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Zagreb, 2021.



The doctoral thesis was completed at the University of Zagreb Faculty of Electrical
Engineering and Computing, Department of Electronics, Microelectronics, Com-
puter and Intelligent Systems.

Supervisor: Professor Siniša Šegvić, PhD

The thesis has 87 pages.

Thesis number:



About the Supervisor

Siniša Šegvić was born in 1971 in Split, Croatia. He completed elementary school and
high school in Zadar, Croatia, with one year abroad in Milano, Italy. He received the BS
degree in electrical engineering (9 semesters) in 1996 as well as the MS and PhD degrees
in 2000 and 2004. He has been employed at UniZg-FER as an assistant professor since
2006.

He was a postdoc researcher at IRISA, Rennes and at TU Graz. He led three re-
search projects of the Croatian Science Foundation (MultiCLOD, MASTIF, ADEPT) as
well as in several industrial research projects funded by Rimac automobili, RoMB, Mi-
croBlink, and Promet i prostor. He has participated in the research center of excellence
DataCross, several ERDF projects (SafeTram, MAS, A-UNIT) as well as on one FP7
project (ACROSS).

His research and professional interests include computer vision, visual recognition,
scene understanding, and dense prediction with deep convolutional models. He has pub-
lished 4 papers at top computer vision conferences (CVPR, ECCV) and 9 papers in
journals indexed by WoS. He has been a reviewer at top conferences (CVPR, ECCV,
ICCV, AAAI) as well as in scientific journals in the fields of computer vision, intelligent
transportation systems and robotics. He participated in the industrial development as a
technical consultant. He advises several PhD students funded by EU projects, national
projects and private companies. His research group has achieved notable results while
participating at computer vision challenges such as WildDash, Robust vision challenge,
Cityscapes and Fishyscapes.

Siniša Šegvić speaks english and italian very well, and has basic communication skills
in french. He is married and has three children. He is a member of IEEE.

O mentoru

Siniša Šegvić rođen je 1971. u Splitu. Osnovnu školu i gimnaziju završio je u Zadru osim
osmog razreda osnovne škole kojeg je pohađao u Milanu. Diplomirao je elektrotehniku
na zagrebačkom ETF-u (1996), a tamo je i magistrirao (2000.) i doktorirao (2004.) te se
zaposlio kao docent od 2006. godine.

Bio je postdoktorski istraživač na institutu IRISA u Rennesu (2006.-2007.) te na
TU Graz (2007.-2008.). Vodio je tri istraživačka projekta Hrvatske zaklade za znanost
(MultiCLOD, MASTIF, ADEPT) te više industrijskih istraživačkih projekata koje su
financirale tvrtke Rimac automobili, RoMB, MicroBlink te Promet i prostor. Sudjelovao
je u istraživačkom centru izvrsnosti DataCross, na nekoliko ERDF projekata (SafeTram,



MAS, A-UNIT) kao i na jednom projektu iz programa FP7 (ACROSS).
Njegovi istraživački i profesionalni interesi uključuju računalni vid, strojno učenje,

razumijevanje scena, i gustu predikciju dubokim konvolucijskim modelima. Objavio je
4 rada na vrhunskim konferencijama računalnog vida (CVPR, ECCV) te 9 radova u
časopisima koje indeksira SCI. Recenzent je na vrhunskim konferencijama računalnog vida
i umjetne inteligencije (CVPR, ECCV, ICCV, AAAI) kao i u znanstvenim časopisima u
područjima računalnog vida, inteligentnih transportnih sustava i robotike. Sudjelovao
je u industrijskom razvoju kao tehnički konzultant. Mentorira više doktoranada koje
financiraju evropski projekti, nacionalni projekti i privatne tvrtke. Njegova istraživačka
grupa postigla je zapažene rezultate na nekoliko natjecanja u računalnom vidu (WildDash,
Robust vision challenge, Cityscapes i Fishyscapes).

Siniša Šegvić odlično govori engleski i talijanski, i ima osnovne komunikacijske vještine
na francuskom. Oženjen je i ima troje djece. Član je IEEE.

ii



Acknowledgements

First, I would like to thank my advisor Siniša Šegvić. His passion, support and encour-
agement was essential and motivated me to pursue new ideas and accomplish the results
presented in this thesis. I have been fortunate to learn from Siniša during these years.

I would also like to thank Josip Krapac who gave me great advice while I was working
on the research ideas and writing papers.

Furthermore, I would like to thank other members of the computer vision research
group at the faculty who with interesting discussions and collaboration created an en-
couraging and positive work environment.

Last but not least, a big thank you to my girlfriend, sister, parents and friends who
believed in me and gave me support and motivation during this PhD research.



Abstract

This thesis investigates the semantic segmentation of large natural images. We focus on
the type of images that are recorded with a camera mounted on a vehicle. These kinds
of images do not suffer from the photographer bias and therefore usually contain harder
examples to generalize to. For the task of semantic segmentation, this means that the
objects appear on a wide range of scales. Hence, it is important that the method works
well both for small objects further away and large objects near the camera. The focus
of the thesis is on applying convolutional neural networks for semantic segmentation of
large images in an efficient manner. The thesis starts by providing an introduction to the
problem of semantic segmentation and explaining its relation with respect to the problem
of object localization. The introduction is concluded by discussing the challenges of the
problem. The next chapter starts by introducing the required concepts from the field of
machine learning. In particular, we review the convolutional neural networks and make
a comparison between DenseNet and ResNet architecture. The main contributions of the
thesis are as follows. First, we develop a scale-invariant convolutional model for semantic
segmentation which alleviates the problem of learning the same object on a wide range of
scales. Furthermore, we additionally contribute a new dataset for semantic segmentation
of driving scenes. The dataset contains groundtruth semantic segmentations for 445
annotated hand-picked images from the KITTI dataset. Second, we develop an efficient
asymmetric architecture for dense prediction on large images based on a densely connected
feature extractor and lightweight ladder-style upsampling. Third, we present the results
from the Robust Vision Challenge 2018 where we achieved the second place. The challenge
addressed cross-dataset and cross-domain training of dense prediction models. We have
found out that mixed batches ensure the most stable evolution of batchnorm parameters.
Low incidence of foreign classes indicates that our models succeeded to implicitly learn
to distinguish the domains. Finally, the presented architecture is computationally and
memory efficient and achieves a great tradeoff between inference speed and generalization
accuracy.

Keywords: computer vision, deep learning, semantic segmentation, ladder networks,
convolutional neural networks, Cityscapes, Pascal VOC2012, CamVid, KITTI



Konvolucijska arhitektura za učinkovitu semantičku
segmentaciju velikih slika

Ova doktorska disertacija proučava semantičku segmentaciju velikih prirodnih slika. Fokus
disertacije je primjena dubokih konvolucijskih modela odnosno konvolucijskih neuronskih
mreža za problem semantičke segmentacije. Glavni doprinosi disertacije su sljedeći:

1. učinkovita asimetrična arhitektura za semantičku segmentaciju koja se sastoji od
složenog gusto povezanog modula za raspoznavanje te jednostavnih modula za pi-
ramidalno sažimanje te ljestvičasto naduzorkovanje;

2. modul za izlučivanje invarijantnih konvolucijskih reprezentacija utemeljen na gus-
tom odabiru mjerila s obzirom na lokalnu stereoskopsku dubinu;

3. metodologija za učenje semantičke segmentacije na višedomenskim podatcima.
Disertacija je organizirana u šest poglavlja. U nastavku su dani sažeci svakog poglavlja.

Prvo poglavlje: Uvod

Mnogi bi se složili da je vid najvažnije osjetilo kojim ljudi percipiraju svijet. Za kre-
tanje primarno koristimo vid. Vid koristimo svakodnevno kako bismo riješili raznovrsne
probleme. I naši snovi su vizualni. Stoga nije čudno da ako želimo naučiti računala da
obavljaju velik broj naših poslova, najprije ih moramo naučiti da vide. Upravo je cilj
područja računalnog vida omogućiti računalima dar vida. Primjene računalnog vida na
konkretne probleme su brojne. Neke od njih su: autonomna navigacija robota i vozila,
analiza medicinskih snimki, sigurnosni i nadzorni sustavi, biometrijska identifikacija, pre-
traživanje slika na temelju sadržaja, obrada videa i fotografija, rekonstrukcija scene za 3D
karte ili kulturne znamenitosti itd. Koliko god nam se činilo da je vid lagan i prirodan
za nas ljude, računalni vid je jedan od najtežih problema unutar područja računarske
znanosti.

Semantička segmentacija je važan zadatak računalnog vida s mnogo primjena u robotici,
inteligentnom transportu, medicini, obradi slike itd. Zadatak semantičke segmentacije je
klasificirati piksele slike u semantičke razrede poput osobe, automobila, drveća, ceste, neba
itd. Razred piksela određen je vrstom objekta ili stvari koji se projicira na njega. Ulaz
u model je slika, a izlaz je predikcija razreda na razini piksela. Ovaj problem povezan je
s poznatijim problemom detekcije objekata koja se bavi pronalaskom pravokutnih okvira
objekata u slici. Okvir objekta je minimalni pravokutnik koji sadrži objekt te definira
njegov raspon. Broj pronađenih okvira odgovara broju objekata u slici. Ovo je razlika u
odnosu na semantičku segmentaciju kod koje broj objekata prilikom učenja i predikcije
nije poznat. Upravo ovo je jedan of glavnih izazova semantičke segmentacije: model mora



naučiti prepoznati piksel na temelju odgovarajuće velikog prostornog konteksta. Pri tome
veličina konteksta jako varira ovisno o vrsti i veličini objekta u slici. Veličinu objekta u
slici dodatno ovisi o vrsti objekta i udaljenosti od kamere. Na primjer za kamion ćemo
morati uzeti veći kontekst u obzir nego za automobil ili bicikl. Isto tako za automobil u
blizini u odnosu na automobil u daljini.

Konvolucijske mreže prvotno su primijenjene za problem klasifikacije slike. Kod klasi-
fikacije slike cilj je prepoznati da se objekt ili stvar pojavljuju u slici, bez informacije o
lokaciji samog objekta. Konvolucijske neuronske mreže vrlo su prikladan model i za prob-
lem semantičke segmentacije budući da zbog sažimanja mogu imati jako veliko receptivno
polje i tako pokriti velik raspon prostornog konteksta. Međutim, prostorno sažimanje
dovodi do smanjenja rezolucije dubokih latentnih reprezentacija. Izgubljenu rezoluciju
potrebno je vratiti kako bi predikcija sadržavala manje objekte i točne granice prijelaza
između instanci objekata.

U narednim poglavljima, disertacija predlaže efikasna rješenja navedenih izazova.
Posebna je pažnja usmjerena na primjenu u inteligentnim robotičkim i prometnim sus-
tavima gdje je kamera postavljena na vozilo ili robota. Slike pribavljene na ovakav način
nisu pristrane poput fotografija predmeta koju su snimili ljudi. To dodatno otežava gen-
eralizaciju modela učenih na takvim slikama.

Drugo poglavlje: Duboki konvolucijski modeli

Konvolucijske neuronske mreže posebno su prikladne za primjene u računalnom vidu.
Razlog tome je njihova prilagođenost topološki organiziranim podatcima gdje je pogodno
ostvariti invarijantnost na operaciju translacije. Ovakva pretpostavka dobro odgovara
slikama gdje se isti objekt može pojaviti na bilo kojoj lokaciji unutar slike. Konvolucijske
mreže u osnovnom obliku sastoje se od slijeda operacija konvolucije i nelinearnosti koji se
ponavljaju. Konvolucijski sloj sastoji se od grupe filtara. Svaki od njih provodi operaciju
konvolucije nad ulazom i generira mapu značajki na izlazu. Ulazni tenzor može imati
dvije, tri ili četiri dimenzije, ovisno o prirodi podataka. Filtri su definirani težinama koji
se tijekom učenja ugađaju kako bi imali visok odziv na podatkovnim uzorcima koji su
korisni za rješavanje problema. Izlazni tenzor sadrži konvolucijske značajke ili aktivacije.
Rani plitki slojevi uče značajke niske razine poput rubova, boje i teksture, a kasniji dublji
slojevi uče značajke visoke razine poput očiju, usta, glave, tijela itd. Pored konvolucijskih
i slojeva nelinearnosti obično imamo još i slojeve sažimanja i slojeve normalizacije. Uloga
slojeva sažimanja je povećanje receptivnog polja modela i ujedno smanjenje prostorne di-
menzionalnosti podataka. Slojevi normalizacije omogućuju stabilniju i bržu optimizaciju
modela.

Konvolucijske mreže prvotno su razvijene za problem klasifikacije na razini slike. To

vi



ih čini neprikladnima za izravnu primjenu u semantičkoj segmentaciji. Razlog tome leži u
sažimanju koje znatno povećava prostorni kontekst i također znatno smanjuje rezoluciju
predikcije. Na primjer, modeli prilagođeni za skup podataka ImageNet na izlazu konvolu-
cijskog dijela modela tipično daju 32 puta manju visinu i širinu slike. Izgubljenu rezoluciju
potrebno je vratiti kako bi semantička segmentacija imala gustu i detaljnu predikciju s
točnim granicama objekata. Ovo nije jednostavno postići zbog memorijskih ograničenja
današnjih grafičkih kartica i ostalih akceleriranih čipova. Poglavlje daje pregled pristupa
adaptiranja konvolucijskih mreža namijenjenih za klasifikaciju slika za dobivanje guste
predikcije potrebne semantičkoj segmentaciji.

Najpopularniji pristup zasniva se na dilatiranim konvolucijama koje ostvaruju veliko
receptivno polje bez upotrebe operacija sažimanja. Osnovna ideja je rijetko uzorkovanje
ulaznog tenzora gdje se prilikom računanja odziva preskače određeni broj vrijednosti
ulaznog tenzora. Veličina rupe između susjednih lokacija uzorkovanja ulaznog tenzora
naziva se i dilatacijski faktor. Pomoću ovog faktora možemo jednostavno namjestiti žel-
jeno receptivno polje. Kod adaptiranja klasične konvolucijske arhitekture za klasifikaciju
najprije se izbacuje operacija sažimanja, a zatim se dilatacijski faktor svih naknadnih kon-
volucija množi s veličinom koraka iz uklonjene operacije sažimanja. Prednost dilatiranog
pristupa je da nisu potrebni dodati slojevi za dobivanje guste predikcije. Mana je znatno
povećavanje vremenske i prostorne složenosti modela.

Naš pristup zasniva se na vraćanju rezolucije putem asimetričnog ljestvičasto povezanog
modela. Osnovna ideja je miješanje reprezentacija na različitim rezolucijama iz odgo-
varajućih dijelova mreže. Preciznije, putem preskočne veze miješaju se dublje značajke
niže rezolucije s ranijim značajkama na višoj rezoluciji. Model se tako dijeli na dva
puta: put poduzorkovanja čiji zadatak je raspoznavanje te put naduzorkovanja čiji za-
datak je miješanje reprezentacija različitih rezolucija kako bi se ostvarila gusta predikcija.
Dublje značajke su semantički bogate, ali imaju nisku prostornu rezoluciju izgubljenu pri-
likom sažimanja. Značajke ranijih slojeva bogate su informacijom o lokaciji, ali isto tako
sposobne naučiti semantiku manjih objekata i razreda koji ne zahtijevaju veliko recep-
tivno polje. Za razliku od dilatiranog modela, ljestvičasto povezani model ne zahtijeva
nepotrebnu propagaciju značajki kroz sve slojeve mreže. Ako je objekt bio prepoznat u
ranijim slojevima njegova reprezentacija se može preskočnom vezom direktno proslijediti
u put naduzorkovanja.
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Treće poglavlje: Konvolucijska invarijantnost na mjerilo za se-
mantičku segmentaciju

U ovom poglavlju prikazan je rad objavljen na konferenciji GCPR 2016 [1]. Jedan od
osnovnih problema raspoznavanja objekata u slici je širok raspon mjerila na kojem se
objekti pojavljuju. To je posebno izraženo kod prirodnih slika, na primjer slike pribavljene
kamerom montiranom na vozilo za vrijeme vožnje.

Osnovna ideja u ovom poglavlju je konvolucijski modul za postizanje invarijantnosti na
mjerilo odnosno veličinu objekata. Invarijantnost je ostvarena pomoću slikovne piramide
i dubinske slike pribavljene iz stereo kamere. Slikovna piramida omogućuje nam dobi-
vanje ekvivarijantne reprezentacije, dok invarijantnost postižemo normalizacijom mjerila.
Dubinska slika omogućuje nam da normaliziramo veličinu na kojoj konvolucijska mreža
vidi objekte. Svaki piksel invarijantne reprezentacije odabire se iz odgovarajuće razine
slikovne piramide ovisno o vrijednosti dubine u tom pikselu.

Ovdje je također prikazan i skup podataka kojeg smo ostvarili ručnim anotiranjem
(označavanjem) podskupa slika iz skupa KITTI. Počeli smo od 146 slika koje su anotirali
Ros et. al. [2], poboljšali točnost anotacija i popravili greške. Zatim smo anotirali
dodatnih 299 slika. Anotacije su opisane poligonima visoke kvalitete. Konačan skup
sastoji se od 445 anotiranih slika.

Za ekstrakciju značajki korištena je VGG-16 konvolucijska mreža. Dubinska slika
izračunata je pomoću naučene duboke metrike. Konvolucijski model za duboku metriku
naučen je na KITTI stereoskopskom skupu slika gdje su podaci snimljeni LIDAR-om
korišteni kao točna dubina. Ulaz u model je slikovna piramida s 8 razina. Najprije se
za svaku sliku nezavisno izračunaju konvolucijske značajke. Dobivene značajke zajedno
s dubinskom slikom su ulaz u modul za selekciju mjerila. Zadatak modula za selekciju
mjerila je predstaviti svaki piksel slike s konvolucijskim značajkama invarijantnim na skalu
koje su izračunate na 3 od 8 razina piramide.

Rezultati na skupovima Cityscapes i KITTI pokazuju da ovakav pristup može povećati
točnost u odnosu na različite varijante jednostavnijih pristupa koji nisu invarijantni na
skalu.

Četvrto poglavlje: Efikasni ljestvičasto povezani DenseNet za se-
mantičku segmentaciju velikih slika

U ovom poglavlju prikazan su radovi objavljeni u časopisu IEEE T-ITS [3] te na radionici
CVRSUAD u sklopu konferencije ICCV 2017 [4]. Predložili smo pristup za dobivanje
gustih predikcija koji se zasniva na miješanju reprezentacija na različitim rezolucijama iz
različitih dijelova mreže. Miješanje reprezentacija izvedeno je pomoću preskočnih veza
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od ekstraktora značajki prema modulima za naduzorkovanje. Za razliku od prethodne
arhitekture UNet, naša arhitektura je asimetrična: put za naduzorkovanje ima puno
manje slojeva od ekstraktora značajki. Ekstraktor značajki izveden je kao klasična kon-
volucijska arhitektura koja sažimanjem znatno smanjuje prostorne dimenzije latentnih
značajki u odnosu na ulaznu rezoluciju. Ekstraktor značajki čuva najapstraktnije la-
tentne reprezentacije na svakoj rezoluciji. Zatim se u povratnom putu dizanja rezolucije
ili naduzorkovanja postepeno miješaju značajke na manjoj rezoluciji sa značajkama veće
rezolucije koje se preskočnim vezama dovode iz ekstraktora značajki.

Put naduzorkovanja sastoji se od nekoliko jednostavnih i identičnih modula. Ulaz
u modul za dizanje rezolucije su značajke na dvije rezolucije. Nad značajkama niže
rezolucije najprije se provodi naduzorkovanje bilinearnom interpolacijom. Nad znača-
jkama više rezolucije aplicira se 1×1 konvolucija tako da se broj mapa značajki izjednači
reprezentaciji niže rezolucije. Zatim se dobivene reprezentacije miješaju zbrajanjem te se
rezultat obrađuje s 1×1 i 3×3 konvolucijama.

Značajke iz različitih dijelova konvolucijskog modela imaju različit omjer lokacijske
točnosti i veličine konteksta. Ovakav pristup omogućuje točnu klasifikaciju piksela koji
pripadaju i velikim i malim objektima, jer veliki objekti trebaju veliki prostorni kontekst
dok maleni objekti trebaju veliku rezoluciju. U odnosu na prethodne pristupe za dobivanje
guste reprezentacije klasifikacijskih modela, naš dizajn ima vrlo efikasno progušćivanje
predikcije.

Kao bazni model za raspoznavanje odabran je DenseNet-121 te je predložena strategija
memorijski efikasnog pristupa učenja ovog modela. Modelu je dodano dodatno sažimanje
na sredini trećeg bloka kako bi se dodatno povećalo receptivno polje za velike ulazne
slike. U putu za raspoznavanje najprije se reprezentacija sažima 64 puta, a zatim se po-
moću četiri efikasna modula za podizanje rezolucije vraća na 4 puta sažetu reprezentaciju.
Konačno, bilinearnom interpolacijom dobiva se predikcija na punoj rezoluciji.

Eksperimentalna analiza potvrđuje prednosti opisanog pristupa. Rezultati na skupovima
podataka Citscapes, CamVid, ROB2018 te Pascal VOC2012 pokazuju odličan omjer
između efikasnosti modela te segmentacijske točnosti.

Peto poglavlje: Robust Vision Challenge

U ovom poglavlju prikazani su rezultati dobiveni na natjecanju Robust Vision Chal-
lenge 2018. Cilj natjecanja bio je izmjeriti robusnost metoda računalnog vida na različite
domene podataka. Naš pristup natjecao se u problemu semantičke segmentacije te osvo-
jio drugo mjesto. Problem je uključivao četiri različita skupa podataka anotiranih slika
iz dvije domene: vanjske snimke vožnje pribavljene automobilom te unutarnje snimke
životnog prostora pribavljene fotoaparatima u kućama i stanovima. Prva tri skupa su
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sadržavala slike vožnje: Cityscapes, WildDash i KITTI. Zadnji četvrti skup ScanNet je
sadržavao snimke zatvorenih prostorija.

Razvili smo prototipnu proceduru za učenje modela koja dobro generalizira na sva
četiri skupa za testiranje. Skupovi se jako razlikuju osim domene i u broju primjera
te veličini slika. WildDash skup sadrži teške primjere s distorzijama i izvan distribuci-
jske primjere što ovaj skup podataka čini najtežim od tri skupa vožnje. ScanNet sadrži
mnoštvo slika zatvornog prostora koje su jako teške za segmentaciju budući da objekti
imaju visoku varijancu u veličini, rotaciji, vidljivosti te količini prekrivanja. Pored toga
oznake su vrlo neprecizne i sadrže dosta anotacijskih grešaka. Zbog navedenih razloga
točnost segmentacije je najlošija upravo na ScanNet skupu. Jedan od bitnih faktora pri-
likom učenja je miješanje primjera iz svih skupova za učenje u svakoj mini-grupi. Rezul-
tati pokazuju jako malo preklapanja u pogrešno klasificiranim pikselima između tri skupa
vožnje i ScanNeta. To upućuje da je model implicitno naučio razlikovati dvije domene.

Prikazana metoda zasniva se na efikasnoj arhitekturi predstavljenoj u prethodnom
poglavlju utemeljenoj na gusto povezanim slojevima za raspoznavanje te ljestvičastog
puta za naduzorkovanje.

Šesto poglavlje: Zaključci

U ovom poglavlju prikazan je sažetak rezultata i doprinosa ostvarenih tijekom rada na ovoj
doktorskoj disertaciji. Osnovne prednosti predloženih metoda su prostorna i vremenska
efikasnost i visoka točnost za problem semantičke segmentacije.

Ključne riječi: računalni vid, duboko učenje, semantička segmentacija, konvolucijske
neuronske mreže, Cityscapes, Pascal VOC2012, CamVid, KITTI
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Chapter 1

Introduction

1.1 Learning to see

The vision is perhaps the most important sensory experience for us humans. We navigate
our world primarily with vision. We use it to solve everyday tasks. Even our dreams
are visual. It is no wonder then if we want to offload some of our vision-based work to
computers, we first need to enable them to see. The goal of the field of computer vision is
to endow the computers with vision. Applications of the field to the real world problems
are numerous. Some of them are autonomous navigation of robots and vehicles, medical
imaging, safety and surveillance systems, biometric identification, content-based image
retrieval, consumer electronics, video editing and movie production, scene reconstruction
for 3D maps, cultural heritage, etc. But as much as vision comes easy to us humans, it
is nevertheless one of the hardest problems to solve in computer science. Digital image is
just a collection of pixel values representing the amount of photons that hit each camera
sensor cell during exposure. Yet somehow, we must be able to extract high-level semantic
information from those pixel values. We know that because we do it ourselves all the
time. The image contains high-dimensional unstructured data and our objective is to
model complex functions that will map that data to useful predictions. These predictions
should be structured and rich in semantics. For instance, if we want to recognize a dog in
the image the output of our function can be just a 0 or 1, depending upon the presence of
dog in the image. For many vision problems the best solutions are obtained by learning
instead of handcrafting. This is achieved through machine learning algorithms whose goal
is to enable computers to learn how to solve a task without being explicitly programmed to
do so. Recent advances in the field brought an impressive progress, in large part thanks to
the renaissance of deep convolutional models. In this thesis we shall see how convolutional
neural networks work when applied to the problem of semantic segmentation.
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1.2 Semantic Segmentation

Semantic segmentation is an exciting computer vision task with many potential appli-
cations in robotics, intelligent transportation systems, medical imaging, photo editing,
etc. In semantic segmentation a trained model classifies pixels into meaningful high-level
classes. The goal is to associate each image pixel with a high-level class such as the sky, a
tree or a person. Semantic segmentation provides rich information on surrounding envi-
ronment, which presents clear application potential in many domains. However, there are
challenges which are still to be solved before this exciting technique can be fully deployed
for the real world problems.

Most of the recent successful approaches in the field rely on the convolutional neural
networks trained as dense multi-class classification models, usually in the supervised learn-
ing framework. Thus, our models are trained on pairs of input examples and annotated
target labels. Figure 1.1 shows an example of the model input and the desired output.
The input is an image obtained from the camera while the target is a dense semantic
map in which colors correspond to classes. The model has to produce the prediction of
dense pixel labels. It is common to encode this prediction as a 3-dimensional tensor of
categorical distributions, each distribution corresponding to one pixel location. The first
two dimensions 𝐻 and 𝑊 correspond to the height and width of an image while the third
dimension 𝐶 represents class probabilities. Our training objective is a scalar function of
dense predictions and target labels, which is defined as a mean of non-negative per-pixel
contributions. Each per-pixel contribution is proportional to the mismatch between the
particular prediction and the corresponding target. Hence, we often denote our training
objective as loss. The training procedure optimizes the model parameters in order to
minimize the loss.

Model

Input image Target labels

Loss

Prediction 
[HxWx3] [HxWxC] [HxW]

Figure 1.1: The goal of the semantic segmentation model is to associate each image pixel with
the corresponding high-level label. In the fully supervised setup the model is trained on the
dataset of pairs of input images and annotated target labels. During training we minimize the
mismatch between model predictions and target labels. The predictions are encoded as a tensor
of pixel-level posterior class probabilities 𝑃 (𝑦𝑖𝑗 = 𝑐|𝑥). 𝐻 and 𝑊 denote the height and width
of the image while 𝐶 denotes the number of target classes.

2



Introduction

Due to being complementary to the more famous object detection problem, seman-
tic segmentation represents an important step towards advanced image understanding.
Figure 1.2 presents the difference between semantic segmentation and object detection.
Object detection has to regress bounding boxes around each instance of the known set of
classes. These bounding boxes are designated with white rectangles in Figure 1.2. Each
bounding box denotes a unique instance of a known class and has a well defined spatial
range aligned with the object boundaries. On the other hand, in semantic segmentation
the class of the pixel is determined by the object or stuff projected to that concrete pixel.
Hence, the object size is not encoded in the model prediction as in object detection where
size is defined by the bounding box. Nevertheless, the model will need to look at the
appropriate neighbourhood of a particular pixel in order to classify it.

Figure 1.2: Difference between semantic segmentation and object detection. In object detection
we only need to predict the bounding boxes around objects of interest. In semantic segmentation
usually almost all pixels need to be classified to corresponding classes. Note that context size
needed to classify each pixel exhibits a large variance in size due to a wide range of scale at
which objects appear.

1.3 Challenges

There are numerous challenges that emerge while applying convolutional neural networks
to semantic segmentation of large images. Classical convolutional networks were designed
for the problem of image classification. In image classification the goal is to classify
only the occurrence of objects in images. Thus, all information about object location is
lost in the prediction. On the other hand, semantic segmentation targets dense labels.
Consequently, the problem arises of how to adapt the convolutional neural network for
this kind of prediction. Let us now define the minimal context as the area of neighbouring
pixels needed to classify a particular pixel. Due to objects and stuff exhibiting a large
variance in the scale they appear in the image, the problem arises of determining the
appropriate context size. For each pixel the context size will be different depending on
the scale of the object it belongs to. This is depicted in the Figure 1.2 with two bounding
boxes. The person nearby will need a much larger context size compared to the distant
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person in order to classify all of its pixels correctly.
Figure 1.3 shows another more extreme case of a large context size needed to classify

the green pixel belonging to the white truck. Let us now define the concept of the model
receptive field as the maximum context size that affects a particular model decision. A
typical convolutional network designed for image classification will only be able to perceive
the context inside the blue square which is the limit of its receptive field. However, the
context needed to classify the green pixel is much bigger as shown by the red rectangle.
Therefore, we will need to find a way to increase the receptive field of the model by a
large factor. This is an important challenge that we will need to overcome while making
convolutional models suitable for semantic segmentation of large images. Furthermore,
due to the large input images we also need to address model efficiency, both in inference
time and memory requirements. In the following chapters, we present solutions to these
challenges.

Figure 1.3: Convolutional networks designed for image classification have limited receptive
field shown inside the blue square. The ideal context size needed to classify the green pixel is
shown inside the red rectangle.

1.4 Contributions

The main contributions of this thesis are as follows. First, we develop a scale-invariant
convolutional model for semantic segmentation which alleviates the problem of learning
the same object on a wide range of scales. We increase the accuracy of the model by devel-
oping a scale selection technique based on image pyramid and stereoscopic depth informa-
tion. Second, we contribute a new RGB-D dataset for semantic segmentation of driving
scenes. The dataset contains groundtruth semantic segmentations and stereoscopic depth
images for 445 annotated hand-picked camera images from the KITTI dataset. We start
from 146 images annotated by German Ros et al. [2], improve their annotation accuracy
and contribute another 299 images. Third, we develop an efficient architecture for dense
prediction on large images based on a densely connected feature extractor and lightweight
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ladder-style upsampling. The presented architecture is computationally and memory ef-
ficient and achieves a great tradeoff between inference speed and generalization accuracy.
Fourth, we present the results from the Robust Vision Challenge 2018 where we achieved
the second place. The goal of the competition was to assess the robustness of the model
to multiple dataset domains. We have found out that mixed batches ensure the most
stable evolution of batchnorm parameters. Low incidence of foreign classes indicates that
our models succeeded to implicitly learn to distinguish the domains.

To summarize, the contributions of this thesis are as follows:
1. efficient asymmetric architecture for semantic segmentation consisting of a cus-

tom densely-connected recognition module, lightweight spatial pyramid pooling and
lightweight upsampling (Chapter 4);

2. module for extracting scale-invariant convolutional representations based on dense
scale selection with respect to local stereoscopic depth (Chapter 3);

3. methodology for learning semantic segmentation models on multi-domain datasets
(Chapter 5).

1.5 Thesis structure

The remainder of this thesis is structured as follows. Chapter 2 presents an overview of
deep convolutional models and how to adapt models designed for the image classification
problem to be well suited for the problem of semantic segmentation. Chapter 3 presents
a novel convolutional architecture which allows to recover scale-invariant convolutional
representations. That work was accepted for oral presentation at GCPR 2016 [1]. Chapter
4 presents a novel convolutional architecture for dense prediction which allows correct
classification of pixels at both large and small objects by blending features taken from the
different layer depth. These features have different tradeoffs between location accuracy
and context size, allowing the model to correctly classify objects appearing on a wide
range of scales. In contrast to previous symmetric encoder-decoder approaches, our design
features a thick encoder and thin decoder. That work was accepted for presentation at
the CVRSUAD workshop at ICCV 2017 [4]. Chapter 5 presents an application of findings
from Chapter 4 in our submission to the Robust vision challenge in 2018 which took the
2nd place among 10 submissions. Contributions from Chapter 4 and Chapter 5 have been
published in IEEE Transactions on Intelligent Transportation Systems [3].
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Chapter 2

Deep Convolutional Models

This chapter provides the overview of deep convolutional models and main challenges in
applying them to the problem of semantic segmentation. First, it gives the necessary
theoretical foundations from machine learning used in the thesis. Second, it introduces
convolutional neural networks and explains how they were first applied for the image clas-
sification problem. Finally, we discuss the challenges of adapting convolutional networks
to semantic segmentation and give an overview of approaches.

2.1 Supervised Learning

In the supervised learning scenario the model 𝑓 is trained on the dataset of examples 𝑥

associated with target values 𝑦. The goal is to learn a function 𝑓 that performs mapping
𝑓 : 𝑋 ↦→ 𝑌 . Supervised learning assumes that we can collect a large enough dataset of
(𝑥,𝑦) pairs. If the process of data collection and annotation is not too expensive, than
supervised learning is a feasible approach to solving the problem. We commonly use
supervised learning for the types of problems where it is hard or seemingly impossible to
manually program the function 𝑓 . This is the case for semantic segmentation and many
other practical problems in computer vision.

Semantic segmentation belongs to the broad category of classification problems in the
field of machine learning. In a classification problem the target values 𝑦 are commonly
referred to as labels. Each label represents one of the classes that the model is expected
to recognize. The input to the semantic segmentation model 𝑓 is an RGB image of shape
3×ℎ×𝑤 usually normalized to have zero-mean and unit-variance. More formally, 𝑥∈R𝑑,
𝑦 ∈ {1, ...,𝑘} and 𝑓 : R𝑑 ↦→ {1, ...,𝑘} where input dimensionality 𝑑 = 3ℎ𝑤 and 𝑘 denotes
the number of classes.

In order to learn the model function 𝑓 defined by parameters 𝜃 we would like to
minimize the expected loss 𝐽*(𝜃) over data generating distribution 𝑝data or more formally:
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𝐽*(𝜃) = E(𝑥,𝑦)∼𝑝data 𝐿(𝑓(𝑥;𝜃),𝑦) (2.1)

where 𝑓(𝑥;𝜃) is the predicted output from the model on the input example 𝑥 and 𝜃 denotes
all trainable parameters of the model.

However, in practice it is not tractable to compute the expectation over data generating
distribution because there are to many possible (𝑥,𝑦) examples. Instead, we have access
only to data we managed to collect. Therefore, we approximate the loss function by taking
the average loss across all training data:

𝐽(𝜃) = 1
𝑁

𝑁∑︁
𝑖=1

𝐿(𝑓(𝑥𝑖;𝜃);𝑦𝑖) (2.2)

The assumption here is that the training data is independent and identically distributed
(i.i.d.). Finally we can represent the learning as an optimization problem where the goal
is to find model parameters 𝜃* that minimize the loss function given in Equation 2.2:

𝜃* = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

𝐿(𝑓(𝑥𝑖;𝜃),𝑦𝑖) (2.3)

While the optimization goal is to minimize the loss function on the training data
the ultimate goal of learning is to find the model which generalizes well on unseen data.
Given that the space of parameters 𝜃 is usually very large, there will exist many model
instances that achieve low loss value on training data. However, their generalization ability
on unseen data can vary greatly. In order to steer the optimization method towards
solutions 𝜃* that generalize better we can use a technique called regularization. The
goal of regularization is to adjust either the loss function 𝐽(𝜃), model function 𝑓 or
optimization method in such a way that it promotes solutions 𝜃* that generalize better
among all possible solutions. The most popular way of achieving regularization is by
adding additional regularizing term to the loss function. For instance, if 𝑓 is some type
of a neural network then we usually use L2 regularization. In L2 regularization we add
the squared L2 norm of the parameters 𝜃 to the loss term. The new regularized loss takes
the following form:

𝐽(𝜃) =
⎡⎣ 1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑓(𝑥𝑖;𝜃),𝑦𝑖)
⎤⎦ +𝜆‖𝜃‖22 (2.4)

where 𝜆 is the hyperparameter describing the regularization strength.
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2.2 Optimization

Optimization refers to the process of minimizing or maximizing the objective function.
In our case the objective function is the loss function from Equation 2.4 𝐽(𝜃) that we
want to minimize. In cases when 𝑓 is a deep neural network, the loss function can not
be minimized with a closed form solution. Therefore, deep models like convolutional
networks are optimized with first order methods. Second order methods are not feasible
because the Hessian matrix of second order derivatives is computationally too expensive
to calculate due to the large number of parameters. First order methods utilize first order
partial derivatives of the loss function 𝐽(𝜃) with respect to model parameters 𝜃. The
obtained vector of derivatives is also known as the gradient, denoted as ∇𝜃𝐽(𝜃). Note
that in order to apply gradient based optimization, the functions 𝐿 and 𝑓 have to be
differentiable. The simplest and most famous first order optimization method used in
machine learning is the stochastic gradient descend or SGD, outlined in Algorithm 1.

Algorithm 1 Stochastic gradient descent (SGD).
Input Learning rate 𝜖, batch size 𝑚, regularization strength 𝜆
Input Initial model parameters 𝜃
repeat

1. Sample a minibatch of 𝑚 examples from the training set {(𝑥1,𝑦1), ...,(𝑥𝑚,𝑦𝑚)}
2. Compute the gradient: 𝑔←∇𝜃𝐽(𝜃) =∇𝜃

[︁
1
𝑚

∑︀𝑚
𝑖=1 𝐿(𝑓(𝑥𝑖;𝜃),𝑦𝑖)+𝜆‖𝜃‖22

]︁
3. Apply parameter update: 𝜃← 𝜃− 𝜖𝑔

until stopping criterion is satisfied

The main idea behind the gradient descent is to move in the negative direction of the
gradient. We want to go in the negative direction because the gradient shows the direction
where the loss function is increasing and we want to minimize the loss. However, we must
be very careful not to overstep during parameter update. If the update step is too large,
we can easily move to the parameter space with higher loss value. The reason behind this
is that the gradient can only give us a linear approximation of the loss function which
is in fact highly non-convex. Therefore, the most important hyperparameter of gradient
descent methods like SGD is the learning rate 𝜖. If the learning rate is too high, the
optimization will not converge and may even diverge. If it is too low the optimization will
be too slow and we may not have the time or resources to wait it out. Furthermore, it
would be too expensive to compute the gradient 𝑔 on the entire training set in each step.
In SGD the idea is to sample a random subset of examples in each step and compute the
gradient approximation on that small sample. This trick allows the SGD to iterate and
converge much faster. The random subset of examples is called the minibatch or batch
and the size of the sample is defined by the hyperparameter 𝑚 also known as batch size.
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2.3 Deep Convolutional Models

Deep convolutional neural networks have caused an unprecedented rate of computer vision
development. They were first introduced by LeCun et al. [5] in 1998 but got the attention
of the whole community in 2012 when Krizhevsky et al. [6] participated in the greatest
image classification challenge at the time (ImageNet [7]). Their submission won by a very
large accuracy margin compared to the second place solution.

The main idea behind convolutional networks is the focus on unique kind of spatial
topology where we want our model to be invariant or equivariant to the translation. This
turns out to be especially well suited for images where the same object can easily occur
at any position in the image. In comparison, fully connected networks don’t work well on
image data because they make less assumptions about data. If we connect each neuron
with all the pixels in the image then they would be forced to learn specific features only
on particular position in the image. Therefore, the inductive bias of convolutional models
is a much better choice for images.

A typical convolutional network has four main types of layers:
• Convolution
• Non-linearity
• Subsampling
• Normalization

The input to the network is a 4 dimensional tensor of shape 𝑁 ×𝐶1×𝐻1×𝑊1. 𝑁 is
the number of image examples in a batch, also known as the batch size. 𝐻1 and 𝑊1

and height and width of the image and 𝐶1 is the number of color channels in the image
(usually 1 or 3). For simplicity, in the examples later in this chapter we assume 𝑁 = 1
case where only a single input image processed. However, training the models with large
enough 𝑁 is important in practice as it makes the gradients more stable and because
normalization layers usually depend on 𝑁 . The input image tensor of shape 𝐶1×𝐻1×𝑊1

is first processed by the first convolution layer. This is illustrated in the Figure 2.1. The
convolution layer consists of a set of convolutional filters. Let us denote the number of
filters in the first convolution layer with 𝐶2. Each filter has a shape 𝐾1×𝐾1×𝐶1 and
will perform a convolution across the height and width of the input. The output of the
convolution is another tensor with the shape of 𝐶2×𝐻2×𝑊2 where 𝐻2 = 𝐻1−𝐾 +1 and
𝑊2 = 𝑊1−𝐾 + 1. Note that 𝐾− 1 pixels of resolution are lost on both dimensions due
to the border limits. The values in the output tensor are often referred to as the layer
activations. Typical values for the filter size 𝐾 are between 1 and 7.

Due to some models having many convolutional layers, sometimes even hundreds, a
large decrease of resolution would accumulate. More specifically, 𝐿(𝐾− 1) pixels would
be lost on each dimension where 𝐿 is the number of convolutions. Therefore, in most
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Figure 2.1: Visualization of of the convolution operation. The input RGB image is convoloved
with three filters of size 2×2. At each position the dot product between the filter and the input
values is first computed after which the bias term 𝑏 is added. Image reproduced from [8].

cases we would like to preserve the spatial shape of the input tensor on the output and
have 𝐻2 = 𝐻1 and 𝑊2 = 𝑊1. This is achieved by padding the input tensor at each of
the 4 spatial borders. The number of padded pixels we need to add to each border is
𝑃 = (𝐾 − 1)/2. Most commonly used padding is zero padding where all values in the
added dimensions are set to zero.

After convolution, we apply the non-linearity operation to all values of the tensor.
Typical non-linearity operations are rectifed linear unit (ReLU), sigmoid function and
the tanh function. Adding non-linearity between convolutions is a very important feature
of convolutional models. Without non-linearity, multiple subsequent convolutions would
always define a linear function, no matter how many convolutions we stack together. This
occurs since the composition of multiple linear functions is also a linear function. Non-
linearity layers break the linear relation between convolution layers and enable the model
to capture a complex high-dimensionality manifolds capable of describing a complex input
data like images of natural scenes. The output tensor from non-linearity layer is used as
the input tensor to the next convolution layer. This process is then repeated for all
convolution and non-linearity layers. More generally, the convolutional networks have a
directed acyclic graph (DAG) topology where nodes represent the operations and edges
represent the flow of tensors during graph evaluation. Each operation or node can take
multiple inputs but produce only one output. In the basic convolutional network all nodes
have exactly one input and one output.

The LeNet architecture introduced by LeCun et al. [9] in 1998 is the convolutional
neural network for character recognition that had a large influence on deep learning rev-
olution which started after AlexNet [6] won the ImageNet challenge in 2012. The LeNet
model is illustrated in Figure 2.2. The model was designed for the MNIST dataset for

10



Deep Convolutional Models

Figure 2.2: The LeNet architecture introduced by LeCun et al. [9]. It features 3 convolutional
layers, 2 max-pooling layers and a fully connected layer at the end. All three convolutions have
filter size of 5×5. Note that last convolutional layer behaves like a fully connected one because
the size of the input feature maps is the same as the filter size (5×5). Figure reproduced from
[9].

handwritten digit recognition. The MNIST dataset has images of size 32× 32 and 10
classes corresponding to digits. Due to that, the architecture of LeNet was rather simple
compared to modern counterparts.

Let us now introduce the concept of the receptive field. The receptive field of a
particular activation is composed of all the pixels in the input image that are used to
compute that activation value. We can further define the receptive field of a particular
layer as the size of the rectangle which defines the receptive field of any activation produced
by that layer.

In the computational graph, each consecutive convolution will increase the receptive
field size. However, if we only use vanilla convolution layers the size of the receptive
field will grow very slowly. More formally, the size of the receptive field at the 𝑛-th
convolutional layer is defined by the equation 𝑘𝑛 + ∑︀𝑛−1

𝑖=1 (𝐾𝑖− 1). For instance, 50 con-
volutions each having 𝐾 = 3 would produce the receptive field of size 101× 101 pixels
(3 + 49 ·2 = 101). Unfortunately, this rate of growth is not feasible, even more so for the
large input images we need to deal with.

In order to solve this problem we will now introduce the subsampling operation. In a
subsampling operation the height and width of the input tensor are reduced by a factor
of 𝑆. The effect of this spatial size reduction will be a dramatically increase the receptive
field of all the following convolutions. Basically, the rate of growth in the layers that
follow after subsampling will be multiplied by the factor of 𝑆. By combining multiple
subsampling operations at different places in the graph we can easily obtain exponential
increase in the receptive field size. The subsampling operation is usually achieved in
one of two ways: by using a strided convolution or by applying the pooling operation.
Strided convolution will have a step size of 2 or larger while iterating over input locations.
For example, stride size of 2 will apply the convolution on sparse locations with the
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distance of 2 pixels between adjacent locations. Pooling operation is very similar in a
way that is also used a strided iteration but instead of applying the convolution it applies
some fixed function of the input. Popular function choices are max and average pooling.
We can draw a line between these two approaches by comparing strided convolution with
average pooling operation. In average pooling the weights are fixed to always compute the
average while the convolution has learnable weights and computes the weighted average
of the inputs. While convolutions are equivariant to translation and increase the receptive
field very incrementaly, subsampling layers introduce invariance to the translation in the
input image and produce a large increase in receptive field. Subsampling operations
produce the output tensor of shape 𝐶2×𝐻2×𝑊2 where 𝐻2 = ⌊(𝐻1−𝐾 +2𝑃 )/𝑆⌋+1 and
𝑊2 = ⌊(𝑊1−𝐾 +2𝑃 )/𝑆⌋+1.

The goal of the normalization operations is to improve the stability of the optimization
process, enable faster training. More often than not, this also leads to a better model
generalization. By far the most used normalization operation is Batch Normalization
(BatchNorm) [10]. In BatchNorm usually the output from the convolutional layer is
normalized to have zero mean and unit variance. In the original paper the authors argue
that BatchNorm reduces the internal covariate shift which is described as an effect of
introducing change to the distribution of features caused by the updated to the preceding
layers during training. The hypothesis is that this internal covariate shift has a negative
impact on training but this still remains an open research problem. In the later work
Santurkar et al. [11] argue that BatchNorm doesn’t really reduce the internal covariate
shift. They perform experiments to show that BatchNorm has a smoothing effect on the
loss surface. This has stabilizing effect and reduces noise in gradients during training
which allows for the well observed faster training and often better generalization. The
main issue with BathNorm is its sensitivity to small batch size. Alternative methods like
GroupNorm [12] are being developed to alleviate this issue. GroupNorm addresses this
problem by grouping feature maps and than computing the mean and variance for a whole
group instead of each feature map separately.

Deep convolutional models have caused an unprecedented rate of computer vision
development. Their sudden rise to the focus of research attention has been catalized by
rapid development of GPU computing, appearance of large image classification datasets
[7], and simple but non-obvious additions [10, 13, 14, 15] to the early work in the field
[9]. Model depth has been steadily increasing from 8 levels [6] to 19 [16], 22 [17], 152 [18],
201 [19], and beyond [18].

12



Deep Convolutional Models

2.4 Image Classification

With all the building blocks of the convolutional network stacked in a simple feedforward
manner it is straightforward to build an architecture suitable for image classification
problem. In the image classification problem the input to the model is the image and the
output is a vector which encodes a probability distribution over known classes. Typical
ConvNet architecture for image classification on the ImageNet [7] problem is shown in
Figure2.3. The number of feature maps in the intermediate tensors correspond to the
DenseNet121 model [20].

First, an input image of size 224×224×3 is processed by a stem unit where its reso-
lution is subsampled 4 times usually by strided convolution and max-pooling operations.
The obtained 56×56×𝐶 tensor is then processed by 4 subsequent convolutional blocks.
Each of the convolutional blocks consists of multiple units of stacked convolution, nor-
malization and non-linearity layers. Furthermore, blocks 2, 3 and 4 have subsampling
operations at the beginning where the input resolution is halved on both spatial axes.
DenseNet uses average-pooling here. It is common to increase the number of feature
maps after resolution subsampling. We can afford this because each subsampling reduces
the number of pixels to process by 4 times so it is reasonable to transfer that computation
to feature space. This will have a big impact on model capacity and typically last to
blocks hold most of the parameters. Consequently, in our DenseNet121 case the 4 blocks
output tensors with [256,512,1024,1024] feature maps. Therefore, the final fourth block
produces feature tensor of shape 7× 7× 1024. This feature tensor is then sent to the
classification head (FC head) where first the global spatial pooling is applied to obtain
only a vector of shape 1024 and then projected with a fully connected (FC) layer to the
final logits. The logits vector represent per-class scores and in the ImageNet case is has
1000 elements, one for each class.

2.4.1 Loss Function

In order to train image classification model we need to first define a loss function. For
classification we use the probabilistic framework which allows us to model the uncertainty
of the observed data. Furthermore, we can utilize the maximum likelihood estimation
(MLE) from probability theory to get the point estimate of the model parameters. Under
MLE we define a loss function with respect to the model parameters which maximizes the
likelihood of observing the data in the training set.

First step in defining a loss function is to map the predicted logits from our model to
probabilities. We need a differentiable function which will normalize the logits in a way
that they sum to 1 and that they are non-negative. This will transform logits to represent

13



Deep Convolutional Models

56x56x256

Conv
Block
1

Conv
Block
2

Conv
Block
3

Conv
Block
4

FC
head

S
t
e
m

LogitsImage

224x224x3

28x28x512

14x14x1024
7x7x1024 1000

Figure 2.3: Image classification model architecture for ImageNet. All building blocks are
shown, but the focus is on the convolutional blocks and their output tensors. Tensor shapes are
in 𝐻×𝑊 ×𝐶 format and correspond to the DenseNet121 model [20].

valid probability distribution over classes. The most common function used to achieve
this is the softmax function which takes a input vector of logits z and outputs a vector of
probabilities p. It is defined in the equation below

𝑝𝑖 = 𝜎(z)𝑖 = 𝑒𝑧𝑖∑︀𝐾
𝑘=1 𝑒𝑧𝑘

(2.5)

where K is the number of classes and 𝑝𝑖 the probability of the i-th class or p[𝑖].
The most commonly used loss function for classification is the cross-entropy loss, which

is defined as:

𝐿(p,y) =−
𝐾∑︁

𝑘=1
𝑦𝑘 log𝑝𝑘 (2.6)

Cross-entropy comes from information theory and in our case can be viewed as an non-
negative distance between two distributions p and y. Most often, the true distribution
y is set to be a one-hot vector putting all probability mass on the correct class. In that
case the loss can be further simplified to negative log probability of the correct class:

𝐿(p,y) =− log𝑝𝑘 [𝑦𝑘 = 1] (2.7)

where 𝑘 is the index of the correct class. Under the assumption that the examples in
the dataset are independent and identically distributed (i.i.d.) by minimizing this loss we
arrive to the maximum likelihood estimation of the model parameters 𝜃*:

𝜃* = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

𝐿(𝑓(x𝑖;𝜃),y𝑖) = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1
− log𝑝𝑘 (2.8)
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where 𝑓(x𝑖;𝜃) is prediction p𝑖 from the model 𝑓 given input example x𝑖.

2.5 ResNet architecture

ResNet architecture [18, 21] introduced skip-connections to the classic neural network
architecture composed of stacked feed-forward layers (Figure 2.5). The authors observed
that for classic neural networks, the gradient descent optimization method is very sensi-
tive to the model depth. If we add too much layers the optimization becomes unstable
resulting in a worse error on both train and test datasets. This suggests that the problems
of training very deep models are not caused by overfitting due to higher model complexity.
Instead, they conclude that the optimization algorithm is unable to locate a good mini-
mum on the loss surface. This hypothesis is further investigated by Li et al. in [22] where
they arrive to the same conclusion by visualizing the loss surface of different convolutional
architectures.

In order to fix these problems, Kaiming He has proposed to sum the output of each
convolutional unit with its input via a skip-connection, as illustrated in Figure 2.5. As a
result, the subsequent convolutional unit has contact with units which are not its imme-
diate predecessors. This kind of skip-connection is called a residual connection, since each
convolutional unit is encouraged to learn an additive correction factor (or residuum) of the
preceding part of the convolutional model. Adding the input features of the convolutional
unit to the output features helps the optimization procedure to find a better solution in
the parameter space as we increase the number of layers. Basically, with residual con-
nection the convolution has to only learn the residual or the difference between the input
features and desired output features. This will encourage the optimization procedure to
learn the identity function which will enable to model to propagate good features in early
layers. Classic architectures have a very hard time learning the identity function. For
example, it would have to learn the convolution filter where the center weight is 1 and all
the rest are 0. With residual connection it only has to learn the filter where all the values
are set to 0. Considering that random initialization sets most weights close to zero and
with L2 regularization pushing all weights to zero, residual connections make an identity
function very easy to learn. Because of these properties, residual connections enable the
deeper ConvNet models to achieve lower train and test errors and generalize better than
shallow models.
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Figure 2.4: DenseNet with three dense blocks for an image classification task. Figure repro-
duced from [20].

2.6 DenseNet architecture

DenseNet architecture [20] addresses the same problem we discussed with ResNet, that
is, making the deep convolutional models trainable with stochastic gradient descent. In
DenseNet the output of a convolutional layer is concatenated with the outputs of all
preceding layers, as illustrated in Figure 2.6. The obtained tensor is then used as an input
to the next layer. In this way we obtain dense connectivity between layers while preserving
the feed-forward processing. In contrast to ResNet, DenseNet combines features through
concatenation instead of summation. The main advantage of DenseNet is that it does not
need to learn to propagate already strong features in earlier layers through all subsequent
layers. Because of its heavy reuse of previous feature maps, DenseNet requires fewer
parameters than ResNet for the same model depth which we discuss in 2.7.4. DenseNet
can be viewed as a subset of ResNet where a large part of the weights in each layer is
fixed to identity function. Therefore, we can say that DenseNets behave like regularized
ResNets in a way such that the feature propagation is enforced, while requiring much less
computational resources due to not having to perform the actual propagation.

2.7 Comparison between ResNet and DenseNet

Most convolutional architectures [16, 17, 20, 21] are organized as a succession of processing
blocks which process image representation on the same subsampling level. Processing
blocks are organized in terms of convolutional units [21] which group several convolutions
operating as a whole.

We illustrate similarities and differences between ResNet and DenseNet architectures
by comparing the respective processing blocks, as shown in Figures 2.5 and 2.6. We
consider the most widely used variants: DenseNet-BC (bottleneck - compression) [20]
and pre-activation ResNets with bottleneck [21].
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Figure 2.5: A pre-activation residual block [21] with n units. Labeled circles correspond
to convolutional units (𝑓1-𝑓𝑘), summations (+) and n-way concatenations - concat (n). All
connections are 3D tensors D×H×W, where D is designated above the connection line (for
simplicity, we assume the batch size is 1). 𝐹in and 𝐹out denote numbers of feature maps on the
processing block input and output, respectively.
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Figure 2.6: A densely connected block [20]. Labeled circles correspond to convolutional units
(𝑓1-𝑓𝑘), summations (+) and n-way concatenations - concat (n). All connections are 3D tensors
D×H×W, where D is designated above the connection line (for simplicity, we assume the batch
size is 1). 𝐹in and 𝐹out denote numbers of feature maps on the processing block input and
output, respectively.

2.7.1 Organization of the processing blocks

The main trait of a residual model is that the output of each convolutional unit is summed
with its input. This is illustrated in Figure 2.5. Hence, all units of a residual block have
a constant output dimensionality 𝐹out. Typically, the first ResNet unit increases the
number of feature maps and decreases the resolution by strided projection. On the other
hand, DenseNet units operate on a concatenation of the main input with all preceding
units in the current block This is illustrated in Figure 2.6. Thus, the dimensionality of
a DenseNet block increases after each convolutional unit. The number of feature maps
produced by each DenseNet unit is called the growth rate and is defined by the hyper-
parameter 𝑘. Most popular DenseNet variations have 𝑘=32, however we also consider
DenseNet-161 with 𝑘=48.

In order to reduce the computational complexity, both ResNet and DenseNet units
reduce the number of feature maps before 3×3 convolutions. ResNets reduce the dimen-
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sionality to 𝐹out/4, while DenseNets go to 4𝑘. DenseNet units have two convolutions
(1×1, 3×3), while ResNet units require three convolutions (1×1, 3×3, 1×1) in order to
restore the dimensionality of the residual datapath. The shapes of ResNet convolutions
are: 1×1×𝐹out×𝐹out/4, 3×3×𝐹out/4×𝐹out/4, and 1×1×𝐹out/4×𝐹out. The convolu-
tions in i-th DenseNet unit are 1×1×[𝐹in+(i-1)·k]×4k, and 3×3×4k×k. All DenseNet
and pre-activation ResNet units [21] apply batchnorm and ReLU activation before con-
volution (BN-ReLU-conv). On the other hand, the original ResNet design [18] applies
convolution at the onset (conv-BN-ReLU), which precludes negative values along the skip
connections.

2.7.2 Time complexity

Both architectures encourage exposure of early layers to the loss signal. However, the dis-
tribution of the representation dimensionality differs: ResNet keeps it constant through-
out the block, while DenseNet increases it towards the end. We compare a ResNet block
(Figure 2.5) with its DenseNet counterpart (Figure 2.6) with the same hyperparameters
𝐹in and 𝐹out. DenseNet units have the following advantages: i) producing fewer feature
maps (k vs 𝐹out), ii) lower average input dimensionality, iii) fewer convolutions per unit:
2 vs 3. Asymptotic per-pixel time complexities of DenseNet and ResNet blocks are re-
spectively: 𝑂DN(𝑘2𝑛2)=𝑂(𝐹 2

out) and 𝑂RN(𝑛𝐹 2
out). Popular ResNets alleviate asymptotic

disadvantage by having only 𝑛=3 units in the first processing block which is computa-
tionally the most expensive due to largest resolution. Hence, the temporal complexity of
DenseNet models is only moderately lower than comparable ResNet models, although the
gap increases with capacity [20].

We illustrate this by comparing ResNet-50 (26·106 parameters) and DenseNet-121
(8·106 parameters). On ImageNet test set the ResNet-50 achieves 76.1% Top1 accuracy
while DenseNet-121 achieves 75.0%. Theoretically, ResNet-50 requires around 33% more
floating operations than DenseNet-121 [20]. In practice the two models achieve roughly
the same training speed on GPU hardware due to popular software frameworks being
unable to implement concatenations without costly copying across GPU memory. Fur-
thermore, popular GPU hardware is still unable to sustain the required bandwidth of 1x1
convolutions in DenseNet units [23]. However, in inference the DenseNet-121 is slightly
faster than ResNet-50 after optimizing the costly concatenations. This optimization is
already implemented in popular inference libraries like TensorRT. Note however that we
have not considered improvements based on learned grouped convolutions [24] and early-
exit classifiers [25].
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2.7.3 Extent of caching required by backprop

Although DenseNet blocks do not achieve decisive speed improvement for small models,
they do promise substantial gains with respect to training flexibility. Recall that backprop
requires caching of all convolution input tensors in order to be able to calculate gradients
with respect to convolution weights. This caching may easily overwhelm the GPU memory,
especially in the case of dense prediction in large images. The ResNet design implies a
large number of feature maps at input of each convolutional unit (cf. Figure 2.5). The
first convolutional unit incurs a double cost despite receiving half feature maps due to 22

times larger spatial dimensions. This results in 𝑐RN per-pixel activations which is clearly
𝑂(𝑛 ·𝐹out):

𝑐RN = (𝑛+1) ·𝐹out . (2.9)

The DenseNet design alleviates this since many convolutional inputs are shared. An
optimized implementation would need to cache only 𝑐DN per-pixel activations:

𝑐DN = 𝐹in +(𝑛−1) ·𝑘 ≈ 𝐹out . (2.10)

Equations (2.9) and (2.10) suggest that a DenseNet block has a potential for 𝑛-fold reduc-
tion of the backprop memory footprint with respect to a ResNet block with the same 𝐹out.
We note that ResNet-50 and DenseNet-121 have equal 𝐹out in the first three processing
blocks, while ResNet-50 is twice as large in the fourth processing block.

Unfortunately, exploiting the described potential is not straightforward, since existing
autograd implementations perform duplicate caching of activations which pass through
multiple concatenations. Hence, a straightforward implementation has to cache the output
of each unit in all subsequent units at least two times: i) as a part of the input to the first
batchnorm ii) as a part of the input to the first convolution (1×1). Due to this, memory
requirements of unoptimized DenseNet implementations grow as 𝑂(𝑘𝑛2) [26] instead of
𝑂(𝑘𝑛) = 𝑂(𝐹out) as suggested by (2.10). Fortunately, this situation can be substantially
improved with gradient checkpointing. The idea is to instruct autograd to cache only the
outputs of convolutional units as suggested by (2.10), and to recompute the rest during the
backprop. This can also be viewed as a custom backprop step for DenseNet convolutional
units. We postpone the details for Section 4.5.

2.7.4 Number of parameters

It is easy to see that the number of parameters within a processing block corresponds to
the number of per-pixel multiplications considered in 2.7.2: each parameter is multiplied
exactly once for each pixel. Hence, the number of DenseNet parameters is 𝑂(𝐹 2

out), while
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the number of ResNet parameters is 𝑂(𝑛𝐹 2
out). However, the correspondence between time

complexity and the number of parameters does not remain the same at the model level
since time complexity is linear in the number of pixels. Hence, per-pixel multiplications
make a greater contribution to time-complexity in early blocks than in later blocks. On
the other hand, the corresponding contribution to the number of parameters is constant
across blocks. Therefore, the largest influence to the model capacity comes from the latter
blocks due to more convolutional units and larger output dimensionalities.

Table 2.1 compares the counts of convolutional weights in ResNet-50 and DenseNet-
121. We see that DenseNet-121 has twice as much parameters in block 1, while the
relation is opposite in block 3. The last residual block has more capacity than the whole
DenseNet-121. In the end, DenseNet-121 has three times less parameters than ResNet-50.

Table 2.1: Count of convolutional weights across blocks (in millions). ResNet-50
has 𝑛=[3,4,6,3] and 𝐹out=[256,512,1024,2048] while DenseNet-121 has 𝑛=[6,12,24,16] and
𝐹out=[256,512,1024,1024].

block@subsampling B1@/4 B2@/8 B3@/16 B4@/32

Resnet-50 0.2 1.2 7.1 14.9

DenseNet-121 0.4 1.0 3.3 2.1

2.7.5 DenseNets as regularized ResNets

Let us consider a DenseNet block D and a ResNet block R with equal number of convolu-
tional units 𝑛 and an equal output dimensionality 𝐹out. We will show that each DenseNet
block D can be realized with a suitably engineered ResNet block R such that each R𝑖

produces 𝐹out = 𝐹in +𝑛𝑘 maps. Assume that R𝑖 is engineered so that the maps at indices
𝐹in + 𝑖𝑘 through 𝐹in +(𝑖+1)𝑘 are determined by non-linear mapping 𝑟𝑖, while all remain-
ing maps are set to zero. Then, the effect of residual connections becomes very similar
to the concatenation within the DenseNet block. Each non-linear mapping 𝑟𝑖 observes
the same input as the corresponding DenseNet unit D𝑖: there are 𝐹in maps correspond-
ing to the block input, and (𝑖− 1)𝑘 maps produced by previous units. Hence, 𝑟𝑖 can be
implemented by re-using weights from D𝑖, which makes R equivalent to D.

We see that the space of DenseNets can be viewed as a sub-space of ResNet models
in which the feature reuse is heavily enforced. A ResNet block capable to learn a given
DenseNet block requires an 𝑛-fold increase in time complexity since each R𝑖 has to produce
𝑂(𝑘𝑛) instead of 𝑂(𝑘) feature maps. The ResNet block would also require an 𝑛-fold
increase of backprop caching and an 𝑛-fold increase in capacity following the arguments
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in 2.7.3 and 2.7.4. We conclude that DenseNets can be viewed as strongly regularized
ResNets. Hence, DenseNet models may generalize better when the training data is scarce.

2.8 Semantic Segmentation

In semantic segmentation the goal is to classify each pixel in the image to the kind of
object or stuff it is a part of. Objects are all things with a well defined shape (e.g.
cars, people) while stuff are all regions in the image without a specific shape (e.g. road,
sky) [27]. This is different from image classification where to goal is to classify only the
presence of usually only objects in the image. Consequently, in image classification we
did not care about preserving the location information and could afford to loose it in
subsampling layers. Now the objective is to modify the model in a way to preserve the
location information and enable it to produce dense tensor of probabilities on the output.
This tensor will encode the class probabilities for each pixel in the input image. Therefore,
in the case of semantic segmentation the input to the model is an image and the output
is a tensor of probabilities instead of only a single vector.

The most common evaluation metric used for assessing the quality of semantic seg-
mentation model is the mean Intersection over Union (mIoU). It is defined as a mean over
class IoU metrics. Basically, first the IoU is computed for each class separately and then
the mIoU is obtained by taking the mean. Class IoU is defined as the intersection be-
tween the set of predicted segmentation pixels and the set of groundtruth pixels, divided
by their union. Most datasets contain pixels which do not belong to any of the classes.
They are usually labeled to a special ignore class and model prediction for those pixels is
ignored during evaluation. More formally, mIoU is defined by the following equation:

mIoU = 1
𝐶

𝐶∑︁
𝑖=1

TP𝑖

TP𝑖 +FP𝑖 +FN𝑖
(2.11)

where 𝐶 is the number of classes, TP𝑖 denotes true positive, FP𝑖 false positive and FN𝑖

false negative predictions for the i-th class.
Early approaches to semantic segmentation optimized a trade-off between multiple

local classification cues (texture, color etc), and their global agreement [28]. Later work
improved these ideas with non-linear embeddings [29], multi-scale analysis [30], depth [1],
and improved spatial consistency [31, 32]. However, none of these approaches has been
able to match the improvement due to deep convolutional models [9, 30].

It is common for semantic segmentation to have the input image with a larger resolu-
tion compared to image classification, typically ranging from 0.5MP to 2MP. The question
arises of how to convert an image classification model to one suitable for semantic seg-
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mentation. Ideally, the converted model should keep all the good properties of the image
classification model, mainly that it is computationally and memory efficient, has high
model capacity and a large receptive field. There are two main approaches to achieving
dense prediction in convolutional networks: dilated convolutions and ladder-style upsam-
pling also known as feature pyramid network (FPN) [33]. Both approaches produce great
results but offer different tradeoffs as we shall see in the following sections. More recently,
a third approach called High-resolution network (HRNet) [34] has been proposed. It is
based on designing an new architecture suitable for dense prediction instead of relying
on the ImageNet based model. Before explaining the approaches for achieving dense
prediction, let us first introduce the loss function for semantic segmentation.

2.8.1 Loss Function

Loss function for semantic segmentation is typically cross-entropy and the only difference
to the image classification loss is that now we need to define a loss across all pixel posi-
tions. p and y are now 3-dimensional tensors instead of vectors. Therefore, after adding
summation over height 𝐻 and width 𝑊 dimensions of the image the loss has the following
form:

𝐿(p,y) =− 1
𝐻𝑊

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑦
(𝑖,𝑗)
𝑘 log𝑝

(𝑖,𝑗)
𝑘 (2.12)

2.8.2 Dilated Convolutional Models

The most popular way of adapting a classical ConvNet for a dense prediction task is to
replace subsampling operations with dilated convolutions. Dilated convolutions [35] are
convolutions which can achieve a large increase in the receptive field without utilizing
subsampling operations. Figure 2.7 shows that dilated convolutions imply sparse instead
of dense sampling of the input tensor. This is achieved by dilating the convolutional filter
by an input stride factor 𝑟. Figure 2.7(a) shows a normal 3× 3 filter (𝑟 = 1) applied on
some feature map 𝐹0. Red dots represent the filter sampling places and green area shows
that the elements of output feature map 𝐹1 have the receptive field of 3×3. In 2.7(b) the
𝐹1 feature map is convolved by a dilated filter with 𝑟 = 2. The result is a feature map 𝐹2

with receptive field of 7×7. Finally, in 2.7(b)(c) dilated filter with 𝑟 = 4 is applied to the
𝐹2 and the output feature map 𝐹3 now has the receptive field of 15×15. Thus, increasing
𝑟 achieves exponential growth of the receptive field. Because the input is sampled at
sparse locations with holes in-between them it is easy to tune the size of the receptive
field by changing the size of the input stride of the dilated convolution. Note that without
dilated convolutions the receptive field of the final 𝐹3 feature map would be only 7×7.

Figure 2.8 shows the architecture of the semantic segmentation model obtained by
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Figure 2.7: (a) normal 3×3 filter (𝑟 = 1), (b) dilated filter with 𝑟 = 2, (c) dilated filter with
𝑟 = 4. The figure is reproduced from [35].

introducing dilated convolutions in the last two convolutional blocks. The main objective
is to obtain the dense prediction while keeping a large receptive field of the network.

The model from Figure 2.8 is very similar to the model from Figure 2.3. However
all subsampling operations are removed and all subsequent convolutions are dilated with
the previous input stride multiplied by hyperparameter 𝑟. Due to its similarity to the
ImageNet model the dilated convolutional model is suitable for transfer learning because
the segmentation model parameters can be initialized from the classification model trained
on ImageNet. In order to add dilated convolutions, typically subsampling operation is
removed and all convolutions after it are dilated with a value of 𝑟 which preserves the
receptive field. If some convolutions were already dilated before, the new dilation factor is
obtained by multiplying the two factors. The dilated convolutions are employed by most
of the recent works on semantic segmentation [36, 37, 38, 39, 40]. The upside of the dilated
approach is that we do not need to introduce any new layers or parameters to the model.
By dilating the convolutions and removing subsampling operations the density of the
predictions is increased in a simple manner. The downsides are that dilated convolutions
dramatically increase the computational and space complexity of the model. For the most
classification models this means that they will become very memory inefficient during
training and slow in inference time.

2.8.3 Dense Prediction with Ladder-style Upsampling

The problems of approach based on dilated convolutions can be solved by replacing them
with ladder-style upsampling. Ladder-style upsampling, which we promote in this thesis
[3, 4, 41], is based on the idea that we can recover the resolution lost due to subsampling
by blending low resolution features in deeper layers with high resolution features from
earlier layers. Deeper features are rich in semantics but lack the spatial resolution lost
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Figure 2.8: Semantic segmentation model obtained by utilizing dilated convolutions in the last
two blocks. Note that the dilation rates that preserve the receptive field of the original model
from Figure2.3 are 𝑟 = 2 and 𝑟 = 4. K denotes the number of classes on the output. Tensor
shapes are in 𝐻×𝑊 ×𝐶 format and correspond to the DenseNet121 model [20].

during subsampling. Shallower features are rich in location accuracy and capable of
capturing the semantics of smaller objects and low level details. This encourages the
deep layers to discard location information and focus on abstract image properties. By
combining features from all convolutional blocks we can achieve dense prediction and
preserve all important properties of ConvNets. Furthermore, features from early layers
encode small object details which are not easy to propagate through all the layers in the
dilated approach and this propagation consumes model capacity. However ladder-style
upsampling succeeds to recover most small objects lost during subsampling after blending
with high-resolution features.

Figure 2.9 shows the architecture of a semantic segmentation model based on the
ladder-style upsampling. The model input is an image of size 1024× 1024 and the pro-
duced outputs are per-pixel logits encoded in the tensor of shape 1024×1024×𝐾 where
𝐾 is the number of classes in the dataset. The downsampling path (upper part) remains
identical to the convolutional part of the classification model shown in Figure 2.3. The
obtained feature tensor is then processed with the context unit. It is common the apply
spatial pyramid pooling context unit [3] in order to capture long-range context informa-
tion across the 32× 32 grid. The resulting tensor is sent to the upsampling path (lower
part). The upsampling path consists of the transition-up upsampling units (TU). Each
upsampling unit takes the current tensor and blends it with the skip-connected tensor
from the downsampling path. During blending the smaller tensor is upsampled bilinearly
to match the resolution of the skip-connected tensor. Then the two of them are blended
either by summation or by concatenation followed by a convolution. Note that the up-
sampling path is very lean when compared to downsampling path. Each upsampling unit
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usually contains only one or two 1×1 convolutions. This type of upsampling for semantic
segmentation was first introduced by U-Net [42]. The main difference of our approach to
U-Net is that U-Net has a symmetric downsampling and upsampling path. We propose
an asymmetric model which is better suited for most dense prediction problems. The
intuition behind this is that recognition task in the downsampling path is harder than the
task of feature blending and resolution recovery in the upsampling path. Therefore, the
downsampling path requires a heavy model with much larger capacity than the upsam-
pling path. Furthermore, U-Net uses concatenation followed by two 3×3 convolutions in
its upsampling unit and has one 2× 2 convolution applied after each upsampling where
the number of feature maps is reduced.
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Figure 2.9: Semantic segmentation model obtained by utilizing ladder-style upsampling. The
upper downsampling path is the same ImageNet model from Figure 2.3. The lower upsampling
path recovers the lost resolution by blending the higher level features with the lower level fea-
tures via skip connections to the intermediate feature tensors from the downsampling path. K
denotes the number of classes. Tensor shapes are in 𝐻×𝑊 ×𝐶 format and correspond to the
DenseNet121 model [20].
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Chapter 3

Convolutional Scale Invariance for
Semantic Segmentation

In this chapter we develop an approach towards introducing scale invariance to convo-
lutional networks for semantic segmentation. While it is easy to design convolutional
networks that are invariant to translation (cf. Chapter 2), there is no simple way to make
them invariant to different appearance scales and rotation in the image.

We motivate our approach by considering semantic segmentation as classification of
image windows centered at the particular pixel. This formulation resembles the localiza-
tion task [43], which is concerned with finding objects in images. Localization similarly
performs classification of image windows of different shape and scale. But in localization
those image windows describe the bounding boxes around objects. However, the two tasks
are trained in a different manner. Positive object localization windows have a well-defined
spatial extent: they are tightly aligned around particular instances of the considered class.
On the other hand, the class of a semantic segmentation window is exclusively determined
by the kind of the object which projects to the central pixel of the window. Thus we see
that the window size does not affect the correct semantic segmentation outcome. How-
ever, this opens the question of how large should these windows be. Unfortunately, there
is no simple answer to this question. Featureless or ambiguous texture calls for large
windows in order to allow the model to squeeze information from the context [44]. Small
distinctive objects require small windows, since off-object pixels may provide misleading
classification cues. This suggests that a pixel-level classifier is likely to perform better
if supplied with a local image representation at multiple scales [30, 32, 45] and multiple
levels of detail [46, 47].

We especially consider applications in intelligent transportation systems and robotics.
We note that images acquired from vehicles and robots are quite different from images
taken by humans. Images taken by humans always have a purpose: the photographer
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wants something to be seen in the image. On the other hand, a vehicle-mounted camera
operates independently from the pose of the objects in the scene: it simply acquires a
fresh image each 40 milliseconds. Hence, the role of the context [44] in car-borne datasets
[48, 49] will be different than in datasets acquired by humans [50]. In particular, objects
in car-borne datasets (cars, pedestrians, riders, etc) are likely to be represented at a
variety of scales due to forward camera motion. Not so in datasets taken by humans,
where a majority of objects is found at particular scales determined by rules of artistic
composition. This suggests that paying a special attention to object scale in car-borne
imagery may bring a considerable performance gain.

One approach to address scale-related problems would be to perform a joint dense
recovery of depth and semantic information [51, 52]. If the depth recovery is successful,
the classification network gets an opportunity to leverage that information and improve
performance. However, these methods have limited accuracy and require training with
depth groundtruth. Another approach would be to couple semantic segmentation with
reconstructed [53] or measured [54] 3D information. However, the pixel-level classifier
may not be able to successfully exploit this information. Yet another approach would
be to use the depth for presenting better object proposals [54, 55]. However, proposing
instance locations in crowded scenes may be a harder task than classifying pixels.

In this chapter we present a novel technique for scale-invariant training and inference
in stereoscopic semantic segmentation. This work was accepted for oral presentation at
GCPR 2016 [1]. Unlike previous approaches, we address the scale-invariance directly, by
leveraging the reconstructed depth information [56, 57] to disentangle the object appear-
ance from the object scale. We realize this idea by introducing a novel scale selection layer
into a deep network operating on the source image pyramid. The resulting scale-invariance
substantially improves the segmentation performance with respect to the baseline.

3.1 Related work

Early semantic segmentation work was based on multi-scale hand-crafted filter banks
[2, 28] with limited receptive fields (typically less than 50×50 pixels). Recent approaches
[32, 45, 46, 58] leverage amazing power of GPU [30] and extraordinary capacity of deep
convolutional architectures [6] to process pixel neighborhoods by ImageNet-grade classi-
fiers. These classifiers typically possess millions of trainable parameters, while their recep-
tive fields may exceed 200×200 pixels [16]. The capacity of these architectures is dimen-
sioned for associating an unknown input image with one of 1000 diverse classes, while they
typically see around million images during ImageNet pre-training plus billions of patches
during semantic segmentation training. An architecture trained for ImageNet classifi-
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cation can be transformed into a fully convolutional form by converting fully-connected
layers into equivalent convolutional layers with the same weights [46, 59, 60]. The result-
ing fully convolutional network outputs a dense W/s×H/s×1000 multi-class heat map
tensor, where W×H are input dimensions and s is the subsampling factor due to pooling.
Now the number of outputs of the last layer can be redimensioned to whatever is the
number of classes in the specific application and the network is ready to be fine-tuned for
the semantic segmentation task.

Convolutional application of ImageNet architectures typically results in considerable
downsampling of the output activations with respect to the input image. Some researches
have countered this effect with trained upsampling [46] which may be reinforced by tak-
ing into account switches from the strided pooling layers [61, 62]. Other ways to achieve
the same goal include interleaved pooling [59] and dilated convolutions [35, 46]. These
approaches typically improve the baseline performance in the vicinity of the object bor-
ders due to more accurate upsampling of the semantic maps. We note that the system
presented in our experiments does not feature any of these techniques, however it still
succeeds to deliver competitive performance.

As emphasized in the introduction, presenting a pixel-level classifier with a variety of
local image representations is likely to favor semantic segmentation performance. Pre-
vious researchers have devised two convolutional approaches to meet this idea: the skip
architecture and the shared multi-class architecture. The shared multi-class architectures
concatenate activations obtained by applying the common pixel-level classifier at multiple
levels of the image pyramid [16, 30, 32, 45, 51]. The skip architectures concatenate activa-
tions from different levels of the deep convolutional hierarchy [46, 47]. Both architectures
have their merits. The shared multi-scale architecture is able to associate the evaluated
window with the training dataset at unseen scales. The skip architecture allows to model
the object appearance [43] and the surrounding context at different levels of detail, which
may be especially appropriate for small objects. Thus it appears that best results might
be obtained by a combined approach which we call a multi-scale skip architecture. The
combined approach concatenates pixel representations taken at different image scales and
at different levels of the deep network. We note that this idea does not appear to have
been addressed in the previous work.

Despite extremely large receptive fields, pixel-level classification may still fail to es-
tablish consistent activations in all cases. Most problems of this kind concern smooth
parts of very large objects: for example, a pixel in the middle of a tram may get classified
as a bus. A common approach to such problems is to require pairwise agreement be-
tween pixel-level labels, which leads to global optimization across the entire image. This
requirement is often formulated as MAP inference in conditional random fields (CRF)
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with unary, pairwise [31, 32, 58] and higher-order potentials [63]. Early methods allowed
binary potentials exclusively between neighboring pixels, however, this requirement has
later been relaxed by defining binary potentials as linear combinations of Gaussian ker-
nels. In this case, the message passing step in approximate mean field inference can be
expressed as a convolution with a truncated Gaussian kernel in the feature space [31, 58].
Recent state of the art approaches couple the CRF training and inference in custom con-
volutional [32] and recurrent [63] deep neural networks. Experiments from this chapter
feature a separately trained CRF with Gaussian potentials while our future work shall
include joint CRF training [32].

We now review the details of the previous research which is most closely related to
our contributions. Banica et al. [54] exploit the depth sensed by RGBD sensors to im-
prove the quality of region proposals and the subsequent region-level classification on
indoor datasets. Chen et al [45] propose a scale attention mechanism to combine classi-
fication scores at different scales. This results in soft pooling of the classification scores
across different classes. Ladicky and Shi [51] propose to train binary pixel-level classifiers
which detect semantic labels at some canonical depth by exploiting the depth groundtruth
obtained by LIDAR. Their inference jointly predicts semantic segmentation and depth
by processing multiple levels of the monocular image pyramid. Unlike all previous ap-
proaches, our technique achieves efficient classification and training due to scale-invariant
image representation recovered by exploiting reconstructed depth. Unlike [45], we perform
hard scale selection at the representation level. Unlike [51], we exploit the reconstructed
instead of the groundtruth depth.

3.2 Fully convolutional architecture with scale selec-
tion

We integrate the proposed technique into an end-to-end trained fully convolutional ar-
chitecture illustrated in Fig. 3.1. The proposed architecture independently feeds images
from an N-level image pyramid into the shared feature extraction network. Features from
the lower levels of the pyramid are upsampled to match the resolution of features from the
original image. We forward the recovered multi-scale representation to the pixel-wise scale
selection multiplexer. The multiplexer is responsible for establishing a scale-invariant im-
age representation in accordance with the reconstructed depth at the particular pixel.
The back-end classifier scores the scale-invariant features with a multi-class classification
model. The resulting score maps are finally converted into the per-pixel distribution over
classes by a conventional softmax layer.
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Figure 3.1: A convolutional architecture with scale-invariant representation.

3.2.1 Input pyramid and depth reconstruction

The left image of the input stereo pair is iteratively subsampled to produce a multi-scale
pyramid representation. The first pyramid level contains the left input image. Each
successive level is obtained by subsampling its predecessor with the factor 𝛼. If the
original image resolution is W×H, the resolution of the l-th level is W/𝛼𝑙×H/𝛼𝑙, 𝑙 ∈ [0..N-
1] (𝛼=1.3, N=8). We reconstruct the depth by employing a deep correspondence metric
[57] and the SGM [56] smoothness prior. The resolution of the disparity image is W×H.

3.2.2 Single scale feature extraction

Our single scale feature extraction architecture is based on the feature extraction front-end
of the 16-level deep VGG-D network [16] up to the relu5_3 layer (13 weight layers total).
In order to improve the training, we introduce a batch normalization layer [10] before each
non-linearity in the 5th group: relu5_1, relu5_2 and relu5_3. This modification helps
the fine-tuning by increasing the flow of the gradients during backprop. Subsequently we
perform a 2×2 nearest neighbor upsampling of relu5_3 features and concatenate them
with pool3 features in the spirit of skip architectures [46, 47] (adding pool4 features did
not result in significant benefits). In comparison with relu5_3, the representation from
pool3 has a 2×2 higher resolution and a smaller receptive field (40×40 vs 185×185). We
hypothesize that this saves some network capacity because it relieves the network from
propagating small objects through all 13 convolutional and 4 pooling layers.

The described feature extraction network is independently applied at all levels of
the pyramid, in the spirit of the shared multi-class architectures [16, 30, 32, 45, 51].
Subsequently, we upsample the representations of pyramid levels 1 to N-1 in order to revert
the effects of subsampling and to restore a common resolution across the representations
at all scales. We perform the upsampling by a nearest neighbor algorithm in order to
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preserve the sparsity of the features. After upsampling, all N feature tensors have the
resolution W/8×H/8×(512+256). The 8×8 subsampling is due to three pooling levels
with stride 2. Features from relu5_3 have 512 dimensions while features from pool3

have 256 dimensions.
The described procedure produces a multi-scale convolutional representation of the

input image. A straight-forward approach to exploit this representation would be to
concatenate the features at all N scales. However, that would imply a huge computational
complexity which would make training and inference infeasible. One could also perform
such procedure at some subset of scales. However, that would require a costly validation to
choose the subset, while providing less information to the back-end classification network.
Consequently, we proceed towards achieving scale-invariance as the main contribution of
our work.

3.2.3 Scale selection multiplexer

The responsibility of the scale selection multiplexer is to represent each image pixel with
scale-invariant convolutional features extracted at exactly M=3 out of N levels of the
pyramid. The scale invariance is achieved by choosing the pyramid levels in which the
apparent size of the reference metric scales are closest to the receptive field of our features.

In order to explain the details, we first establish the notation. We denote the image
pixels as 𝑝𝑖, the corresponding disparities as 𝑑𝑖, the stereo baseline as 𝑏, and the recon-
structed depths as 𝑍𝑖. We then denote the width of the receptive field for our largest
features (conv5_3) as 𝑤𝑟𝑓 = 185, the metric width of its back-projection at distance 𝑍𝑖

as 𝑊𝑖 and the three reference metric scales in meters as 𝑊𝑅 = {1,4,7}. Finally, we define
𝑠𝑚𝑖 as the ratio between the m-th reference metric scale 𝑊𝑅𝑚 and the back projection
𝑊𝑖 of the receptive field:

𝑠𝑚𝑖 = 𝑊𝑅𝑚

𝑊𝑖
= 𝑊𝑅𝑚

𝑏
𝑑𝑖

𝑤𝑟𝑓

= 𝑑𝑖 ·𝑊𝑅𝑚

𝑏 ·𝑤𝑟𝑓
. (3.1)

The ratio 𝑠𝑚𝑖 represents the exact image scaling factor by which we should downsample
the original image to attain the reference scale 𝑚 at pixel 𝑖. Now we are able to choose
the representation from the pyramid level 𝑙𝑚𝑖 which has a downsampling factor closest to
the true factor 𝑠𝑚𝑖:

𝑙̂𝑚𝑖 = argmin
𝑙

⃒⃒⃒
𝛼𝑙− 𝑠𝑚𝑖

⃒⃒⃒
, 𝑙 ∈ {0,1, ...,𝑁 −1} . (3.2)

The multiplexer determines the routing information at pixel 𝑝𝑖, by mapping each of the
𝑀 reference scales to the corresponding pyramid level 𝑙𝑚𝑖. We illustrate the recovered 𝑙𝑚𝑖
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in Fig. 3.2 by color coding the computed pyramid levels at three reference metric scales.
Note that in case when 𝑠𝑚𝑖 < 1 we simply always choose the first pyramid level (𝑙 = 0). We

Figure 3.2: Visualization of the scale selection switches. From left to right: original image,
switches for the three reference metric scales of 1m, 4m and 7m.

have not experimented with upsampled levels of the pyramid mostly because of memory
limitations. The output of the multiplexer is a scale-invariant image representation which
is stored in 𝑀 feature tensors of the dimension W/8×H/8×(512+256).

3.2.4 Back-end classifier

The scale-invariant feature tensors are concatenated and passed on to the classification
subnetwork which consists of one 7×7 and two 1×1 convolution+ReLU layers. The former
two layers have 1024 maps and batch normalization before non-linearities. The last 1×1
convolutional layer is configured in a way that the number of feature maps corresponds
to the number of classes. The resulting class scores are passed to the pixel-wise softmax
layer to obtain the distribution across classes for each pixel.

3.3 A novel semantic segmentation dataset

We contribute a novel RGB-D dataset for semantic segmentation of driving scenes. The
dataset contains groundtruth semantic segmentations for 445 hand-picked images from
the KITTI dataset [48]. We start from 146 images annotated by German Ros from
UAB Barcelona [2], improve their annotation accuracy and contribute another 299 im-
ages. The annotations feature high quality pixel-level polygonal approximations into 11
semantic classes: building, vegetation, sky, road, fence, pole, sidewalk, sign, car, pedes-
trian, bicyclist. The RGB images of size 1241×376 are provided with their corresponding
depth images obtained with stereoscopic reconstruction. Some examples of annotations
are depth images are given in Figure 3.3. The KITTI dataset provides a large collec-
tion of traffic videos with LIDAR reconstruction groundtruth. We use the LIDAR as
groundtruth and utilize metric learning to train the convolutions network on the patches
of size 11×11. The embeddings from convolutional network are used as an input to the
Semi-global matching [56] algorithm where finally the stereoscopic depth image is pro-
duced. The combined dataset with 399 training and 46 test images is freely available for
academic research [64, 65].
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Figure 3.3: Some examples from KITTI semantic segmentation dataset. Camera images are
taken from the KITTI dataset. We contribute the semantic segmentation annotations (first
column)(middle column) and stereoscopic depth images (third column).

3.4 Experiments

We evaluate our method on two different semantic segmentation datasets containing out-
door traffic scenes: Cityscapes [49] and KITTI [48]. The Cityscapes dataset [49] has
19 classes recorded in 50 cities during several months. The dataset features good and
medium weather conditions, large number of dynamic objects, varying scene layout and
varying background. It consists of 5000 images with fine annotations and 20000 images
with coarse annotations (we use only the fine annotations). The resolution of the images
is 2048×1024. The dataset includes the stereo views which we use to reconstruct the
depth.

We train our networks using Adam SGD [66] and batch normalization [10] without
learnable parameters. Due to memory limitations we only have one image in a batch. The
input images are zero-centered and normalized. We initialize the learning rate to 10−5,
decrease it to 0.5 ·10−5 after 2nd epoch and again to 10−6 after 10th epoch. Before each
epoch, the training set is shuffled to eliminate the bias. The first 13 convolutional layers
are initialized from VGG-D [16] pretrained on ImageNet and fine tuned during training.
All other layers are randomly initialized. In all experiments we train our networks for
15 epochs on Cityscapes dataset and 30 epochs on KITTI dataset. We use the softmax
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cross-entropy loss which is summed up over all the pixels in a batch. In both datasets
the frequency of pixel labels is highly unevenly distributed. We therefore perform class
balancing by weighting each pixel loss with the true class weight factor 𝑤𝑐. This factor can
be determined from class frequencies in the training set as follows: 𝑤𝑐 = min(103,𝑝(𝑐)−1),
where 𝑝(𝑐) is the frequency of pixels from the class 𝑐 in the batch. In all experiments
the three reference metric scales were set to equidistant values 𝑊𝑅 = {1,4,7} which were
not cross-validated but had a good coverage over the input pixels (cf. Fig. 3.2). A Torch
implementation of this procedure is freely available for academic research∗.

In order to alleviate the downsampling effects and improve consistency, we postpro-
cess the semantic map with the fully-connected CRF [31]. The negative logarithms of
probability distributions across classes are used as unary potentials, while the pairwise
potentials are based on a linear combination of two Gaussian kernels [31]. We fix the
number of mean field iterations to 10. The smoothness kernel parameters are fixed at
𝑤(2) = 3, 𝜃𝛾 = 3, while a coarse grid search on 200 Cityscapes images is performed to
optimize 𝑤(1) ∈ {5,10}, 𝜃𝛼 ∈ {50,60,70,80,90}, 𝜃𝛽 ∈ {3,4,5,6,7,8,9}.

The segmentation performance is measured by the intersection-over-union (IoU) score
[67] and the pixel accuracy [46]. We first evaluate the performance of two single scale
networks which are obtained by eliminating the scale multiplexer layer and applying
our network to full resolution images (cf. Fig. 3.1). This network is referred to as Sin-
gle3+5. Furthermore, we also have the Single5 network which is just Single3+5 without
the representation from pool3. The label ScaleInvariant shall refer to the full architecture
visualized in Fig. 3.1. The label FixedScales refers to the similar architecture with fixed
multi-scale representation obtained by concatenating the pyramid levels 0, 3 and 7.

First, we show results on the Cityscapes dataset. We downsample original images
and train on smaller resolution (1504x672) due to memory limitations. Table 3.1 shows
the results on the validation and test sets. We can observe that our scale invariant
network improves over the single scale approach across all classes in Table 3.1. We can
likewise notice that the concatenation from pool3 is important as Single3+5 produces

∗https://github.com/ivankreso/scale-invariant-cnn

Table 3.1: Individual class results on the Cityscapes validation and test sets (IoU scores). Last
row represents a fraction by which each class is represented in the training set.
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Validation set

Single5 93.0 64.6 80.6 28.7 37.5 30.4 38.5 43.6 81.9 42.3 81.5 57.2 37.3 83.4 36.0 43.9 37.1 38.6 58.8 53.4
Single3+5 93.8 67.9 83.2 30.1 37.4 37.8 45.3 55.5 86.3 49.3 85.9 63.8 40.9 87.0 32.7 50.5 31.7 37.1 63.5 56.8

FixedScales 94.6 70.9 85.5 42.5 42.4 39.6 46.2 55.3 86.5 50.3 86.4 64.4 45.4 88.3 47.2 60.8 54.0 43.1 63.9 61.4
ScaleInvariant 95.1 72.4 86.6 45.3 47.3 42.0 50.6 56.3 87.2 52.7 86.1 69.8 51.1 89.0 55.3 70.8 54.0 46.8 64.1 64.4

Test set
ScaleInvariant 95.3 73.5 86.4 36.8 42.7 45.5 56.6 57.8 89.5 63.6 90.3 73.5 53.1 90.3 30.8 48.2 39.6 52.2 62.7 62.5

ScaleInvariant+CRF 96.3 76.8 88.8 40.0 45.4 50.1 63.3 69.6 90.6 67.1 92.2 77.6 55.9 90.1 39.2 51.3 44.4 54.4 66.1 66.3

% in train 33.5 6.3 24.0 0.7 1.0 1.4 0.2 0.6 16.9 1.2 4.0 1.4 0.2 7.6 0.3 0.3 0.3 0.1 0.5
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better results then Single3 and that improvement is larger for smaller classes like poles,
traffic signs and traffic lights. That supports our hypothesis that the representation from
pool3 helps to better handle smaller objects. Furthermore, the scale invariant network
achieves significant improvement over multi-scale network with fixed image scale levels
(FixedScales). This agrees with our hypothesis that the proposed scale selection approach
should help the network to learn a better representation. The table also shows results on
the test set (our online submission is entitled Scale invariant CNN + CRF).

The last row in Table 3.1 represents a proportion by which each class is represented
in the training set. We can notice that the greatest contribution of our approach is
achieved for classes which represent smaller objects or objects that we see less often like
buses, trains, trucks, walls etc. This effect is illustrated in Fig. 3.4 where we plot the
improvement of the IoU metric with respect to the training set proportion for each class.
Likewise we achieve improvement in pixel accuracy from 90.1% (Single3+5) to 91.9%
(ScaleInvariant).
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Figure 3.4: Improvement of the IoU metric between Single3+5 and ScaleInvariant architecture
with respect to the proportion inside training set for each class.

Fig. 3.5 shows examples where the scale-invariant network produces better results.
The improvement for big objects is clearly substantial. We often observe that the scale-
invariant network can differentiate between road and sidewalk and person and rider, es-
pecially when they assume a rare appearance as in the last row with cobbled road which
is easily mistaken for sidewalk.
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Figure 3.5: Examples where scale invariance helps the most. From left to right: input,
groundtruth, baseline segmentation (Single3+5), scale invariant segmentation.

Table 3.2: Individual class results on the KITTI test set (IoU scores).

method sk
y

bu
il

di
ng

ro
ad

si
de

w
al

k

fe
nc

e

ve
ge

ta
ti

on

p
ol

e

ca
r

si
gn

p
ed

es
tr

ia
n

cy
cl

is
t

mean

Single3+5 82.1 82.1 89.5 71.8 37.1 80.7 27.4 79.7 32.6 41.9 14.3 58.1
ScaleInvariant 84.1 83.9 91.4 73.1 43.2 79.2 33.6 82.0 44.7 57.3 12.8 62.3

Table 3.2 shows results on the KITTI test set. We notice a significant improvement in
mean IoU class metric, which is, however, smaller than on Cityscapes. The main reason
is that KITTI has much less smaller classes (only pole, sign and cyclist). Furthermore,
it is a much smaller dataset which explains why the performance is so low on classes
like cyclist and pole. Here we again report an improvement in pixel accuracy from 87.63
(Single3+5) to 88.57 (ScaleInvariant).

3.5 Discussion

We have presented a novel technique for improving semantic segmentation performance.
We use the reconstructed depth as a guide to produce a scale-invariant representation
in which the appearance is decoupled from the scale. This precludes the necessity to
recognize objects at all possible scales and allows for an efficient use of the classifier
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capacity and the training data. This trait is especially important for navigation datasets
which contain objects at a great variety of scales and do not exhibit the photographer
bias.

We have integrated the proposed technique into an end-to-end trainable fully convolu-
tional architecture which extracts features by a multi-scale skip network. The extracted
features are fed to the novel multiplexing layer which carries out dense scale selection
at the pixel level and produces a scale-invariant representation which is scored by the
back-end classification network.

We have performed experiments on the novel Cityscapes dataset. Our results are very
close to the state-of-the-art, despite the fact that we have trained our network on reduced
resolution. We also report experiments on the KITTI dataset where we have densely
annotated 299 new images, improved 146 already available annotations and release the
union of the two datasets to the community. The proposed scale selection approach has
consistently contributed substantial increases in segmentation performance. The results
show that deep neural networks are extremely powerful classification models, however,
they are still unable to learn geometric transformation better than humans.
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Chapter 4

Efficient Ladder-style DenseNets for
Semantic Segmentation of Large
Images

In this chapter we develop and present an efficient convolutional architecture for semantic
segmentation of large images based on ladder-style upsampling. The backbone of the
architecture is based on DenseNet [20]. We show that DenseNet is an efficient model
for dense prediction when combined with ladder-style upsampling and due to its heavy
feature reuse, very suitable for semantic segmentation.

Much recent attention has been directed towards residual models (also known as
ResNets) [18, 21] in which each processing step is expressed as a sum between a com-
pound non-linear unit and its input. This introduces an auxiliary information path which
allows a direct gradient propagation across the layers, similarly to the flow of the state
vector across LSTM cells. However, in contrast to the great depth of residual models, it
appears that most of the training occurs along relatively short paths [68]. Hence, today
we believe that residual models act as an exponentially large ensemble of moderately deep
sub-models. Recent approaches replicate and exceed the success of residual models by in-
troducing skip-connections across layers. Our work is based on densely connected models
(also known as DenseNets) [19]. As described in Section 2.6, convolutional units of densely
connected blocks operate on concatenations of all previous features at the current reso-
lution. This encourages feature sharing and discourages overfitting [19], while favouring
the gradient flow towards early layers as in much better known ResNet models. Authors
of the DenseNet concept have succeed to match the Imagenet accuracy of residual models
with three times more parameters. Our semantic segmentation experiments show that
DenseNet-based models outperform their counterparts based on ResNets [21] and more
recent dual path networks [69]. Besides outstanding generalization, DenseNets carry a
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great memory-saving potential due to extensive feature reuse. However, this potential is
not easily materialized due to inefficient activation caching during automatic differentia-
tion. We show that this can be effectively alleviated by extensive gradient checkpointing
[70] which leads to five-fold reduction of memory requirements.

Most deep models for semantic segmentation must decrease the spatial resolution of
deep layers in order to enable training under strict GPU memory limitations. Subse-
quently, deep features are carefully upsampled in order to generate correct predictions
at semantic borders and small objects. Most previous work reduces the subsampling
by dilated filtering [36, 37, 38, 39, 40]. We take another approach, where deep features
are upsampled by exploiting activations from earlier layers. Different than previous such
methods [71, 72, 73, 74, 75], we conjecture that upsampling requires much less capac-
ity than the downsampling path. Consequently, we propose a minimalistic upsampling
datapath which is very well suited for efficient processing of large images.

We present an effective lightweight architecture for semantic segmentation of large
images, based on DenseNet features and ladder-style [76] upsampling. We propose sev-
eral improvements with respect to our previous work [4], which lead to better accuracy
and faster execution while using less memory and fewer parameters. Our consolidated
contribution is three-fold. First, we increase computational efficiency by subsampling the
representation in the middle of a DenseNet block. Second, we propose an efficient ladder-
style upsampling datapath which requires less memory and achieves a better IoU/FLOP
trade-off than related previous work [71, 72]. Third, we unlock the potential of our method
for memory-efficient training with a novel checkpointing approach. Our method now re-
quires less than half memory than ResNet with in-place activated batchnorm [39]. These
contributions strike an excellent balance between prediction accuracy and model complex-
ity. Experiments on Cityscapes, CamVid, ROB 2018 and Pascal VOC 2012 demonstrate
state-of-the-art recognition performance and competitive inference speed.

4.1 Motivation for ladder-style upsampling

Early convolutional models for semantic segmentation had only a few pooling layers and
were trained from scratch [30]. Later work built on feature extractors pre-trained on
ImageNet [16, 18, 19], which produce 32× subsampled representations. This improved
generalization [77] and reduced the training footprint due to smaller resolution of feature
tensors. Early upsampling approaches leveraged trained filters [78] and cached max-pool
switches [79]. Many recent approaches modify some strided layers to produce non-strided
output while doubling the dilation factor of all subsequent convolutions [37, 59]. This
decreases the extent of subsampling while preserving pre-trained semantics of the feature
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extractor.
In principle, dilated filtering can completely recover the resolution without compro-

mising pre-trained parameters. However, we believe that dilated filtering should be used
sparingly [80] or completely avoided [4, 33] due to following two shortcomings. First,
dilated filtering substantially increases the training footprint and inference complexity,
and thus hinders single-GPU training and real-time inference. Practical implementations
alleviate this by recovering only up to the last two subsamplings, which allows subsequent
inference at 8× subsampled resolution [36, 37]. Second, dilated filtering treats semantic
segmentation exactly as if it were ImageNet classification: each pixel is classified inde-
pendently from its neighbours. This does not feel right since we know that neighboring
pixels are highly correlated in practice.

We therefore prefer to keep the downsampling and restore the resolution by blending
semantics of deep features with location accuracy of the earlier layers [46]. This encourages
the deep layers to discard location information and focus on abstract image properties
[76]. Practical realizations avoid high-dimensional features at output resolution [46] by
ladder-style upsampling [33, 71, 76].

Note that our upsampling approach is different from the symmetric encoder-decoder
approaches [71, 72, 79], where the upsampling datapath mirrors the structure of the
downsampling datapath. These methods are unable to process large images or deliver
high execution speed due to excessive upsampling complexity.

We briefly review other related upsampling approaches. Ghiasi et al [73] blend pre-
dictions (instead of blending features) by prefering the deeper layer in the middle of the
object, while favouring the earlier layer near the object boundary. Pohlen et al [81] pro-
pose a two-stream residual architecture where one stream is always at the full resolution,
while the other stream is first subsampled and subsequently upsampled by blending with
the first stream. Lin et al [74] perform the blending by a sub-model comprised of 8
convolutional and several other layers in each upsampling step. Islam et al [82] blend
upsampled predictions with two layers from the downsampling datapath. This results in
4 convolutions and one elementwise multiplication in each upsampling step. Peng et al
[75] blend predictions produced by convolutions with very large kernels. The blending
is performed by one 3×3 deconvolution, two 3×3 convolutions, and one addition in each
upsampling step.

Contrary to previous approaches, we conjecture that it is much more difficult to rec-
ognize semantic classes than to delineate semantic borders. We therefore argue for an
asymetric encoder-decoder approach consisting of a powerful backbone and efficient up-
sampling. Each upsampling step has only one 3×3 convolution whereby the number of
feature maps is much lower than in the corresponding layers of the downsampling path [4].
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To the best of our knowledge, such organization has not been previously used for semantic
segmentation, although there exists related work in object detection [33], and instance-
level segmentation [83]. Note that our lateral connections differ from [73, 75, 82], since
they blend predictions, while we blend features. Blending features improves the modelling
power, but is more computationally demanding. We can afford to blend features due to
efficient upsampling and gradient checkpointing which will be explained later.

4.2 Motivation for spatial pyramid pooling

Pretrained convolutional representations are not directly applicable to large images due
to insufficient receptive range. This issue typically shows up in large indistinctive regions
which are common in urban scenes. These regions are often projected from nearby objects,
which makes them very important for high-level tasks (as exemplified by circumstances
of the first fatal incident of a level-2 autopilot). Some approaches address this issue
with dilated convolutions [37, 80], however sparse sampling may hurt the accuracy due
to aliasing. The receptive range can also be enlarged by increasing the model depth [82].
However, the added capacity may result in overfitting. Correlation between distant parts
of the scene can also be modelled with long-range connections [32, 84]. However, these
may be unsuitable due to large capacity and computational complexity. A better ratio
between receptive range and complexity is achieved with spatial pyramid pooling (SPP)
[36, 85, 86] which augments the features with their spatial pools over rectangular regions
of varying size.

4.3 Motivation for densely connected segmentation
models

To the best of our knowledge, there are only two previous works on DenseNet-based se-
mantic segmentation [40, 72]. However, these approaches fail to position DenseNet as
the backbone with the largest potential for memory-efficient feature extraction. This po-
tential is caused by a specific design which encourages inter-layer sharing [19] instead of
forwarding features across the layers. Unfortunately, automatic differentiation is unable
to exploit this potential due to concatenation, batchnorm and projection layers. Con-
sequently, straightforward DenseNet implementations actually require a little bit more
memory than their residual counterparts [4]. Here we show that the problem can be
resolved with checkpointing [19, 70]. In particular, we propose to recompute all batch-
norm and projection activations during backprop. We show that dramatic improvements
in memory footprint can be obtained by applying this idea both to the DenseNet-based
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downsampling datapath and to the ladder-style upsampling datapath. Previous work
on checkpointed segmentation models considered only residual models [39], and achieved
only two-fold memory reduction. On the other hand, our custom checkpointing scheme
is specifically crafted for our architecture, and is therefore able to achieve up to six-fold
memory reduction with respect to the baseline.

4.4 The proposed architecture

We propose a semantic segmentation architecture aiming at high accuracy, high execution
speed, and low memory footprint. The architecture is based on the DenseNet feature
extractor [19], spatial pyramid pooling (SPP) [86] and minimalistic ladder-style blending
[33, 76]. The proposed architecture consists of two datapaths which roughly correspond
to two horizontal rails in Figure 4.1. The downsampling datapath includes a customized
DenseNet feature extractor [19], and a lightweight spatial pyramid pooling module (SPP)
[36]. The feature extractor transforms the input image into convolutional features F by
gradually reducing spatial resolution, and increasing the number of feature maps (top rail
in Fig. 4.1). The SPP module enriches F with context information, and produces context-
aware features C. The upsampling datapath transforms C into high-resolution semantic
predictions (bottom rail in Fig. 4.1) by exploiting fine details from the downsampling
datapath.
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Figure 4.1: Diagram of the proposed segmentation architecture. Each processing block is
annotated with dimensions of the resulting feature tensor in case of DenseNet-121 and Cityscapes
input (f denotes the number of feature maps). We split the dense block DB3 in order to
enlarge receptive range, improve speed and reduce the memory footprint. The transition-up
(TU) blocks blend low-resolution semantic features with high-resolution low-level features. The
classifer (CLA) projects features to 19 semantic maps and bilinearly upsamples them to the
input resolution.

4.4.1 Feature extraction

Our feature extractor consists of densely connected blocks (DB) and transition layers
(TD, D) (cf. Figure 4.1). Each DB is a concatenation of convolutional units, while each

42



Efficient Ladder-style DenseNets for Semantic Segmentation of Large Images

convolutional unit operates on a concatenation of all preceding units and the DB input
[19]. We customize the original DenseNet design by splitting DB3 into two fragments
(DB3a and DB3b), and placing a strided average-pooling layer (D) in-between them.
This enlarges the receptive field of all convolutions after DB3a, while decreasing their
computational complexity. In comparison with dilated filtering [37], this approach trades-
off spatial resolution (which we later restore with ladder-style blending) for improved
execution speed and reduced memory footprint. Note that the resolution is restored
without loss of accuracy with ladder-style upsampling, in the same way as in other parts
of the architecture. We initialize DB3b filters with the original ImageNet-pretrained
weights, although the novel pooling layer alters the features in a way that has not been seen
during ImageNet pretraining. Despite this discrepancy, fine-tuning succeeds to recover
and achieve competitive generalization. The feature extractor concludes by concatenating
all DB4 units into the 64× subsampled representation F.

4.4.2 Spatial pyramid pooling

Spatial pyramid pooling captures wide context information [36, 85, 86] by augmenting F
with average pools over spatial grids. We first project F to d/2 maps, where d denotes the
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Figure 4.2: The proposed SPP module. P, C, and ↑ denote pooling, convolution and bilinear
upsampling. We introduce two modifications with respect to [36]: i) we adapt the grid to the
aspect ratio of input features F, and ii) we reduce the dimensionality throughout the module in
order to decrease memory footprint and discourage overfitting.

dimensionality of features in F. The resulting tensor is then average-pooled over four grids
with 1, 2, 4, and 8 rows. The number of grid columns is set in accordance with the image
size so that all cells have a square shape. We project each pooled tensor to d/8 maps and
then bilinearly upsample to the common resolution. We concatenate all results with the
projected F, and finally blend with a 1×1×d/4 convolution. The resulting context-aware
feature tensor C is h×w×d/4 where h=H/64, w=W/64, while H,W denotes the input
resolution. If we use DenseNet-121 (d=1024), C has 48 times less dimensions than the
input image.
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4.4.3 Ladder-style upsampling

Ladder-style upsampling recovers fine details through a series of efficient transition-up
(TU) blocks. Each TU block blends the preceding representation along the upsam-
pling path (Ui−1) with a skip-connection from the corresponding densely connected block
(DBx). Ui−1 has strong semantics while DBx has more spatial detail. The output Ui

gets the best of both worlds. We first upsample Ui−1 so that the two representations have
the same resolution. Subsequently, we project DBx to a lower-dimensional space so that
the two representations have the same number of feature maps. This balances the relative
influence of the two datapaths and allows blending by simple summation. Subsequently,
we reduce the dimensionality of the sum with 1×1 convolution, and blend the result with
3×3 convolution to deliver the output Ui as shown in Fig. 4.3. The described blending

C 1×1
f=128+

C 1×1
f=256

C 3×3
f=256

DBx
h×w×d

Ui-1
h/2×w/2×256

Ui
h×w×256

↑2×

Figure 4.3: The proposed transition-up module (UP in Fig. 4.1). C, and ↑ denote convolution
and bilinear upsampling. The number of feature maps in Ui−1 and Ui varies according to Fig.
4.1. Minimalistic design ensures fast inference (only one 3×3 convolution), and low memory
footprint (few convolutions, low feature dimensionality).

procedure is recursively applied along the upsampling datapath. The last transition-up
block produces features at the resolution of the DenseNet stem. Finally, the CLA module
recovers dense predictions by projection onto semantic classes and 4× bilinear upsam-
pling. The proposed design has much fewer parameters than the downsampling datapath
and therefore discourages overfitting as we show in the experiments.

4.5 Gradient checkpointing

Semantic segmentation requires a lot of caching during backprop, especially for large
input resolutions. This may lead to difficulties due to strict limitations of GPU RAM.
For example, it is well known that small training batches result in poor learning due
to unstable batchnorm statistics. This problem can not be overcome by accumulating
backward passes, and therefore hinders the accuracy of the model.

The extent of backprop-related caching can be reduced with gradient checkpointing
[70]. The main idea is to instruct forward pass to cache only a carefully selected subset
of all activations which are denoted as gradient checkpoints. The subgraph between two
gradient checkpoints is denoted as a checkpointing segment. The backward pass iterates
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over all checkpointing segments and processes them before continuing to the next segment
as follows:

1. forward pass activations are recomputed starting from the checkpoint
2. the gradients are computed via the standard backward pass. The local cache is

released as soon as a segment is processed.
We note that segment granularity affects space and time efficiency. Enlarging the

checkpoint segments always reduces the memory footprint of the forward pass. However,
the influence to backward pass memory requirements is non-trivial. Larger segments
require more memory individually as they need to re-compute all required activations and
store them in the local cache. At some point, we start to lose the gains obtained during
forward pass. Our best heuristic was to checkpoint only outputs from 3×3 convolutions as
they are the most compute-heavy operations. This heuristic is shown in Figure 4.4 on the
example of computing the 8th convolutional unit. Note that in case when checkpointing
is applied only the output of the unit is cached. The input tensors are composed of the 7
outputs from previous units and were therefore already cached. For this concrete example
unit, this results in 1−32/(224*2+128*2+32)≈ 95% less memory required (Sec. 2.7.3).
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Figure 4.4: The proposed checkpointing strategy for DenseNet convolutional unit. All the
cached tensors during forward pass are colored in blue. We show the forward pass of the 8th
unit. The top row represents the baseline without gradient checkpointing while the bottom row
shows the strategy where we checkpoint only the output from 3×3 convolution. Tensors drawn
with dotted line are recomputed during the backward pass.
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In other words, we propose to re-compute the stem, all projections, all batchnorms and
all concatenations during the backward pass. Experiments show that this approach strikes
a very good balance between maximum memory allocation in forward and backward
passes.

The proposed checkpointing strategy is related to the previous approach [19] which
puts a lot of effort into explicit management of shared storage. However, here we show
that similar results can be obtained by relying on the standard PyTorch memory manager.
We also show that custom backprop operations can be completely avoided by leveraging
the standard PyTorch module torch.utils.checkpoint. Finally, we propose to achieve
further memory gains by checkpointing outputs of 3×3 convolutions. This implies re-
computing the stem, transition-down and transition-up blocks, and each DenseNet unit
except the 3×3 convolution. To the best of our knowledge, this is the first account of
applying extensive checkpointing for semantic segmentation.

4.6 Experiments

Most of our experiments target road-driving images since the corresponding applications
require large input resolution (subsections 4.6.2, 4.6.3, and 4.6.4). For completeness, we
also present results on photographic collections (4.6.5), and ablation experiments (4.6.6).
Finally, we show that our method is extremely memory-efficient when used with check-
pointing (4.6.7).

4.6.1 Training details and notation

We train our models with Adam optimizer [15] with the initial learning rate 4 ·10−4. The
learning rate is decreased after each epoch according to the cosine learning rate policy
where we update the learning rate after each epoch e as follows:

lr = lr𝑚𝑖𝑛 + lr𝑚𝑎𝑥− lr𝑚𝑖𝑛

2 · (1+cos( 𝑒

𝑒𝑚𝑎𝑥
𝜋)) (4.1)

We set lr𝑚𝑎𝑥=4 · 10−4, lr𝑚𝑖𝑛=10−7, and 𝑒𝑚𝑎𝑥 = 300. We divide the learning rate by 4
for all weights pre-trained on ImageNet belonging to the backbone downsampling model.
Batch size is an important hyper-parameter of the optimization procedure. If we train
with batch size 1, then the batchnorm statistics fit exactly the image we are training on.
This hinders learning due to large covariate shift across different images [17]. We combat
this by training on random crops with batch size 16. Before cropping, we apply a random
flip and rescale the image with a random factor between 0.5 and 2. The crop size is set
to 448, 512 or 768 depending on the resolution of the dataset. If a crop happens to be
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larger than the rescaled image, then the undefined pixels are filled with the mean pixel.
We train for 300 epochs unless otherwise stated. We employ multiple cross entropy losses
along the upsampling path as shown in Figure 4.1. In order to promote efficient learning,
auxiliary losses are formulated on the native k× subsampled resolution as cross-entropy
between predictions ŷ and soft targets yk:

ℒaux
𝑘 =− 𝑘2

𝑊𝐻

∑︁
𝑟𝑐

∑︁
𝑓

𝑦k
𝑟𝑐𝑓 log𝑦𝑟𝑐𝑓 . (4.2)

The soft targets correspond to the distribution of one-hot labels yOH in the corresponding
k×k window:

yk
𝑟𝑐 = 1

𝑘2
∑︁

Δ𝑟Δ𝑐

yOH
𝑘𝑟+Δ𝑟,𝑘𝑐+Δ𝑐 . (4.3)

We apply loss after each upsampling step, and to each of the four pooled tensors within the
SPP module. The loss of the final predictions and the mean auxiliary loss are weighted
with factors 0.6 and 0.4, respectively. These values were validated on the Cityscapes
dataset. After the training, we recompute the batchnorm statistics as exact averages
over the training set instead of decayed moving averages calculated during training. This
practice slightly improves the model generalization.

We employ the following notation to describe our experiments throughout the sec-
tion. LDN stands for Ladder DenseNet, the architecture proposed in Section 4.4. The
symbol 𝑑→𝑢 denotes a model which downsamples the input resolution 𝑑 times, and then
uses ladder-style upsampling to produce predictions subsampled 𝑢 times. For example,
LDN121 64→4 denotes the model shown in Figure 4.1. Similarly, DDN and LDDN denote
a dilated DenseNet, and a dilated DenseNet with ladder-style upsampling. The symbol 𝑑↓
denotes a model which reduces the input resolution 𝑑 times and has no upsampling path.
MS denotes multi-scale evaluation on 5 scales (0.5, 0.75, 1, 1.5 and 2), and respective
horizontal flips. IoU and Cat. IoU denote the standard mean IoU metric over classes and
categories. The instance-level mean IoU (iIoU) metric [49] emphasizes contribution of
pixels at small instances, and is therefore evaluated only on 8 object classes. The model
size is expressed as the total number of parameters in millions (M). FLOP denotes the
number of fused multiply-add operations required for inference on a single 1024×1024
(1MPx) image.

4.6.2 Cityscapes

Cityscapes has been recorded in 50 cities during daylight and fine weather [49]. It features
19 classes for test benchmark, many dynamic objects, and varying scene layout and back-
ground. The finely annotated part of the dataset consists of 2975 training, 500 validation,
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and 1525 test images of 1024×2048 pixels.
Figure 4.5 shows the class incidence histogram for the Cityscapes dataset. Out of

29 total classes the 19 of them are used in training and evaluation. We can observe a
large difference in the number of annotated pixels between target 19 classes due to some
classes being less common in traffic scenes. The rare classes are: fence, wall, bus, truck,
train, motorcycle and rider. Even though bicycle, traffic sign and traffic light classes have
similar pixel coverage to bus and truck, they are a much smaller objects, resulting in them
having significantly more individual object instances.

Figure 4.5: Class incidence for the Cityscapes dataset. Note that the incidence numbers are
shown on the logarithmic scale. Classes denoted with superscript 2 are ignored in evaluation
and training. We use the same class color coding in all our visualizations of the results. Figure
reproduced from [49].

During our experiments we noticed a high variance in mIoU on the validation dataset
when trying to reproduce the results with different PRNG seeds. Likewise, the same
problem appears while evaluating the different model checkpoints during training. After
comparing the individual class IoUs we concluded that the IoU on the validation dataset
is very unstable for rare classes like train, bus, truck, motorcycle, wall and fence. Out
of these rare classes the class train turned out to be the most problematic due to having
the most unbalanced instance size representation in the dataset. One image contains a
very large nearby instance of the train while the remaining few examples are all further
away covering very small image area. In order to alleviate this problem for the train class
we removed this problematic image from the validation set and moved it to the train
set. Therefore all of our results on the validation set are measured on the 499 out of 500
original images. The prefix of the removed image is frankfurt_000001_014565.

Table 4.1 validates several popular backbones coupled with the same SPP and upsam-
pling modules. Due to hardware constraints, here we train and evaluate on half resolution
images, and use 448×448 crops. The first section presents the DN121 32↓ baseline. The
second section presents our models with ladder-style upsampling. The LDN121 64→4
model outperforms the baseline for 10 percentage points (pp) of IoU improvement. Most
of this improvement occurs on very small objects (due to blending with high-resolution
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Table 4.1: Validation of backbone and upsampling architectures on Cityscapes val. Both
training and evaluation images were resized to 1024×512.

Class Cat. Model FLOP
Method IoU iIoU IoU size 1MPx

DN121 32↓ 66.2 46.7 78.3 8.2M 56.1G
LDN121 64→4 75.3 54.8 88.1 9.5M 66.5G
LDN121 32→4 76.6 57.5 88.6 9.0M 75.4G
LDN169 32→4 75.8 55.5 88.4 15.6M 88.8G
LDN121 32→2 77.5 58.9 89.3 9.4M 154.5G
ResNet18 32→4 70.9 49.7 86.7 13.3M 55.7G
ResNet101 32→4 73.7 54.3 87.8 45.9M 186.7G
ResNet50 32→4 73.9 54.2 87.8 26.9M 109.0G
DPN68 32→4 74.0 53.0 87.8 13.7M 59.0G
DDN-121 8↓ 72.5 52.5 85.5 8.2M 147.8G
LDDN-121 8→4 75.5 55.3 88.3 8.6M 174.8G
LDDN-121 16→4 75.8 55.9 88.4 8.9M 87.0G

features) and very large objects (due to enlarged spatial context caused by increased sub-
sampling, 64 vs 32). Note that LDN121 32→4 slightly outperforms LDN121 64→4 at
this resolution due to better accuracy at semantic borders. However, the situation will
be opposite in full resolution images due to larger objects (which require a larger recep-
tive field) and off-by-one-pixel annotation errors. The LDN169 32→4 model features a
stronger backbone, but obtains a slight deterioration (0.8pp) with respect to LDN121
32→4. We conclude that half resolution images do not contain enough training pixels
to support the capacity of DenseNet-169. The LDN121 32→2 model shows that further
upsampling doubles the computational complexity while bringing only a slight IoU im-
provement. The third section demonstrates that residual and DPN backbones achieve
worse generalization than their DenseNet counterparts.

The last section presents the models which avoid the resolution loss by dilated convo-
lutions. The DDN-121 8↓ model removes the strided pooling layers before the DenseNet
blocks DB3 and DB4, and introduces dilation in DB3 (rate=2) and DB4 (rate=4). The
SPP output is now 8× downsampled. From there we produce logits and finally restore
the input resolution with bilinear upsampling. The LDDN-121 8→4 model continues with
one step of ladder-style upsampling to obtain 4× downsampled predictions as in previous
LDN experiments. We observe a 3pp IoU improvement due to ladder-style upsampling.
The LDDN-121 16→4 model dilates only the last dense block and performs two steps of
ladder-style upsampling. We observe a marginal improvement which, however, still comes
short of LDN121 32→4 from Table 4.1. Training the DDN-121 4↓ model was infeasible
due to huge computational requirements when the last three blocks operate on 4× sub-
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sampled resolution. A comparison of computational complexity reveals that the dilated
LDDN-121 8→4 model has almost 3× more FLOPs than LDN models with similar IoU
performance. Finally, our memory consumption measurements show that LDDN-121 8→4
consumes around 2× more GPU memory than LDN121 32→4. We conclude that dilated
models achieve a worse generalization than their LDN counterparts while requiring more
computational power.

Table 4.2 shows experiments on full Cityscapes val images where we train on 768×768
crops. We obtain the most interesting results with the LDN121 64→4 model presented
in Figure 4.1: 79% IoU with a single forward pass and 80.3% with multi-scale (MS)
inference. Models with stronger backbones (DenseNet-169, DenseNet-161) validate only
slightly better. We explain that by insufficient training data and we expect that successful
models need less capacity for Cityscapes than for a harder task of discriminating ImageNet
classes.

Table 4.2: Validation of various design options on full-resolution Cityscapes val.

Class Cat. Model FLOP
Method IoU IoU size 1MPx

LDN121 32→4 78.4 90.0 9.0M 75.4G
LDN121 64→4 79.0 90.3 9.5M 66.5G
LDN121 128→4 78.4 90.1 9.9M 66.2G
LDN161 64→4 79.1 90.2 30.0M 138.7G
LDN121 64→4 MS 80.3 90.6 9.5M 536.2G

Table 4.3 compares our models with the state-of-the-art on validation and test sets.
Our models generalize better than or equal to all previous approaches at the publication
time of [3], while being much more efficient. In particular, we are the first to reach 80% IoU
on Cityscapes test with only 66.5 GFLOP per Mpx. Table 4.4 presents a comparison with
efficient approaches. It reports normalized processing time according to GPU conversion
factors proposed in [77]. Label dws denotes depthwise separable convolutions in the
upsampling path (cf. Table 4.9). Figure 4.6 plots the best performing models from Tables
4.3 and 4.4 in (IoU,TFLOP) coordinates. The figure clearly shows that our models achieve
the best trade-off between accuracy and computational complexity.
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Table 4.3: Comparison with the state-of-the-art when training only on Cityscapes fine. FLOP
metrics marked with ’†’ include only the backbone.

IoU Tflop@1Mpx
Method Backbone Val Test single scale

LKM [75] rn50 d32↓ 77.4 76.9 0.110†

TuSimple [87] rn101 d8↓ 76.4 77.6 0.720†

SAC-multiple [88] rn101 d8↓ 78.7 78.1 0.720†

ResNet-38 [89] wrn38 d8↓ 77.9 78.4 2.110†

PSPNet [36] rn101 d8↓ n/a 78.4 0.720†

Multi Task [90] rn101 d8↓ n/a 78.5 0.720
TKCN [91] rn101 d8↓ n/a 79.5 0.720†

DFN [92] rn101 d32↓ n/a 79.3 0.450†

Mapillary [39] wrn38 d8↓ 78.3 n/a 2.110†

DeepLab v3 [38] rn101 d8↓ 79.3 n/a 0.720†

DeepLabv3+ [80] x-65 d8↓ 79.1 n/a 0.710
DRN [93] wrn38 d8↓ 79.7 79.9 2.110†

DenseASPP [40] dn161 d8↓ 78.9 80.6 0.500†

LDN121 64→4 dn121 64↓ 80.1 80.0 0.066
LDN161 64→4 dn161 64↓ 80.5 80.6 0.139

Table 4.4: Comparison with the state-of-the-art in efficient inference after training on
Cityscapes fine. We report normalized [77] time of FP32 single-scale inference on Titan Xp
GPU for 1024×2048 images.

IoU Tflop ms
Method Backbone Val Test 1Mpx Titan Xp

ERFNet [94] erfnet d8↓ n/a 69.7 0.055 89.0
SwiftNet [77] rn18 d32↓ n/a 75.5 0.052 22.7
BiSeNet [95] rn18 d8↓ n/a 74.7 0.049 29.4
LRN18 32→4 rn18 32↓ 76.1 n/a 0.056 23.5
LRN50 32→4 rn50 32↓ 77.5 n/a 0.109 52.0
LDN121 dws dn121 64↓ 78.9 n/a 0.054 42.6
LDN121 64→4 dn121 64↓ 79.0 79.3 0.066 40.7
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Figure 4.6: Accuracy vs forward pass complexity on Cityscapes test (green) and val (red)
for approaches from Table 4.3. LDN121 is the first method to achieve 80% IoU while being
applicable in real-time.

Finally, we present some qualitative results on Cityscapes. Figure 4.7 shows predic-
tions from different stages of the upsampling path. Predictions from early layers miss most
small objects, however ladder-style upsampling succeeds to recover them after blending
with high-resolution features.

Figure 4.7: Impact of ladder-style upsampling to the accuracy of semantic borders and small
objects. We shows predictions recovered from 64×, 32×, 16×, 8×, and 4× subsampled features
along the upsampling path.
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Figure 4.8 shows the images from the Cityscapes validation set where our model made
the most significant errors. Most of the mistakes we observed belong to one of the following
types:

• wall/building/fence: easy to confuse when covered with posters (1st row); far-
away wall can sometimes look like a fence (2nd row); high walls look like buildings
(3rd row);

• road/sidewalk: road and sidewalk can be hard to distinguish, sometimes causing
large labeling errors (4th row); if the lanes are separated with safety traffic signs
the lane on the other side is harder to recognize as road (5th row); if the person
is crossing the road the part of the road below him has a higher chance of being
misclassified as the sidewalk (6th row); if the separation between the road and
sidewalk is not visible parts of the sidewalk can get misclassified as road (7th row);

• vegetation/terrain: it is hard to draw a clear semantic separation between vege-
tation (trees and other larger plants) and terrain (grass and other smaller plants);
most of the errors of this type are due to inconsistent labeling (8th row);

• bus/truck/train: large transport vehicles can sometimes look similar to each
other, especially from behind (9th row);

• motorcycle/bicycle: can look very similar at a distance with occlusions further
increasing the difficulty of distinguishing between them (10th row);

• person/rider: occlusions make it harder for the model to separate a person (pedes-
trians) from a rider (11th row);

• out of distribution: Figure 4.9 shows some examples where our model made bad
predictions on objects belonging to the classes which were ignored or unseen in the
training set.

Figure 4.10 shows images from Cityscapes test in which our best model makes mistakes.
It is our impression that most of these errors are due to insufficient context, despite our
efforts to enlarge the receptive field. Overall, we achieve the worst IoU on fences (60%)
and walls (61%).

Figure 4.11 shows some images from Cityscapes test where our best model performs
well in spite of occlusions and large objects. We note that small objects are very well
recognized which confirms the merit of ladder-style upsampling. A video demonstration of
a single-scale LDN-121 64→4 model is available here: https://youtu.be/QrB7Np_8GXY.
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Figure 4.8: Images from Cityscapes validation set where our model made the largest number of
errors. Second column shows the groundtruth labels, third column shows the model prediction
and the last column shows only the pixels which were misclassified.
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Figure 4.9: Examples of images from Cityscapes validation set where our model encountered
out of distributions examples. For instance a type of a parking barrier and advertising posters
not seen in the train set.

Figure 4.10: Images from Cityscapes test where our model misclassified some parts of the
scene. These predictions are produced by the LDN161 64→4 model which achieves 80.6% IoU
on the test set.
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Figure 4.11: Images from Cityscapes test where our best model (LDN161 64→4, 80.6% IoU
test) makes no significant errors in spite of large objects, occlusions, small objects and difficult
classes.

4.6.3 CamVid

The CamVid dataset contains images of urban road driving scenes. We use the 11-class
split from [79], which consists of 367 training, 101 validation, and 233 testing images. The
resolution of all images is 720×960. Following the common practice, we incorporate the
val subset into train because it is too small and too easy to be useful for validation. We
train our models from random initialization (RI), and by fine-tuning the parameters pre-
trained on ImageNet (PT). We train on 512×512 crops for 400 epochs with pre-training,
and 800 epochs with random init. All other hyperparameters are the same as in Cityscapes
experiments. Table 4.5 shows our results on full-resolution CamVid test. The conclusions
are similar as on half-resolution Cityscapes val (cf. Table 4.1), which does not surprise
us due to similar input resolutions. LDN121 32→4 wins both in the pre-trained and in
the random init case, with LDN121 64→4 being the runner-up. Table 4.6 compares our
best results with the related work on CamVid test where, to the best of our knowledge,
we obtain state-of-the-art results.
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Table 4.5: Single-scale inference on full-resolution CamVid test with ImageNet pre-training
(PT) and random initialization (RI).

PT RI Model FLOP
Method IoU IoU size 1MPx

LDN121 32→4 77.3 70.9 9.0M 75.4G
LDN121 64→4 76.9 68.7 9.5M 66.5G
ResNet18 32→4 73.2 70.0 13.3M 55.7G
ResNet50 32→4 76.1 69.9 26.9M 109.0G
ResNet101 32→4 76.7 69.4 45.9M 186.7G

Table 4.6: Comparison of our models with the state-of-the-art on CamVid test. We use multi-
scale inference in experiments on full resolution.

Method Backbone ImgNet Resolution IoU

Tiramisu [72] DenseNet half 66.9
FC-DRN [96] DenseResNet half 69.4
G-FRNet [97] VGG-16 X half 68.8
BiSeNet [95] Xception39 X full 65.6
ICNet [98] ResNet-50 X full 67.1
BiSeNet [95] ResNet-18 X full 68.7

LDN121 16→2 DenseNet half 69.5
LDN121 32→4 DenseNet full 71.9
LDN121 16→2 DenseNet X half 75.8
LDN121 32→4 DenseNet X full 78.1
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4.6.4 Cross-dataset generalization

We explore the capability of our models to generalize across related datasets. Mapillary
Vistas [99] is a large road driving dataset featuring five continents and diverse lighting,
seasonal and weather conditions. It contains 18000 training, 2000 validation, and 5000
test images. In our experiments, we remap annotations to 19 Cityscapes classes, and resize
all images to width 2048. The KITTI dataset contains road driving images recorded in
Karlsruhe [100]. It features the Cityscapes labeling convention and depth reconstruction
groundtruth. There are 200 training and 200 test images. All images are 370×1226.

Table 4.7 shows that training only on Cityscapes results in poor generalization due to
urban bias and constant acquisition setup. On the other hand, models trained on Vistas
generalize much better due to better diversity of the training dataset. Training on both
datasets achieves the best results.

Table 4.7: Cross-dataset evaluation on half-resolution images. We train separate models on
Cityscapes, Vistas and their union, and show results on validation sets of three driving datasets.
These experiments present an older variant of LDN121 64→4 which splits DB4 instead of DB3.

Training Cityscapes Vistas KITTI
Method dataset IoU IoU IoU

LDN121 64→4 s4 Cityscapes 76.0 44.0 59.5
LDN121 64→4 s4 Vistas 68.7 73.0 64.7
LDN121 64→4 s4 Cit. + Vis. 76.2 73.9 68.7

4.6.5 Pascal VOC 2012

PASCAL VOC 2012 [50] contains photographs from private collections. There are 6 indoor
classes, 7 vehicles, 7 living beings, and one background class. The dataset contains 1464
train, 1449 validation and 1456 test images of variable size. Following related work, we
also train on 10582 images from the AUG set [101]. Due to annotation errors in the AUG
labels, we first train for 100 epochs on AUG, and then fine-tune for another 100 epochs
on train (or train+val). We use 512×512 crops and divide the learning rate of pretrained
weights by 8. All other hyperparameters are the same as in Cityscapes experiments. Table
4.8 shows that our models set the new state-of-the-art among models which do not pre-
train on COCO. Examples of predictions on some easy and hard examples are shown in
Figure 4.12. We can observe that the Pascal dataset has even larger object scale and pose
variance than Cityscapes. A large number of errors are due to the insufficient information
when the object scale is large and only the cropped part is visible. For instance sofa and
bird images in the bottom row appear on a large scale and are therefore cropped with only
a part of the object visible to the model. Furthermore, large pose variance and unseen
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context around the object are problematic hard cases. For instance the bicycle on the
shelf in the bottom row.

Figure 4.12: Example predictions on the Pascal VOC 2012 test set. Top row shows instances
of easy examples for dog, horse, sheep and airplane classes. Bottom row shows instances of hard
examples for sofa, bird, cat and bicycle classes. Note that most errors are caused by insufficient
information on cropped objects, large object scale and pose variance and rare context around
the object.

Table 4.8: Experimental evaluation on Pascal VOC 2012 validation and test.

Val Test
Method AUG MS IoU IoU
DeepLabv3+ Res101 X X 80.6 n/a
DeepLabv3+ Xcept X X 81.6 n/a
DDSC [102] X n/a 81.2
AAF [103] X X n/a 82.2
PSPNet [36] X X n/a 82.6
DFN [92] X X 80.6 82.7
EncNet [104] X X n/a 82.9
LDN121 32→4 76.4 n/a
LDN169 32→4 X X 80.5 81.6
LDN161 32→4 78.6 n/a
LDN161 32→4 X 80.4 n/a
LDN161 32→4 X X 81.9 83.6

59



Efficient Ladder-style DenseNets for Semantic Segmentation of Large Images

4.6.6 Ablation experiments on Cityscapes

We interpret the operation of our models by disabling an increasingly large portion of the
backbone tail, and evaluating the accuracy of the pruned model. We disable convolutional
units by setting their output to zero. In order to allow pruning in all processing blocks,
we preserve all transition-down units and 1×1 convolutions in residual connections. The
left graph in Figure 4.13 compares LDN121 and LRN50 models after pruning an equal
portion of convolutional units from the last two processing blocks of the backbone. We
observe that DenseNet converges faster than ResNet, although ladder-style upsampling
encourages both backbones to recognize small classes (eg. traffic sign) in early layers.
The right graph shows per-class performance of pruned LDN121 models. We observe
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Figure 4.13: Influence of pruning convolutional units from the backbone tail to the Cityscapes
val accuracy (there was no re-training). DenseNet is more resilient than ResNet (left). DenseNet
recognizes small object classes in early layers, which saves later capacity for large classes (right).

that small and less complex classes (bicycle, pole, traffic sign and road) are recognized by
early layers, while hard and large classes (truck, bus and train) are recognized in deeper
layers. This can be viewed as a kind of self-regularization: although the back-end of the
backbone can have a huge capacity, this capacity is not used for detecting easy classes.

Table 4.9 evaluates the impact of auxiliary loss, SPP, and depthwise separable con-
volutions on generalization accuracy. The experiment labeled NoSPP replaces the SPP
module with a single 3×3 convolution. The resulting 1.5pp performance drop suggests
that SPP brings improvement even with 64 times subsampled features. The subsequent
experiment shows that the SPP module proposed in [36] does not work well with our
training on Cityscapes. We believe that the 1.4pp performance drop is due to inadequate
pooling grids and larger feature dimensionality which encourages overfitting. The NoAux
model applies the loss only to final predictions. The resulting 1.2pp performance hit sug-
gests that auxiliary loss reduces overfitting to low-level features within the upsampling
path. The DWS model reduces the computational complexity by replacing all 3×3 con-
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volutions in the upsampling path with depthwise separable convolutions. This improves
upsampling efficiency while only marginally decreasing accuracy.

Table 4.9: Impact of auxiliary loss, SPP, and depthwise separable convolutions on generaliza-
tion accuracy on full-resolution Cityscapes val.

Model FLOP
Method IoU size 1MPx

LDN121 64→4 NoSPP 77.5 10.2M 66.7G
LDN121 64→4 SPP [36] 77.6 10.6M 66.9G
LDN121 64→4 NoAux 77.8 9.5M 66.5G
LDN121 64→4 DWS 78.6 8.7M 54.2G
LDN121 64→4 79.0 9.5M 66.5G

Table 4.10 shows ablation experiments which evaluate the impact of data augmen-
tations on generalization. We observe that random image flip, crop, and scale jitter
improve IoU by almost 5pp, and conclude that data augmentation is of great importance
for semantic segmentation.

Table 4.10: Impact of data augmentation to the segmentation accuracy (IoU) on Cityscapes
val while training LDN121 64→4 on full images.

augmentation: none flip flip/crop flip/crop/scale
accuracy (IoU): 74.0 75.7 76.7 79.0

4.6.7 Gradient checkpointing

Table 4.11 explores effects of checkpointing to the memory footprint and the execution
speed while training the default LDN model from Figure 4.1. The columns show:

1. the maximum memory allocation while training with batch size 6
2. the maximum batch size we could fit into GPU memory
3. the corresponding training speed in frames per second (FPS).

We start from the straightforward baseline and gradually introduce more and more ex-
tensive checkpointing. The checkpointing approaches are designated as follows. The label
cat refers to the concatenation at the input of a DenseNet unit. The labels 1×1 and 3×3
refer to the first and the second BN-ReLu-conv group within a DenseNet unit. The label
stem denotes the 7×7 convolution at the very beginning of DenseNet [19], including the
following batchnorm, ReLU and max-pool operations. Labels TD and TU correspond to
the transition-down and the transition-up blocks. The label block refers to the entire pro-
cessing block (this approach is applicable to most backbones). Parentheses indicate the
checkpoint segment. For example, (cat 1×1 3×3) caches only the concatenation inputs,
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while the first batchnorm, the 1×1 convolution and the second batchnorm are re-computed
during backprop. On the other hand, (cat 1×1) (3×3) means that each convolution is in
a separate segment. Here we cache the concatenation inputs and the input to the second
batchnorm, while the two batchnorms are recomputed. Consequently, training with (cat
1×1 3×3) accommodates larger batches.

Now we present the most important results. Checkpointing the (cat 1×1) subgraph
brings the greatest savings with respect to the baseline (4.5 GB), since it has most feature
maps on input. Nevertheless, checkpointing the whole DenseNet unit (cat 1×1 3×3)
frees further 3 GB. Finally, checkpointing stem, transition-down and transition-up blocks
relieves additional 1.8 GB. Altogether, this results in a more than five-fold reduction of
memory requirements, from 11.3 GB to 2.1 GB.

Experiments with the label (block) treat each dense block as a checkpoint segment.
This requires more memory than (cat 1×1 3×3) because additional memory needs to
be allocated during re-computation. The approach (cat 1×1) (3×3) is similar to the
related previous work [19]. These experiments show that the smallest memory footprint
is achieved by checkpointing the stem, transition-down and transition-up blocks, as well
as each DenseNet unit as a whole.

Table 4.11: Impact of checkpointing to memory footprint and training speed. We train LDN
32→4 on 768×768 images on a Titan Xp with 12 GB RAM.

Memory Max Train
Checkpointing variant bs=6 (MB) BS FPS

baseline - no ckpt 11265 6 11.3
(3x3) 10107 6 10.5
(cat 1x1) 6620 10 10.4
(cat 1x1) (3x3) 5552 12 9.7
(block) (stem) (TD) (UP) 3902 16 8.4
(cat 1x1 3x3) 3620 19 10.1
(cat 1x1 3x3) (stem) (TD) (UP) 2106 27 9.2

Table 4.12 shows that our checkpointing approach allows training the LDN161 model
with a six-fold increase of batch size with respect to the baseline. On the other hand,
the only previous checkpointing technique for semantic segmentation [39] yields only a
two-fold increase of batch size.
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Table 4.12: Comparison of memory footprint and training speed across various models. We
process 768×768 images on a Titan Xp with 12 GB RAM.

Uses Memory Max Train
Model Ckpt bs=6 (MB) BS FPS

LDN161 32→4 20032 3 5.6
ResNet101 32→4 15002 4 7.8
LDN121 32→4 11265 6 11.3
ResNet50 32→4 10070 6 11.6
ResNet18 32→4 3949 17 24.4
LDN161 32→4 X 3241 19 4.4
LDN121 32→4 X 2106 27 9.2

4.7 Discussion

We have presented a novel semantic segmentation approach based on DenseNet architec-
ture and ladder-style upsampling. Different than concurrent encoder-decoder approaches,
we argue for an asymmetric architecture with thick encoder and thin decoder, which as-
signs much more capacity to recognition than to localization. In comparison with widely
used dilated approaches, our design substantially decreases computational complexity
(both space and time) while generalizing better.

The proposed design exhibits outstanding spatial efficiency which however has to be
unlocked by recomputing all concats, batchnorms and projections during backprop. This
decreases memory footprint for up to 6× while only slightly increasing training time.
Thus, LDN121 32→4 can be trained on 768×768 crops with batch size 16 in only 5.3 GB
RAM.

We have performed extensive experiments on Cityscapes, CamVid, ROB 2018 and
Pascal VOC 2012. We achieve state-of-the-art on Cityscapes test without the coarse
training subset (LDN161: 80.6% IoU) as well as on Pascal VOC 2012 test without COCO
pretraining (LDN161: 83.6% IoU). None of the competing approaches is able to train on
a single GPU.

To the best of our knowledge, this is the first DenseNet-based approach for effi-
cient dense prediction on 2 MPx images. A TensorRT implementation of our single-scale
LDN121 model processes 1024×2048 images at 25 Hz on a single Titan Xp, while achiev-
ing 79.3% IoU on Cityscapes test. Suitable directions for future work include further
improvements of run-time speed, as well as exploiting the reclaimed memory for dense
prediction and forecasting in video.
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Chapter 5

Robust Vision Challenge

In this chapter we describe our results while participating in the Robust Vision Challenge
(ROB 2018). The goal of the challenge was to measure the robustness of competing
models on multiple datasets and on a wide range of vision problems. We competed in the
semantic segmentation problem and achieved the 2nd place. The datasets were chosen to
cover different domains like indoor vs outdoor scenes. Additionally, one dataset contains
out-of-distribution examples where the uncertainty of the model prediction should be
taken into account.

Assessing the prediction uncertainty is necessary if we wish to be able to warn down-
stream processing elements when model predictions are likely to be wrong. Half of the
solution consists in detecting image regions which are completely different from the train-
ing images and therefore fall in the category of out-of-distribution examples [105]. The
other half of the solution is to detect regions which are poorly learned or inherently hard
to classify [106], that is to recognize parts of the scene where our models consistently fail
to produce correct results.

Furthermore, there is little previous research on semantic segmentation models which
are suitable for recognizing different kinds of environments in images with no photographer
bias. Before performing experiments presented here we did not know whether such models
could be trained without one domain knowledge interfering with another. We also did
not know how much capacity is required in order to produce state of the art predictions
in different scenarios.

The Robust Vision Challenge provides a good testbed to address these questions.
Diversity of the included datasets poses challenges to models which may be biased towards
a single dataset while not generalizing well on others. Simultaneous training on diverse
datasets provides an opportunity to learn representations which produce good and robust
results in a multitude of environments.

We present main findings gathered while participating in the ROB 2018 challenge. We

64



Robust Vision Challenge

describe the employed model [4], detail the training procedure and present main insights
obtained during our experiments.

5.1 Datasets

We train our common model on the following four training subsets: Cityscapes Fine
train+val, WildDash, KITTI train and ScanNet train. Due to limited computing resources
and limited time we chose to leave other prospective datasets for future work. Thus, we
did not train on Berkeley Deep Drive, Vistas and Cityscapes coarse, although we did
initialize our training with parameters learned on ImageNet [7]. The rest of this section
provides a brief overview of each of the four training datasets.

5.1.1 Cityscapes

The Cityscapes dataset [49] contains images from the driver’s perspective acquired in
cities from Germany and neighbouring countries. The dataset provides 2MPx images
split into train, val and test subsets, where the semantic labels for the test subset are not
publicly available. There are 19 label classes used for evaluation which we train upon.
Train and val subsets consist of 2975 and 500 finely annotated images, respectively. The
dataset also provides 20 000 coarsely annotated images which we do not use in any of our
experiments.

5.1.2 WildDash

The WildDash dataset contains a small selection of worldwide driving images with a
strong potential to present difficulties for recognition algorithms. The dataset contains
70 validation and 156 testing images which are grouped into ten specific hazardous sce-
narios such as blur, windscreen interference, lens distortion etc. The image resolution is
1920x1080px while the semantic annotations follow the Cityscapes labeling policy. As in
other datasets, the test labels are not publicly available.

This dataset is unique since the test subset contains a number of heavily distorted and
out-of-distribution images whose correct pixel-level predictions may either be the exact
class or the class "Void" (both cases are counted as true positives). The negative images
must be treated in the same way as the rest of the dataset, which suggests that aspiring
models should include a method for detecting out-of-distribution patches in input images.

Due to some labeling inconsistencies (e.g. terrain vs vegetation and car vs truck) we
follow the ROB practice and evaluate WildDash performance with the category iIoU
metric.
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5.1.3 KITTI

The KITTI dataset [48] has been collected in Karlsruhe, Germany while driving through
the city itself and the surrounding area. It provides 200 images for training and 200
images for testing at 1242x370px. The dataset uses the Cityscapes labeling policy, same
as the previous three driving datasets.

5.1.4 ScanNet

The ScanNet dataset [107] is the only indoor dataset used. It is by far the largest dataset
of the four, consisting of nearly 25 000 training and 962 test images. This introduces a
large distribution disbalance between indoor and driving labels which needs to be suitably
handled. There are 20 semantic classes common to indoor scenery. The image resolution
varies, while most images have 1296×968px.

5.2 Method

We use a custom fully convolutional model based on DenseNet-169 [20]. The model
features a ladder-style upsampling path [4, 42, 76, 108] which blends high quality semantics
of the deep layers with fine spatial detail of the early layers. The model produces logits
at 4× subsampled resolution which we upsample to the input resolution with bilinear
interpolation, and feed to the usual cross-entropy loss with respect to one-hot groundtruth
labels.

The main differences with respect to our previous work [4] are as follows. First, we
have replaced all concatenations in the upsampling path with summations. This increased
the efficiency of our upsampling path without losing any IoU accuracy in validation ex-
periments. Following that, we have increased the number of convolution filters in the
upsampling path from 128 to 256 because we assumed that 128 feature maps could lead
to underfitting while training on all four ROB 2018 datasets. Second, we replace the con-
text layer at the end of the downsampling path with a spatial pyramid pooling block very
similar to [36]. Third, we remove the auxiliary loss at the end of the downsampling path
and replace it with a novel auxiliary loss which we call the pyramid loss. The components
of the new loss are defined in terms of softmax predictions obtained from representations
obtained right after feature blending units within the upsampling path at 64×, 32×, 16×
and 8× subsampled resolution. We do not upsample these auxiliary predictions to the
input resolution as in the main loss. Instead, we define the pyramid loss components as
cross-entropy between softmax predictions and the groundtruth distribution over class
labels in the N×N boxes where N denotes the corresponding subsampling factor.
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During training we oversample Cityscapes, KITTI and WildDash images multiple
times in order to achieve 2:1 example ratio with respect to ScanNet in each epoch. Mixing
outdoor and indoor images into each batch was very important in order to get batchnorm
moving population statistics that correctly approximates batch statistics on both tasks.
For data augmentation, we apply random scale resize between 0.5 and 2, random crop
with 768x768 window size and random horizontal flip with 0.5 probability. These hyper-
parameter values are shared for all datasets. We used the Adam optimizer [15] with the
base learning rate of 4𝑒−4 and additionally divide the learning rate by a factor of 4 for
the ImageNet pre-trained subset of parameters. The contribution weight of the pyramid
auxiliary loss was set to 0.4. We set the batch size to 8 and train the common model for
200k iterations. The training took around 3 days on one Titan Xp GPU.

5.3 Results

We apply the common model to the test subsets of all four datasets, collect the model
predictions and map them to the required formats of the individual benchmarks where
necessary (Cityscapes). We analyze the obtained results and present the most interesting
findings.

5.3.1 Mapping predictions to the dataset formats

A common model for the ROB semantic segmentation challenge has to predict at least 39
object classes: the 19 driving classes from Cityscapes and 20 indoor classes from ScanNet.
The benchmark scripts for WildDash, KITI and ScanNet datasets automatically map
foreign class indices to the negative classes "Void" (Cityscapes) or "Ignore" (ScanNet). The
Cityscapes benchmark is oblivious of ScanNet indices and therefore we had to manually
remap ScanNet predictions to the class "Void" (we had very few such pixels as shown in
Table 5.1).

Note that the negative classes ("Void" and "Ignore") are separate form the 39 object
classes. Predictions of negative classes do not contribute to true positives on Cityscapes,
KITTI and ScanNet, however they still may improve performance since they do not
count as false positives. However, negative predictions constitute true positives in several
WildDash images.

5.3.2 False-positive detections of foreign classes

This group of experiments explores incidence of false negative detections due to predictions
of foreign classes. This can be easily evaluated on the test datasets because there is no
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overlap between indoor and driving classes. We look at the number of "driving" pixels in
the ScanNet test dataset as well as at the number of "indoor" pixels in Cityscapes test,
WildDash test and KITTI test. The results are summarized in Table 5.1. The results
show that, perhaps surprisingly, cross-dataset training resulted in negligible increase of
false positive detections due to sharing the model across different kinds of scenery.

driving classes (%) indoor classes (%)

Cityscapes 99.857 0.143

WildDash 97.649 2.351

KITTI 100 0

ScanNet ≈ 0 ≈ 100

Table 5.1: Incidence of foreign pixels in the test subsets of the four datasets. The rows
correspond to the four datasets while the columns correspond to the two groups of classes. We
see that cross-dataset training causes very few false positive pixels and therefore results in a
negligible performance hit.

Most foreign pixels in Cityscapes test images are located on the car hood which is
ignored during training. Figure 5.1 shows the only Cityscapes test image with a relatively
large group of predictions to foreign classes. There were zero detections of foreign classes
on KITTI, and only 8 detections of foreign classes on ScanNet. Most of foreign pixels on
WildDash test are located in negative images and are therefore treated as true positives
(we explore this in more detail later).

5.3.3 Detecting negative WildDash pixels

Closer inspection of WildDash test images revealed that almost all pixels classified as
ScanNet occur in the negative WildDash images. We illustrate three such images in Fig-
ure 5.2. The figure shows that Cityscapes detections are often correct (people, building)
or almost correct (indoor walls as building, lego pavement as road).

Table 5.2 shows the difference in category iIoU performance between our submissions
M_DN and LDN2_ROB to the WildDash benchmark. Both submissions correspond to
instances of the model described in Section 5.2 trained with similar optimization settings.
The submission M_DN maps all indoor predictions to the class Cityscapes "Wall". The
submission LDN2_ROB leaves outdoor predictions as they were, which means that the
benchmark script automatically maps them to class "Void". By treating ScanNet predic-
tions as the WildDash negative class, LDN2_ROB submission achieved 9.1 percentage
points improvement in category iIoU. This improvement gives hope that we could esti-
mate prediction uncertainty by simply assessing the likelihood of the foreign classes. In
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Figure 5.1: The only Cityscapes test image in which a large group of pixels was misclassified
into indoor classes. The graffiti on the building (white pixels) were classified as the indoor class
"wall".

other words, we could train our future models in supervised or semi-supervised manner
on diverse datasets and use the prediction of foreign classes (that is, classes that are not
supposed to appear in this particular image) as a flag that the predictions are uncertain.

submission ID ScanNet classes negative iIoU

mapped to category (%)

M_DN "Wall" 32.2

LDN2_ROB "Void" 42.8

Table 5.2: Results of our two submissions to the WildDash benchmark (M_DN and
LDN2_ROB). LDN2_ROB improves the performance on negative WildDash test images by
mapping ScanNet predictions to out-of-distribution pixels.

5.3.4 Reduction of overfitting in the upsampling path

Early experiments showed very poor accuracy of the Ladder-DenseNet architecture on
the WildDash test dataset. Further experiments with a simpler model based on bilin-
ear upsampling resulted in better performance. Consequently, we hypothesized that the
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Figure 5.2: Negative WildDash images (top), model predictions (middle) and out-of-
distribution pixels for the WildDash dataset (bottom). In the bottom row we colored all pixels
classified as Cityscapes classes in black. The remaining colored pixels are treated as the "Void"
class during evaluation.

model with the ladder-style upsampling suffers from overfitting in the upsampling path.
We attempt to alleviate this problem by regularizing the model with the pyramid loss
described in Section 5.2 (i.e. by adding a classification head at each upsampling level),
which resulted in significant improvement. We illustrate these effects in Table 5.3 which
shows that the recognition accuracy significantly increases when we add pyramid loss.
The table also shows that the benefits reproduce on the Berkeley Deep Drive dataset
(note that we do not train on Berkeley Deep Drive in any of the experiments).

Further inspection of semantic predictions along the upsampling path showed that
some overfitting in the ladder-upsampling remains despite the pyramid loss. We illustrate
these effects in Figure 5.3. The image clearly shows that the prediction accuracy gradually
decreases as we transition towards finer resolutions (top right). We believe that solving
this issue might be an interesting direction for future work.

Finally, we show what happens on WildDash test when we include WildDash val to
the training set. The effect is not easy to quantify since WildDash benchmarks allows
only three submissions per researcher. We therefore perform qualitative analysis in several
WildDash test images and show the results in Figure 5.4. We see that only 70 WildDash
val images succeeds to significantly impact the model despite being used along 3500 images
from the Cityscapes dataset.
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Dataset WildDash BDD

Pyramid loss No Yes No Yes

Flat 67.2 66.5 70.9 74.6

Construction 18.1 16.8 51.9 52.4

Object 13.4 24.1 29.8 34.3

Nature 72.1 71.9 65.5 65.6

Sky 67.7 66.6 66.9 67.8

Human 30.4 36.0 45.4 46.2

Vehicle 44.1 54.5 75.6 76.3

mIoU 44.7 48.1 58.0 59.6

Table 5.3: Category IoU on WildDash val and Berkeley Deep Drive val for the model trained
on Cityscapes only. We observe large improvements on objects, humans and vehicles. Both
training and prediction was performed on half image resolution in this experiment.

5.3.5 Overall results

We have submitted the results of our common model to the ROB 2018 challenge under
the identifier LDN2_ROB. The obtained results on all four datasets are summarized in
Table 5.4.

dataset metric our result best result our rank

KITTI class IoU 63.5 69.6 3

ScanNet class IoU 44.0 48.0 2

Cityscapes class IoU 77.1 80.2 2

WildDash category IoU 54.5 59.1 3

Table 5.4: Results of our common model LDN2_ROB at the four semantic segmentation
benchmarks.

5.4 Discussion

The presented experiments resulted in several interesting findings. Initial experiments
with ladder-style models resulted in very poor cross-dataset performance. Closer inspec-
tion revealed that small errors had been multiplying along the upsampling datapath. This
likely occured due to blending convolutions being overfit to the Cityscapes urban scenes
with ideal weather conditions and a high-quality HDR camera. These effects might be
even larger in models with more capacity in the upsampling datapaths. Experiments have
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Figure 5.3: Semantic segmentation predictions of a WildDash val image (top left) at different
levels of the upsampling path by a model trained on Cityscapes only. The resolution increases
from bottom to top and from right to left. We note that the accuracy gets worse as we transition
from the coarsest resolution (bottom right) to the finest resolution (top right). Both training
and prediction was performed on half image resolution in this experiment.

showed that this problem can be successfully mitigated with suitable auxiliary losses and
training on the WildDash val subset.

The second interesting result is that ScanNet training significantly improved recog-
nition of out-of-distribution pixels on WildDash test. In fact, many such pixels were
detected as some of the ScanNet classes and were therefore treated as true positive pre-
dictions. This raises hopes that future models will be able to detect unusual parts of the
scene for free, only by virtue of being trained on a more diverse set of classes.

Further, we found that simultaneous training on multiple datasets resulted in virtually
no performance hit with respect to training only on one dataset. In fact, less than 0.01
percent of valid in-distribution pixels in all three driving dataset test sets were recognized
as one of the ScanNet indoor classes. Conversely, only 8 out of around billion pixels in
ScanNet test were recognized as one of the Cityscapes driving classes.
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Figure 5.4: Segmentation results when training on Cityscapes + WildDash val (middle row)
vs. training on Cityscapes only (bottom row). Both training and predictions was performed on
half image resolution in this experiment.

Finally, we found that batch composition represents an important ingredient of cross-
dataset training. The training convergence improved substantially when we switched from
training on single-dataset batches to training on cross-dataset batches. We hypothesize
that the improvement occurred due to more stable training of batchnorm layers.
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Conclusion

In this thesis we have investigated the problem of semantic segmentation of large natural
images. The problem of semantic segmentation has many challenges. For instance, one
of the problems is that objects appear in the image on a wide range of scales. Models like
convolutional networks have to learn to recognize both small and large instances of the
same objects. We present a convolutional module for achieving dense scale invariance.
Here, the basic idea is to make use of depth information to normalize the scale at which the
objects are seen by the ConvNet. The results show the benefits of this approach and are
interesting considering how hard it is to improve semantic segmentation with depth data.
Furthermore, we contribute a new RGB-D dataset for semantic segmentation of driving
scenes. The dataset contains groundtruth semantic segmentations and stereoscopic depth
images for 445 annotated hand-picked camera images from the KITTI dataset.

Most current approaches leverage feature extractors from image classification models
in order to exploit ImageNet pretraining. However, these feature extractors perform
heavy subsampling which makes it quite difficult to produce dense predictions at input
resolution. In case of the large input images a very important challenge is how to design
computationally and memory efficient model architecture while still preserving quality of
predictions comparable to the most accurate models. Another challenge while applying
convolutional neural network for semantic segmentation is to ensure that the receptive
field of the model is capable of capturing wide context information around a pixel. While
most of the previous work focuses only on the accuracy improvements, we also explore a
good tradeoff between accuracy and model efficiency.

There are currently two popular approaches to the subsampling problem, either by
employing dilated convolutions or by utilizing ladder-style upsampling. In this thesis
we argue that ladder-style upsampling is superior to dilated convolution when dealing
with large input images. Most current approaches to semantic segmentation are based
on residual convolutional units. However, in this thesis we argue that feature extractors
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based on densely connected convolutional units present many advantages with respect to
their residual counterparts, especially in the case of semantic segmentation of large images.
We show that densely connected units require much less parameters and, if implemented
properly, require much less memory for training.

Finally, we propose to address semantic segmentation of large images with densely-
connected feature extraction and ladder-style upsampling. We show how to train the
model on very large images by utilizing gradient checkpointing of a densely connected
feature extractor and analyze different checkpointing strategies. We perform extensive
experiments on multiple datasets and show that our model is computationally and mem-
ory efficient and achieves very good tradeoff between inference speed and overall accu-
racy. This makes the presented model suitable for real-world applications. Moreover,
we describe our participation in the Robust Vision Challenge (RVC 2018). The chal-
lenge addressed cross-dataset and cross-domain training of dense prediction models. The
datasets were chosen to cover different domains like indoor vs outdoor scenes and out-of-
distribution examples. We achieved the 2nd place in the semantic segmentation category.
We show that mixed batches ensure stable evolution of batchnorm parameters. Low in-
cidence of foreign predictions suggests that our model succeeded to implicitly learn to
distinguish the domains.

Further research can be turned towards making the classification backbone leaner and
more efficient for segmentation instead of relying to heavily on architectures fine-tuned for
ImageNet problem, as well as utilizing information from videos to improve the accuracy
of predictions.
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Životopis

Ivan Krešo rođen je u Sisku 1989. Magistrirao je računarsku znanost na Fakultetu elek-
trotehnike i računarstva Sveučilišta u Zagrebu 2013. godine. Nakon toga proveo je 6
godina na istom fakultetu zaposlen kao znanstveni novak na istraživačkim projektima te
kao asistent u nastavi. Radno vrijeme provodi na istraživačkom radu te radu u nastavi.
Sudjelovao je u nastanku predmeta Duboko učenje te radio kao asistent na predmetima
iz područja arhitekture računala, oblikovnih obrzaca u programiranju i računalne grafike.
Također je bio zaposlen na dva istraživačka projekta: Multiclass Object Detection (MUL-
TICLOD) i Computer Vision Innovations for Safe Traffic (VISTA). Trenutno je zaposlen
u industriji kao data scientist u RealNetworksu. Njegovi istraživački interesi uključuju
klasifikaciju objekata, gustu predikciju za probleme semantičke segmentacije i detekcije,
kao i samonadzirano i polunadzirano učenje.
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