret key

stored on the device, knowledge about the consumption of electricity (power analysis attack,

PAA), electromagnetic radiation, runtime, or sound produced by the device is exploited. A

signal that describes the power consumption, which the attacker later uses to discover the secret
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Figure 2.5: NOR logic gates implemented using CMOS technology.

key, is called a trace.

The basic idea of PAA is to take advantage of the fact that the current power consumption

of a cryptographic device depends on the data that the cryptographic algorithm is currently

using, as well as on the cryptographic operations that are performed. PAA attacks are divided

into direct attacks and two-level attacks. Direct PAA attacks are simple power analysis (SPA),

differential power analysis (DPA), correlation power analysis (CPA), and collision attacks (CA).

Two-way PAA attacks are template attacks, stochastic models, and linear regression analysis

(LRA)[50].

2.4.1 Electronic circuits

One of the predominant sources of leakage in cryptographic devices is attributed to their elec-

tronic circuitry. Electronic circuits, an essential component of almost all cryptographic devices,

necessitate an understanding of their contribution towards the leakage of sensitive information

for designing and evaluating secure cryptographic systems.

Complementary metal-oxide-semiconductor (CMOS) technology is widely used for elec-

tronic circuitry fabrication. It implements the basic logic gates that serve as the building blocks

for more complex components like bistables, registers, and memories. The complementary na-

ture of CMOS technology lies in implementing the primitive function, as demonstrated in the

NOR logic gate shown in Figure 2.5. The pull-up network (PUN) implements the NOR func-

tion, while the pulldown network (PDN) implements the OR function’s complement. However,

during a transition of the network output from 0 to 1 or vice versa, the transistors PUN and

PDN, due to delay, remain permeable to the voltage U for a brief period, leading to a short

circuit. The high consumption of electricity manifests as a short circuit.

From the above, it is reasonable to conclude that the amount of energy dissipated by an elec-

tronic circuit is proportional to the number of state changes that occur. A simple mathematical

29



Background

model that describes this relationship can be expressed using Equation 2.19.

P(t) = ∑
g

f (g, t)+N (t) (2.19)

where f (g, t) represents the power consumption of gate g at time t, and N(t) represents white

noise. The noise originates from the power source or clock generator.

2.4.2 Profiled and Non-profiled attacks

A non-profiled attack refers to an attack scenario in which the attacker does not possess a copy

of the cryptographic device beforehand to construct a secret key discovery model. In contrast,

power consumption analysis can be employed in profiled attacks through trace classification,

where the trace can describe the Hamming weight of the algorithm output or its value. In

case the attacker has access to a copy of the cryptographic device, they can learn a model that

differentiates traces based on their power consumption. Subsequently, this trained model can

be applied to the original cryptographic device.

In the realm of side-channel analysis (SCA), two well-established models for power leakage

are the Hamming weight (HW) and the Hamming distance (HD). HW assumes that the power

consumption is correlated with the HW data within the cryptographic algorithm. In contrast,

the Hamming distance model assumes that the power consumption is correlated with the state

change on the bus.

SCA distinguishers are statistical models that make the connection between the traces and

the secret key. Attacks are divided into two groups: those that assume a tight relationship be-

tween the trace and the secret key and those that infer based on a statistical model that considers

the traces. Distinguishers are used in the second group of attacks. With DPA, a difference

of means (DOM), T-test, variance test, Pearson’s correlation, and Spearman’s Rank Correla-

tion [51] are often used.

Many traces are required to perform the differential power analysis procedure, typically on

the order of 103. The analysis involves constructing two matrices: the trace matrix and the

hypothesis matrix. Both matrices have the same number of rows, equal to the number of traces

collected. The number of columns in the trace matrix is determined by the number of samples

taken during the measurements. In contrast, the number of columns in the hypothesis matrix

equals the number of possible values of one byte of the key, which is typically within the range

of [0,255] for AES and [0,63] for DES.

The selection function D(H,b) is used to determine the value of the target bit b of one

byte of the encrypted text H using one byte of the hypothetical key Ψ. The traces are then

partitioned into two groups based on whether D(H,b) = 1 or D(H,b) = 0. The group containing

traces for which D(H,b) = 1 is denoted as G1, while the other group is denoted as G2. If the
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hypothetical value of one byte Ψ of secret key K is correct, then the average value of traces

from G1 will be spiked above the average value of traces from G2. On the other hand, if the

value of Ψ is incorrect, then the function D(H,b) will classify the traces in G1 or G2 with

equal probability (p = 1
2 ). Therefore, the average traces will be the same. The Equations 2.20

and 2.21 provide proof for the claims mentioned above, while Algorithm 4 outlines the secret

key discovery process using differential power analysis in the Advanced Encryption Standard

(AES) cryptographic algorithm. This form of DPA attack, together with a mean difference

distinguisher, was initially introduced by Kocher et al. in 1999 [52].

∆D [ j] =
∑

k
i=1 DΨ (Hi,b)Ti [ j]

∑
k
i=1 DΨ (Hi,b)

− ∑
k
i=1 (1−DΨ (Hi,b))Ti [ j]

∑
k
i=1 (1−DΨ (Hi,b))

, (2.20)

∆D [ j]≈ 2

(
∑

k
i=1 DΨ (Hi,b)Ti [ j]

∑
k
i=1 DΨ (Hi,b)

− ∑
k
i=1 Ti [ j]

k

)
. (2.21)

The computational complexity of the Algorithm 4 is dependent on several factors, including the

size of the secret key in bytes, the maximum possible value for the key, the number of traces

available, and the number of samples present in each trace.
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Algorithm 4 Secret key discovery in AES using DPA with mean difference distinguisher.
Input:
M – a set of plaintext blocks [k×16],
T – a set of traces [k× ts],
k – a number of traces,
ts – a number of samples in trace
Output:
K – a secret key [1×16]
for ∀β ∈ [1..16] do

initialize the difference matrix H [k×256]
initialize the difference matrix ∆ [256× ts]
for ∀Ψ ∈ [1..256] do

H[:,Ψ] = M(:,β )⊕Ψ

H[:,Ψ] = SBOX(H[:,Ψ])
initialize G1 [1, ts]
initialize G2 [1, ts]
for ∀Λ ∈ [1..k] do

bit = D
(
H[Λ,k],b

)
Gbit = Gbit +T[Λ,:]

end for
average the values G1 i G2
∆[Ψ,:] = |G1−G2|

end for
K[1,β ] = row(max(∆))

end for
return K
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Chapter 3

Constructions of Boolean Functions

Boolean functions play a critical role in the design of cryptographic algorithms. To withstand

linear cryptanalysis attacks, these functions must possess high nonlinearity. Bent functions are

a class of Boolean functions that exhibit maximal nonlinearity for a given number of variables.

Furthermore, Boolean functions must be balanced in the context of cryptographic algorithms.

This chapter aims to investigate heuristic search techniques for generating Boolean functions

that are both maximally nonlinear and maximally balanced. To this end, we explore various

representations of Boolean functions, including binary and quaternary representations.

This chapter is organized as follows. Section 3.1 gives a motivation for research. Section

3.2 covers the necessary definitions and notions about Boolean and quaternary functions, along

with the cryptographic criteria we consider. An overview of the literature concerning heuristics

for finding Boolean functions with good cryptographic properties is given in Section 3.3. Sec-

tion 3.4 presents details of the algorithms we use for our experiments, focusing on the represen-

tation of the candidate solutions and the genetic operators adopted. This section also describes

the problem instances and the parameters we considered and discusses the results obtained by

our experiments, possible transformations between binary and quaternary functions, and future

work. Finally, Section 3.5 sums up the crucial contributions of the chapter.

3.1 Introduction

The role of Boolean functions is diverse and spans several research domains, such as commu-

nication, coding theory, and cryptography. Examples range from applications in combinatorics,

such as the construction of Hadamard matrices [53], strongly regular graphs [54], and in cod-

ing theory, where they are used for constructing certain classes of codes such as Reed-Muller

codes [55] and Kerdock codes [56].

Within the cryptography area, Boolean functions have many applications that result in a need

for construction techniques able to produce Boolean functions of various sizes and properties.
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Applications in cryptography are numerous: for designing hash functions [57], stream and block

ciphers [58, 59] (in the form of vectorial Boolean functions for the latter case) as well as in the

fully homomorphic encryption [60]. We concentrate now on stream ciphers.

For a Boolean function to be helpful in such constructions, it must satisfy many proper-

ties. One such property is nonlinearity, where the higher the value, the more nonlinearity there

is. Informally speaking, the nonlinearity property tells us how far a function is from all affine

functions and how difficult it is to conduct the cryptanalysis. Boolean functions that have max-

imal nonlinearity are called bent functions. Although they are not balanced (i.e., their truth

tables do not have the same number of zeros and ones) and therefore not suitable for cryptog-

raphy, there are methods to transform bent Boolean functions into balanced Boolean functions

with high nonlinearity [43]. The problem of finding binary Boolean functions of n variables

with the best possible combinations of cryptographic properties is of extreme difficulty. This

stems from the impossibility of exhaustively exploring the corresponding search space, which

grows superexponentially as 22n
, making complete enumeration unfeasible for n > 5. One has

at his disposal three options to build Boolean functions: algebraic constructions, heuristics, and

random search [61].

The main strength of algebraic constructions is that they can be proved to generate func-

tions with specific properties and, in general, equally accessible to construct functions of any

dimension. The main drawback is that they always result in the same functions (since they are

deterministic), which means one is limited in the number of different functions one can obtain.

The main advantages of random search are that it produces an abundance of different Boolean

functions and is a relatively fast method. However, the quality of such functions (regarding

their cryptographic properties) is almost always suboptimal. Finally, when discussing heuristic

methods, they are usually positioned somewhere between the two approaches, as mentioned

earlier: they generate a large number of good results in a relatively short time. However, there

are some drawbacks when considering the search space size and the evaluation cost.

Construction techniques can be divided into primary constructions and secondary construc-

tions. In primary constructions, one obtains new functions without using known functions. On

the contrary, in secondary constructions, one uses already known functions to construct new

functions [43].

Binary Boolean functions, i.e., mappings from Fn
2 to F2, represent the Boolean functions

most often investigated in the literature. Still, we can consider the more general case over

Zq for q > 2. By doing so, we change the representation of the problem, the corresponding

search space size, and possible target applications. As an example, Boolean functions over

Zq with q > 2 were first introduced to find codes for multicode code-division multiple access

(MC-CDMA) systems [62].

In this chapter, except for binary Boolean functions, we concentrate on q-ary Boolean func-
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tions and their application in cryptography (note that the cryptographic application is only one

of the several possibilities). As we demonstrate, this problem is fascinating both from an evolu-

tionary computation benchmark perspective and as a tool for constructing cryptographic prim-

itives. We study the cryptographic properties of q-ary Boolean functions, i.e., mappings from

Zn
q to Zq, focusing in particular on the case of quaternary functions, where q = 4. This line of

research is always motivated by the search for new algebraic constructions of cryptographically

significant binary Boolean functions: the idea is to define quaternary functions with suitable

properties and then derive the associated binary functions through projection mappings (such

as the Gray map) [63].

With quaternary Boolean functions, the search space size equals 44n
, which is significantly

more complex than the binary Boolean case. Still, from the representation point of view, one

can quickly transform quaternary functions in n variables into binary Boolean functions of 2n

variables, which means we need to work with half the number of variables.

3.2 Background

In the rest of the chapter, we denote the usual binary case with the name Boolean function. In

contrast, with the name quaternary function, we consider a quaternary Boolean function.

3.2.1 Binary Boolean Functions

Let n ∈ N. A Boolean function is a mapping from Fn
2 to F2 where F2 is the Galois field with

two elements. We denote the set of all n-tuples of the elements in the field F2 as Fn
2. The set Fn

2

represents all binary vectors of length n, which can be viewed as a F2-vector space [43]. The

inner product of vectors~a and~b over the F2 field is defined as~a ·~b and it equals~a ·~b =⊕n
i=1aibi

with “⊕” denoting addition modulo two. The Hamming weight (HW ) of a vector ~a, where

~a ∈ Fn
2, is the number of non-zero positions in the vector.

A Boolean function f on Fn
2 can be uniquely represented by a truth table (TT), which is a

vector ( f (
−−−→
0, . . .0), ..., f (

−−−−→
1, . . . ,1)) that contains the function values of f , ordered lexicographi-

cally [43]. The support of f is the set of values~x∈ Fn
2 such that f (x) 6= 0. Since the vector of the

output values in the truth table uniquely identifies a function f , we will refer to the Hamming

weight of f as the size of its support.

The second unique representation of a Boolean function is the Walsh-Hadamard transform

Wf that measures the correlation between f (~x) and all linear functions of the form ~a ·~x, for a

ranging in Fn
2 [64]. Table 3.1 gives an example of the Walsh-Hadamard transform of a bent

Boolean function with four inputs. The Walsh-Hadamard transform of a Boolean function f
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Table 3.1: Walsh-Hadamard transform of a Boolean function with 4 inputs.

~x ∈ F4
2 f (~x) Wf (~x) ~x ∈ F4

2 f (~x) Wf (~x)

0000 0 4 1000 0 -4

0001 1 4 1001 1 4

0010 0 -4 1010 0 -4

0011 0 4 1011 0 -4

0100 1 4 1100 0 4

0101 1 4 1101 0 -4

0110 0 -4 1110 1 4

0111 1 4 1111 0 4

equals:

Wf (~a) = ∑
~x∈Fn

2

(−1) f (~x)⊕~a·~x. (3.1)

Algorithm 5 presents the Walsh-Hadamard transform for a Boolean function.

Algorithm 5 Walsh-Hadamard transform for a Boolean function.
Require:x is an array of 2n Boolean binary values
Ensure:y is the Walsh-Hadamard transform of x

y← x
for i = 1 to n do

m← 2i−1

for j = 0 to 2n−1 do
if ( j mod 2i)< 2i−1 then

s← y[ j]+y[ j+m]
t← y[ j]−y[ j+m]
y[ j]← s
y[ j+m]← t

end if
end for

end for
return y

A Boolean function f is balanced if the Walsh-Hadamard coefficient of the null vector
~0 = (0, · · · ,0) equals zero [65]:

Wf (~0) = 0. (3.2)

Alternatively, in the truth table representation, a Boolean function with n inputs is balanced if

its Hamming weight equals 2n−1, i.e. if it is composed of an equal number of zeros and ones.

A Boolean function f used in the design of stream and block ciphers should lie at a large
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Hamming distance (HD) from all affine functions to resist linear cryptanalytic attacks. This

distance corresponds to the nonlinearity of f , which is defined as the minimum HD between f

and all affine functions [43]. The nonlinearity N f of a Boolean function f expressed in terms of

the Walsh-Hadamard coefficients of f is [43]:

N f = 2n−1− 1
2

max~a∈Fn
2
|Wf (~a)|. (3.3)

A natural question is to determine what is the maximum nonlinearity a Boolean function

can attain. This can be derived from Parseval’s relation:

∑
a∈Fn

2

Wf (a)2 = 22n, (3.4)

which implies that the mean of Wf (a)2 equals 2n, and maxa∈Fn
2
|Wf (a)| is at least equal to the

square root of this mean.

From Eq. (3.4), it follows that the maximal value of the Walsh-Hadamard spectrum equals

at least 2n/2 which occurs in the case of bent Boolean functions. Bent functions only exist for

even number of variables, and they are never balanced. The expression for the nonlinearity of

bent functions is: [53, 66]:

N f = 2n−1−2
n
2−1. (3.5)

If a Boolean function f has the correlation immunity property of order t, an even number of

inputs n, and k 6 n
2 −1, then its nonlinearity N f has an upper bound as follows:

N f = 2n−1−2
n
2−1−2k, (3.6)

where k equals t +1 if f is balanced or has HW divisible by 2t+1 and k equals t otherwise.

3.2.2 Quaternary Boolean Functions

To generalize the notion of Boolean functions, one can take into account the residual class ring

(Galois ring) Zq =Z/qZ. Specifically, we consider the case where q= 4. A quaternary function

F is a mapping from Zn
4 to Z4, i.e., it is a {0,1,2,3}-valued function. The set of all n-tuples of

elements in Z4 is denoted as Zn
4. Let i denote the complex number such that i2 =−1. There is

a group-isomorphism between the set {0,1,2,3} and (±1,±i) under the standard isomorphism

x→ ix [67, 68]. We denote addition modulo 4 with "+”.

As discussed in [69], a quaternary function F can be represented using a truth table, denoted

as (F(
−−−→
0, . . .0), ...,F(

−−−−→
3, . . . ,3)). Analogous to the binary case, the support of a quaternary func-

tion F is the set of vectors u belonging to the space Zn
4 such that F(u) 6= 0, and the size of the

support of F is referred to as the Hamming weight of F .
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Table 3.2: Walsh-Hadamard transform of a quaternary function with two inputs.

z ∈ Z2
4 F (z) WF(z)

00 1 -4

01 2 4
...

23 1 −4+4i

30 3 4+4i

31 0 -4

32 2 4

33 2 4+4i

The Walsh-Hadamard transform of a quaternary function F equals:

WF(a) = ∑
v∈Zn

4

ia·v+F(v), (3.7)

where a · v denotes the usual inner product in Zn
4 (mod 4) and a ∈ Zn

4. One example of the

Walsh-Hadamard transform of a quaternary function is given in Table 3.2 (note that we do not

give a complete truth table here).

A quaternary function is balanced if and only if WF(~0) equals 0. Alternatively, it is bal-

anced if and only if for all i ∈ Z4 the cardinality of the set ηi(F) equals 4n−1, where ηi(F) ={
u ∈ Zn

4|F(u) = i
}

.

To define the nonlinearity, we can use either the Hamming metric (NH
F ) or the Lee metric

(NL
F ) as the underlying distance. In this chapter, we work with the Lee metric since there is

an isometry (distance preserving bijection) between Zn
4 equipped with the Lee distance and F2n

2

equipped with the Hamming distance when Gray mapping is used (for details see Section 3.4.2).

The Lee weights LW of values 0,1,2,3 ∈ Z4 are 0,1,2,1. The Lee distance of two elements

a,b ∈ Zn
4 equals LW = (a+b). The nonlinearity of a function F under the Lee distance can be

defined as:

NL
F = 4n− max

a∈Zn
4,b∈Z4

{
Re(ibWF(a))

}
(3.8)

= 4n−max
a∈Zn

4

{|Re(WF(a))|, |Im(WF(a))|} , (3.9)

where Re(z) and Im(z) denote the real and imaginary part of the complex number z.

A quaternary function is bent if Re(|WF(a)|) = 2n ∀a ∈ Zn
4. The nonlinearity of a bent
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quaternary function with n inputs equals:

NL
F = 22n−2n. (3.10)

Note that in Zn
4 a function can be bent for any dimension n while in Fn

2 a function can be bent

only if n is even.

3.3 Related Work

As mentioned in Section 3.1, there are many successful applications of heuristic techniques

when constructing Boolean functions usable in cryptography [? ]. This section focuses on

several works that explore different approaches to evolving highly nonlinear Boolean functions

with maximal nonlinearity.

To begin, Millan et al. utilize a genetic algorithm to evolve Boolean functions with high

nonlinearity [70]. Building on this, Millan, Clark, and Dawson further enhance the genetic al-

gorithm’s strength by combining it with hill climbing and a resetting step to identify highly non-

linear Boolean functions with up to 12 variables [71]. Simulated annealing is also a promising

approach, as demonstrated by McLaughlin and Clark, who experiment with generating Boolean

functions with optimal values for various properties, such as algebraic immunity, fast algebraic

resistance, and algebraic degree [72]. The authors extend their analysis to Boolean functions

with up to 16 inputs.

Additionally, Picek, Jakobovic, and Golub explore the use of genetic algorithms and genetic

programming to generate Boolean functions with multiple optimal properties [73]. The authors

transform the genetic programming tree (as a genotype) into the truth table representation for

evaluation purposes. Particle Swarm Optimization (PSO) is another good algorithm, as demon-

strated by Mariot and Leporati, who use PSO to identify Boolean functions with good trade-

offs of cryptographic properties for dimensions up to 12 inputs [74]. Furthermore, Hrbacek and

Dvorak employ Cartesian genetic programming to evolve bent Boolean functions with up to

16 inputs, testing several algorithm configurations to expedite the evolution process [75]. The

authors find a bent function in each run for sizes between 6 and 16 variables without limiting

the number of generations.

Picek et al. compare the effectiveness of Cartesian genetic programming and genetic pro-

gramming when looking for highly nonlinear balanced Boolean functions with eight inputs [76].

In that work, the authors show that Cartesian genetic programming performs favorably com-

pared with other evolutionary approaches to cryptographically relevant Boolean functions. Picek

et al. [77] investigate several evolutionary algorithms to evolve Boolean functions with different

values of the correlation immunity property. In the same paper, the authors also discuss the prob-
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lem of finding correlation-immune functions with minimal Hamming weight, where they exper-

iment with Boolean functions with eight inputs. Picek et al. investigate several different evolu-

tionary algorithms and fitness functions for Boolean functions of 8 inputs [78]. They show that

genetic programming and Cartesian genetic programming outperform genetic algorithms and

evolution strategies in many relevant test scenarios. Next, Picek et al. investigate the evolution

of balanced Boolean functions of up to 16 inputs fulfilling several cryptographic properties and

the evolution of minimal Hamming weight and different correlation immunity order Boolean

functions [79]. In [80], authors search for a bent quaternary function in n variables and use a

Gray mapping to obtain bent binary functions in 2n variables. Picek, Sisejkovic, and Jakobovic

use immunological algorithms to evolve either bent or highly nonlinear Boolean functions with

up to 16 inputs [81]. Finally, Picek and Jakobovic use genetic programming to evolve algebraic

constructions that are then used to construct bent Boolean functions [82]. In [83], authors use a

genetic algorithm and genetic programming to create vectorial bent Boolean functions with up

to 6 inputs, showing practical applications in authentication codes.

Clark et al. experimented with simulated annealing to design Boolean functions using spec-

tral inversion [84]. They observe that several cryptographic properties of interest are defined

in terms of the Walsh-Hadamard transform values. Based on Parseval’s theorem, one can infer

what values the Walsh-Hadamard spectrum should have. Note that it is impossible to know

how these values should be permuted since the inverse Walsh-Hadamard transform maps to a

pseudo-Boolean function. Consequently, when generating a Walsh-Hadamard spectrum con-

taining these values, it is necessary to verify that it corresponds to a Boolean function. Mariot

and Leporati [85] also adopt the spectral inversion method, designing a genetic algorithm where

the genotype consists of the Walsh-Hadamard values to permute in order to evolve semi-bent

Boolean functions. Finally, in [86], authors are looking for a balanced Boolean function with

maximal nonlinearity and a varying number of inputs using Estimation of Distribution Algo-

rithms. The authors confirm the problem’s difficulty, pointing to the search space size and the

high level of symmetries.

3.4 Experiments and Results

3.4.1 Binary Boolean Functions

Before discussing the experimental setting and presenting results, we briefly discuss the prob-

lem’s difficulty. A Boolean function f of n variables can be represented with a string of 2n

values, and the search space size is equal to 22n
, as given in Table 3.3 for several sizes of in-

terest. Note that we always need to transform our solutions into the truth table representation

to calculate nonlinearity and the Walsh-Hadamard spectrum. Next, in the same table, we give
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Table 3.3: The search space size for the investigated sizes of functions and nonlinearities for bent
Boolean functions.

Properties

n
4 6 8 10 12

Search space 216 264 2256 21024 24096

Bent N f 6 28 120 496 2 016

Balanced conj. N f [87] 4 26 116 492 2 010

Balanced best N f [88] 4 26 116 486 1 992

optimal values for the nonlinearity property and each size of the Boolean function we consider

in this section. Finally, we show the best-obtained results by algebraic constructions for a bal-

anced Boolean function with maximal nonlinearity [87]. We emphasize the best theoretical

result, according to the equations 3.5 and 3.6 is N fbent −2.

Algorithms and Representations

We experiment with two different encodings and compare their efficiency: bitstring and tree

representation.

The simplest genotype to use is the bitstring since, in that case, there is no need for map-

ping between it and the truth table representation of a Boolean function. However, as given

in Table 3.3 we can observe that the genotype size increases exponentially with the number

of variables of a Boolean function. To state it differently, with the increase of the number of

variables, quite soon one can expect problems with the size of solutions if using the truth table

representation.

For the algorithm, we use a simple GA with the tournament selection where its size equals

3 [89], and the population size is 100. We experiment with two mutation operators and two

crossover operators. The mutation operators we use are simple mutation, where a single bit is

an inverted, and balanced mutation, which preserves a function balancedness. The crossover

operators are one-point and balanced crossover, performed at random for each new offspring.

As the second encoding, we use tree-based GP in which a Boolean function is represented

by a syntax tree [90]. The function set for GP in all the experiments is OR, NOT, XOR, AND,

XNOR, AND with one input inverted and IF, which takes three arguments and returns the

second one if the first evaluates to true and the third one otherwise. The terminals correspond to

n Boolean variables. Boolean functions can be represented using only XOR and AND operators,

but it is pretty easy to transform the function from one notation to the other. GP also uses

tournament selection with the tournament size equal to 3.
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The crossover is performed with a simple tree crossover with 90% bias for functional

nodes[91]. We use a single mutation type, and a maximum tree depth of 7. The population

size for the GP equals 100.

Common Parameters

The experimental setup includes N = 30 independent trials for each configuration, and the stop-

ping criterion for all algorithms is set to 500000 evaluations. We apply an individual mutation

probability of 0.8 to all the algorithms and representations. It should be noted that the muta-

tion probability is used to determine whether an individual will be mutated. Once selected, the

mutation operator is executed only once on a given individual. For instance, if the mutation

probability is set to 0.8, then on average, 8 out of every ten new individuals will be mutated, as

shown in Algorithm 3.

Fitness Functions

We consider three fitness functions in our experiments. Note that all three functions are well

established and used in related work in the evolution of Boolean functions.

Bent functions In the simplest version of the fitness function we aim to maximize the nonlin-

earity value:

f itness1 = N f . (3.11)

The second version of fitness function improves on Eq. 3.11 and adds the second term where

we aim to minimize the number of occurrences of values different from 2
n
2 as given by the

Walsh-Hadamard spectrum. Here we are again interested in the maximization of the following

expression:

f itness2 = N f +
1
τ
, (3.12)

where τ equals the number of occurrences of the value different from 2
n
2 in the Walsh-Hadamard

spectrum. Since we still consider nonlinearity as the primary parameter, we scale the second

term in the fitness function in the range [ 1
2n ,1]. Note that if τ = 0 then the fraction is set to 1.

Balanced highly nonlinear functions Finally, in the third fitness function we aim to simul-

taneously optimize balancedness and maximal nonlinearity. The function we maximize is the

following:

f itness3 = N f −|2n−1−HW ( f )|, (3.13)
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where |2n−1−HW ( f )| equals to 0 when the function f is balanced.

Results

We give the results in the max value/median value notation since the first number has greater

relevance from the practical perspective (we are interested in a single function with as good as

possible nonlinearity value) while the second number has more relevance from the optimization

perspective to assess what is the average behavior of the algorithms and operators we tested.

Note that we opted to use median rather than the average value so not to assume a normal

distribution of data. To be more readable, we bold values equal to the optimal ones.

In Table 3.4 we give the results for bitstring encoding and fitness functions 3.11 and 3.12.

We see that for 4 and 6 inputs, GA can find optimal results in 100% of cases. Moreover, GA can

reach an optimal solution when considering the input dimension of 8 variables. On the other

hand, starting with n = 8, GA is not able to reach optimal value for all higher dimensions. Fit-

ness function 2 achieves better solutions because of simultaneous optimization of nonlinearity

and number of occurrences maximal value in the Walsh-Hadamard spectrum. Moreover, one

should keep in mind the exponential growth of the bitstring individual, and finding the optimal

value gets more difficult.

Table 3.4: Results for the bitstring representation, fitness 1 and fitness 2.

f

n
4 6 8 10 12

f itness1 6/6 28/28 116/114 480/480 1 974/1 970

f itness2 6/6 28/28 120/114 480/480 1 980/1 974

Next, in Table 3.5 we give the results for the tree representation and fitness functions 1 and

2. Note that here, we can reach optimal values for all inputs. Therefore, our results corresponds

to the ones from related work for cases when comparing efficiency of solution representation.

Moreover, it is noticeable that for input n = 10, fitness function 2 has better median value, and

for both fitness functions, optimal solution can be reached in less than 10000 evaluations on

average.
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Table 3.5: Results for the tree representation, fitness 1 and fitness 2.

f

n
4 6 8 10 12

f itness1 6/6 28/28 120/120 496/480 2 016/1 984

f itness2 6/6 28/28 120/120 496/488 2 016/1 984

Except looking for bent Boolean functions, we try to find balanced Boolean functions with

maximal nonlinearity. Here, we want to emphasize the difficulty of the problem because it

represents multiple criteria optimization. Moreover, in Table 3.3 the best obtained experimental

results are given as well as results obtained by conjecture by using algebraic constructions.

In Table 3.6, we give the results for bitstring encoding and fitness function 3. In the table,

we show results obtained by three different mutation operators. It can be seen that all mutation

operators can find an optimal solution for dimensions n = 4 and n = 6.

Table 3.6: Results for the bitstring representation, fitness 3 and various mutation operators (MO).

MO

n
4 6 8 10 12

random 4/4 26/24 114/112 478/478 1 970/1 966

balanced 4/4 26/26 116/112 480/478 1 976/1 968

Finally, In Table 3.7 we give the results for tree encoding and fitness function 3 and different

tree depths. We see that when n < 10, GP can find optimal results. On the contrary, GP can not

reach optimal values in all the runs when considering the input dimension of 10 or 12 variables.

For inputs n = 6 and n = 8, one can observe that too shallow or too deep trees more often reach

suboptimal values compared to depth 7.

Table 3.7: Results for the tree representation, fitness 3 and different tree depths.

Depth

n
4 6 8 10 12

5 4/4 26/24 116/112 480/480 1 980/1 966

7 4/4 26/26 116/114 482/480 1 984/1 968

11 4/4 26/24 116/112 480/480 1 980/1 968

Interestingly, the search for a balanced Boolean function of maximum nonlinearity of 8

variables resulted in functions of nonlinearity 116, which is the same so far best-found solu-
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Figure 3.1: Fitness 2 maximization for Boolean function with 8 inputs. Iterations showed in logarithmic
scale.

tions, but leaves open the question of the existence of a balanced Boolean nonlinearity function

118. Note that despite the theory, there exists a dose of doubt on whether such functions with

nonlinearity equal to 118 exist.

Figure 3.1 shows fitness function 2 for GP and GA in obtaining bent Boolean function with 8

inputs. One can see that GP reaches optimal solution much faster, after a lower number of eval-

uations than GA. The reason for such behavior is the way how GP searches solution space. With

one mutation in a tree representation, multiple function’s outputs are simultaneously changed.

On the contrary, one should make much more changes in a bitstring representation to achieve

the same effect. As a result, GP much easier and faster can find a solution.

3.4.2 Quaternary Boolean Functions

Representations and Algorithms

In this section, we experiment with two different encodings and compare their efficiency.

Integer Encoding Considering both Boolean and quaternary functions, a truth table repre-

sentation is probably the most obvious one. In this case, a quaternary function of n variables

is represented with a string of length 4n which corresponds to its lexicographically ordered

truth table. Each element of the string can assume values in {0, . . . ,3}, which are initialized by

sampling from the uniform distribution.

Appropriate crossover and mutation operators need to be defined in order to be able to use

genetic algorithms with this encoding. In our experiments, we use a single mutation operator,

which randomly chooses a single gene (element of the string) and generates its new value with
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Table 3.8: Genetic programming functions.

Function Definition

AND (a ·b) mod 4

OR (a+b) mod 4

uniform probability. There are three crossover operators in use: the first one is a simple single-

point crossover, which combines the first part of one parent and the second part of the other

parent into a single child. We also use a two-point variant which takes two parts from one and

one part from the other parent; in both operators, crossover points are randomly chosen. The

final operator is the average crossover, which constructs each gene in the child by using the

average value of corresponding genes from both parents. The choice of the crossover operator

is made randomly each time a crossover is performed.

Tree Encoding As opposed to truth table encoding, the other option we consider is to use a

symbolic representation of a quaternary function. This is performed in a way such that genetic

programming can be used to evolve a quaternary function in the form of a syntactic tree. Here,

the terminal set consists of the n input quaternary variables, denoted {v0, . . . ,vn}. The function

set (i.e., the set of inner nodes of a tree) should consist of appropriate quaternary Boolean

operators that allow the definition of quaternary functions with n inputs.

In our experiments, we use binary functions AND and OR. These functions are defined as

shown in Table 3.8. It could be useful to implement the NOT function as well, because all logic

functions can be expressed as a linear combination of that function and AND or OR function.

Additionally, with more functions it is possible to increase the GP expressiveness. The main

problem is to define true and false values in quaternary logic, and moreover the definition of the

NOT function in this case is not unique, which is why we opted not to use it in our experiments.

When evaluated, the same tree is parsed for every possible input combination of variables

appearing in the tree. Each result (evaluated at the root node) is written in the corresponding

position of the truth table, and the tree is then given its fitness based on the properties of the

resulting truth table. The crossover is performed with five different tree-based crossover oper-

ators selected at random: a simple tree crossover with 90% bias for functional nodes, uniform

crossover, size fair, one-point, and context preserving crossover [91].

Common Parameters and Fitness Function

Regardless of the encoding, we use the same selection process to conduct the search – steady-

state selection process, shown in Algorithm 3, where in each iteration only one individual from

the population is replaced with a new one. The selection of the individual to be replaced is
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performed in a tournament of size three: the algorithm selects three individuals at random and

eliminates the worse of those. The remaining tournament survivors are then used as parents to

create a new individual using crossover.

Following the creation, the new individual immediately undergoes mutation, which depends

on the mutation rate parameter. In our experiments this parameter equals 0.3, which results in

three out of ten new individuals being mutated on average. This kind of algorithm is convenient

since it eliminates the need for specifying the crossover mutation rate, and in our previous

experience provides a steady rate of convergence.

In all the experiments the number of independent trials N for each configuration is 30 and

the stopping criterion for all algorithms equals 500 000 evaluations or reaching the maximal

nonlinearity. The population size in both experiments is 200 and maximum tree depth is 4. The

parameters given here are selected after a tuning phase. Note that the tree size is relatively small

in our experiments but we found this size to be the first one where all experimental runs results

in bent quaternary functions.

The fitness function we aim to maximize is described in Eq. (3.9). We use this expression in-

stead of Eq. (3.8) because it has a lower computational complexity. To speed up the calculation

of the Walsh-Hadamard transform, we use a custom implemented inner product cache, C. Note

that Eq. (3.7) can be decomposed into Eq. (3.14). The inner product calculation in Zn
4 (mod 4)

has complexity O(logn) and it is symmetric. To avoid calculating the same values repeatedly,

we store once the calculated inner product values in cache C. Additionally, the cache size is

decreased using the symmetry property.

WF(a) = ∑
v∈Zn

4

C [min(a,v) ,max(a,v)] · iF(v) (3.14)

Results

In this section, we present results obtained in our experiments. Table 3.9, we give details on

search space sizes and maximal possible nonlinearities for all quaternary function dimensions

we consider. We can see that the search space size makes it impossible to conduct an exhaustive

search already for dimension n = 3.

In Tables 3.10 and 3.11, we give results for integer and tree encodings, respectively. Note

that when we are able to find bent quaternary function for a certain dimension, we denote it in

bold style in tables. When considering integer encoding, we are able to find bent quaternary

functions only for the smallest size we investigate (n = 2). All the larger sizes represent a

significant problem for integer encoding with no success in obtaining bent functions. Observe

we do not conduct experiments for integer encoding with dimensions larger than 6 since those

sizes result in nonlinearities that are significantly smaller than the maximal ones. Additionally,
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Table 3.9: Search space sizes and maximal nonlinearity values.

Size Search space size Maximal nonlinearity NL
F

2 416 12

3 464 56

4 4256 240

5 41024 992

6 44096 4032

7 416384 16256

8 465536 65280

Table 3.10: Results for the integer representation.

Size Min Max Average Std dev

2 4 12 12 0.00

3 18 55 54.20 0.40

4 228 233 231.53 0.78

5 961 968 965.50 1.35

6 3 955 3 963 3 959.60 2.06

those quaternary function sizes are extremely computationally expensive to calculate.

Table 3.11 gives results for the tree encoding (recall, in our tree encoding there are 4 pos-

sible values, which differentiates our representation from the "standard" one as used in genetic

programming). As it can be seen, for all dimensions we consider, we are able to find bent qua-

ternary functions. Even more, we are able to find bent functions in every run: this suggests

that although extremely difficult for integer encoding, the problem is easy for the tree encod-

ing. The only difficulty for larger sizes should be the computational cost when running the

Walsh-Hadamard transform and nonlinearity calculation.

Next, we first discuss how to map bent quaternary Boolean functions in n variables into

bent binary Boolean functions in 2n variables. Then we compare such results (i.e., constructed

bent binary Boolean functions) with state-of-the-art results from literature. Finally, we briefly

discuss several possible future research directions.

From Quaternary to Binary Functions

Once we obtain quaternary functions, the question is how to use them. One option is to use

them directly as they are, which is the approach taken for instance by Schmidt where he uses
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Table 3.11: Results for the tree representation.

Size Min Max Average Std dev

2 0 12 12 0.00

3 0 56 56 0.00

4 0 240 240 0.00

5 0 992 992 0.00

6 0 4 032 4 032 0.00

7 0 16 256 16 256 0.00

8 0 65 280 65 280 0.00

quaternary constant-amplitude codes for multicode CDMA [62]. Another option is to transform

quaternary functions into binary Boolean functions. Here, we follow this line of work. In order

to transform quaternary into binary Boolean functions, there are several possible mappings [69].

In our experiments, we investigate the Gray mapping since it is a distance-preserving bijection

between Zn
4 in Lee distance and F2n

2 in the Hamming distance. Gray mapping φ : Z4→ F2×F2

is defined as:

0→ (00), 1→ (01), 2→ (11), 3→ (10).

Alternatively, if u,v ∈ F2, and by denoting w = u+2v (i.e., by using 2-adic expansion), the

Gray mapping equals φ(w) = (v,u⊕ v). The mapping φ can now be extended naturally to Zn
4.

Observe that the same mapping can be used to transform from binary Boolean functions into

quaternary Boolean functions.

Comparison with the State-of-the-art Results for Binary Boolean Functions

Since we reach 100% success in obtaining bent quaternary functions in every dimension we con-

sider (see Table 3.11), that translates into 100% success rate in obtaining binary bent functions

in 2n variables. When comparing those results from the state-of-the-art in the literature (when

considering heuristic techniques), we see that our results represent a significant improvement.

Namely, Picek, Sisejkovic, and Jakobovic investigate the performance of two immunological

algorithms, as well as genetic algorithm and evolution strategy (for all algorithms they consider

bitstring and floating-point representation). Their results show that only for Boolean functions

with 6 variables they are able to find bent Boolean functions. For all larger sizes, the nonlinear-

ity is significantly below the maximal attainable one [81].

Next, Picek et al. investigate a number of evolutionary algorithms to evolve bent Boolean

functions with 8 inputs [92]. The results obtained there suggest that Cartesian genetic pro-
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gramming and genetic programming perform the best where GP with small tree sizes can reach

maximal nonlinearity in 100% of cases. Naturally, direct comparison with our work is difficult

since they consider only functions with 8 inputs and it remains to be seen how their approach

would perform for larger Boolean function sizes.

Hrbacek and Dvorak use Cartesian genetic programming to evolve bent Boolean functions

in dimensions [6, . . . ,16]. They report success (i.e., they find bent Boolean function) in each

experimental run, which makes their results directly comparable with ours. Still, they use a

computer cluster with 112 nodes (Intel E5-2670) and 128 Gb of RAM [75] while we use a

desktop computer with Intel i5-3470 and 8 Gb of RAM. Consequently, our approach seems to

be much more efficient.

Finally, Picek and Jakobovic use genetic programming to design secondary constructions

that are then used to construct bent Boolean functions [82]. They can find bent Boolean func-

tions for much larger sizes than we give here but we note that they do not evolve larger Boolean

functions directly but use a clever trick that enables them to expand small bent Boolean func-

tions into larger ones. Additionally, the secondary construction method used in that work gen-

erates a limited number of bent functions, since it relies on the initial set of bent functions of

less variables. The approach presented in this chapter allows finding different bent functions in

every algorithm run.

3.5 Conclusions

This chapter addressed the construction of maximal nonlinearity Boolean functions through

evolutionary algorithms. To resist linear cryptanalysis attacks, Boolean functions need to have

high nonlinearity. Bent functions are Boolean functions with maximal possible nonlinearity

for a given number of variables. It is also crucial for functions to be balanced for usage in

cryptographic algorithms.

Our results suggest that one can use evolutionary algorithms to evolve many different sizes

of Boolean functions, whereas the best performing algorithm we consider genetic programming.

Naturally, that success stems from representation rather than a specific selection strategy.

Even though we did not reach the optimal solutions for higher dimensions in constructing

maximal nonlinear Boolean functions, we showed the critical role of choosing fitness functions

and evolutionary operators.

Stepping away from binary Boolean functions, we introduce the problem of evolving qua-

ternary bent Boolean functions. We experiment with two encodings, integer, and tree encoding,

showing that the latter offers superior results. The results for quaternary tree encoding show

that we can obtain bent functions for all dimensions we experiment with.

Since we find bent functions in every run of the experiments, this naturally means we have
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100% success finding bent quaternary functions in n variables. We use Gray mapping to ob-

tain bent binary functions in 2n variables. Since this is a deterministic procedure, we always

construct bent binary functions (where we go up to 18 variables). Our results are comparable

or better than those obtained with other techniques when evolving bent binary Boolean func-

tions [82]. Finally, we note the efficiency of quaternary tree encoding, which we believe could

also be competitive in other problems when Boolean functions are considered.
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Chapter 4

Constructions of Vectorial Boolean
Functions

The research areas of Boolean functions, their generalizations, and vectorial Boolean functions

have been highly active. To the best of our knowledge, this study is the first to explore the

evolution of vectorial Boolean functions where the output dimension is strictly smaller than the

input dimension. The concept of differential uniformity for a function F : Fn
2 → Fm

2 , where n

represents the input dimension and m the output dimension, has been the subject of several in-

teresting problems. When n = m, the best differential uniformity possible is two, and heuristics

can find such functions. However, when n > m > n/2, the differential uniformity is bounded

by 2n−m + 2 from below. Unfortunately, such functions are only known for dimensions equal

to n = 4,5. This chapter explores the use of several evolutionary algorithms and problem sizes

to find functions with a differential uniformity of 6. Our results indicate that several solution

encodings can find such functions only in dimensions (4,2) and (5,3), where the notation (n,m)

is used. As differentially 6-uniform functions were previously known for these sizes, our re-

sults can provide a source of new functions in those dimensions and indicate that either such

functions do not exist or are challenging to find for (6,4).

The remainder of this chapter is organized as follows. Section 4.1 motivates our research.

In Section 4.2, we introduce the notation used and relevant theory about vectorial Boolean

functions. In Section 4.3, we discuss related work. Section 4.4 presents our experimental setup

and results and discusses the obtained results and potential future research directions. Finally,

Section 4.5 provides a brief conclusion.

4.1 Introduction

In cryptography, Boolean functions and their generalizations vectorial Boolean functions (also

called S-boxes) have a prominent usage in symmetric key cryptography [28]. Without carefully
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chosen S-boxes, such ciphers would be easier to break. Symmetric key cryptography can be

divided into stream ciphers and block ciphers, where again (vectorial) Boolean functions have

different usages. However, their goal is always the same: to improve the resiliency of crypto-

graphic algorithms (commonly known as ciphers) against various cryptanalyses. For instance,

when discussing block ciphers, we want to have resistance against differential [93] and lin-

ear [94] cryptanalysis. On the other hand, with stream ciphers, some attacks we want to have

resilience against are fast correlation attack [95], Berlekamp-Massey attack [42], and algebraic

attack [96].

The resilience against the aforementioned attacks stems from smartly chosen (vectorial)

Boolean functions where in block ciphers, we mostly use S-boxes where the input size is equal

to the output size, i.e., (n,n) functions like one that can be found in the AES cipher [97] or

where the output size is somewhat smaller than the input size like in the DES cipher [98]. On

the other hand, in stream ciphers, one usually uses Boolean functions or S-boxes where the

output dimension is strictly smaller than the input dimension [43].

Naturally, since there is a plethora of different ciphers, the requirements on those Boolean

functions or S-boxes differ (e.g., different sizes or cryptographic properties they need to pos-

sess). Accordingly, to produce such a diversity of functions, researchers developed over the

years several construction techniques. Such techniques can be divided into algebraic construc-

tions, random search, heuristics, and combinations of those techniques [76]. Here we are inter-

ested in investigating how one can use one type of heuristics, namely evolutionary algorithms

(EA), in the evolution of (vectorial) Boolean functions with good cryptographic properties. Nat-

urally, as already said, this area is a very active research domain, which also holds when apply-

ing heuristic techniques. Results obtained up to now (see Section 4.3) suggest that evolutionary

algorithms are a perfect choice for the evolution of Boolean functions where it is possible to ob-

tain optimal results concerning many properties and Boolean function sizes. On the other hand,

when considering S-boxes, we observe that most works consider functions where the input and

output dimensions are the same size (which is also the combination primarily used in practical

applications). However, except for the smallest size of practical importance (4×4), the results

suggest that EAs cannot compete with algebraic constructions nor achieve optimal results.

Moreover, within the block ciphers domain, one could follow several design strategies: Sub-

stitution Permutation Network (SPN), Feistel structure, and ARX structure [99]. Those struc-

tures have in common that they use mathematical operations to provide confusion and diffusion

effects [46]. The confusion principle means that the cipher output statistics should depend on

the cipher input statistics in a manner too complicated to be exploited by the attacker. The dif-

fusion principle relates to the fact that each digit of the input and each digit of the secret key

should influence many digits of the output.

A common way to provide confusion is to use S-boxes, e.g., [44]. S-boxes, which are
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mappings between Fn
2 and Fm

2 , provide a nonlinear relationship between the n input bits and

the m output bits in a controllable fashion for a specific secret key. When used in the SPN

structure, S-boxes must be bijective (and then, n = m). Well-known examples of such ciphers

are AES [100] and PRESENT [101]. When used in the Feistel structure, n and m sizes can differ,

and both directions are possible. For instance, in the DES cipher [98], the input dimension

equals 6, while the output dimension equals 4. In the CAST cipher [59], the input dimension is

8, while the output dimension is 32.

All S-boxes have in common that they need to fulfill many criteria so that the cipher us-

ing them can resist cryptanalyses. For instance, large nonlinearity will make the cipher more

resilient against linear cryptanalysis [94], while small differential uniformity will make the ci-

pher more resilient against differential cryptanalysis [93]. We can use algebraic constructions

and heuristics to obtain S-boxes fulfilling those properties (among other relevant ones). Inter-

estingly, although this problem has been an active research domain for several decades, our

current knowledge is still limited, and we know only a handful of algebraic constructions [44].

At present, only a limited number of algebraic techniques are available to generate bijective

S-boxes with optimal differential uniformity. Notably, the preeminent method involves utilizing

monomial power functions, represented by the form F(x) = xd , where d denotes the degree of

the monomial power function. The best possible (and known) differential uniformity value then

equals 2 for any odd n and also for n = 6. For n even and larger than 6, the best differential

uniformity of (n,n)-permutations is an open question. Functions having differential uniformity

equal to 2 are called Almost Perfect Nonlinear (APN). When considering heuristics, currently

we are able to generate APN functions only for dimensions n = 5,7 [102]. The notion of

APN function, i.e., differentially 2-uniform function, can be weakened and then we consider

differentially δ -uniform (n,m)-functions. Interestingly, such functions are much less explored

when m 6= n and we know of even fewer algebraic constructions than for APN functions [103].

It is an open problem whether there exist differentially δ -uniform (n,n− k) functions with

k ≥ 2, k significantly smaller than n
2 , δ < 2k+1, and n > 5 [104] (constructions exist for k near

n
2 , see [105]). More concretely, if we set k = 2, it is still unsolved whether there exist functions

(n,n−2) that have differential uniformity less than 8 when n > 5.

This chapter investigates how to evolve vectorial Boolean functions ((n,m) functions) where

the output size is strictly smaller than the input size. Moreover, we are interested in the evo-

lution of bent (n,m) functions, which necessitates that the input dimension n is always even

and that the output dimension m is smaller or equal to n
2 . As far as we know, we are the first

to consider this problem that has practical applications in authentication schemes [106] and se-

cret sharing [107, 108]. However, we emphasize that this problem is also interesting from the

combinatorial optimization perspective. To provide extensive results, we experiment with three

fitness functions, three encodings, and some function sizes.
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Figure 4.1: An example of (4,2) function.

Additionally, we examine whether heuristics, more precisely evolutionary algorithms, can

be used to find new functions fulfilling such criteria or at least bring new insights about the prob-

lem. To this end, we experiment with five representations of solutions and four problem sizes.

Our experiments show that some of the representations we use can find differentially 6-uniform

functions in dimensions (4,2) and (5,3). Although such functions were known before, we still

consider our results relevant. The lack of success for higher dimensions coupled with the unsuc-

cessful results from algebraic constructions could serve as a strong indicator that differentially

6-uniform functions do not exist in dimension (6,4). This study has been disseminated in [109].

4.2 Background

Let n,m be positive integers, i.e., n,m ∈ N+. We denote by Fn
2 the n-dimensional vector over

F2 and by F2n the finite field with 2n elements. The set of all n-tuples of elements in the field

F2 is denoted by Fn
2, where F2 is the Galois field with two elements. Further, for any set S, we

denote S\{0} by S∗. The usual inner product of a and b equals a · b =
⊕n

i=1 aibi in Fn
2 . The

Hamming weight (wH) of a vector a, where a ∈ Fn
2, is the number of non-zero positions in the

vector. An (n,m)-function is any mapping F from Fn
2 to Fm

2 . An (n,m)-function F can be defined

as a vector F = ( f1, · · · , fm), where the Boolean functions fi : Fn
2→ F2 for i ∈ {1, · · · ,m} are

called the coordinate functions of F. The component functions of an (n,m)-function F are all

the linear combinations of the coordinate functions with non all-zero coefficients. In the rest of

the section, we use a capital letter F when discussing vectorial Boolean functions and a small

letter f when discussing Boolean functions. We give a small example of a (4,2) function F in

Figure 4.1 where one can see the difference between the coordinate and component function.

A Boolean function f on Fn
2 can be uniquely represented by a truth table (TT), i.e., a vector

( f (0), ..., f (1)) that contains the function values of f , ordered lexicographically [43].

The second unique representation of a Boolean function is the Walsh-Hadamard transform
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Wf that measures the correlation between f (x) and all linear functions a ·x [43, 64]. The Walsh-

Hadamard transform of a Boolean function f equals:

Wf (a) = ∑
x∈Fn

2

(−1) f (x)⊕a·x. (4.1)

The Walsh-Hadamard transform of an (n,m)-function F is a set of values [44]:

WF(a,v) = ∑
x∈Fm

2

(−1)v·F(x)⊕a·x, a,v ∈ Fm
2 . (4.2)

Algorithm 6 presents the Walsh-Hadamard transform of (n,m) Boolean function.

Algorithm 6 Walsh-Hadamard transform of (n,m) function.
Require: x is an array of 2n Boolean values, and m is the number of outputs
Ensure: y is the Walsh-Hadamard transform of x for m outputs

y← x
for k = 1 to m do

for i = 1 to n do
m← 2i−1

for j = 0 to 2n−1 do
if ( j mod 2i)< 2i−1 then

s← y[ j][k]+ y[ j+m][k]
t← y[ j][k]− y[ j+m][k]
y[ j][k]← s
y[ j+m][k]← t

end if
end for

end for
end for
return y

A Boolean function with n inputs is balanced if its Hamming weight equals 2n−1. An (n,m)-

function F is balanced if it takes every value of Fm
2 the same 2n−m number of times.

A Boolean function f should lie at a large Hamming distance (HD) from all affine functions

and the nonlinearity N f of a Boolean function is the minimum Hamming distance between the

function f and affine functions [43]. The nonlinearity N f of a Boolean function f expressed in

terms of the Walsh-Hadamard coefficients equals [43]:

N f = 2n−1− 1
2

max
a∈Fn

2

|Wf (a)|. (4.3)

The nonlinearity NF of an (n,m)-function F equals the minimum nonlinearity of all its
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component functions v ·F , where v ∈ Fm∗
2 [44]:

NF = 2n−1− 1
2

max
a ∈ Fn

2
v ∈ Fm∗

2

|WF(a,v)|. (4.4)

The Parseval’s relation equals:

∑
a∈Fn

2

Wf (a)2 = 22n, (4.5)

and it implies that the mean of Wf (a)2 equals 2n, and maxa∈Fn
2
|Wf (a)| is then at least equal to

the square root of this mean.

From Eq. (4.5), it follows that the maximal value of the Walsh-Hadamard spectrum equals at

least 2
n
2 , which occurs with equality in the case of bent Boolean functions. From this equation

we see that the nonlinearity of any Boolean function is less or equal to:

N f ≤ 2n−1−2
n
2−1. (4.6)

This bound is called the covering radius bound and is strict for bent Boolean functions. Fur-

thermore, since this bound is valid for any Boolean function it is even more valid for vectorial

Boolean functions. Therefore, in order for an (n,m) function to be bent, all of the compo-

nent functions v ·F,v 6= 0 of a function F must be bent. Since bent n-dimensional Boolean

functions can exist only when n is even, then bent (n,m) functions can exist only when n is

even. However, this condition has been shown not to be sufficient. K. Nyberg showed that bent

(n,m) functions can exist only when m≤ n
2 [110]. Bent (n,m) functions are also called perfect

nonlinear functions [44].

Let F be a function from Fn
2 into Fm

2 with a ∈ Fn
2 and b ∈ Fm

2 . We denote:

DF(a,b) = {x ∈ Fn
2 : F(x)+F(x+a) = b} . (4.7)

The entry at the position (a,b) corresponds to the cardinality of the difference distribution table

DF(a,b) and is denoted as δ (a,b). The differential uniformity δF is then defined as [110]:

δF = max
a6=0,b

δ (a,b). (4.8)

Differential uniformity is always an even number since if x is a solution of the equation

F(x)+F(x+a) = b when a 6= 0, then also x+a must be a solution. Kaisa Nyberg observed that

δF ≥ 2n−m only if n > m, and δF ≥ 2 only if n≥ m [110]. Actually, she proved that δF = 2n−m

if and only if n is even and m ≤ n
2 . For n ≥ 5, Nyberg proved that δF is bounded below by 6
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for (n,n− 2) functions. Differentially 8-uniform (n,n− 2) functions are easily constructed by

composing on the left any APN function by a surjective affine (n,n−2) function. Still, we do

not know whether it is actually possible to construct a differentially 6-uniform (n,n−2) when

n is larger than 5.

For further information on vectorial Boolean functions and their applications in cryptogra-

phy, we refer interested readers to [43, 44].

4.3 Related Work

As stated, evolutionary algorithms have many successful applications when constructing vecto-

rial Boolean functions.

Clark et al. use the principles from the evolutionary design of Boolean functions to evolve

S-boxes with desired cryptographic properties. They use simulated annealing (SA) and hill

climbing algorithm to evolve bijective S-boxes of sizes up to 8× 8 with high nonlinearity val-

ues [111].

Millan et al. work with genetic algorithms to evolve S-boxes with high nonlinearity and low

autocorrelation value. Moreover, the authors discuss the selection of the appropriate genetic

algorithm parameters [112].

P. Tesar uses a special genetic algorithm with a total tree searching to generate 8×8 S-boxes

with nonlinearity equal to 104 [113].

Picek et al. explore how to generate S-boxes of size 8× 8 with better resistance against

side-channel attacks as measured with the transparency order and modified transparency order

properties [114, 115].

Finally, Picek, Rotim, and Cupic develop a new cost function able to reach high nonlinearity

values for many different S-box sizes [116]. This fitness function eliminated the need for several

parameters that usually required an extensive tuning phase.

When considering algebraic constructions, results show bounds for differential uniformity

for (n,n−2) functions [110]. Carlet and Alsalami are able to construct (n,n−1) functions that

are differentially 4-uniform [103]. They also use the same construction to find (5,3) functions

that are differentially 6-uniform. Unfortunately, their construction does not generalize to higher

dimensions, and they cannot find any differentially 6-uniform function for dimension (6,4). De

Meyer and Bilgin conducted an exhaustive search of all quadratic (6,4) functions [117]. Their

results show there are no (6,4) differentially 6-uniform functions with an algebraic degree equal

to 2.

When considering heuristics, most of the work on S-boxes concentrates on bijective S-

boxes. Additionally, the primary goal in these papers is usually the nonlinearity property, and

only seldom do researchers consider differential uniformity.
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Table 4.1: The search space size for the investigated sizes of functions.

m

n
4 6 8 10 12

1 216 264 2256 21024 24096

2 232 2128 2512 22048 28192

3 - 2192 2756 23072 212288

4 - - 21024 24096 216384

5 - - - 25120 220480

6 - - - - 224576

Table 4.2: Nonlinearity of a bent function of n variables.

n 4 6 8 10 12

Nonlinearity 6 28 120 496 2 106

Burnett et al. used a heuristic method to generate MARS-like S-boxes [118]. They can gen-

erate several S-boxes of appropriate size that satisfy all the requirements placed on the MARS

S-box [119] and they even manage to find S-boxes with improved nonlinearity values.

Picek, Knezevic, and Jakobovic used evolutionary computation to evolve bent (n,m)-functions

but do not consider differential uniformity [83].

4.4 Experiments and Results

4.4.1 Bent (n,m) functions

Before going into discussion on experimental setting and presenting results, we briefly discuss

the difficulty of the problem we consider. A Boolean function f of n variables can be repre-

sented with a string of 2n values and the search space size is equal to 22n
, as given in Table 4.1 for

several sizes of interest. Note that to calculate nonlinearity and the Walsh-Hadamard spectrum,

we always need to transform our solutions into the truth table representation. Next, in Table 4.2

we give optimal values for the nonlinearity property and each size of Boolean functions we con-

sider in this section. Note that the component-wise nonlinearity for vectorial Boolean function

needs to be the same as for a single Boolean function.
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Algorithms and Representations

We experiment with three different representations for encoding of a (vectorial) Boolean func-

tion: bitstring, floating-point, and tree representation. The simplest genotype to use is the

bitstring since in that case there is no need for mapping between it and the truth table represen-

tation of a Boolean function. However, as given in Table 4.1 we can observe that the genotype

size increases exponentially with the number of variables of a Boolean function. Moreover, this

number needs to be multiplied by the number of output variables when m > 1.

In the second encoding we use the floating-point genotype, which is defined as a vector of

continuous variables. Therefore, once a solution is obtained, the first step is to transform it into

the truth table representation of a Boolean function. Here, we use each continuous variable

to decode a subset of bits from the truth table. In this way, we can compress the size of a

solution, i.e., the number of genes we need to represent a solution. The transformation between

real values and the bitstring is done as follows. First, we enforce that all real values are in the

range [0,1]. Then, the number of bits that are represented with a single floating-point value,

decode_by, can vary:

decode_by =
2n

dimension
, (4.9)

where the parameter dimension denotes the floating-point vector size (number of real values).

Note that this parameter can be modified as long as the size of the truth table is divisible with

it, so that each real value represents the same number of bits.

In the process of transformation of real values we first convert the floating-point values into

integers. Each floating-point value falls into a specific interval between 0 and 1. Since each real

value must represent decode_by bits, the size of that interval is given as:

interval =
1

2decode_by . (4.10)

For instance, if each real value encodes 2 bits from the truth table, the interval size is 0.25. To

obtain a distinct integer for a given floating-point value, every element di of the floating-point

vector is divided by the calculated interval size, generating a sequence of integers:

int_valuei =

⌊
di

interval

⌋
. (4.11)

In the example, the corresponding integer value is obtained by dividing the real value with

2−2 = 0.25 and truncating to nearest smaller integer. The second step is to decode the integer

values into a binary sequence to be used in evaluation. Here, we opted to use the Gray encoding,

due to the proportional solution distance in both floating-point and binary search space.

For the algorithm we use a simple GA with the tournament selection where its size equals

3 [89] and the population size is 100. The mutation is selected uniformly at random between a
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simple mutation, where a single bit is inverted, and a mixed mutation, which randomly shuffles

the bits in a randomly selected subset. The crossover operators are one-point and uniform

crossover, performed at random for each new offspring.

As the third encoding, we use tree-based GP in which a Boolean function is represented

by a tree of nodes [90]. The function set for GP in all the experiments is OR, NOT, XOR,

AND, XNOR, AND with one input inverted and IF, which takes three arguments and returns the

second one if the first evaluates to true, and the third one otherwise. The terminals correspond

to n Boolean variables. Note that when m > 1, we actually use m independent trees to represent

a solution. GP also uses tournament selection with the tournament size equal to 3.

The crossover is performed with five different tree-based crossover operators selected at

random: a simple tree crossover with 90% bias for functional nodes, uniform crossover, size

fair, one-point, and context preserving crossover [91]. We use a single mutation type, a subtree

mutation, and use maximum tree depth of 5. The population size for the GP equals 200.

Common Parameters

In all the experiments the number of independent trials N for each configuration is 30 and the

stopping criterion for all algorithms equals 500 000 evaluations. For each of the algorithms and

representations we use the individual mutation probability of 0.5. It is important to note that we

use the mutation probability to select whether an individual would be mutated or not, and the

mutation operator is executed only once on a given individual; e.g. if the mutation probability

is 0.5, then on average 5 out of every 10 new individuals will be mutated (see Algorithm 3), and

one mutation will be performed on that individual.

Fitness Functions

In the next section, we present fitness functions we consider in our experiments. Note that the

first two functions are well established and used in related work while the third fitness function

is, as far as we know, explored for the first time in the evolution of vectorial Boolean functions.

Fitness Function 1 In the simplest version of the fitness function we aim to maximize the

nonlinearity value:

f itness1 = NF . (4.12)

Fitness Function 2 The second version of fitness function improves on Eq. (4.12) and adds

the second term where we aim to minimize the number of occurrences of values different from

2
n
2 as given by the Walsh-Hadamard spectrum. Note that this is a version of the fitness that

usually gives better results for vectorial Boolean functions where the input and output dimension
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are the same (however, there it is mostly used with the permutation encoding). Here we are again

interested in the maximization of the following expression:

f itness2 = NF +
1
T
, (4.13)

where T equals the number of occurrences of the value different from 2
n
2 in the Walsh-Hadamard

spectrum. Since we still consider nonlinearity as the primary parameter, we scale the second

term in the fitness function in the range [ 1
2n ,1]. Note that if T = 0 then the fraction is set to 1.

Fitness Function 3 Finally, in the third fitness function we try to explore the relation previ-

ously not considered when evolving bent (vectorial) Boolean functions. A Boolean function is

bent if all its derivatives are balanced [43]. Here, a derivative D of a Boolean function f in the

direction of b equals:

Db f (x) = f (x)⊕ f (x⊕b). (4.14)

For a vectorial Boolean function to be bent, all its linear components need to be balanced and

therefore we aim to maximize the following expression:

f itness3 =
2n

∑
i=1

2n

∑
b=1

Db f (xi), (4.15)

where xi represents the value of a function f for input x at position i.

Results

We give the results in the max value/median value notation since the first number has greater

relevance from the practical perspective. In comparison, the second number has more relevance

from the optimization perspective. To assess what is the average behavior of the algorithms, we

tested. Note that we opted again to use the median rather than the average value so as not to

assume a normal data distribution.

In Table 4.3 we give the results for tree encoding and fitness function 1. We see that when

m = 1 (single Boolean function case) GP is able to find optimal results for all tested input

size in 100% of cases. Moreover, GP is able to reach optimal values in all the runs for when

considering input dimension of 6 variables. On the other hand, starting with n = 8, GP is not

able to reach optimal value when the output dimension is equal or greater than 3.

Next, in Table 4.4 we give the results for the bitstring representation and fitness function

1. Note that here, except for the smallest size (i.e., when n = 4), we cannot reach the optimal

values. Therefore, our results corresponds to the ones from related work for cases when m = 1

or n = m. On the other hand, for dimensions (10,5),(12,5),(12,6) bitstring representation

outperforms the tree representation.
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Table 4.3: Results for the tree representation, fitness 1.

m

n
4 6 8 10 12

1 6/6 28/28 120/120 496/496 2 016/2 016

2 6/6 28/28 120/120 496/496 2 016/1 984

3 - 28/28 120/106.5 480/463 1 984/1 920

4 - - 112/104 480/448 1 944/1 878

5 - - - 448/447 1 920/1 792

6 - - - - 1 888/1 765

Table 4.4: Results for bitstring representation, fitness 1.

m

n
4 6 8 10 12

1 6/6 28/26 114/113.5 478/476 1 964/1 961

2 6/6 26/25 112/110 472/470 1 956/1 952

3 - 24/24 110/108 468/466 1 948/1 946

4 - - 108/106 464/464 1 944/1 940

5 - - - 462/460 1 936/1 934

6 - - - - 1 930/1 929

63



Constructions of Vectorial Boolean Functions

Table 4.5: Results for the floating-point representation, fitness 1.

m

n
4 6 8 10 12

1 6/6 26/26 112/112 476/475 1 950/1 936

2 6/6 26/24 110/109 472/470 1 934/1 920.5

3 - 24/24 108/106 468/466 1 924/1 912

4 - - 106/104 464/464 1 918/1 900.5

5 - - - 462/460 1 914/1 895

6 - - - - 1 912/1 893

Table 4.6: Results for the tree representation, fitness 2.

m

n
4 6 8 10 12

1 6/6 28/28 120/120 496/496 2 016/2 016

2 6/4 28/28 120/120 496/480 2 016/1 984

3 - 28/24 120/106.5 480/460 2 016/1 920

4 - - 112/104 480/448 1 920/1 856

5 - - - 448/440 1 920/1 792

6 - - - - 1 856/1 768

Finally, in Table 4.5 we give results for the fitness function 1 and floating-point represen-

tation. As we can see, the results are somewhat worse than for the bitstring encoding. Such

results are also in accordance with the results from [120] where the authors note that floating-

point representation is in the most of the cases the worst one.

In the second scenario we improve our fitness function to give more information and con-

sequently to reach better values. We emphasize that for the fitness function 2, we give in tables

the nonlinearity values and not the fitness values (with the decimal part from the second term

in Eq. (4.13)). Surprisingly, we can observe that in a number of scenarios the median value is

even lower than for the fitness function 1 (cf. Table 4.3). However, we note that with the fitness

function 2 we are able to reach optimal value for the (12,3) case which we could not reach with

any representation and fitness function 1.

In Table 4.7 we give results for the fitness function 2 with the bitstring encoding. There,

for the dimension (6,1) the results are slightly worse when compared to the fitness function 1,
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Table 4.7: Results for the bitstring representation, fitness 2.

m

n
4 6 8 10 12

1 6/6 26/26 114/114 478/476 1 968/1 962

2 6/6 26/25.5 114/110 472/470 1 956/1 952.5

3 - 24/24 110/108 468/466 1 948/1 946

4 - - 108/106 466/464 1 944/1 940

5 - - - 462/460 1 938/1 934

6 - - - - 1 932/1 928.5

Table 4.8: Results for the floating-point representation, fitness 2.

m

n
4 6 8 10 12

1 6/6 26/26 112/111 477/476 1 952/1 936

2 6/6 26/24 110/108 472/470 1 928/1 913

3 - 24/24 108/106 468/466 1 968/1 910

4 - - 106/104 464/464 1 922/1 906

5 - - - 462/460 1 918/1 898.5

6 - - - - 1 906/1 898

but for (8,2),(10,4),(12,1),(12,5),(12,6) dimensions, the fitness value improves although it

does not reach optimal values. What is interesting to notice is that the bitstring representation

outperforms the tree encoding for sizes (10,5),(12,4),(12,5),(12,6) which is similar situation

as with the fitness function 1. On the other hand, smaller dimensions reach higher fitness values

when the tree encoding is used.

When working with the floating-point encoding, we can observe that the improved fitness

function does not help and actually for a number of scenarios we reach even worse values when

compared to the fitness function 1. Moreover, the results with the floating-point encoding and

fitness function 2 are the worst ones when compared to the other encodings.

In Figures 4.2a until 4.2f we give statistics in the boxplot form for fitness functions 1 and

2 and for function input sizes n = 8,10,12. To denote the scenarios we use the notation: input

size – output size encoding (T for tree, B for bitstring, and F for the floating-point encoding).

We also use a color coding where the boxplot in red color represents the tree encoding, in green

color the bitstring encoding, and finally in blue color the floating-point encoding. From the
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Table 4.9: Theoretical maximal values for fitness 3.

m

n
4 6 8

1 15 63 255

2 45 189 765

3 - 441 1 785

4 - - 3 825

Table 4.10: Results for the tree representation, fitness 3.

m

n
4 6 8

1 15/15 63/63 255/255

2 45/45 189/189 765/765

3 - 438/435 1 779/1 776

4 - - 3 813/3 795

graphs it is easy to see that when the output dimension is small (e.g., m = 1), the tree encoding

is by far superior when compared to the other two encodings. Furthermore, for input sizes 10

and 12, tree encoding performs the best on average with a clear advantage over other encodings

while for the input dimension 12 the results are much more similar over all encodings (especially

when m > 1).

Next, we present results when experimenting with the fitness function where the objective is

to obtain all balanced derivatives of linear combinations of a vectorial Boolean function. First,

in Table 4.9 we give the theoretical best results. Note that here the higher the value, the more

derivatives are balanced. In Table 4.10 we give the results for tree encoding and input dimension

in the range [4,8] and the output dimension in the range [1,4]. We do not display the results for

larger sizes nor for the other encodings since the results obtained are inferior when compared

to the first two fitness functions.

4.4.2 Differentially-6 Uniform (n,n−2) Functions

Solution Representation

We used several representations to obtain more reliable results. Some of the representations,

such as genetic programming, integer and floating-point, cover all of the possible search space.
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(a) Fitness function 1, n = 8
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(b) Fitness function 2, n = 8
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(c) Fitness function 1, n = 10
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(d) Fitness function 2, n = 10
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(e) Fitness function 1, n = 12

12
−1

 T

12
−1

 B

12
−1

 F

12
−2

 T

12
−2

 B

12
−2

 F

12
−3

 T

12
−3

 B

12
−3

 F

12
−4

 T

12
−4

 B

12
−4

 F

12
−5

 T

12
−5

 B

12
−5

 F

12
−6

 T

12
−6

 B

12
−6

 F

1600

1700

1800

1900

2000

Fi
tn

es
s 

va
lu

e

Function size and encoding

(f) Fitness function 2, n = 12
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Additionally, we employ representations that only map to a portion of the search space, such

as permutation based, in the hope of increasing the probability of finding the optimal solution.

We opted to use multiple genetic operators with every encoding since our previous experience

showed such a strategy giving the best results. Additionally, since there are no previous works

considering the problem of finding differentially 6-uniform (n,n−2) functions, we had no point

of reference to select a single best operator.

Genetic Programming - Tree Encoding As the first encoding, we use tree-based genetic pro-

gramming (GP) with the same algorithm setting described in this chapter’s previous experiment.

We use n−2 independent trees in an individual to represent a single solution.

Integer Encoding In this representation, we use the truth table of the underlying (n,n− 2)

function; the truth table is represented with an integer array of length 2n with each element in the

range [0,2n−2− 1]. Before the fitness calculation, it can be easily transformed into the binary

form and evaluated accordingly. In this encoding, the mutation and crossover operators are

based on their binary counterparts: the mutation selects a random gene and modifies its value.

The crossover operators are single-point and two-point crossover, which only concatenate parts

of different individuals. The average crossover for which the child’s genes assume mean values

of parents’ genes.

Permutation Encoding To restrict the search space and make it easier for the algorithm to

form a solution, permutation encoding is employed rather than an array of arbitrary values. In

this representation, we use the permutation array of size 2n with elements in the range [0,2n−
1] where each value occurs precisely once. Before evaluation, we decode it into a (n,n− 2)

function by truncating each value with modulo 2n−2. It will represent a (n,n− 2) function

truth table. For instance, an example input permutation of size 2n with beginning elements

[7,0,9,11,2, . . .] will be transformed into [3,0,1,3,2, . . .]. After that, the individual is evaluated

as in the previous encoding. The permutation genotype uses the OX, PBX, PMX, and cyclic

crossover, whereas the mutation operators are inserted, inverse, and toggle. For each crossover

and mutation, a single operator is chosen at random.

Quadruple Permutation The permutation encoding poses constraints on the search space

size, but for larger function sizes, it is still tremendous. Consequently, we limit it further by

employing the representation in which each individual is encoded with four permutations, each

of size 2n−2. This encoding uses the same genetic operators as the previous one. The total

length of the individual genotype is the same as in the previous case. Still, the crossover and

mutation operators are performed separately on each containing four permutations. By default,

an individual will have only one of them affected with mutation or crossover.
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Floating-point Encoding Finally, we use the floating-point encoding in the following man-

ner: an individual is an array of floating-point values in the range [0,1]. Each floating-point

value represents one or more integer values in the range [0,2n−2−1] as in the integer encoding.

Based on the number of different integer values (2n) and the number integers per single floating-

point (k), the range [0,1] is divided into (2n)k intervals. Depending on the interval in which each

floating-point value falls, we decode k elements of the truth table from a single floating-point

variable. In our experiments, we use k = 1,2,4 so the size of the floating-point array is either

the same (for k = 1), two times, or four times smaller than the corresponding integer array size.

For instance, if k = 2 and we are searching for the (4,2) function, the individual is an array of 8

floating-point values where each gene presents two integer values. If the first few floating-point

numbers are [0.54,0.41,0.96, . . .] they will get decoded into integer array [2,0,1,2,3,3, . . .] of

size 16. This way, we can use a wide variety of floating-point-based crossover and mutation

operators, which usually are not applicable in the discrete domain. In our experiments, we used

the arithmetic, heuristic, average, one point, and SBX crossover; the mutation consists of a

single operator which changes a randomly selected gene.

Considering the expressiveness of the above representations, we note that the GP, integer,

and floating-point array allow mapping to all the possible solutions, while the permutation and

quadruple permutation map only a portion of the search space.

Fitness Function

In order to obtain the target differential uniformity value, the evaluation of each potential so-

lution includes only the calculation of the differential uniformity property. Based on that, the

fitness function to be minimized is simply the absolute distance from the desired value of 6:

f itness1 = |6−δF |. (4.16)

We noticed that when using f itness1, the used algorithms had difficulties in finding the

optimal solutions. Since the values in the difference distribution table (Eq. (4.7)) depend on

each other, looking only at the maximal value can be counterintuitive. Indeed, minimizing the

maximal value can easily result in increasing some other value in the table. Consequently, we

also conducted experiments with the second fitness function defined as:

f itness2 = ∑
a∈Fn

2

∑
b∈Fm

2

|6−δ (a,b)|. (4.17)

The motivation for the fitness function defined as in Eq. (4.17) was to minimize the number of

values different from 6 occurring in the difference distribution table, or alternatively, to make

as much as possible values close to 6.
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Table 4.11: Parameters for GP representation

Parameter Initial value Tested values Final value

Max tree depth 4 {4, 5, 6} 5

Population size 200 {100, 200, 300} 200

Table 4.12: Parameters for quadruple permutation

Parameter Initial value Tested values Final value

Population size 200 {100, 200, 500} 200

Mutation rate 0.5 {0.1, 0.3, 0.5, 0.7, 0.9} 0.9

Algorithm and Parameters

Regardless of the representation, all the variants use the same evolutionary algorithm, which is

a steady-state process presented in Algorithm 3.

In all the experiments, the number of independent trials for each configuration is 30 and the

stopping criterion for all algorithms equals 106 evaluations or reaching the differential unifor-

mity equal to 6. In order to evaluate the differences between different representations, we con-

ducted a tuning phase. For each encoding, we selected the most influential parameters (based on

our previous experience) and run the tests with different parameter values on the problem size

of (5,3). Unfortunately, the problem at hand provided no clear guidelines, since in most cases

all the experiments converge to the same value in all the repetitions. In other words, for most of

the configurations there were no statistically significant differences between different parameter

values. In cases where the difference was not visible we have kept the initial parameter values,

whereas the different final parameter values are shown in boldface. The results of the tuning

phase are shown in Tables 4.11 till 4.15.

The tuning phase was conducted with both f itness1 and f itness2 functions. The results

showed that f itness1 significantly outperforms f itness2 and we consequently present the results

for only the first fitness function.

Table 4.13: Parameters for permutation encoding

Parameter Initial value Tested values Final value

Population size 200 {100, 200, 500} 200

Mutation rate 0.5 {0.1, 0.3, 0.5, 0.7, 0.9} 0.5
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Table 4.14: Parameters for integer encoding

Parameter Initial value Tested values Final value

Population size 200 {100, 200, 500} 200

Mutation rate 0.5 {0.1, 0.3, 0.5, 0.7, 0.9} 0.5

Table 4.15: Parameters for floating-point encoding

Parameter Initial value Tested values Final value

Population size 50 {50, 100, 200} 50

Mutation rate 0.5 {0.3, 0.5, 0.7, 0.9} 0.5

Integers encoded

with single FP value
1 {1, 2, 4} 2

Results

In total, the search space size of possible (n,m)-functions equals 2m2n
. When considering (n,n−

2) functions, when n = 4 the search space size equals 232, which is possible to exhaustively

search. Already for (5,3) functions, the search space size equals 296, which is far beyond

current computing capabilities.

Exhaustive Search in (4,2) Dimension

We conduct the exhaustive search in (4,2) dimension to investigate the properties of the func-

tions with differential uniformity equal to 6. We find 0.38% of functions with such differential

uniformity. Only 1.367% of those functions have the same number of occurrences of each value

(e.g., 4 values 0, 4 values 1, etc.). The distribution of S-box values is uniform, i.e., we notice

every possible value on every possible position. Next, we investigate the number of functions in

which, at least, one value is missing. There are 1.366% of functions with that property. When

considering a single value repeating itself a number of times consecutively, we find the longest

such subset to be of length 6. Finally, when considering the results that could be obtained with

the quadruple permutation encoding, out of 0.38% solutions with differential uniformity equal

to 6, there are 6.70% that can be represented with quadruple permutations.

Heuristic Results

We conduct experiments with 5 representations and 4 different problem sizes: (4,2), (5,3),

(6,4), and (7,5). The performances of different representations are shown as box-plots for each
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Figure 4.3: Results for (4,2) S-box size

Table 4.16: Results for (5,3) size and quadruple permutation encoding.

Min Max Average Std dev

0 2 1.68 0.74

problem size in Figures 4.3 until 4.6. The combinations in which we were able to obtain the

optimal solution (with differential uniformity 6) are denoted with the fitness value of zero.

In the most simple (4,2) case, the GP, integer, and floating-point representations are always

able to reach the optimal solution (see Figure 4.3). On the other hand, the permutation and

quadruple permutation encoding were unsuccessful in every run. This is an interesting behavior

since we know from the exhaustive search it is possible to obtain differentially 6-uniform func-

tions encoded with quadruple permutations. Continuing to that fact, it is intriguing that only the

quadruple permutation encoding succeeded in obtaining the optimal solution for the (5,3) size.

When considering (5,3) dimension as given in Figure 4.4, we see that GP encoding works

the worst, while quadruple permutation is the only one reaching the global maximum. Floating-

point, integer, and permutation encoding all reach the same value and there is no statistically

significant difference in their behavior.

In Table 4.16, we give results for (5,3) size and quadruple permutation representation, with

population size equal to 200 and mutation of 0.9.

For the (6,4) size we depict results in Figure 4.5. Here, the integer encoding is the only one

reaching differential uniformity equal to 8, while all the other encodings are stuck on differential
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Figure 4.4: Results for (5,3) S-box size

uniformity of 10.

When examining (7,5) dimension, we observe even worse results than in the previous cases.

This behavior is somewhat expected since even for the smaller dimension we could not find op-

timal solutions. Interestingly, again integer encoding gives the best results with differential

uniformity going down to 10. Quadruple permutation, permutation, and floating-point behave

the same and reach differential uniformity of 12. Finally, GP encoding works the worst with dif-

ferential uniformity solutions in the range [12,14]. Figure 4.7 gives the convergence results for

the (7,5) dimension when using the permutation encoding where we depict the averaged Min,

Max, and Average values over all experimental runs. As it can be seen, despite having relatively

rough grained fitness values, the evolution process still needs more than 150 000 evaluations to

find the best solution and more than 800 000 evaluations before is starts stagnating.

The best obtained solutions over all the experiments are then given in Table 4.17. When a

certain encoding is able to reach the global optimum of 0, we depict it in bold style.

The relation between the representations and the obtained differentially 6-uniform solutions

is illustrated in Figure 4.8. Note that the sizes are not given in the actual ratio.

We can observe that evolving differentially 6-uniform (n,n− 2) functions is an extremely

difficult problem when n > 5. What is more, this could be impossible since we have no proofs

that such functions even exist. Unfortunately, as is the case with all heuristic techniques, failure

to produce optimal results does not mean there are no such results. From that perspective, our

experiments did not yield any new information since we still do not know such functions nor do

they exist. Since the differential uniformity property can have only even values (i.e., it changes
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Figure 4.6: Results for (7,5) S-box size

Figure 4.7: Convergence for (7,5) dimension with permutation encoding
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Table 4.17: Best obtained results for all encodings

Encoding \S-box size (4,2) (5,3) (6,4) (7,5)

Genetic programming 0 4 4 6

Permutation 2 2 4 6

Quadruple perm. 2 0 4 6

Integer array 0 2 2 4

Floating-point array 0 2 4 6

Figure 4.8: Illustration of the mapping between representations and problem space
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in jumps of two), it is easy to observe that there is not much gradient that could lead the search

process.

Still, for the (5,3) S-box size, we are able to find a number of differentially 6-uniform

functions. Since the corpus of currently known such functions is very limited, it could be

expected that at least some of the found functions are new (i.e., not equivalent to the previously

known functions).

4.5 Conclusions

In this chapter, we investigate the evolution of bent vectorial Boolean functions. Differing from

the case when considering single Boolean functions (i.e., where the number of outputs equals

1) or S-boxes as used in block ciphers (where the input and output dimensions are usually the

same), here we investigate S-boxes where the output is strictly smaller than the input. Such

S-boxes have practical applications in authentication codes or secret sharing schemes but are

also interesting as combinatorial optimization problems and could be used as benchmarks.

The results confirm that evolutionary computing algorithms can create S-boxes of different

sizes. As in the previous chapter, the genetic algorithm achieves the best results.

Finally, the results show that when the number of outputs is strictly smaller than the number

of inputs, this problem is more reminiscent of a Boolean function case than the S-box case.

Moreover, differing from results usually obtained for S-boxes with m = n, evolutionary algo-

rithms can be a viable option when several different functions are needed.

Moreover, we investigate whether heuristics can be used to generate differentially 6-uniform

(n,n− 2) functions. Our little theoretical work on this topic points us to the conclusion that

this problem is challenging. Our results confirm that the problem is intricate and evolutionary

algorithms are of limited success.

We are able to obtain global optimums for only dimensions (4,2) and (5,3). Interestingly,

different encodings are successful for those two dimensions. Since there exist algebraic con-

structions able to reach the same results for those two dimensions, we cannot report any new

findings. Finally, as it can be observed from the presented box plots, there is not much variety in

the obtained solutions. Unfortunately, since the differential uniformity values are always even

valued integers, obtaining a more fine-grained fitness function seems difficult. This could indi-

cate that evolutionary algorithms are not the best option for this problem, but still, the results are

highly competitive with the state-of-the-art. The failure of the evolutionary approach for larger

dimensions cannot, of course, be considered proof that such functions do not exist when n≥ 6.

Still, considering that the algebraic constructions also cannot find differentially 6-uniform when

n≥ 6, we believe it could serve as a strong indication of the nonexistence of such functions.
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Chapter 5

Automatic Construction of Cryptographic
Algorithms

In this chapter, we investigate the possibility of utilizing evolutionary algorithms to generate

cryptographic algorithms without specific design criteria automatically. To this end, we employ

Cartesian Genetic Programming in a bi-level setting where multiple populations simultaneously

evolve a cryptographic algorithm, and an attacker attempts to break it. To challenge our design

paradigm, we explore various scenarios with different criteria on the system and its security.

Our results demonstrate promising outcomes in several scenarios where the attacker cannot

comprehend the text with more than a random chance. While our system may not be practical,

it presents an interesting approach, producing human-readable results. Moreover, our system

can generate multiple versions of one-time pads, the only systems ensuring perfect secrecy.

The remainder of this chapter is structured as follows. In Section 5.1, we provide an

overview of cipher design and the motivation for our research. Section 5.2 surveys related

work, and Section 5.3 details our experimental setup. We describe the general principles of

cipher design and bi-level optimization and the cost functions utilized in the evolutionary al-

gorithm. Section 5.4 discusses the results and outlines potential avenues for future research.

Finally, Section 5.5 presents a brief conclusion.

5.1 Introduction

Designing a cipher is usually very complex since the designers need to follow several principles

to create a strong cipher. In the design phase, it is necessary to consider the properties of

individual components (commonly known as cryptographic primitives) and the complete cipher.

At the same time, that cipher needs to be tested against many possible attacks (e.g., differential

cryptanalysis [93] or linear cryptanalysis [94]) to gain confidence in its strength. Although

computers are extensively used in the design process to test specific parts of the cipher, in
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modern ciphers, the design is exclusively done by human experts. Here, by design, we consider

the choices on how to combine lower-level primitives into a cipher. Naturally, those lower-level

primitives are often obtained/validated via computer investigation.

In this chapter, we pursue the goal of the automatic design of ciphers. To evolve ciphers, we

use evolutionary algorithms, more precisely, Cartesian Genetic Programming (CGP) [14]. CGP

is used in the optimization procedure due to interpretability, parallel construction of multiple

solutions, and the inherently solved problem of excessive individual growth - bloat. We believe

such automatic cipher design is exciting 1) as an exercise to see the limits of evolutionary

algorithms in modern cryptography and 2) as a source of inspiration for new ciphers or their

components. The automatic evolution of ciphers is a difficult task. That difficulty stems from

the fact that we aim to develop a cipher easily usable by legitimate parties (commonly denoted as

Alice and Bob). At the same time, the malicious third party (commonly known as Eve) should

not be able to eavesdrop on that communication unless she has the key. To be as generic as

possible (i.e., to allow the evolutionary algorithm to design a cipher freely), we must impose no

(or as limited as possible) criteria on how the communication should happen. This constitutes

a vast search space of solutions where 1) one side (we denote our cipher designer as Alice)

generates a cipher, and 2) Eve must not be able to understand the message since she does not

have a key. Note, Eve knows both plaintexts and corresponding ciphertexts, which puts our

setting into a well-known attack model called the Known Plaintext Attack (KPA) [99]. Ideally,

Eve could use that information to develop some attacks better than just random guessing.

Abadi and Anderson used two neural networks (Alice and Bob) to construct a cipher and a

third network (Eve) to attack it, thus having an adversarial environment between the first two

networks and the third one [121]. The only constraint they imposed in the design process is that

legitimate parties need to find a cipher so that they can communicate while Eve cannot decipher

it. This should be possible since Eve has a much more difficult task because she does not know

the secret key, while the legitimate parties know it. Abadi and Anderson obtained relatively

good results, i.e., they found a way for Alice and Bob to communicate. At the same time, Eve

could not decipher that communication, but their approach had issues. While Eve could not

decipher the communication with significantly better chances than random guessing (i.e., 50%

of plaintext characters correctly guessed), Alice and Bob communicated "successfully,” but

their error was slightly lower than 50%. Next, since the cipher is a neural network architecture,

no proper design analysis is possible. In the same way as it is difficult (impossible) to interpret

the way Alice and Bob communicate, it is difficult to understand what is Eve doing so there

is no guarantee the system is successful simply because Eve was not able to learn good attack

strategies (i.e., the cipher could be bad but Eve is so primitive she still cannot break it).

Our design principles differ in several ways to evolve a cipher that ensures a certain level of

security while being at least partially interpretable. Instead of neural networks, we use Cartesian
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Genetic Programming since that allows us to have solutions in the form of graphs, which are

(potentially) understandable by human designers. We do not use the scenario where Alice

and Bob develop a cipher since we do not see a practical justification. Indeed, it is sufficient

that one side generates a cipher and then shares it with all parties. Our setting uses the bi-

level optimization for Alice and Eve. Finally, since the design of a cipher also depends on

its intended use, we set this as a constraint in our process. Indeed, the evolutionary algorithm

cannot guess what we want to use in the cipher. We can show our design strategy works over

many different settings and produces solutions (i.e., ciphers) where the attacker’s best strategy

is simply random guessing. At the same time, our solutions are short enough, so it is possible

to analyze them. Interestingly, even when not imposing any specific design constraints, our

approach still finds some general paradigms of good cipher design (e.g., it is important to use

the key – although this sounds trivial, it is still a result obtained solely by the evolution process).

Naturally, once we can automatically design a cipher, the question is why to use it. Due to a

lack of proper cryptanalysis, there must be a severe concern about the strength of such evolved

ciphers that would prohibit them from being used. Still, there are many motivations for this

work:

1.Testing the limits of what evolutionary algorithms can do.

2.Finding new building blocks for ciphers – since we do not impose criteria on how a cipher

should look, new primitives could be found. The same logic applies to Eve, where we

could find new techniques to attack a cipher.

3.Since Alice generates a cipher and Bob must find a way to understand it (regardless of

whether it is the same cipher or some functionally equivalent one), one could use our

setting to find smaller, functionally equivalent ciphers.

4.In scenarios where some fault (for instance, in satellites caused by cosmic radiation)

renders one side in communication non-operational, our setting could be used to evolve a

different (but equivalent) cipher with the still functional circuitry.

5.Finally, one can consider, e.g., an evolvable hardware setting where the system could

adapt to new threats or design paradigms by simply modifying the fitness functions.

In this chapter, we realized the original scientific contribution of the automatic construction

of cryptographic algorithms by using attacker and defense dynamics in the security domain as

follows[122]:

•to the best of our knowledge, we are the first to consider such an open-ended cipher

evolution process with evolutionary algorithms,

•we design an entire system named C3PO where Alice can design ciphers considering

various criteria and cipher characteristics,

•we show that bi-level CGP can construct ciphers that Eve cannot break.
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5.2 Related Work

When discussing heuristics in the design of ciphers, there are two directions in the literature.

The first deals with the design of cryptographic primitives, i.e., parts of ciphers, while the second

tackles the problem of the full cipher design. Since the design of a part of a cipher is easier than

the design of the whole cipher, the first direction has been much more explored, and the results

are better.

Among the various heuristic techniques adopted for the problem of evolving Boolean func-

tions (often used in stream ciphers) one can find simulated annealing [123], genetic algo-

rithms [71], genetic programming and Cartesian genetic programming [76], particle swarm

optimization [124], and immunological algorithms [81]. All those approaches follow the same

line of reasoning: they define important cryptographic criteria that Boolean functions need to

fulfill and incorporate them into fitness functions. Next, researchers use heuristics to generate

Substitution boxes (S-boxes) to be used in block ciphers. Examples use simulated annealing

with hill climbing [111], genetic algorithms [112], genetic programming [125], Cartesian ge-

netic programming [126], and gradient descent method[127]. Like the Boolean functions, fit-

ness functions contain specific properties that an S-box should possess. When considering the

design of full ciphers, we distinguish two options: in the first one, the design follows precisely

devised criteria defining the behavior of the cipher, while in the second direction, the process is

more open ending since there are no specific constraints. Examples in the first avenue encom-

pass the design of pseudorandom number generators where the fitness function uses various

types of randomness testing to evaluate whether the constructions offer sufficient randomness.

The approaches use genetic programming [128] and Cartesian genetic programming [129]. A

block cipher called Wheedham is designed by genetic programming where a fitness function

ensures sufficient nonlinearity in the cipher [130].

Aside from the evolutionary computation, a number of papers belong to the neural cryptog-

raphy domain. A usual goal is to develop a key exchange protocol [131]. Still, such systems

do not offer security as, for instance, shown by Klimov et al. [1]. Finally, adversarial neural

networks are used to design a cipher where the only constraints are that Alice and Bob need to

exchange messages. At the same time, Eve should not be able to eavesdrop on them [121]. As

far as we know, this is the first attempt to build a whole cipher in an “open” design style where

Eve is also considered.

5.3 Experimental Setting and Results

In this section, we start by a short discussion about general properties we require from our

evolved ciphers. Next, we discuss Cartesian genetic programming (CGP) as the algorithmic
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Figure 5.1: Alice and Eve in bi-level optimization.

paradigm used in experiments. Finally, we present fitness functions for all parties – Alice, Bob,

and Eve.

5.3.1 General Cipher Design Principles

As already said in Section 5.1, our goal is the automatic design of ciphers where we do not

impose criteria on how the cipher should be designed. Indeed, described as briefly as possible,

we want a cipher that legitimate parties can use to communicate and that the attacker cannot

break. Figure 5.1 shows the design scheme we used in our experiments. Everything else should

be (in the ideal case) designed by the evolutionary process. Yet, it is not difficult to see that

some additional constraints need to be given since EA does not know what kind of cipher it

needs to generate:

1.In the evolution process, we do not use two parties (Alice and Bob) to evolve a cipher

but only Alice. We see no need to strain the evolution process and make Bob guess what

Alice finds. First, guessing the cipher correctly is extremely difficult and adds errors to

legitimate parties communication. Additionally, there is no reason to limit the communi-

cation to only two legitimate parties. In a system where one side develops a cipher, and

the other sides need to guess it to communicate, adding more parties means even more

errors in legitimate communication. Second, we do not want the cipher to be a secret but

only the key following Kerckhoff’s principle so Alice can develop a cipher and send it

over an insecure network.

2.What kind of a cipher do we require, public-key or symmetric key algorithm? In this

chapter, we consider only symmetric-key algorithms.

3.Does our algorithm use the key or not? Both options are possible: for instance, block-

/stream ciphers use keys while hash functions do not use them. We require that our

designs use the key.

4.We consider symmetric-key algorithms that use keys but still give several options. Will

the cipher operate on bits of blocks of bits? Although this seems like a detail that could be

left to EA to decide, our experiments show that if we allow EA to operate on a bit level, it
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will not group those bits into blocks. We choose to work with blocks and, consequently,

to design block ciphers.

5.What is the size of plaintext, ciphertext, and keys? We consider a scenario where all have

the same size, either 4 bits or 8 bits.

Note, all decisions given above are our design choices and not something devised due to

some constraints on EA. Indeed, we could have decided to work on stream ciphers or hash

functions, and EA would still be able to produce results. While 4 or 8 bits can look too small

to be practical, applying the same cipher to any number of bits in parallel and arriving at more

practical sizes is easy. Of course, since we consider each block separately, there is no diffusion

between the blocks, but we do not consider this a problem at this phase. Finally, although it is

common for block ciphers to be iterated [99], i.e., to operate in several rounds to improve their

security, we use only a single round here. Trivially, each new round adds a certain amount of

security to the cipher, but we can measure the security only concerning Eve. More precisely, if

Eve cannot break a single round cipher, there is no reason to add more rounds since Eve will

naturally be unable to break them. Adding rounds will make the attacks more difficult if Eve

can break a single round. Still, our experiments show many designs with a single round strong

enough so Eve cannot break them. Consequently, we see no need to consider multiple rounds at

this point. Naturally, we do not limit EA, so it cannot produce multiple rounds, but the analysis

of the obtained solutions did not indicate this to be the case.

Besides these general constraints, our experiments indicated arguments for several addi-

tional constraints that are more specific. If we require our cipher to be bijective, i.e., invertible,

we need to encode this constraint. This may seem like a limitation, but it is a natural situation

since EA does not know whether there is another side (or sides) that needs to be able to de-

crypt the ciphertext by inverting the encryption procedure. We note this is also not a must; any

function can become invertible if it is set into the Feistel structure [99].

Once the evolution process is finished and we have the cipher that Eve could not break, we

would require some assurance that our cipher is strong. Indeed, if Eve cannot break the cipher,

there are two reasons: 1) the cipher is strong, and that is the reason Eve cannot break it, or

2) Eve did not learn any good way to analyze the cipher, so although the cipher is weak, she

cannot break it (colloquially said, Eve, is "stupid"). To gain some assurance that the cipher is

strong and that Eve is a capable attacker, we measure the confusion and diffusion as given by

the nonlinearity and avalanche criterion, respectively.

5.3.2 Bi-level optimization

Bi-level optimization is a special kind of optimization where one problem is embedded within

another one [132]. The outer optimization task is commonly referred to as the upper-level

optimization task, and the inner optimization task is commonly referred to as the lower-level
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optimization task. In our case, Alice does the upper-level optimization task referring to Eve’s

lower-level task.

When evaluating each individual in the upper-level population (each Alice), a new lower-

level population (of Eves) is created. The chosen Alice individual’s cipher is used to generate

training set pairs of plaintext and ciphertext; this training set is used at the lower level to evaluate

lower-level individuals. After the lower-level evolution is terminated, the best solution from the

lower level is used to estimate the fitness of Alice, i.e., the upper-level individual.

The same evolutionary algorithm and the same representation is used at both levels, but the

fitness functions and termination criteria are different. In our case, the size of the lower-level

population is σ = 3, and the lower-level termination criteria is many evaluations. This process

is illustrated in Algorithm 7. Train and test datasets are denoted with {P,K}N and {P′,K′}M,

where P and P′ are plaintexts, and K and K′ are keys. The size of the datasets is marked with

N and M; C and C′ are ciphertexts obtained from the train and test dataset; Π stands for the

population of candidate attackers, and π denotes the iteration counter.

Algorithm 7 Alice and Eve evolution by bi-level optimization.

Input: Xtrain = {P,K}N – train dataset, Xtest = {P′,K′}M – test dataset, I – iterations
π = 0
repeat

Alice = build model (Xtrain,Eve)
C = encrypt (Xtrain,Alice)
Πσ

Eve = Eve1, ...,Eveσ

for ∀Eve in Πσ
Eve do

Evei = build model ({P,C}N)
end for
Eve = best model in Πσ

Eve
C′ = encrypt (Xtest ,Alice)
K̂′ = break secret key ({P′,C′}M,Eve)
if K̂′ = K′ or K̂′ = ¬K′ then

secret key K′ broken
end if
inc(π)

until π < I

5.3.3 Common Parameters and Datasets

The table 5.1 shows the parameters for CGP. The function set consists of three binary and three

unary functions. Binary functions are AND, OR, XOR, and unary functions are NOT, ROR

and ROL. ROR and ROL are rotation functions that rotate a bit string by one bit to the right

or left. In all experiments, the number of independent trials for each configuration is 30. We

use two artificial datasets depending on the message length that can be n = 4 and n = 8 bits.
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Table 5.1: Parameters for CGP.

Parameter Value

Genotype length 20/40 nodes (4/8 bits)

Input/Output nodes 2/1

Shortcut connections disabled

Evolutionary strategy (1+4)

Mutation type single active gene

Functions AND, OR, NOT, XOR, ROR, ROL

Maximum evaluations 25 000/50 000 (Alice/Eve)

Runs per experiment 30

Here, both the message and the secret key are of the same length. The message and the secret

key consist of uniformly distributed binary values. After a tuning phase, we set the number of

nodes in CGP for 4-bit messages to 20 and for 8-bit messages to 40 nodes. To encrypt a message

block consisting of n bits with a key consisting of n bits as well, we use vectorial functions that

produce n bit ciphertext. Consequently, Alice consists of 2 input nodes and 1 output node.

Eve has information about the pairs of plaintext and ciphertext so she also has 2 input nodes

and 1 output node, where output represents the secret key used in the encryption. Note, our

encryption algorithm always outputs ciphertexts of the same size as is the plaintext. For the

4-bit messages, the training dataset contains P = 150 messages and K = 10 keys (N = 150,

training set size), while testing dataset contains P′ = 50 messages and K′ = 6 keys (M = 50,

testing set size). The 8-bit messages the training dataset contains P = 400 messages and K = 50

keys (N = 400) while testing dataset contains P′ = 100 messages and K′ = 10 keys (M = 100).

All pairs plaintext/key are selected uniformly at random. We divide our evolution process into

a number of evaluations E and iterations I. A single iteration I represents a process where all

parties undergo E evaluations. Training and testing set is regenerated after each iteration. In all

our experiments, the evolution does I = 50 iterations. We set the number of evaluations E to

25 000 for Alice and 50 000 for Eve. By larger number of evaluations, we give Eve an advantage

over Alice in order to build as powerful as a possible attacker. In total, each of 30 experimental

runs has at least 1 250 000 evaluations for each of the populations.

5.3.4 Cost Functions

Before we explain the cost functions, we explain Alice and Eve’s tasks. Alice must build such

a cryptographic algorithm where the attacker will have an average probability of guessing the

secret key equal to random guessing. Additionally, it is required that the constructed crypto-

graphic algorithm has high nonlinearity and diffusion propertie and is bijective. On the other
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hand, the task of the attacker, Eve, is to discover as much information as possible about the

secret key, or the inverted secret key. Eve has pairs of plaintexts and associated ciphertexts

because she follows KPA.

We use the L1 distance to measure the difference between the key K and the guessed key

K′. The L1 distance is defined as d (K,K′) = ∑
n
i=1 |Ki−K′i |, where n equals the message length.

We work in the multi-objective setting since we simultaneously aim to maximize Eve’s decryp-

tion error and to satisfy the good properties of a cipher: high nonlinearity, high diffusion, and

bijectivity. The last property enables decryption with an inverse function.

Alice’s costA expression represents Eve’s error, where the global optimum is reached when

half (on average) of the decrypted message bits are wrong. Suppose Eve is correct in only

half the bits. In that case, that means she is doing random guessing (independent coin toss

for each message bit), which is the optimal scenario from Alice’s perspective. Note, if Eve

would be wrong in significantly more than half the bits, we could invert her guesses (swap all

0s for 1s and vice versa), which would make her wrong in significantly less than half of the

bits. The second component cryptoAlice
Eve describes the simultaneous fulfillment of cryptographic

properties. We emphasize that Alice’s cost function is measured by Eve and then, in bi-level

optimization, sent to Alice.

costAlice =
N

∑
i=1

∣∣∣n
2
−d(K,K′Eve)

∣∣∣+ cryptoAlice
Eve . (5.1)

costEve =
N

∑
i=1

min(d(K,K′Eve),n−d(K,K′Eve)). (5.2)

cryptoAlice
Eve = N̂L+ ̂di f f usion+bi jection. (5.3)

The bijection is determined by creating unique ciphers with different messages and the

same key. The values of this fitness component are 0 if the Alice constructs a non-bijective

cipher and 1 otherwise. Nonlinearity NL and diffusion are statistically measured with a subset

of secret keys from the training set. To reduce the NL and di f f usion time complexity, we ran-

domly choose 3 keys and calculate cipher’s nonlinearity and diffusion, where N̂L=min{NLkeyi}
and ̂di f f usion = min{di f f usionkeyi}. Since the parameters values have different co-domains,

we scale N̂L, ̂di f f usion, and bijection to the interval [0,N], using transformation scaled =

N optimal−value
optimal . Optimal nonlinearity for 4 bit messages is 4 and for 8 bit messages is 112. On

the other hand, optimal diffusion for each bit of the output is equal to n2

2 because for each mes-

sage, there exists n messages different in only 1 bit which should have cipher difference in n
2

bits.
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5.4 Results

We divide our experiments into five scenarios when considering cryptographic cost on the Alice

side. The first scenario includes only Eve’s L1 measure, which Eve tries to minimize, and

which for Alice needs to be as close to half of the bits as possible. In the second scenario, we

consider Alice’s diffusion. The third scenario considers nonlinearity, while the fourth scenario

measures Alice’s bijection property. Finally, we combine the second, third, and fourth scenario

into the fifth scenario. The aggregate results for all scenarios are given in Tables 5.2–5.3 and

Figures 5.2–5.7.
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Table 5.2: Alice, average results for all scenarios.

N Scenario
average ± standard deviation

costAlice active nodes diffusion nonlinearity bijectivity costEve cryptoAlice
Eve

4 bits

1 11.20 ± 2.43 4.60 ± 2.36 106.13 ± 24.95 0.40 ± 1.20 0.13 ± 0.33 0.81 ± 0.17 10.38 ± 2.40

2 8.91 ± 0.46 5.16 ± 2.33 4.80 ± 12.49 0.00 ± 0.00 0.00 ± 0.00 0.76 ± 0.24 8.15 ± 0.39

3 7.14 ± 1.29 5.30 ± 1.91 62.53 ± 8.16 3.60 ± 1.20 0.00 ± 0.00 0.78 ± 0.15 6.35 ± 1.29

4 7.03 ± 0.46 3.23 ± 2.01 72.53 ± 14.15 0.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.13 6.26 ± 0.44

5 1.09 ± 0.88 10.00 ± 1.50 9.00 ± 5.76 3.86 ± 0.71 1.00 ± 0.00 0.68 ± 0.16 0.41 ± 0.89

8 bits

1 21.68 ± 3.78 7.73 ± 3.35 6779.73 ± 1044.84 6.40 ± 19.20 0.20 ± 0.40 1.11 ± 0.15 20.56 ± 3.76

2 16.95 ± 0.82 9.96 ± 2.40 17.06 ± 91.90 2.13 ± 11.48 0.00 ± 0.00 1.08 ± 0.11 15.86 ± 0.82

3 11.76 ± 1.37 15.20 ± 2.48 2314.67 ± 925.86 106.13 ± 7.71 0.00 ± 0.00 1.08 ± 0.11 10.67 ± 1.36

4 15.35 ± 0.32 5.70 ± 3.11 6400.00 ± 288.11 0.00 ± 0.00 1.00 ± 0.00 1.10 ± 0.10 14.25 ± 0.28

5 10.40 ± 1.13 13.16 ± 2.92 1366.40 ± 1148.21 0.00 ± 0.00 1.00 ± 0.00 1.06 ± 0.11 9.33 ± 1.12
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Table 5.3: Eve, average results for all scenarios.

N Scenario
average ± standard deviation

costEve active nodes keys broken secret key wrong bits

4 bits

1 0.78 ± 0.51 7.40 ± 3.08 4.20 ± 1.83 1.97 ± 1.14

2 1.23 ± 0.21 8.10 ± 2.79 2.80 ± 1.72 2.02 ± 0.26

3 1.14 ± 0.34 7.93 ± 2.93 2.63 ± 1.68 1.91 ± 0.59

4 0.86 ± 0.54 6.96 ± 2.62 3.56 ± 2.06 1.80 ± 1.03

5 1.17 ± 0.33 6.63 ± 2.18 2.40 ± 1.94 1.96 ± 0.22

8 bits

1 1.98 ± 1.05 14.16 ± 6.58 3.76 ± 3.66 4.14 ± 2.09

2 2.66 ± 0.72 17.26 ± 4.28 1.66 ± 2.64 3.67 ± 1.01

3 2.82 ± 0.20 17.50 ± 3.98 1.10 ± 1.42 3.96 ± 0.42

4 1.62 ± 1.39 12.36 ± 5.55 5.06 ± 4.48 4.00 ± 2.63

5 2.77 ± 0.32 18.60 ± 3.65 1.53 ± 1.82 3.81 ± 0.72

5.4.1 Scenario 1

In this scenario, cryptoAlice
Eve is set to 0 in Eq. (5.1) and only Eve’s L1 measure is optimized.

For Eve, the aim is to guess as many bits as possible (or as little bits as possible, see Eq. 5.2).

Then, the best solution from Eve lower-level population is used as the fitness for the current

Alice candidate. When considering 4 bits scenario, Alice evolves a cipher that is small (as can

be observed by the number of active nodes) but the cipher is relatively weak since Eve is able

to guess many bits. We see that the diffusion is bad (since we aim to minimize it) as well as

the nonlinearity (since we aim to maximize it). Both properties indicate that our ciphers are

not providing a lot of security. Additionally, we see that the evolved ciphers are usually not

bijective. The scenario with 8 bits displays a similar behavior, where values are slightly larger

but also their range is much larger. At the same time, Eve’s cost is relatively large, which means

that she is able to do better than random guess. In Table 5.2, we show the situation after Eve’s

evaluation where we see that she is able to break several keys and that she makes mistake in

only a few bits of the secret key.

5.4.2 Scenario 2

In this scenario, besides Eve’s L1 measure, the fitness component cryptoAlice
Eve includes the dif-

fusion which is also optimized. We can see that this has caused a significant change when

comparing with Scenario 1. The cost of Alice is reducing, which means she is developing bet-

ter ciphers (i.e., those that are more difficult for Eve) but she also needs more active nodes on
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Figure 5.2: Alice cost function values in all scenarios for N = 4.
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Figure 5.3: Alice, cost function values in all scenarios for n = 8.
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Figure 5.4: Eve, average key bits error in all scenarios for n = 4.

average. Since we optimize for diffusion, we see that for both 4 and 8 bits, the diffusion sig-

nificantly improves. The ciphers are never bijective (both for 4 and 8 bits) and the nonlinearity

decreases. This indicates that if we want to optimize for diffusion, we loose on nonlinearity.

Considering Eve, we see that her results indicate that she is closer to random guessing and

consequently, she guesses less keys.

5.4.3 Scenario 3

This scenario optimizes Eve’s L1 measure and in the term cryptoAlice
Eve the nonlinearity is opti-

mized. We can observe that in this case, nonlinearity is significantly better than in the previous

scenarios. At the same time, apart from the diffusion, the other components are largely not

affected. As in the previous cases, bijectivity is not obtained, which again indicates that this

property is not intrinsic to the design of Alice’s cipher. The sizes for ciphers that Alice evolves

are very similar for Scenario 2 and 3, which means that the properties are similar in complexity

to add to the cipher design. When considering the results from Alice’s perspective, it is difficult

to say whether Eve has more problems for Scenario 2 or Scenario 3 since the results are very

similar. When considering the results from Eve/s perspective, we see that she needs less active

nodes for nonlinearity and she is able to guess the keys better.

5.4.4 Scenario 4

In this scenario, the component cryptoAlice
Eve in Alice’s cost includes only the bijection term,

while optimizing Eve’s L1 measure. When explicitly included as a criterion, we observe that
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Figure 5.5: Eve, average key bits error in all scenarios for n = 8.
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Figure 5.6: Eve’s broken keys in test set for all scenarios for n = 4.
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Figure 5.7: Eve, broken keys in test set for all scenarios for n = 8.

the evolutionary algorithm can easily adapt and provide a bijective cipher. It is important to

remember that the bijectivity is not tested and guaranteed on the whole domain, but only on

the generated plaintext dataset. Interestingly, making a cipher bijective is still causing a similar

amount of problems for Eve despite the fact that diffusion and nonlinearity are not as good as

for Scenarios 2 and 3. This constraint does not seem to make a significant change in Eve’s

ability to obtain better solutions in competition with Alice. From Eve’s perspective, making

this scenario enables her to guess the most of the bits and she requires less active nodes when

compared to the first 3 scenarios. Additionally, when considering 8-bit scenario, we see that

Eve is able to brake most of the keys.

5.4.5 Scenario 5

In this scenario, besides optimizing Eve’s L1 measure, cryptoAlice
Eve includes all the three previous

criteria. We see that our ciphers are bijective and with good diffusion (although not as good

as when considering only diffusion). When considering scenario with 4 bits, we see we are

also able to obtain the best possible nonlinearity while for 8 bits we cannot obtain nonlinear

functions. This means that the problem is simply too difficult for CGP when considering all

conditions. Still, even with such differing results for two cases, we see that this scenario is the

most difficult one for Eve and she is making mistakes the most. Interestingly, for 4-bit scenario,

Eve uses the least active nodes while for the 8-bit scenario she uses the most active nodes. This

indicates that she is somewhat “deceived” for 4-bit case to think the problem is easy. As one

could expect, we consider this scenario to be the best for Alice (and consequently the worst for
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Figure 5.8: Example of an evolved cipher obtained by Alice.

Eve) since all statistical indicators for cryptographic properties are balanced. At the same time,

Eve is making mistakes for many bits, which means that this scenario is difficult fo her. Finally,

we depict one cipher working on 4 bits evolved by Alice in Figure 5.8 and corresponding Eve’s

attack in Figure 5.9.

On a general level, we see that improvements in the cost function for Alice are making a big

difference since she is able to obtain dramatically different results. Eve, on the other hand, is

always making errors in around half of the bits. What is especially interesting is to note that we

obtained for several scenarios one-time pad cipher and its variants, which are the only ciphers

providing perfect secrecy.

5.5 Conclusions

In this chapter, we investigate how to automatically evolve ciphers with CGP and bi-level op-

timization. Our results show that we are able to develop ciphers that are (relatively) resilient

against attacks and use only a small number of active nodes, which makes them easier to in-

terpret. Once we add more properties that a cipher needs to fulfill, the results are naturally

improved. Eve as the attacker is not able to be significantly more successful than if she would

be random guessing. We consider this to be only a proof of a concept that shows that EA has

potential as a automatic cipher builder. Naturally, to obtain something useful in practice, more

refinements will be necessary.

In future work, we will consider more variations in the number of evaluations and/or size

of CGP graph. Besides that, we notice that our cost function is often too strict, which results

in getting stuck in local optima. To remedy that, we aim to design cost functions that gradually

add constraints during the evolution process and not impose all of them from the beginning of

the evolution process.
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Figure 5.9: Example of an evolved attack obtained by Eve.
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Chapter 6

Machine Learning Algorithms in
Side-channel Attack

The profiled side-channel analysis represents the most powerful category of side-channel at-

tacks. In this context, the security evaluator (i.e., attacker) gains access to a profiling device to

build a precise model which is used to attack another device in the attacking phase. It is as-

sumed that the attacker has significant capabilities in the profiling phase, whereas the attacking

phase is very restricted. We step away from this assumption and consider an attacker restricted

in the profiling phase, while the attacking phase is less limited. We propose the concept of

semi-supervised learning to side-channel analysis, in which the attacker uses the small number

of labeled measurements from the profiling phase and the unlabeled measurements from the at-

tacking phase to build a more reliable model. Our results show that the semi-supervised concept

significantly helps the template attack. For machine learning techniques and pooled template

attack, the results are often improved when only a smaller number of measurements is available

in the profiling phase. At the same time, there is no significant difference in scenarios where

the supervised set is large enough for reliable classification.

The rest of this chapter is organized as follows. Section 6.1 gives an overview of the profiled

attacks and motivation for research. In Section 6.2, we discuss the semi-supervised paradigm,

how one can use it to boost classification results, and the classes of algorithms we consider.

Next, in Section 6.3, we give details about the datasets we consider, the algorithms we use,

and our experimental evaluation procedure. Section 6.4 presents the experimental results for

both semi-supervised and supervised experiments, which serve as a baseline case. Finally,

Section 6.5 offers a brief conclusion.
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6.1 Introduction

Side-channel analysis (SCA) involves extracting secret data from (noisy) measurements. It is

made up of a collection of miscellaneous techniques combined in order to maximize the prob-

ability of success, for a low number of trace measurements and as low computation complexity

as possible. The most powerful attacks are based on a profiling phase, where the link between

leakage and the secret is learned, assuming the attacker knows the secret on a profiling device.

This knowledge is subsequently exploited to extract another secret using fresh measurements

from a different device. To run such an attack, one has a plethora of techniques and options

to choose from, where the two main types of attacks are based on 1) template attack (relying

on probability estimation) and 2) machine learning (ML) techniques. When working with the

typical assumption for profiled SCA that the profiling phase is not bounded, the situation be-

comes relatively simple if neglecting computational costs. Suppose the attacker can acquire an

unlimited (or, in the real world, huge) amount of traces. In that case, the template attack (TA) is

proven to be optimal from an information-theoretic point of view (see, e.g., [133, 134]). In the

context of the unbounded and unrestricted profiling phase, ML techniques seem not needed.

Stepping away from the assumption of an unbounded number of traces, the situation be-

comes much more interesting and of practical relevance. Many results in recent years showed

that in those cases, machine learning techniques can actually significantly outperform template

attack (see e.g., [135, 136, 137]).

Still, the attacks described above work under the assumption that the attacker has a (signif-

icantly) a large amount of traces from which a model is learned. The opposite case would be

to learn a model without any labeled examples. Machine learning approaches (mostly based on

clustering) have been proposed, for instance, for public key encryption schemes where only two

possible classes are present – 0 and 1 – and where the key is guessed using only a single trace

(see, e.g., [138]). To the best of our knowledge, unsupervised machine learning techniques have

not been studied in the case of differential attacks (using more than one encryption) and using

more than two classes.

In this chapter, we aim to address a scenario between supervised and unsupervised learn-

ing, the so-called semi-supervised learning, in the context of SCA. Figure 6.1 illustrates the

different approaches of supervised (on the left) and semi-supervised learning (on the right). Su-

pervised learning assumes that the security evaluator first possesses a device similar to the one

under attack. With this additional device, he can build a precise profiling model using a set

of measurement traces and knowing the plaintext/ciphertext and the secret key of this device.

In the second step, the attacker uses the beforehand profiling model to reveal the secret key of

the device under attack. For this, he measures a new, additional set of traces, but as the key

is secret, he has no further information about the intermediate processed data and thus builds
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Figure 6.1: Profiling side-channel scenario: traditional (left), semi-supervised (right)

hypotheses. Accordingly, the only information the attacker transfers between the profiling and

attacking phases is the profiling model he builds.

In realistic settings, the attacker is not obliged to view the profiling phase independently

from the attacking phase. He can instead combine all available resources to make the attack as

effective as possible. In particular, he has at hand a set of traces for which he precisely knows

the intermediate processed states (i.e., labeled data) and another set of traces with an unknown

secret key and thus no information about the intermediate variable (i.e., unlabeled data). To

take advantage of both sets at once, we propose a new strategy of conducting profiled side-

channel analysis to build a more reliable model (see Figure 6.1 on the right). This new view is

of particular interest when the number of profiling traces is (very) low, and thus any additional

data is helpful to improve the model estimation. An instance of practical application arises when

the security analyst’s access to the target device is limited, rendering it challenging to construct

an accurate profiling model using a limited number of measurement traces. In such cases, using

an analogous device to the target device in the profiling phase can furnish the required data

to generate a more precise model. By integrating the additional data in the profiling phase,

the semi-supervised approach can produce more accurate outcomes in the attacking phase. This

approach can prove particularly valuable in real-world scenarios where the expense or feasibility

of acquiring multiple devices for profiling is prohibitive.

To show the efficiency and applicability of semi-supervised learning for SCA, we conduct

extensive experiments where semi-supervised learning outperforms supervised learning if cer-

tain assumptions are satisfied. More precisely, the results show many scenarios where the accu-

racy of the test set is significantly higher if semi-supervised learning is used (compared to the

"classical" supervised approach). We start with the scenario that we call "extreme profiling",

where the attacker has only a minimal number of traces to learn the model. From there, we

increase the number of available traces, making the attacker more powerful, until we reach a

setting where semi-supervised learning is no longer needed. Still, our results show that using

semi-supervised learning even in these settings is not deteriorating the efficiency of attacks.

As far as we know, the only example currently implementing a semi-supervised analysis in
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SCA is [139], where the authors conclude that the semi-supervised setting cannot compete with

a supervised setting. Unfortunately, the assumed scenario is hard to justify; consequently, their

results are expected (without much implication for SCA). More precisely, the authors compared

the supervised attack with n+m labeled traces for all classes with a semi-supervised attack with

n labeled traces for one class and m unlabeled traces for the other unknown classes (i.e., in total

n+m traces). Based on such experiments, they concluded that the supervised attack is better,

which is intuitive and straightforward. A proper comparison would be between the supervised

attack with n traces and the semi-supervised attack with n+m traces, where m is mostly smaller

than n, which is the direction we take in this chapter. Also, our analysis is not restricted to only

one labeled class in the learning phase.

We primarily focus on improving the accuracy if the profiling phase is limited. Since we are

considering challenging scenarios, the improvements one can realistically expect are often not

too significant (i.e., in the range of only a few percent). Still, we consider any progress relevant

since it makes the attack easier while not requiring additional knowledge or measurements[140].

6.2 Semi-supervised Learning Types and Notation

Semi-supervised learning (SSL) is positioned between supervised and unsupervised learning.

The basic idea is to take advantage of a large quantity of unlabeled data during a supervised

learning procedure [141]. This approach assumes that the attacker can possess a device to

conduct a profiling phase but has limited capacities. This may reflect a more realistic scenario

in some practical applications, as the attacker may be limited by time and resources and face

implemented countermeasures that prevent him from taking an arbitrarily large amount of side-

channel measurements while knowing the secret key of the device.

Let ~x = (x1, . . . ,xn) be a set of n samples where each sample xi is assumed to be drawn

i.i.d. from a common distribution X with probability P(x). This set~x can be divided into three

parts: the points ~xl = (x1, . . . ,xl) for which we know the labels ~yl = (y1, . . . ,yl) and the points

~xu = (xl+1, . . . ,xl+u) for which we do not know the labels. Additionally, the third part is the

test set ~xt = (xl+u+1, . . . ,xn) for which labels are also not known. We see that differing from

the supervised case, where we also do not know labels in the test phase, unknown labels appear

already in the training phase. As for supervised learning, the goal of semi-supervised learning

is to predict a class for each sample in the test set ~xt = (xl+u+1, . . . ,xn). One can discuss two

learning paradigms for semi-supervised learning: transductive and inductive learning [142]. In

transductive learning (a natural setting for some semi-supervised algorithms), predictions are

performed only for the unlabeled data on a known test set. The goal is to optimize the classi-

fication performance. More formally, the algorithm makes predictions~yt = (yl+u+1, . . . ,yn) on

~xt = (xl+u+1, . . . ,xn). In inductive learning, the goal is to find a prediction function defined on
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the entire space X , i.e., to find a function f : X → Y . This function is then used to make

predictions f (xi) for each sample xi in the test set. Transductive learning is more straight-

forward since no general rule needs to be inferred, and, consequently, we opt to conduct it

whenever possible. From the algorithm class perspective, we will use two approaches in order

to achieve successful semi-supervised learning, namely: self-training [142] (Section 6.2.1) and

graph-based algorithms [142, 143] (Section 6.2.2).

Although, on an intuitive level, semi-supervised learning sounds like a compelling paradigm

(after all, humans learn through semi-supervised learning), the results show that it is not always

the case. More precisely, it is not always possible to obtain more accurate predictions when

comparing semi-supervised learning with supervised learning. Consequently, we are interested

in the cases where semi-supervised learning can outperform supervised learning. For that to

be possible, the following needs to hold: the knowledge on p(x) one gains through unlabeled

data has to carry useful information for inference of p(y|x). If this is not true, semi-supervised

learning will not be better than supervised learning and can lead to worse results. To assume

a structure about the underlying distribution of data and to have helpful information in the

inference process, we use two assumptions that should hold when conducting semi-supervised

learning [142].

Smoothness Assumption. If two points x1 and x2 are close, then their corresponding labels

y1 and y2 are close. The smoothness assumption can be useful for semi-supervised learning: if

two points x1 and x2 in a high-density region are close, then so should the corresponding labels

y1 and y2.

This assumption tells us that if two samples (measurements) belong to the same cluster,

their labels (e.g., their Hamming weight or intermediate value) should be close. Note that this

assumption also implies that if a low-density region separates two points, their labels need not

be close. The smoothness assumption should generally hold for SCA, as the power consumption

(or electromagnetic emanation) is related to the device’s activity. For example, low Hamming

weight or a low intermediate value should result in a low side-channel measurement.

Manifold Assumption. The high-dimensional data lie on or close to a low-dimensional man-

ifold. If the data lie on a low-dimensional manifold, then the classifier can operate in the space

of the corresponding (low) dimension.

Intuitively, the manifold assumption tells us that a set of samples is connected in some

way: e.g., all measurements with the Hamming weight four lie on their manifold, while all

measurements with the Hamming weight five lie on a different but nearby manifold. Then,

we can try to develop representations for each of these manifolds using just the unlabeled data

while assuming that the different manifolds will be represented using different learned features
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of the data.

6.2.1 Self-training

In self-training (or self-learning), any classification method is selected, and the classifier is

trained with the labeled data. Afterward, the classifier is used to classify the unlabeled data.

From the obtained predictions, one selects only those instances with the highest output proba-

bilities (i.e., where the output probability is higher than a given threshold σ ) and then adds them

to the labeled data. This procedure is repeated k times.

Self-training is a well-known semi-supervised technique and probably the most natural

choice to start with [142]. The biggest drawback with this technique is that it depends on

the choice of the underlying classifier and that possible mistakes reinforce themselves as the

number of repeats increases. Naturally, one expects that the first step of self-learning will intro-

duce errors (wrongly predicted classes). It is, therefore, essential to retain only those instances

for which the prediction probability of the class is high. Unfortunately, a high-class prediction

probability (even 100%) does not guarantee that the actual class is correctly predicted. The

assumption taken by the self-training algorithm is the same as that of the underlying super-

vised classifier. I.e., when we use Support Vector Machine (SVM) as the classifier, we work

with the manifold assumption. In contrast, if we use Naive Bayes, we use the semi-supervised

smoothness assumption (alongside the independence assumption, which is a standard for Naive

Bayes).

Our experiments use Naive Bayes or SVM (with RBF kernel) as classifiers. The labeling

threshold is set to the value obtained by cross-validation, where a ratio between training set

classification accuracy and the size of the labeled samples from the unlabeled set is optimized.

We repeat the labeling process as long as the classification accuracy on the testing set is

increasing or if the samples exist where the output probability of the classifier is higher than the

threshold. The second readjustment is essential because we noticed that even wrong labeling

could improve the classifier generalization on the testing set. Here, we consider how well the

classifier will behave on a yet unseen dataset by classifier generalization.

6.2.2 Graph-based Learning

In graph-based learning, the data are represented as nodes in graphs, where a node is both

labeled and unlabeled example. The edges are labeled with the pairwise distance of incident

nodes. If an edge is not labeled, it corresponds to the infinite distance. Most graph-based

learning methods depend on the manifold assumption and refer to the graph using Laplacian.

Let G = (E,V ) be a graph with edge weights given by w : E→ R. The weight w(e) of an edge

e corresponds to the similarity of the incident nodes, and a missing edge means no similarity.
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The similarity matrix W of graph G is defined as:

Wi j =

w(e) if e = (i, j) ∈ E

0 if e = (i, j) /∈ E
(6.1)

The diagonal matrix called the degree matrix Dii is defined as Dii = ∑ j Wi j. To define the graph

Laplacian, two well-known ways are to use:

•normalized graph Laplacian L = I−D−1/2WD−1/2,

•unnormalized graph Laplacian L = D−W .

We use a graph-based learning technique called label spreading based on normalized graph

Laplacian. In this algorithm, node’s labels propagate to neighbor nodes according to their prox-

imity. Since the edges between the nodes have certain weights, some labels bear easier. Con-

sequently, nodes close (in the Euclidean distance) are more likely to have the same labels. As

the classifier within the label spreading, we use k-nearest neighbors (k-NN) (i.e., the technique

of how to assign labels) since it produces a sparse matrix that one can calculate very quickly.

k-nearest neighbors is the basic non-parametric instance-based learning method. The classifier

has no training phase; it just stores the training set samples. In the test phase, the classifier

assigns a class to an instance by determining the k instances that are the closest to it concerning

Euclidean distance metric: d(xi,x j) =
√

∑
n
r=1(ar(xi)−ar(x j))2. Here, ar is the r-th attribute of

an instance x. The class is assigned as the most commonly occurring one among the k-nearest

neighbors of the test instance. This procedure is repeated for all test set instances. This simple

method is advantageous and accurate in practice, especially in the cases when there are many

more instances than the number of attributes and in the presence of noise (for k>1) [144]. The

method is saddled with the problem of irrelevant attributes - as all of them are used in determin-

ing the distance, some irrelevant attributes may contribute to false decisions. Although one may

use feature selection (and dimensionality reduction) methods to eliminate the majority of irrel-

evant attributes for k-NN, this usually slows the whole procedure and is not examined in detail

in this work [145]. We use label spreading as implemented in Python [146], but we wrote a

custom wrapper around it to better suit our requirements. Instead of using all measurements ob-

tained from semi-supervised learning, we use only those samples with the highest classification

probabilities (similar to self-training).

6.3 Experimental Setting

6.3.1 Classification algorithms

We use template attack and its pooled version, Support Vector Machines (SVM), and Naive

Bayes (NB) algorithms. Those algorithms are used both in supervised and semi-supervised
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scenarios. Table 6.1 presents the time and space complexities for the classification algorithms

we use.

Template Attack The template attack (TA) relies on the Bayes theorem such that the posterior

probability of each class value y, given the vector of N observed attribute values x:

p(Y = y|~X =~x) =
p(Y = y)p(~X =~x|Y = y)

p(~X =~x)
, (6.2)

where ~X = ~x represents the event that ~X1 = ~x1 ∧ ~X2 = ~x2∧ . . .∧ ~XN = ~xN . When used as a

classifier, p(~X =~x) in Eq. (6.2) can be dropped as it does not depend on the class y. Accordingly,

the attacker estimates in the profiling phase p(Y = y) and p(~X =~x|Y = y) which are used in

the attacking phase to predict p(Y = y|~X =~x). Note that the class variable Y is discrete while

the measurement X is continuous. So, the discrete probability p(Y = y) is equal to its sample

frequency where p(Xi = xi|Y = y) displays a density function.

Mostly in state of the art, TA is based on a multivariate normal distribution of the noise, and

thus the probability density function used to compute p(~X =~x|Y = y) equals:

p(~X =~x|Y = y) =
1√

(2π)D|Σy|
e−

1
2 (~x−~µy)

T Σ−1
y (~x−~µy), (6.3)

where ~µy is the mean over ~X for 1, . . . ,D and Σy the covariance matrix for each class y. The

authors of [147] propose using only one pooled covariance matrix to cope with statistical diffi-

culties resulting in low efficiency. We will use both versions of the template attack, where we

denote pooled TA attack as TAp.

Naive Bayes The Naive Bayes (NB) classifier [18] is also based on the Bayesian rule but is

labeled "Naive" as it works under a simplifying assumption that the predictor features (measure-

ments) are mutually independent among the D features, given the class value. The existence of

highly-correlated features in a dataset can influence the learning process and reduce the number

of successful predictions. Also, NB assumes a normal distribution for predictor features. NB

classifier outputs posterior probabilities due to the classification procedure [18]. The Bayes’

formula is used to compute the posterior probability of each class value y given the vector of N

observed feature values x.

Support Vector Machines Support Vector Machine (SVM) is a kernel-based machine learn-

ing technique used to accurately classify linearly separable and linearly inseparable data [19].

The SVM algorithm is parametric and deterministic. When the data are not linearly separable,

the basic idea is to transform them into a higher dimensional space using a transformation ker-
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Table 6.1: Time and space complexities. N is the number of samples in the training set, M is the number
of samples in the test set, D is the number of attributes, |Y | is the number of classes of the target attribute,
and v is the average number of values for a feature.

Alg. Training Testing

Time Space Time Space

TA O
(
ND2) O

(
|Y |D2v

)
O
(
|Y |D2) O

(
|Y |D2v

)
k-NN O

(
1
)

O
(
ND
)

O
(
M(ND+ kN)

)
O
(
ND+MD

)
NB O

(
ND
)

O
(
ND
)

O
(
|Y |D

)
O
(
MD

)
SVM O

(
N3D

)
O
(
N2D

)
O
(
MND

)
O
(
N2D

)

nel function. In this new space, the samples can usually be classified more accurately. Many

kernel functions have been developed, with the most used being polynomial and radial-based.

6.3.2 Datasets

We use two datasets that mainly differ in the amount of noise and the side-channel leakage

distribution – DPAcontest v2 [148] and DPAcontest v4 [149]. We do not consider the variations

in the number of available points of interest (features) since the number of scenarios would

become quite large in such a case. We select 50 points of interest with the highest correlation

between the class value and data set for all the analyzed data sets and investigate scenarios

with a different number of classes: 9 classes and 256 classes. Points of interest represent the

attributes of traces.

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote random variables

taking values in these sets, and the corresponding lowercase letters (e.g., x) denote their realiza-

tions. Let k∗ be the fixed secret cryptographic key (byte) and the random variable T the plaintext

or ciphertext of the cryptographic algorithm, which is uniformly chosen. The measured leakage

is denoted as X , and we are particularly interested in multivariate leakage ~X =X1, . . . ,XD, where

D is the number of time samples or features (attributes) in machine learning terminology.

Considering a powerful attacker with a device with knowledge about the secret key imple-

mented, a set of N profiling traces ~X1, . . . ,~XN is used to estimate the leakage model beforehand.

Note that this set is multi-dimensional (i.e., it has a dimension equal to D×N). In the attack

phase, the attacker then measures additional traces ~X1, . . . ,~XQ from the device under attack to

break the unknown secret key k∗.

DPAcontest v2 [148] DPAcontest v2 provides measurements of an AES hardware implemen-

tation. Previous works showed that the most suitable leakage model (when attacking the last
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round of an unprotected hardware implementation) is the register writing in the last round, i.e.:

Y (k∗) = Sbox−1[Cb1⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (6.4)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and b2 is given through

the inverse ShiftRows operation of AES. In particular, we choose b1 = 12 resulting in b2 = 8

as it is one of the easiest bytes to attack*. In Eq. (6.4) Y (k∗) consists of 256 values. As an

additional model, we applied the Hamming weight (HW) to this value resulting in 9 classes.

These measurements are relatively noisy and the resulting model-based signal-to-noise ratio

SNR = var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) , lies between 0.0069 and 0.0096. We use the measurements

from the “template” part of the database.

DPAcontest v4 [149] The 4th version provides measurements of a masked AES software

implementation. However, as the mask is known, one can quickly turn it into an unprotected

scenario. Though it is a software implementation, the most leaking operation is not the register

writing but the processing of the S-box operation, and we attack the first round. Accordingly,

the leakage model changes to

Y (k∗) = Sbox[Pb1⊕ k∗]⊕ M︸︷︷︸
known mask

, (6.5)

where Pb1 is a plaintext byte and we choose b1 = 1. Again we consider the scenario of 256

classes and nine classes (considering HW (Y (k∗))). Compared to the measurements from ver-

sion 2, the model-based SNR is much higher and lies between 0.1188 and 5.8577.

6.3.3 Dataset Preparation

We experiment with randomly selected 20 000 measurements (profiled traces) from DPAcontest

v2 and DPAcontest v4 datasets. These measurements are divided into 2:1 ratio for training and

testing sets (i.e., 13 000 in total for training with or without semi-supervised learning and 7 000

for testing). When using supervised learning, the training datasets are divided into ten stratified

folds and evaluated by a 10-fold cross-validation procedure. For semi-supervised learning, we

divide the training dataset into a labeled set of size l and an unlabeled set of size u, as follows:

•(100+12.9k): l = 100 , u = 12900→ 0.77% vs 99.23%

•(250+12.75k): l = 250 , u = 12750→ 1.93% vs 98.07%

•(500+12.5k): l = 500 , u = 12500→ 3.85% vs 96.15%

•(1k+12k): l = 1000 , u = 12000→ 7.69% vs 92.31%

*see e.g., in the hall of fame on [148]
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•(3k+10k): l = 3000 , u = 10000→ 23.08% vs 76.92%

•(5k+8k): l = 5000 , u = 8000→ 38.46% vs 61.54%

•(7k+6k): l = 7000 , u = 6000→ 53.85% vs 46.15%

•(10k+3k): l = 10000 , u = 3000→ 76.92% vs 23.08%

6.4 Experimental Results

As the primary performance measure, we use the accuracy, i.e., the percentage of correctly

classified instances: ACC = T P+T N
T P+FP+T N+FN .

In supervised learning, the classifiers are built on the labeled sets and estimated on the

unlabeled sets. We give results here only for the results obtained from the testing phase. When

discussing semi-supervised learning, we first learn the classifiers on the labeled sets. Then, we

learn with the labeled set and unlabeled set in several steps, where in each step, we augment

the labeled set with the most confident predictions from the unlabeled set. Once we cannot add

more measurements, we finish the learning phase. Finally, we conduct the estimation phase on

a different unlabeled set.

For machine learning techniques that have parameters to be tuned, we conducted a tuning

phase on labeled sets and used such tuned parameters in consequent experimental phases. For

SVM with radial kernel, we select C equal to 10 and γ equal to 0.6 for DPAcontest v4 and C

equal to 2 and γ equal to 0.05 for DPAcontest v2. A low cost of the margin parameter C makes

the decision surface smooth, while a high C aims at classifying all training examples correctly.

The radial kernel parameter γ defines how much influence a single training example has, where

the larger γ is, the closer other examples must be to be affected. When using k-NN with label

spreading, we select k as equal to 7. Naive Bayes and template attacks do not have parameters

to tune.

For semi-supervised learning, we tune the σ parameter. Table 6.2 states all the threshold

levels σ for different classifiers for all scenarios we consider, which were set at the labeled set

training accuracy. In all experiments, when there is a single result with the best accuracy, we

depict it in bold style.

6.4.1 DPAcontest v2 Dataset Results

In Table 6.3, we give the results for the testing phase for supervised learning vs. semi-supervised

learning methods for the DPAcontest v2 dataset.

Overall, the accuracies are low for all scenarios, which is expected due to the high amount

of noise. Supervised learning results serve as a baseline when compared with semi-supervised

learning. Using only 100 traces in the profiling phase can be considered the worst-case scenario

while using all 13 000 in the profiling phase can be viewed as the best-case scenario. A natural
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Table 6.2: Threshold levels. When considering SVM threshold level σ for DPAcontest v4, both 9 and
256 classes scenarios use the same value. This is because the problem is “simple” for 9 classes and the
threshold can be set to a higher value but we noticed no difference in performance. The same behavior
is not observed for DPAcontest v2.

DPAcontest v4 DPAcontest v2

Classifier 9 classes 256 classes 9 classes 256 classes

NB, k-NN 0.99 0.99 0.99 0.99

SVM 0.22 0.22 0.01435 0.004

assumption is that adding more measurements in the semi-supervised phase helps when having

a tiny number of traces in the profiling phase. Still, as we assume there will be at least some por-

tion of measurements incorrectly classified during semi-supervised learning, we cannot expect

semi-supervised learning to be more successful than supervised learning with all traces.

For the nine classes scenario, we can notice an interesting behavior for the smaller numbers

of measurements, e.g., up to 1 000 measurements with Naive Bayes and TAp techniques. We

see that the accuracies are higher than those with more measurements. Namely, since there is

a minimal number of traces in the profiling phase, some classes do not have correctly trained

representatives. For the scenario with 100 measurements, we see no instances of HW 0, HW

1, HW 7, and HW 8 classes present in the profiling phase. Consequently, the classifiers do not

work anymore with nine classes but only five classes, making it a much simpler classification

problem. Although such results look good, they are not very helpful in the SCA context to

reveal the secret key.

The most extreme cases behave worse than supervised learning when considering ML tech-

niques. This is somewhat expected, since the noise level is high, and it is challenging to form

“good” clusters with very few labeled measurements. For the cases where the amount of labeled

measurements is higher than 5 000, we see improvements with SSL, which clearly indicates that

more measurements are necessary for SSL if the data is noisy. Unfortunately, not all cases for

TA become stable. The analysis shows that some classes are underrepresented, which makes

covariance matrices unstable.

The behavior for label spreading is similar to that of self-training, but we see somewhat

worse accuracies throughout all scenarios. A smaller number of measurements for nine classes

have higher accuracies than more measurements. This is due to a lack of labeled examples of

all classes, which corresponds to a more manageable problem since the classification process

has fewer classes to choose from. When considering 256 classes, interestingly, TA works better

with SSL than with supervised learning in many cases. Still, the accuracies are very low, as

expected, since we work with a highly noisy scenario and many classes.
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Table 6.3: Testing results, supervised learning vs. semi-supervised learning approaches, DPAcontest v2,
(ACC, %).

Size NB SVM TA TAp

9 classes, supervised learning / SSL:self-learning / SSL:label spreading

100/+12.9k 20.6/14.5/11.8 21.6/18.7/18.1 0.4/7.3/5.9 17.7/17/15.6

250/+12.75k 10.4/12.3/11.3 21/20.8/19.8 10.2/0.5/0.4 15.8/16.2/15.1

500/+12.5k 10.8/12.9/11.8 22/21.4/21 5.5/1.4/1.1 15.3/17.6/16.7

1k/+12k 11.9/12.7/12.3 23.8/25.2/25.1 3.8/0.4/0.4 13.8/14.9/13.1

3k/+10k 7.3/7/6.8 24.5/25/24.9 8.7/1.5/1.4 10.4/12.4/12

5k/+8k 9.3/10.3/9.4 24.6/25.5/25.1 0.9/15/14.1 8.9/11.8/10.9

7k/+6k 8.8/11/10.4 25.5/26/26 2.1/1.7/1.3 8.4/11.1/10.9

10k/+3k 8.8/10.2/10 25.3/26.2/26 7.5/8.3/6.9 8.2/8.6/8

13k 8.3 26.2 15 7.6

256 classes, supervised learning / SSL:self-learning / SSL:label spreading

100/+12.9k 0.3/0.6/0.5 0.4/0.5/0.4 0.3/0.5/0.3 0.4/0.4/0.4

250/+12.75k 0.4/0.7/0.5 0.4/0.5/0.5 0.6/0.5/0.4 0.4/0.4/0.4

500/+12.5k 0.4/0.6/0.5 0.4/0.5/0.4 0.4/0.6/0.5 0.4/0.4/0.4

1k/+12k 0.5/0.5/0.5 0.4/0.4/0.3 0.4/0.6/0.5 0.5/0.5/0.5

3k/+10k 0.4/0.4/0.4 0.4/0.5/0.4 0.3/0.4/0.3 0.4/0.4/0.4

5k/+8k 0.6/0.5/0.4 0.5/0.4/0.4 0.4/0.4/0.4 0.5/0.4/0.4

7k/+6k 0.7/0.6/0.5 0.5/0.6/0.6 0.5/0.4/0.4 0.4/0.4/0.4

10k/+3k 0.6/0.5/0.5 0.5/0.5/0.5 0.4/0.4/0.4 0.4/0.4/0.4

13k 0.6 0.5 0.4 0.3
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6.4.2 DPAcontest v4 Dataset Results

In Table 6.4, we give the results for the testing phase for supervised learning vs. semi-supervised

learning approaches for DPAcontest v4 dataset.

Here, we see far better results compared to DPAcontest v2. We observe that for both 9 and

256 classes, machine learning techniques work well. SVM performs better than Naive Bayes,

which is expected since SVM is a more powerful classification technique. When considering

template attacks, we see that the pooled version is significantly better since it does not have a

problem with covariance matrix instability. As it can be seen, for 13 000 measurements and nine

classes, TA and TA pooled perform similarly, which is a strong indication that the covariance

matrices got stable and that if there is a further increase in the number of measurements, TA

may outperform the pooled version.

Particularly interesting, we highlight the efficiency of ML techniques even in scenarios with

only 100 to 500 measurements. This leads us to conclude that ML is a potent option to be

used even in the most extreme profiling cases, provided that the noise level is not too high.

When considering nine classes and SSL, only for the case with 100 measurements, the results

for ML are slightly worse when compared with supervised learning. The other results are

either better or comparable. What is most interesting, TA and TAp results are significantly

better than those obtained with supervised learning. In particular, the accuracy for TA and TAp

increases for all scenarios regardless of the number of added unlabeled measurements. For TA,

the explanation is simple but with profound consequences. By adding more measurements, we

can resolve instabilities in estimating the covariance matrices, and consequently, the accuracy

of TA is significantly increasing. The highest increase (more than 73.3%) can be observed

for TA using 10k labeled measurements and 3k unlabeled ones. Interestingly, we see that for

TA and TAp, using 10k+3k is approximately as efficient as using 13k labeled traces. The

highest increases for TAp can be observed in the first four scenarios (up to 12 000 additional

unlabeled measurements). Afterward, the accuracy is higher than in the supervised scenario,

but the margin gets smaller. For 256 classes, the results for Naive Bayes are better for the

most extreme cases (i.e., up to 500 labeled measurements) but slightly worse for the other

scenarios. Similar behavior can be seen for TAp. With label spreading, we see that the results

are generally worse than for self-training. When considering nine classes, the first case with

100 labeled measurements significantly drops in accuracy compared to the supervised case or

self-training. The rest of the results for nine classes are comparable with the results obtained

with self-training. What is important to notice are the cases 1k+ 12k and 5k+ 8k, where TA

is not stable, and, consequently, the results are much worse than for self-training. Scenarios

with 256 classes are again similar, but we note that there are no cases where label spreading

outperforms self-training.

On a more general level, one could ask if a slight increase in accuracy is significant from a
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Table 6.4: Testing results, supervised learning vs. semi-supervised learning approaches, DPAcontest v4,
(ACC, %).

Size NB SVM TA TAp

9 classes, supervised learning / SSL:self-learning / SSL:label-spreading

100/+12.9k 61.5/59/30 69.1/69/25 0.3/58.9/18.8 45.4/67.6/21.1

250/+12.75k 64.3/64.6/65.3 78.4/78.2/77.5 0.3/12.6/61.4 53/75.2/71.3

500/+12.5k 65.9/66.2/65.5 82.7/82.8/81.1 0.3/56.6/58.8 68.9/76.9/74.5

1k/+12k 64.8/68.1/67.7 86.6/87.1/84.1 1.3/44.2/7.1 73.1/78.3/76.6

3k/+10k 67.2/68.3/68.7 90.8/90.5/91.8 5.2/53/66.6 74.9/78.1/77.4

5k/+8k 67.9/68.1/68.8 92/92.3/91.8 2.8/46.4/3.2 75.8/78.4/78

7k/+6k 68/68.4/68.6 92.8/92.7/92.5 11.2/75.6/14.8 76.5/78/77.9

10k/+3k 68.1/68.7/68.7 93.3/93.6/93.5 0.4/73.8/49.6 77.2/77.9/78

13k 68.4 93.7 75.3 77.7

256 classes, supervised learning / SSL:self-learning / SSL:label-spreading

100/+12.9k 1.5/2.7/1.7 5.1/4.2/3.7 0.3/0.3/0.3 0.4/3.4/2.6

250/+12.75k 2.2/3.1/3 6.8/6.4/6.1 0.3/0.3/0.3 3.3/3.7/3.5

500/+12.5k 4.9/5.7/5.7 10.3/8.5/7.9 0.4/0.5/0.4 6.4/7.1/7

1k/+12k 10.5/9.3/8.5 13.6/12.8/11 0.4/0.5/0.4 10.2/9.5/9

3k/+10k 16.5/15.6/15 22.4/21.7/18.7 0.1/0.4/0.3 16.3/15.5/14.8

5k/+8k 18/17.3/16 27.4/25.7/24.8 0.2/0.1/0.1 19.2/18.7/17.2

7k/+6k 19.5/18.4/17 30/29/26.9 0.3/0.1/0.1 20.6/21/20.1

10k/+3k 20.1/19.6/18.1 33.3/32.8/28.8 0/0.2/0.2 22.5/22.4/21.9

13k 20.2 34.9 0.1 23.7
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practical (attack) perspective. We believe it does, since 1) with SSL, it requires no additional

knowledge except the one already used in profiling attacks, and 2) as shown in [150], even

a slight difference in accuracy can translate to a significant difference is guessing entropy or

success rate.

6.5 Conclusions

In this chapter, we aim to explore the application of semi-supervised learning (SSL) to pro-

filed side-channel analysis (SCA), which has traditionally been considered a two-step process

involving the transfer of the profiled model between the profiling and attacking phases. Our in-

vestigation focuses on scenarios where the attacker is restricted in the profiling phase but has ac-

cess to additional information from the attacking measurements to build the profiled model. We

examine two approaches to SSL under varying noise levels, the number of prediction classes,

and measurement counts in the profiling phase. The two machine learning techniques of Naive

Bayes and SVM, template attack and its pooled version, are used as side-channel attack tech-

niques.

Our results demonstrate the efficacy of SSL in many scenarios. In particular, the template

attack and its pooled version significantly improved the low-noise scenario. Furthermore, the

addition of unlabeled samples from the attacking phase enhanced the estimation of the covari-

ance matrices, resulting in improvements of over 70%. We also observed that the higher the

number of samples in the profiling phase, the less significant the impact of the added unlabeled

samples from the attacking phase. While the improvements were minor in the scenario with

high noise, this can be attributed to the inherent difficulty of such scenarios, and the results do

not significantly deteriorate compared to standard profiling.

This chapter sheds light on the potential of SSL in enhancing the accuracy of profiled SCA

in scenarios where access to multiple devices for profiling is limited. It also highlights the

importance of considering SSL as a viable alternative to standard profiling in designing SCA

attacks.
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Chapter 7

Neuroevolution in Side-channel Analysis

The impact of activation functions on neural network performance is a topic of great impor-

tance in machine learning. While there have been efforts to develop novel activation functions,

Rectified Linear Unit (ReLU) is the most widely used in practice. This chapter proposes using

evolutionary algorithms to discover new activation functions for side-channel analysis (SCA)

that outperform ReLU when using the same network architecture. The proposed method uses

Genetic Programming (GP) to define and explore candidate activation functions, representing

the first attempt to develop custom activation functions for SCA. Results from experiments con-

ducted on the ASCAD database show that the proposed approach is highly effective compared

to state-of-the-art neural network architectures. Furthermore, the evolved activation functions

demonstrate the property of generalization, exhibiting high performance across different SCA

scenarios.

The remainder of this chapter is structured as follows. Section 7.1 provides an overview of

the chapter’s contributions and the motivation for this research. Section 7.2 presents the neces-

sary definitions and concepts related to activation functions and evolutionary algorithms. Sec-

tion 7.3 discusses related works in the field. Section 7.4 describes the datasets and parameters

considered in our experiments. Section 7.5 presents the results obtained from our experiments.

Finally, Section 7.6 summarizes the main contributions of this chapter and outlines possible

directions for future research.

7.1 Introduction

Modern digital systems are commonly equipped with cryptographic primitives, acting as the

foundation of security, trust, and privacy protocols. While such primitives are proven to be

mathematically secure, poor implementation choices can make them vulnerable to attackers.

Such vulnerabilities are commonly known as side-channel leakage [50]. Side-channel leakage

exploits various sources of information leakage in the device where some common examples
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of leakage are timing [151], power [152], and electromagnetic (EM) emanation [153]. The re-

searchers proposed several side-channel analysis (SCA) approaches to exploit those leakages

in the last few decades. One standard division of side-channel analyses is into non-profiling

and profiling attacks. Non-profiling attacks like Simple Power Analysis (SPA) [154] or Dif-

ferential Power Analysis (DPA) [52] require fewer assumptions but could need thousands of

measurements (traces) to break a target, especially if it is protected with countermeasures. On

the other hand, profiling attacks are considered one of the strongest possible attacks [155].

The attacker has complete control over a clone device, which can build its profile. The at-

tacker then uses this profile to target other similar devices to recover the secret information.

The deep learning approaches represent a powerful (and more recent) option for profiling SCA.

Indeed, the results in the last few years show the potential of such an approach where neu-

ral networks like multilayer perceptron (MLP and convolutional neural networks (CNNs) can

break targets protected with countermeasures [156, 157]. Still, finding high-performing neu-

ral network architectures is often not accessible due to a large number of hyperparameters to

consider. We can distinguish between two rather different approaches in the hyperparameter

tuning phase. The first approach considers various techniques to select the best-performing

hyperparameters [158, 159, 160, 161, 162, 163]. Common techniques include gradient de-

scent, Bayesian hyperparameter optimization, reinforcement learning, and evolutionary algo-

rithms [159, 164, 165]. The second direction considers the design of custom neural network

elements. Along with the topology and loss function, the activation function’s choice is essen-

tial in determining how a neural network learns and acts. A well-defined activation function can

be any nonlinear function that transforms a layer’s output in a neural network.

Several different activation functions are widely used in modern neural network architec-

tures. For instance, the Rectified Linear Unit, ReLU(x) = max{x,0}, is popular because it is

simple and effective. Other activation functions such as tanh(x) and σ(x) = 1/(1+ e−x) are

commonly used when it is useful to restrict the activation value within a certain range, such as

in recurrent neural networks for language modelling [166]. There have also been attempts to en-

gineer new activation functions with certain properties. For example, Leaky ReLU [167] allows

information to flow when x < 0. On the other hand, So f t plus [168] is positive, monotonic, and

smooth. Many hand-designed activation functions exist [169], but none achieved widespread

adoption like ReLU . Still, there is a significant (unused) potential in designing custom activation

functions for neural network design.

There are a lot of attempts to optimize network architectures, hyperparameters, learning

rates, or loss functions [158, 159, 160, 161, 162, 163], rather than directly optimize just a

single model in machine learning. Several techniques for meta-learning have been proposed,

including gradient descent, Bayesian hyperparameter optimization, reinforcement learning, and

evolutionary algorithms [159, 164, 165]. Among these, evolutionary algorithms are the most
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versatile and can be applied to several aspects of neural network design.

This chapter investigates an evolutionary approach to evolving activation functions for side-

channel analysis. We build upon recent results considering deep learning architectures. We ask

whether it is possible to make deep learning-based SCA even more efficient if activation func-

tions in a neural network are optimized for a particular problem (neural network architecture,

side-channel leakage model, and dataset). More precisely, we use Genetic Programming (GP),

where we represent activation functions as syntactic trees, and we evolve custom expressions.

The resulting functions are unlikely to be discovered manually, yet they perform (surpris-

ingly) well, surpassing traditional activation functions like ReLU on common side-channel mea-

surements, like those in the ASCAD database. To the best of our knowledge, this is the first

time that neuroevolution has been used for SCA or evolutionary algorithms have been used to

develop activation functions for SCA.

In this chapter, we realized the original scientific contribution of the neuroevolutionary proce-

dures for optimization of neural network architecture in the security domain as follows[170]:

1.We evolve novel activation functions used in multilayer perceptron and Convolutional

Neural Network. Neural networks with those activation functions perform better than

existing relevant research. This shows that the newly developed activation functions have

their place in the future designs of neural network architectures for SCA.

2.We replace popular activation functions with evolved activation functions in previously

developed neural network topologies and demonstrate better network performance after

this substitution. This shows that optimization of the activation function has relevance

even when considering already developed neural networks.

We consider experiments on two datasets, two leakage models, two types of neural networks,

and many specific scenarios.

7.2 Background

7.2.1 Notation

Let calligraphic letters (X ) denote sets and the corresponding upper-case letters (X) random

variables and random vectors X over X . The corresponding lower-case letters x and x denote

realizations of X and X, respectively. We denote the key candidate as k where k ∈K , and k∗

represents the correct key.

We define a dataset as a collection of traces (measurements) D. Each trace xi is associated

with an input value (plaintext or ciphertext) ii and a key ki. To access a specific trace or input

value, we use the index i. We divide the dataset into three parts: profiling set consisting of N

traces, validation set consisting of V traces, and attack set consisting of Q traces.
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We denote the vector of learnable parameters in our profiling models as θ and the set of hy-

perparameters defining the profiling model as H . We consider the supervised machine learning

task (classification), where the goal is to predict the class value v ∈ V for an input x. The size

of the set V equals c.

7.2.2 Machine Learning-based SCA

We consider a typical profiling side-channel analysis setting with two phases: training (profil-

ing) and testing (attack). A powerful attacker has a device (clone device) with knowledge about

the secret key. The attacker can obtain a set of N profiling traces x1, . . . ,xN (where each trace

corresponds to the processing of plaintext or ciphertext i).

•The profiling phase aims to learn θ
′ that minimizes the empirical risk represented by a

loss function L on a profiling set of size N.

•The goal of the attack phase is to make predictions about the classes:

y(x1,k∗), . . . ,y(xQ,k∗),

where k∗ represents the secret (unknown) key on the device under the attack.

We consider an attack on a block cipher (the AES cipher) and conduct the multi-class

classification task. More precisely, we learn a function f that maps an input to the output

( f : X → Y )) based on examples of input-output pairs, where the number of classes c is deter-

mined by the leakage model. The function f is parameterized by θ ∈ Rn, where n denotes the

number of trainable parameters.

Based on the class predictions, we estimate the effort required to reveal the secret key k∗. A

common result of predicting with a model f on the attack set is a two-dimensional matrix P with

dimensions equal to Q×c. Every element pi,v of matrix P is a vector of all class probabilities for

a specific trace xi. The probability S(k) for any key byte candidate k is used as a log-likelihood

distinguisher:

S(k) =
Q

∑
i=1

log(pi,v). (7.1)

The value pi,v denotes the probability that for a key k and input ii, the result is class v (derived

from the key and input through a cryptographic function and a leakage model l).

Finally, to estimate the effort required to break the secret key, it is common to use the guess-

ing entropy (GE) [171] metric. An attack outputs a key guessing vector g = [g1,g2, . . . ,g|K |] in

decreasing order of probability given Q traces in the attack phase. Here, g1 is the most likely

key candidate and g|K | is the least likely key candidate. Guessing entropy is the average posi-

tion of k∗ in g. Our work only considers attacks on specific key bytes, formally using the partial

guessing entropy metric. Still, due to simplicity, we denote it as guessing entropy.
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7.2.3 Activation Function as a Tree

In our work, each activation function is represented as a tree consisting of unary and binary op-

erators. The terminals in the tree represent the function input values, while the root node’s value

represents the output function value. Each individual in the GP population is a potential candi-

date activation function. An individual is evaluated using the activation function it embodies in

a neural network. The individual’s fitness is then defined as the neural network’s performance

applied to a specific task - in this case, the key prediction efficiency.

7.3 Related Work

One perspective of hyperparameter tuning is finding better (custom) activation functions for

SCA. In SCA, most works have considered hyperparameter tuning but using standard options

(i.e., not designing new neural network elements). There, we can enumerate several phases

in profiling SCA and hyperparameter tuning. The first approaches in profiling SCA like tem-

plate attack [155]), or machine learning-based attacks (random forest [172], support vector

machines [135, 173], Naive Bayes [174]) had only a few or even none hyperparameters to tune.

In 2016, Maghrebi et al. introduced convolutional neural networks for profiling SCA [175].

The authors also reported they used genetic algorithms to tune the hyperparameters. While it

is difficult to know whether this is the first time deep learning was used in SCA (many works

omitted details about neural network architectures), this work represented a significant turning

point in SCA research. Indeed, the SCA community moved its attention from other profiling

methods to (almost exclusively) deep learning from this moment.

As a result, multiple research works report outstanding attack performance even in the pres-

ence of countermeasures [176, 177]. Interestingly, the first work did not discuss hyperparame-

ter tuning, while the second conducted manual hyperparameter tuning. Kim et al. constructed

VGG-like architecture that performs well over several datasets, but they did not discuss the

hyperparameter tuning involved in checking the performance of such an architecture [156]. Be-

nadjila et al. made an empirical evaluation of different CNN hyperparameters for the ASCAD

dataset [178]. Perin et al. used a random search in predefined ranges to build deep learning

models to form ensembles [179]. Both works reported excellent results, despite relatively sim-

ple methods for choosing hyperparameters. Wu et al. proposed to use Bayesian optimization to

find optimal hyperparameters for MLP and CNN architectures [180]. Their results indicated it

is possible to find excellent architectures and that even a random search can find many archi-

tectures that exhibit top performance. Rijsdijk et al. explored how reinforcement learning can

be used for hyperparameter tuning for CNNs [181]. They reported very good results (attack

performance with small neural network architectures), but their approach requires significant

computational resources.
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Besides improving the neural network performance by conducting efficient hyperparameter

tuning, several works aim to provide a methodology to build neural networks for SCA. Zaid

et al. proposed a method to select hyperparameters related to the size (number of learnable

parameters, i.e., weights and biases) of layers in CNNs. The authors considered the number of

filters, kernel sizes, strides, and the number of neurons in fully-connected layers [157]. Wouters

et al. [182] improved upon the work from Zaid et al. [157] and discussed several problems in the

original work. Wouters et al. showed how to reach similar attack performance with significantly

smaller neural network architectures.

Finally, several works investigate improving the performance of deep learning-based SCA

by designing custom neural network elements. Pfeifer and Haddad developed a new type of

layer called “Spread”, and they claimed it reduces the number of layers required and speeds

up the learning phase [183]. Zheng et al. proposed a new metric function called Cross Entropy

Ratio (CER), where they adapted it to a new loss function designed specifically for deep learning

in SCA [184]. Zaid et al. introduced a new loss function derived from the learning to rank

approach that helps to prevent approximation and estimation errors [185].

On the other hand, several papers investigate the evolution of activation functions by using

evolutionary algorithms and machine learning. One can find a first attempt to learn activations

in a neural network in [186], where the authors propose randomly adding or removing logistic

or Gaussian activation functions using genetic programming. In [187], the authors developed

a method to choose an activation function for each neural network layer automatically. Hagg

et al. augmented the NEAT algorithm [188] to evolve simultaneously, except for the overall

network topology, and per-neuron activation functions [189]. Both works used predefined lists

to select activation functions. Ramachandran et al. automatically designed novel activation

functions using reinforcement learning [190]. There, the authors discovered several new, high-

performing activation functions, but they analyzed just one in detail: x ·σ(x), which they call

Swish. Bingham et al. augmented previous research by introducing an evolutionary algorithm

to design novel activation functions [191]. The authors showed that it is possible to evolve

specialized activation functions that perform well for the CIFAR-10 and CIFAR-100 datasets.

In [192], the authors use a hybrid genetic algorithm to evolve a function defined differently on

the positive and negative domains. Parts of the function are represented by trees and crossed

by special operators that separately change the positive and negative sides. The nodes comprise

basic arithmetic operations, and leaves are popular activation functions without constants. The

authors also presented the new activation functions ELiSH and Hard ELiSH, which they built

manually, intending to combine smaller functions’ good properties. On three datasets, they

showed that their functions perform the best.

Finally, we discuss related works investigating activation functions designed manually. Nair

and Hinton introduced rectified linear unit (ReLU) and argued it to be a better model than the lo-

116



Neuroevolution in Side-channel Analysis

gistic sigmoid activation function [193]. Slight modifications of ReLU have been proposed over

the years, such as leaky ReLU (LReLU), which deals with the issues with dead neurons [194].

More variations of ReLU can be found in [195, 196]. Clevert et al. experimented with exponen-

tial linear unit function (ELU), which reduces the vanishing gradient problem [197]. Further-

more, Klambauer et al. extended properties of ELU with scaled exponential linear unit function

(SELU) [198]. The authors in [199, 200] proposed to use a combination of different activation

functions in the same layer. However, this approach has memory issues, which is typically a

critical parameter in real-world scenarios.

7.4 Experimental Setup

In this section, we first discuss the datasets and leakage models we consider. Afterward, we

give details about the investigated approaches to design activation functions.

7.4.1 Datasets and Leakage Models

In our experiments, we consider two versions of the ASCAD database [178]. This database

contains the measurements from an 8-bit AVR microcontroller running a masked AES-128

implementation. This database is publicly available from https://github.com/ANSSI-FR/

ASCAD.

The first version of the ASCAD database has a fixed key and consists of 50 000 traces for

profiling and 10 000 for the attack. The traces in this dataset have 700 features (preselected

window when attacking the third key byte). We use 45 000 traces for training and 5 000 for

validation from the original training set. The second version of the ASCAD database has ran-

dom keys, and the dataset consists of 200 000 traces for training and 100 000 for testing. Each

trace in this database has 1 400 features (preselected window for the third key byte). We use

5 000 traces from the original training set for validation. We normalize the input features to a

Gaussian distribution (zero mean and unit variance) for both datasets by calculating the training

set’s distribution parameters.

This chapter considers the Hamming Weight (HW) and Identity (ID) leakage models. In the

HW leakage model, the attacker assumes the leakage is proportional to the sensitive variable’s

Hamming weight. This leakage model results in nine classes when considering a cipher that

uses an 8-bit S-box. Since this induces a heavy imbalance in the label distribution, we addi-

tionally calculate the imbalance weights that balance the estimated model loss. We follow the

guidelines for calculating the imbalance weights in [177]. For the ID leakage model, the at-

tacker considers the leakage as an intermediate value of the cipher. Considering an 8-bit S-box,

this leakage model results in 256 classes (values between 0 and 255).
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7.4.2 Architecture Search Strategies

Our experiments consider two neural network types: CNN and MLP. The specific CNN archi-

tecture is described in [157] for the ASCAD synchronized dataset, and we use it with all its

reported hyperparameters. The procedure’s seed values were not defined, so we translated their

original architecture and training procedure from Keras to PyTorch and ran the process with

several seed values until we observed an equal or better result than the original paper. The exact

hyperparameters are reported in Section 7.5. We used the same seed value throughout our ex-

periments for this architecture. Following their hyperparameter setup, the authors implemented

a one-cycle learning rate schedule, which we replaced with the implementation in PyTorch.

The network architecture consists of a convolutional layer with four output channels, followed

by batch normalization, activation function, and average pooling. The output of this block is

flattened and fed to an MLP tail to produce the final prediction. The width and depth of the

MLP tail were optimized per dataset with the grid search. In the CNN training procedures, we

use the one-cycle policy for learning rate with reported hyperparameters of learning rate 0.005,

with 40% of the cycle incrementing the value using a linear annealing strategy.

Since CNN inference time can be quite long compared to MLP, we apply and compare both

architectures. The MLP architecture is defined with consecutive blocks consisting of a dense

linear layer, batch normalization layer, and a nonlinear activation function.

We first employ architecture search to find the representative architecture for each dataset

(and neural network types). Two different algorithms were used to explore the space of net-

work architectures and their hyperparameters: grid search and random search. Both techniques

include evaluating a multitude of points of search space to find the optimal one. The points

are evaluated on the test set to obtain a distribution of representative solutions that will later

serve for further optimization with evolution. The techniques are also easily parallelized, al-

lowing a much faster search than sequential evaluation. We consider grid search for CNNs as

the number of hyperparameters is large, making it more difficult for a random search. For MLP,

we use random search as related works reported good results even with such a simple tuning

setup [179, 180].

Grid Architecture Search for CNNs

Grid search evaluates all possible combinations of parameter values for a given search space,

where the continuous variables are sampled along with fixed steps. We employ this search

strategy following [157] to find an optimal CNN architecture for a given dataset. Due to time

constraints, we slightly truncated this search space by removing hyperparameter values that

were not expected to provide good results (such as very shallow or narrow architectures). The

considered hyperparameter space is described in Tables 7.1 and 7.2 and resulted in 2160 grid
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samples to obtain the best convolutional model (CNN - GSbest) for each of the datasets.

Random Architecture Search for MLP

The random search strategy samples the given space by randomly selecting points in the search

space. The search space can be defined with a multitude of features, both discrete and continu-

ous. It is similar to grid search but without a structured sampling of continuous spaces, which

might introduce bias by selecting only a subset of possible values. We find this bias unwanted

as we do not use a learning rate schedule for our MLP models, and the model might be more

sensitive to a fixed learning rate’s exact value. We define the search space as the collection of

hyperparameters that affect the shape of MLP architecture and its train parameters, listed in

Tables 7.1 and 7.2. The search space slightly differs from the grid search strategy by offering

more resolution for the layer widths, learning rate, and over several seed values to compensate

for the possibility of bad initialization. We sample 600 random points from this space to obtain

an approximate distribution of the solution space for MLP architectures for each dataset. From

this we can obtain the best model (MLP - RSbest) and the median model (MLP - RSmedian).

Table 7.1: Definitions of the architecture grid search subspace. The values in square brackets represent
a continuous range, while the curly brackets denote a set of discrete values.

Parameter Type Grid search subspace

Seed int 36

Number of layers int {2, 3, 4}

Layer width int {10, 15, 20, 25, 100}

Learning rate float 5e-3

Optimizer operator {SGD, RMSProp, Adam}

Activation function function {ReLU, ELU, SELU, tanh}

Train epochs int {20, 25, 50, 75}
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Table 7.2: Definitions of the architecture random search subpace. The values in square brackets represent
a continuous range, while the curly brackets denote a set of discrete values.

Parameter Type Random search subspace

Seed int [0,100]

Number of layers int [2, 8]

Layer width int [100, 1000]

Learning rate float [1e-4, 1e-2]

Optimizer operator {SGD, RMSProp, Adam}

Activation function function {ReLU, LReLU, ELU, SELU, tanh, Sin}

Train epochs int 50

7.4.3 Evolving Activation Functions

In this section, we describe in detail the setup for evolving activation functions.

Search space and Solution Encoding

The space of all feasible solutions is called a search space. Each activation function in the

search space represents one possible solution. Every activation function is represented as a tree

consisting of unary and binary operators with leaves corresponding to function inputs~x, namely

the outputs of a dense linear layer. We consider the following operators:

•Unary: ~x, −~x, |~x|, sin(~x), cos(~x), e~x, er f (~x),~x2, 1//~x, σ(~x), σH(~x), ReLU(0,~x), ELU(~x),

So f tsign(~x), So f t plus(~x), tanh(~x)

•Unary, multidimensional: normalized(~x), So f tmax(~x), So f tmin(~x)

•Binary: ~x1 +~x2, ~x1−~x2, ~x1 ·~x2, ~x1//~x2

The operator // denotes protected division, where the denominator value is replaced with

ε = 10−4 if the denominator’s absolute value is smaller than ε . ReLU denotes the rectified linear

unit, ELU the exponential linear unit, er f the Gaussian error function, σ the sigmoid function,

σH the hard sigmoid function, and normalized the L2 vector normalization. The initial tree

depth is between 2 and 5, and the maximal tree depth is limited to 12. Moreover, there is no

constraint of tree balancedness as discussed in [190] and [191].

Evolutionary Process

The selection process used in this work is presented as Algorithm 3 and employs a variant called

steady-state tournament selection with the tournament size (k) equal to 3.
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Evolution offers a more efficient approach to space sampling since it uses information from

previous samplings to guide the search. We use this technique to find an activation function

that optimizes the generalization of our models. The search space of functions is huge and

requires some assumptions to make the search feasible. First, we assume the function can

be represented as a tree, making the genetic programming technique a natural choice. Here,

we constrain leaves to only be the function input, without constants or learnable parameters.

Next, we limit the maximal depth of candidate trees to restrict the search to a fast-to-evaluate

subspace of functions since they need to be evaluated for each layer. Finally, we limit the

representation’s expressivity by defining a set of possible unary and binary operations that can

be used as function nodes (see Section 7.4.3). We use a population of 20 individuals and run

the algorithm with a budget of 2000 evaluations.

Fitness Function

A neural network is trained with each function on a training dataset, starting with a population

of P activation functions. Recall guessing entropy denotes the average key rank, i.e., the correct

key position in the guessing vector after processing Q attack traces. As such, we aim to min-

imize the guessing entropy for any number of attack traces. Thus, it is natural to consider the

number of attack traces required to reach the GE of 0, which we denote as QtGE
. Each candidate

function is assigned a fitness value F :

F = QtGE
+(1−accuracy). (7.2)

The goal is to minimize fitness value F , where the optimal value is 1 (this would require

only a single trace to break the target, representing the optimal scenario). The guessing entropy

is averaged over 100 attacks on randomly selected data subsets. The maximum subset sizes

were selected depending on a particular experiment to balance between differentiation of result

qualities and computation time. This induces similar results between individuals in initial itera-

tions and slows the EA convergence. To remedy this, we add the accuracy error (1−accuracy)

to the fitness, which is also subject to minimization and adds additional information for differ-

entiation between individuals. In preliminary experiments, we observed faster convergence by

using this fitness function.

We note that it could be somewhat counterintuitive to use accuracy for SCA. This problem

can be especially pronounced for the HW leakage model as it results in highly imbalanced

data [177]. Still, as the second part of the fitness function is bounded in the range [0,1], for

neural networks that perform well (i.e., those that reach GE of 0 in a small number of traces),

added information about accuracy can help by providing more search space gradient. When the

number of required traces is high, the accuracy term’s contribution is small, so the number of
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traces remains the primary objective.

Mutation and Crossover

In mutation, one node in an activation function tree is randomly selected. The selected sub-

tree is replaced at that point by generating a new subtree, respecting the maximal depth limit.

The probability of mutation was selected from the preliminary experiments on the ASCAD

fixed key dataset to provide reasonable exploration and exploitation properties and was kept

at 70% through all of the experiments. In the crossover, two-parent activation functions ex-

change randomly selected subtrees, producing new children activation functions. The crossover

is performed with a simple tree crossover with 90% bias for functional nodes being selected as

crossover points.

7.4.4 Learning System

All experiments were performed on a machine using a single GeForce GTX 1080 Ti graphics

card, i7-6700 CPU, and 32 GB of RAM, running Ubuntu 16.04. We implemented our exper-

iments in Python 3.7 with the usage of the DEAP[201] framework (v1.3.1) for evolutionary

algorithms and PyTorch framework [202] (v1.7.0) for deep learning with the CUDA (v11.2)

backend.

As our model architectures do not require a significant GPU memory, we fully utilize the

hardware by parallelizing individuals’ evaluation step via multiprocessing. This proved crucial

as our experiments are incredibly time-consuming, in the order of 7 days per architecture search

and 14 days per evolution without parallelization. Note that the upper limit of the number of

processes is dictated by the available GPU memory and physical CPU cores.

To ensure our experiments’ reproducibility, we carefully set the seed value on both the CPU

and GPU sides. Python’s random, numpy, and torch libraries provide methods for managing

the state of a random generator. By implementing a simple context manager, entire blocks of

an experiment can be run under the standardized setup while maintaining the code clean and

automatically restoring the context afterward.

7.5 Results

This section presents the experimental results, demonstrating that evolved activation functions

can outperform commonly used activation functions. We first search for the optimal network

architecture and hyperparameters using the previously discussed architecture search methods

(random search - RS and grid search - GS) for each experimental setup. Then on the selected

setup, we apply the evolutionary algorithm to further optimize the model by changing its acti-
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Table 7.3: Final QtGE
values for ASCAD fixed and random keys datasets on the Hamming weight leakage

model. Here we compare the best obtained value of grid search on the CNN model (CNN - GSbest , with
its evolved activation function CNN - GP and the best obtained MLP model on random search MLP -
RSbest .

Fixed Key Random Keys

best result 2nd best 3rd best best result 2nd best 3rd best

CNN - GSbest 299 - - 606 - -

CNN - GP 287 331 339 QtGE
> 5000 QtGE

> 5000 QtGE
> 5000

MLP - RSbest 561 669 749 1133 1592 1615

vation function. Finally, we compare the results of mentioned techniques on both datasets and

leakage models. During the evaluation of GS and RS on ASCAD fixed key dataset with the ID

leakage model, we truncated the evaluation of QtGE
to 1000 as we observed over 25% of results

lied in this subspace, thus leading to an efficient region of interest. Additionally, we focused on

500 traces during the evaluation of GP to further improve efficiency while still obtaining better

results. For the random keys dataset, we needed to increase the truncation bar to 1000 as it

became more difficult to obtain 25% results in this subspace. Finally, for all of the HW leakage

model tasks, we further increased the bar to 5000 as they proved to be quite a bit harder.

In Tables 7.3 and 7.4, we depict the best-obtained results for the Hamming weight and the

ID leakage models, respectively. We additionally compare with the state-of-the-art results [185]

when possible. The notation QtGE
> x denotes that we could not reach GE of 0 in x attack traces.

We also depict the three best results obtained with various search techniques.

First, for the HW leakage model (Table 7.3) and fixed key, the best results are obtained with

GP, while grid search with CNN performs slightly worse. Random search for MLP results are

much worse than the first two, but we still manage to break the target. For random keys, we

can see that the best results are reached for CNN with grid search, followed by MLP obtained

through random search. Interestingly, CNN evolved with GP cannot converge even with 5000

attack traces. The architectures end with guessing entropy values: 108, 110, and 111 for the

top 3 individuals, respectively. We postulate this happens as the random keys dataset is more

difficult and becomes easier to overfit. Still, we believe adding more generations to the GP

procedure would improve its behavior and attack results.

In Table 7.4, we depict results for the ID leakage model. Interestingly, for the fixed key,

we see that both CNN evolved with GP and MLP with random search work better than related

work [157]. We reach good results with MLP with random search only for random keys. Again,

this shows that random keys setup is more difficult, and we require a more sophisticated search

process to reach good results. The CNN - GSbest ends with a guessing entropy of 128, while the
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Table 7.4: Final QtGE
values for ASCAD fixed and random keys datasets on the ID leakage model. Here

we compare the best obtained value of grid search on the CNN model (CNN - GSbest), version with its
evolved activation function (CNN - GP) and the best obtained MLP model on random search MLP -
RSbest . The star denotes result obtained from reconstructing the resulting architecture in [157].

Fixed Key Random Keys

best result 2nd best 3rd best best result 2nd best 3rd best

CNN - GSbest 191* - - QtGE
> 1000 - -

CNN - GP 115 123 130 QtGE
> 1000 QtGE

> 1000 QtGE
> 1000

MLP - RSbest 156 162 191 145 163 194

Table 7.5: Results of the EA effectiveness experiment for ASCAD fixed and random keys on the Ham-
ming weight leakage model. The median architecture is compared before MLP - RSmedian and after
evolution MLP - GP.

Fixed Key Random Keys

MLP - RSmedian MLP - GP MLP - RSmedian MLP - GP

QtGE
2377 1168 3350 QtGE

> 5000

top 3 evolved results end respectively with 125, 128, and 128.

Next, in Table 7.5, we give median results for the HW leakage model when comparing

MLP architectures obtained with random search and after evolving activations functions with

GP. Note that GP improves the performance significantly for the fixed key, while GP does not

converge for the random keys dataset. At the same time, the configuration found with random

search manages to break the target in somewhat more than 5000 attack traces, ending with a

guessing entropy value of 124. As the results with GP denote that the median does not manage

to break the target, this again reiterates that we require more than 100 generations to evolve

good activation functions.

Finally, in Table 7.6, we compare the median results for MLP with random search and

after using genetic programming when considering the ID leakage model. Observe how for

both fixed and random keys settings, GP reaches significantly better results. This indicates

that while the random search can find a good performing neural network architecture just by

guessing, the average results obtained over a number of solutions are not very good. On the

other hand, evolving customized activation functions manages to improve the neural network

performance significantly.
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Table 7.6: Results of the EA effectiveness experiment for ASCAD fixed and random keys datasets on
the ID leakage model. The median architecture is compared before MLP - RSmedian and after evolution
MLP - GP.

Fixed Key Random Keys

MLP - RSmedian MLP - GP MLP - RSmedian MLP - GP

QtGE
531 279 437 188
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(a) Fitness value of MLP - GP.
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(b) Fitness value of CNN - GP.

Figure 7.1: The evolution of fitness value on the ASCAD random keys dataset and the HW leakage
model.

7.5.1 ASCAD Fixed Key

For the HW leakage model, we obtained a CNN architecture with the tail of four hidden dense

layers of width 100, activated by ELU , and initialized with seed 36. The training setup uses the

RMSProp optimizer with a learning rate of 0.005 over 20 epochs with batch size 64. For the

architecture search of MLP, we obtained a model with eight hidden dense layers of width 478,

activated by ReLU , and initialized with seed 42. The training setup uses the Adam optimizer

with a learning rate of 0.0017 over 50 epochs with batch size 200.

For the HW leakage model and the ASCAD fixed key dataset, we depict in Figure 7.1 the

convergence plots for the MLP and CNN architectures. We see that CNN converges faster,

where the final fitness is two times smaller than in the MLP case. Next, in Figure 7.2, we depict

the best-obtained activation function and its derivation. Both obtained functions have similar-

ities with the commonly used ones. Interestingly, the GP evolved activation functions with

similar properties to tanh(−x) (see Figure 7.2a) function and ELU (see Figure 7.2b) activation

function.

Finally, in Figure 7.3, we depict the number of attack traces required to reach a guessing

entropy of 0, and we denoted that value with a red dot. Despite the fact that MLP and CNN

architectures perform well, we break the target significantly faster when using CNN than MLP.

For the ID leakage model, we reimplemented the CNN reported in [157] and obtained sim-
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(a) Best activation function for MLP - GP.
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(b) Best activation function for CNN - GP.

Figure 7.2: Plots represent the 1D slice of the best activation function (solid) and its derivative (dotted)
obtained through evolution on the ASCAD fixed key dataset. The slice is defined by setting the first
dimension to the x-axis and the second dimension is set to 0.
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(a) The guessing entropy of MLP - GP (Table 7.6).
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(b) The guessing entropy of CNN - GP (Table 7.4).

Figure 7.3: The guessing entropy of best evolved activation functions on the ASCAD fixed key dataset.

126



Neuroevolution in Side-channel Analysis

0 20 40 60 80 100
Iteration

250

300

350

400

450

500
Fi
tn
es

s

(a) Fitness value of MLP - GP.
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(b) Fitness value of CNN - GP.

Figure 7.4: The evolution of fitness value for the ASCAD fixed key dataset and the ID leakage model.

ilar results. The training setup uses the Adam optimizer with a learning rate of 0.005 over 50

epochs with batch size 50. The architecture is initialized with a seed equal to 36 and uses the

SELU activation function. For the architecture search of MLP, we obtained a model with five

hidden dense layers of width 661, activated by the Sine function and initialized with seed 2.

The training setup uses the Adam optimizer with a learning rate of 0.0086 over 50 epochs with

batch size 200.

The best activation functions we obtained are denoted below, with the first letter in the

subscript corresponding to the setup type and the second one to the architecture type. Note that

the functions look rather complex, and it would be hard to expect that a human designer would

find them. Still, the experimental results show they work very well.

aID,C(~x) = sin(er f (~x− so f tmin(~x)2))−ζ (~x) (7.3)

ζ (~x) =~x2 · so f tsign(σ(so f tmin(so f tsign(σH(σ(normalized(so f tmax(~x2)))))))) (7.4)

aID,M(~x) = normalized(so f tsign(normalized(~x · tanh(so f t plus(so f tsign(er f (~x))))))) (7.5)

aHW,C(~x) =−(tanh(−~x) · |so f tsign(2~x)− (σ(tanh(~x))+ELU(~x))|) (7.6)

aHW,M(~x) = so f tmax(so f tmin(sin(normalized(tanh(
−1

σ(~x2)2 ))))−~x) (7.7)

In Figure 7.4, we depict the GP evolution convergence plots for the MLP and CNN archi-

tecture for the ASCAD fixed key dataset. Notice how both architectures improve with iterations

(clearly showing there is learning happening). Especially strong convergence can be seen for

CNN, where the final fitness is more than twice smaller than in the MLP case.

Next, in Figure 7.5, we depict the best-obtained activation function and its derivation. Re-

call, the derivation is important as we require the differentiable function if we use the back-

propagation algorithm, as is common in the training of neural networks. Notice that we obtain

127



Neuroevolution in Side-channel Analysis

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Activation

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Ou

tp
ut

(a) Best activation function for MLP - GP.
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(b) Best activation function for CNN - GP.

Figure 7.5: Plots represent the 1D slice of the best activation function (solid) and its derivative (dotted)
obtained through evolution on the ASCAD fixed key dataset for ID prediction. The slice is defined by
setting the first dimension to the x-axis and the second dimension is set to 0.
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(a) The guessing entropy of MLP - GP (Table 7.6).
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(b) The guessing entropy of CNN - GP (Table 7.4).

Figure 7.6: The guessing entropy of the best evolved activation functions on the ASCAD fixed key
dataset and the ID leakage model.

a non-monotonic function for CNN, which is strikingly different from commonly (and state-of-

the-art) used activation functions.

Finally, in Figure 7.6, we depict the number of attack traces required to reach a guessing

entropy of 0. That value is denoted with a red dot. Notice that we break the target significantly

faster when using CNN than MLP, but both techniques perform well. This ensures that we can

find custom activation functions for SCA that perform well regardless of the neural network

selection.

7.5.2 ASCAD Random Keys

In the case of the HW leakage model for the random keys dataset and CNN’s architecture

search, we obtained an architecture tail with four hidden dense layers of width 100, activated

by the SELU activation function, and initialized with seed 36. The training setup uses the SGD
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(b) Fitness value of CNN - GP.

Figure 7.7: The evolution of fitness value on the ASCAD random keys dataset and the ID leakage model.

optimizer with a learning rate equal to 0.005 over 75 epochs with batch size 50. Using the

architecture search of MLP, we obtained a model with two hidden dense layers of width 716,

activated by SELU and initialized with seed 2. The training setup uses an SGD optimizer with

a learning rate of 0.0042 over 50 epochs with batch size 200.

For the ID leakage model and the CNN’s architecture search, we obtained an architecture tail

with two hidden dense layers of width 100, activated by tanh activation function and initialized

with seed 36. Using the architecture search of MLP, we obtained a model with five hidden dense

layers of width 622, activated by ReLU and initialized with seed 2. The training setup uses the

Adam optimizer with a learning rate of 0.00086 over 50 epochs with batch size 200.

The activation functions we obtained are shown below, with the first letter in the subscript

corresponding to the setup type and the second one to the architecture type. Notice that these

activation functions are slightly less complex (having fewer terms) than in the ASCAD fixed

key scenario.

aID,C(~x) = (tanh(|sin(cos(~x))|))−1 (7.8)

aID,M(~x) = so f t plus(~x+ELU(~x))+~x−σ(ELU(cos(σH(cos(so f t plus(σ(~x))))))) (7.9)

aHW,C(~x) = exp(cos(so f tmax(sin(~x)−1))) (7.10)

aHW,M(~x) = ReLU(σH(cos(so f tmin(normalized(|so f tmin(so f tmax(~x))|))2))) (7.11)

Next, in Figure 7.7, we depict the convergence plots. Again, CNN converges faster, and

even with a relatively short number of iterations, there is no more improvement in the fitness

value. Considering rather small improvements in the fitness value, we could conclude that the

evolution process gets stuck in local optima. One potential solution could be to consider larger

mutation rates to stimulate search space exploration.

Figure 7.8 presents plots for the activation function and its derivation. Notice that while
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(a) Best activation function for MLP - GP.
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(b) Best activation function for CNN - GP.

Figure 7.8: Plots represent the 1D slice of the best activation function (solid) and its derivative (dotted)
obtained through evolution on the ASCAD random keys dataset. The slice is defined by setting the first
dimension to the x-axis and the second dimension is set to 0.
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(a) The guessing entropy of MLP - GP (Table 7.6).
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(b) The guessing entropy of CNN - GP (Table 7.4).

Figure 7.9: The guessing entropy of best evolved activation functions on the ASCAD random keys
dataset.

for MLP, the obtained functions have some similarity with commonly used ones, for CNN, the

shape is rather unusual (and not intuitive that it would work). Finally, in Figure 7.9, we depict

the guessing entropy results. Interestingly, MLP works very well (on the level as for the ASCAD

with fixed key dataset), while CNN does not converge. Again, this reiterates that it is easier to

tweak MLP architectures, regardless of whether it is done via hyperparameter tuning [180]

or evolution of activation functions as investigated here. What is more, the results indicate that

MLP architectures are sufficient to break the targets, especially if there is no trace misalignment

(recall that in this work, we consider only synchronized traces). For CNNs, working with larger

mutation rates and longer evolution could resolve the problems indicated here.
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7.6 Conclusions

This chapter explores the potential of neuroevolution in enhancing deep learning-based side-

channel analysis. Specifically, we investigate the scenario where genetic programming is uti-

lized to evolve activation functions tailored explicitly for side-channel analysis. To demon-

strate the effectiveness of this approach, we conduct experiments on two side-channel analy-

sis datasets and two leakage models. Our results show that activation function evolution can

produce improved attack behavior, with the highest efficiency observed in the more specific

dataset. However, further research is necessary to evaluate the advantages and limitations of

this approach comprehensively.

Our findings also reveal the need for more informative and cost-effective fitness functions

to facilitate the faster convergence of better-performing individuals. Such improvements could

enhance the practicality and applicability of neuroevolution in side-channel analysis.
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Chapter 8

Conclusion

This dissertation was done using the bottom-up methodology, where the research proceeded in

the following steps:

1.construction of Boolean functions with adaptive cryptographic properties,

2.construction of vectorial Boolean functions with adaptive cryptographic properties,

3.automatic construction of cryptographic algorithms by using attacker and defence dynam-

ics in the security domain,

4.semi-supervised learning in side-channel attacks,

5.neuroevolutionary procedures for optimization of neural network architecture in the side-

channel attacks.

This thesis primarily explores the intersection of artificial intelligence (AI) and cryptogra-

phy, focusing on applying AI techniques to cryptographic problems. It is important to note that

the contributions of this work are predominantly from the AI perspective, with some aspects

needing to be more rigorously treated from a cryptographic standpoint. The use of evolutionary

computing and machine learning in solving cryptographic problems has been extensively stud-

ied, with evolutionary computing algorithms being compelling in optimization problems, such

as the design and analysis of symmetric key cryptographic algorithms. However, it should be

noted that evolutionary computing algorithms are not universally applicable, and the No Free

Lunch theorem highlights that there is no single best evolutionary algorithm[203].

In this dissertation, we investigate niches in constructing Boolean and vectorial Boolean

functions where unanswered questions exist. Although these questions may not necessarily

have practical importance, they provide new theoretical insights and demonstrate the capabili-

ties of evolutionary computing.

We also explore the possibility of using evolutionary computing algorithms to construct

cryptographic algorithms inspired by neural cryptography automatically. Although such exper-

iments may raise doubts among cryptographers, exploring new territory is an intriguing avenue

for research, and our results may serve as a guide for future investigations.
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In the field of profiled side-channel attacks, previous research has suggested that the applica-

tion of semi-supervised learning is weak. However, our work indicates that when the number of

profiling traces is limited, and if more attack traces can be measured, semi-supervised learning

can significantly improve machine learning models. In addition to the type of model learning,

we also investigate the model itself in profiled side-channel attacks. While the evolution of

activation functions in neural networks is not new, this dissertation presents the results of ap-

plying the neuroevolution of activation functions tailored explicitly for side-channel analysis.

Our initial findings suggest that there is ample room for future research in this area.

In conclusion, this chapter summarizes the most critical findings from the previous chapters

and highlights the original scientific contributions of this dissertation. Finally, we identify open

questions and potential avenues for future research.

8.1 Achieved Contribution and Main Conclusions

The main goal of this dissertation is to demonstrate the application of machine learning and evo-

lutionary computing in the design and analysis of cryptographic algorithms with a symmetric

key. The conclusions of the scientific contribution of this dissertation are briefly stated below.

8.1.1 Construction of Boolean and Vectorial Boolean Functions

Chapter 4 addressed the construction of maximal nonlinearity Boolean functions through evolu-

tionary algorithms. To resist linear cryptanalysis attacks, Boolean functions need to have high

nonlinearity. Bent functions are Boolean functions with maximal possible nonlinearity for a

given number of variables. It is also crucial for functions to be balanced for usage in cryp-

tographic algorithms. Our results suggest that one can use evolutionary algorithms to evolve

Boolean functions of many different sizes, whereas the best performing algorithm we con-

sider genetic programming. Moreover, we introduce the problem of evolving quaternary bent

Boolean functions. Again, tree encoding offers superior results in those experiments. The re-

sults for quaternary tree encoding show that we can obtain bent functions for all dimensions

we experiment with. Our results are comparable to or better than those obtained with other

techniques when evolving bent binary Boolean functions.

In Chapter 4, we investigate S-boxes where the output is smaller than the input. Such S-

boxes have practical applications in authentication codes or secret sharing schemes but are also

interesting as combinatorial optimization problems and could be used as benchmarks. Here

again, we are interested in constructing bent S-boxes, where the genetic algorithm proves the

most successful. Moreover, we investigate whether we can use heuristics to generate differ-

entially 6-uniform (n,n− 2) functions. Our theoretical work on this topic points us to the
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conclusion that this problem is challenging. Our results confirm that the problem is intricate

and evolutionary algorithms are of limited success.

8.1.2 Automatic Construction of Cryptographic Algorithms

In Chapter 5, the present study explores the automatic construction of ciphers using Cartesian

Genetic Programming (CGP) and bi-level optimization. The study aims to produce ciphers that

demonstrate relative resilience against attacks while utilizing fewer active nodes, thereby en-

hancing their interpretability. Our findings indicate that including additional cipher properties

leads to improved results, with the resulting ciphers demonstrating a level of security that pre-

vents the attacker, Eve, from achieving significantly better performance than random guessing.

Our results represent a proof of concept, showcasing the potential for evolutionary algo-

rithms (EAs) to function as automatic cipher builders. However, further refinements are neces-

sary to generate results that would be practically valuable.

8.1.3 Machine Learning Algorithms in Side-channel Attacks

In Chapter 6, we investigate the scenario where the attacker is constrained in the profiling

phase but has access to additional information from the attacking measurements to construct

the profiled model. We examine two semi-supervised learning methods under various condi-

tions, using machine learning techniques and template attacks, as well as their pooled variant,

as side-channel attack methods.

Our findings indicate that semi-supervised learning can be beneficial in numerous scenar-

ios. In particular, significant enhancements are observed for the template attack and its pooled

version in the low-noise situation. We note that incorporating extra samples from the attacking

phase enhances the estimation of the covariance matrices, resulting in an improvement of over

70% in terms of the attack traces required to guess the key.

8.1.4 Neuroevolution in Side-channel Attacks

Chapter 7 investigates how neuroevolution can improve deep learning-based side-channel anal-

ysis. More precisely, we consider the setting where genetic programming evolves activation

functions specifically adapted for the side-channel analysis. We conduct experiments for two

SCA datasets and two leakage models to show that it is possible to evolve activation functions

that improve the attack behavior. We observe that activation function evolution has higher effi-

ciency for a more straightforward dataset, indicating that more work is needed to understand this

approach’s advantages and drawbacks. Additionally, we observe the need for more informative

and cost-effective fitness functions that would lead to better individuals faster. Research in this
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direction would improve the effectiveness of neuroevolution regardless of the hyperparameter

being evolved.

8.2 Future research

Although this dissertation has provided answers to some questions, there are still numerous

unanswered queries.

In Chapter 3, we propose a potential avenue of future research in the domain of secondary

constructions. The research direction involves exploring the efficacy of constructing balanced

Boolean functions with maximal nonlinearity utilizing secondary constructions. Although sec-

ondary constructions in GP have already demonstrated the ability to construct bent Boolean

functions for a much larger number of inputs, exploring their effectiveness in constructing bal-

anced Boolean functions with maximal nonlinearity is an interesting area for further study.

Based on the results obtained with quaternary Boolean functions in our research, several

potential research directions exist. The first option is to consider quaternary functions with

n> 8 variables. However, it remains to be seen whether such a research direction would provide

advantages over the evolution of binary Boolean functions with 2n variables. The second option

is to consider the Hamming distance when calculating nonlinearity. Although the mapping

between Zn
4 and F2n

2 is less elegant in this case, finding bent binary Boolean functions is still

feasible.

Chapter 4 opens several research avenues. In the first direction, we propose to explore CGP,

as it has demonstrated very good results in our experiments. With CGP, we could avoid the

need for m independent trees and instead have a graph with m outputs. The second research

direction involves exploring larger S-box sizes, especially the bitstring representation observed

to perform the best for size (12,6). Finally, since we observe good performance when using the

fitness function with a derivative of the Boolean function, we plan to investigate its behavior on

larger Boolean functions.

In Chapter 5, we identified several potential research directions. The first is the use of

rounds in the proposed algorithm. It would be interesting to observe attackers’ success in

such an environment and how much the introduction of rounds contributes to the strength of

the cryptographic algorithm. Another research direction involves introducing more complex

cryptographic primitives into the set of CGP functional nodes. The entire process of automatic

construction of a cryptographic algorithm could be viewed as a multilevel optimization problem

where cryptographic primitives and the whole algorithm are constructed in parallel. Lastly, in-

troducing cryptanalytic tools in evaluating the constructed crypto algorithm would likely result

in better solutions.

For future work, Chapter 6 opens up scenarios where the number of labeled traces is minimal
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(100 labeled traces or less), whereas the number of unlabeled examples is much more signif-

icant, e.g., 30000. We have demonstrated that the most significant benefit of SSL is in these

extreme cases. A second research direction involves considering those measurements with the

highest probabilities and using the distribution of probabilities from SSL learning. Addition-

ally, in the semi-supervised phase, we used ML classifiers to obtain new labeled measurements,

but there is no reason not to try using the TAp attack. Consequently, we plan to investigate the

scenario where the TAp attack is used as the classifier in self-training. Finally, in a real-world

scenario, two different devices should be considered, which may result in (slightly) different

distributions (see e.g., [204, 205]).

Finally, since Chapter 7 is the first time considering neuroevolution for SCA, there are many

possible research directions for future work. One approach would be to consider evolving other

elements of the learning procedure, like the loss function. Another option could be to use

neuroevolution to evolve the whole neural network architecture, not restricting activation func-

tion only. Moreover, another viable option is to use evolution instead of the backpropagation

algorithm so that the activation function search does not need to be restricted to differentiable el-

ements. Considering the application of different activation functions, one natural option would

be to consider the evolution of different activation functions for various layers. It would also

be interesting to investigate how transferable the obtained activation functions are when con-

sidering already designed neural network architectures. Our preliminary testing indicates this

transferability to be somewhat limited, but more experiments are required.
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[140]Picek, S., Heuser, A., Jovi ć, A., Legay, A., Knezevic, K., “Profiled sca with a new twist:

Semi-supervised learning”, IACR Cryptol. ePrint Arch., Vol. 2017, 2017, str. 1085.

149

http://dx.doi.org/10.1007/978-3-662-44709-3


Bibliography

[141]Schwenker, F., Trentin, E., “Pattern classification and clustering: A review of partially

supervised learning approaches.”, Pattern Recognition Letters, Vol. 37, 2014, str. 4–14,

dostupno na: http://dblp.uni-trier.de/db/journals/prl/prl37.html#SchwenkerT14a

[142]Chapelle, O., Schlkopf, B., Zien, A., Semi-Supervised Learning, 1st ed. The MIT Press,

2010.

[143]Bengio, Y., Delalleau, O., Le Roux, N., “Efficient Non-Parametric Function

Induction in Semi-Supervised Learning”, Département d’informatique et recherche

opérationnelle, Université de Montréal, Tech. Rep. 1247, 2004, dostupno na:

http://www.iro.umontreal.ca/~lisa/pointeurs/tr1247.pdf

[144]Mitchell, T. M., Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill, Inc.,

1997.

[145]Begum, S., Chakraborty, D., Sarkar, R., “Data Classification Using Feature Selection and

kNN Machine Learning Approach”, in 2015 International Conference on Computational

Intelligence and Communication Networks (CICN), Dec 2015, str. 811–814.

[146]Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., Duchesnay, E., “Scikit-learn: Machine Learning in Python”,

Journal of Machine Learning Research, Vol. 12, 2011, str. 2825–2830.

[147]Choudary, O., Kuhn, M. G., “Efficient template attacks”, in Smart Card Research and

Advanced Applications - 12th International Conference, CARDIS 2013, Berlin, Ger-

many, 2013. Revised Selected Papers, ser. LNCS, Francillon, A., Rohatgi, P., (ur.), Vol.

8419. Springer, 2013, str. 253–270.

[148]TELECOM ParisTech SEN research group, “DPA Contest (2 nd edition)”, http://www.

DPAcontest.org/v2/. 2009–2010.

[149]TELECOM ParisTech SEN research group, “DPA Contest (4 th edition)”, http://www.

DPAcontest.org/v4/. 2013–2014.

[150]Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F., “The curse of class imbalance

and conflicting metrics with machine learning for side-channel evaluations”, Cryptology

ePrint Archive, Report 2018/476, https://eprint.iacr.org/2018/476. 2018.

[151]Kocher, P. C., “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems”, in Proceedings of CRYPTO’96, ser. LNCS, Vol. 1109. Springer-Verlag,

1996, str. 104–113.

150

http://dblp.uni-trier.de/db/journals/prl/prl37.html#SchwenkerT14a
http://www.iro.umontreal.ca/~lisa/pointeurs/tr1247.pdf
http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/
http://www.DPAcontest.org/v4/
https://eprint.iacr.org/2018/476


Bibliography

[152]Kocher, P. C., Jaffe, J., Jun, B., “Differential power analysis”, in Proceedings of the

19th Annual International Cryptology Conference on Advances in Cryptology, ser.

CRYPTO ’99. London, UK, UK: Springer-Verlag, 1999, str. 388–397, dostupno na:

http://dl.acm.org/citation.cfm?id=646764.703989

[153]Quisquater, J.-J., Samyde, D., “Electromagnetic analysis (ema): Measures and counter-

measures for smart cards”, in Smart Card Programming and Security, Attali, I., Jensen,

T., (ur.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, str. 200–210.

[154]Kocher, P., Jaffe, J., Jun, B., “Differential power analysis”, in Advances in Cryptology —

CRYPTO’ 99, Wiener, M., (ur.). Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,

str. 388–397.

[155]Chari, S., Rao, J. R., Rohatgi, P., “Template attacks”, in Cryptographic Hardware and

Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA,

USA, August 13-15, 2002, Revised Papers, ser. Lecture Notes in Computer Science,

Kaliski, B. S., Jr., Koç, Ç. K., Paar, C., (ur.), Vol. 2523. Springer, 2002, str. 13–28.

[156]Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A., “Make some noise. unleashing

the power of convolutional neural networks for profiled side-channel analysis”, IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2019, str. 148–179.

[157]Zaid, G., Bossuet, L., Habrard, A., Venelli, A., “Methodology for efficient cnn architec-

tures in profiling attacks”, IACR Transactions on Cryptographic Hardware and Embed-

ded Systems, Vol. 2020, No. 1, Nov. 2019, str. 1–36.

[158]Elsken, T., Metzen, J. H., Hutter, F., “Neural architecture search: A survey”, 2019.

[159]Feurer, M., Springenberg, J. T., Hutter, F., “Initializing bayesian hyperparameter opti-

mization via meta-learning”, in Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, ser. AAAI’15. AAAI Press, 2015, str. 1128–1135.

[160]Finn, C., Abbeel, P., Levine, S., “Model-agnostic meta-learning for fast adaptation of

deep networks”, in Proceedings of the 34th International Conference on Machine Learn-

ing, ser. Proceedings of Machine Learning Research, Precup, D., Teh, Y. W., (ur.),

Vol. 70. International Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017,

str. 1126–1135.

[161]Finn, C., Levine, S., “Meta-learning and universality: Deep representations and gradient

descent can approximate any learning algorithm”, 2018.

[162]Gonzalez, S., Miikkulainen, R., “Improved training speed, accuracy, and data utilization

through loss function optimization”, 2020.

151

http://dl.acm.org/citation.cfm?id=646764.703989


Bibliography

[163]Wistuba, M., Rawat, A., Pedapati, T., “A survey on neural architecture search”, 2019.

[164]Chen, X., Xie, L., Wu, J., Tian, Q., “Progressive differentiable architecture search: Bridg-

ing the depth gap between search and evaluation”, in Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), October 2019.

[165]Zoph, B., Le, Q. V., “Neural architecture search with reinforcement learning”, 2017.

[166]Dauphin, Y. N., Fan, A., Auli, M., Grangier, D., “Language modeling with gated convo-

lutional networks”, CoRR, Vol. abs/1612.08083, 2016.

[167]Maas, A. L., “Rectifier nonlinearities improve neural network acoustic models”, 2013.

[168]Nair, V., Hinton, G. E., “Rectified linear units improve restricted boltzmann machines”,

in Proceedings of the 27th International Conference on International Conference on Ma-

chine Learning, ser. ICML’10. Madison, WI, USA: Omnipress, 2010, str. 807–814.

[169]Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S., “Activation functions: Compari-

son of trends in practice and research for deep learning”, 2018.
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u tvrtki Sofa IT. Kao asistent te istraživač na projektu EvoCrypt radio je nekoliko godina na Za-
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