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SCENE ILLUMINATION COLOR ESTIMATION
METHODS BASED ON CONVOLUTIONAL

NEURAL NETWORKS

DOCTORAL THESIS

Supervisor: Professor Sven Lončarić, PhD
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Abstract

Color can be defined as “the property possessed by an object of producing different sensations

on the eye as a result of the way the object reflects or emits light”*. Color is a perceptual term

that describes the response of the human eye to radiation in the visible range of the electromag-

netic spectrum. Due to the varying reflectance properties, different objects in the same scene

emit the incident light differently. The human visual system (HVS) perceives these objects as

differently colored. The appearance of an object in terms of color varies depending on the light

source in the scene because the perceived color of an object is subject to its reflectance proper-

ties and the light source’s spectrum. However, HVS is very robust to changes in the observed

scene and adapts rapidly. HVS can perceive objects’ colors invariant of the present light source;

therefore, a lemon is yellow in, e.g., sunlight and under the light of an incandescent light bulb.

This ability is called color constancy. Image sensors in digital cameras, on the other hand, do

not have this ability. Therefore, in digital cameras, a pre-processing step is dedicated to achiev-

ing invariance of colors to the scene illumination. That step is referred to as computational color

constancy. The impact of the illumination color on colors in digital images is usually removed

in two steps. First, a method estimates the color of the light source. Second, chromatic adap-

tation using the estimate renders an illumination-invariant image. The outcome is an image in

which white objects indeed appear white. Thus, it is referred to as white balancing.

The focus of this thesis is on illumination estimation. By definition, it is an ill-posed prob-

lem. Given only image pixels, a vector representing scene illumination has to be estimated;

however, two (or more) individual reflections in the scene can map to the same pixel value. A

straightforward approach toward the solution in such tasks is to relax the problem using assump-

tions. The aim of this research is the analysis of various approaches to illumination estimation.

Each approach is implemented in a method using deep learning methodology. Many illumina-

tion estimation methods already exist, but often they become inaccurate when more complex

scenes occur. On the other side, deep neural networks achieve state-of-the-art results in many

computer vision tasks. They were set apart by their exceptional generalization capability. Deep

learning methods based on convolutional neural networks accomplish great accuracy in illumi-

nation estimation as well. Deep learning usually involves the question of large datasets that

are not typical in illumination estimation. A part of the research in this thesis is dedicated to

studying existing datasets and establishing a set of desired features a dataset for illumination

estimation should have. Finally, a novel dataset conforming to the defined features is presented.

Keywords: color constancy, convolutional neural networks, deep learning, illumination

estimation, white balancing

*Oxford dictionary



Prošireni sažetak

Metode procjene boje osvjetljenja scene zasnovane na konvolucijskim neuronskim
mrežama

Boja se može definirati kao svojstvo objekta za stvaranje različitih osjeta u oku kao rezultat

načina na koji objekt reflektira ili emitira svjetlost (preuzeto iz Oxfordskog rječnika). Boja je

percepcijski pojam koji opisuje odgovor ljudskog oka na zračenje u vidljivom rasponu elektro-

magnetskog spektra. Zbog različitih svojstava refleksije, različiti objekti u istoj sceni drugačije

emitiraju upadnu svjetlost. Ljudski vizualni sustav percipira te objekte kao različito obojene.

Izgled objekta u smislu boje mijenja se ovisno o izvoru svjetlosti jer je percipirana boja objekta

ovisna o njegovim svojstvima refleksije i spektru izvora svjetlosti. Med̄utim, ljudski vizualni

sustav je vrlo robustan na promjene u promatranoj sceni i brzo se prilagod̄ava. Ljudski vizualni

sustav može percipirati boje objekata neovisno o izvoru svjetlosti. Stoga je limun žute boje na

sunčevoj svjetlosti i na svjetlu žarulje sa žarnom niti. Ova sposobnost naziva se postojanost

boja. Senzori za stvaranje slike u digitalnim fotoaparatima nemaju tu mogućnost. Stoga u digi-

talnim fotoaparatima na početku procesa formiranja slike postoji korak predobrade namijenjen

postizanju invarijantnosti boja na osvjetljenje u sceni. Taj korak naziva se računalna postojanost

boja. Utjecaj boje izvora svjetlosti na boje u digitalnim slikama obično se uklanja u dva koraka.

U prvom koraku metoda procjenjuje boju izvora svjetlosti. U drugom koraku, kromatskom

adaptacijom koristeći dobivenu procjenu dobiva se slika invarijantna na osvjetljenje. Rezultat

ovog postupka je slika na kojoj bijeli objekti zaista izgledaju bijelo. Stoga se ovaj proces često

naziva i podešavanje bijele.

Fokus ove disertacije je na procjeni osvjetljenja. Po definiciji, to je loše postavljen problem.

Koristeći samo piksele slike procjenjuje se vektor koji označava osvjetljenje u sceni. Med̄u-

tim, dvije ili više različitih refleksija u sceni mogu rezultirati istom vrijednošću piksela. Izravan

pristup rješavanju takvih zadataka je pojednostaviti problem korištenjem pretpostavki. Cilj ovog

istraživanja je analiza različitih pristupa za procjenu osvjetljenja. Svaki razmatrani pristup im-

plementiran je u metodu koja koristi metodologiju dubokog učenja. Mnoge metode za procjenu

osvjetljenja već postoje, ali one su često netočne za vrlo složene scene. S druge strane, duboke

neuronske mreže postižu vrhunske rezultate u mnogim zadacima računalnog vida. Odlikuju se

iznimnom sposobnošću generalizacije. Metode dubokog učenja zasnovane na konvolucijskim

neuronskim mrežama postižu visoku točnost i u procjeni osvjetljenja. Duboko učenje obično

povlači i pitanje velikih skupova podataka, koji nisu karakteristični za procjenu osvjetljenja.

Dio istraživanja prikazanog u ovoj disertaciji posvećen je proučavanju postojećih skupova po-

dataka kako bi se ustanovio skup značajki poželjnih za skup podataka za procjenu osvjetljenja.

Konačno, u posljednjem dijelu disertacije prezentiran je novi skup podataka za procjenu osv-

jetljenja zasnovan na definiranom skupu značajki.



Izvorni znanstveni doprinos ove disertacije podijeljen je u četiri dijela:

• metoda procjene boje osvjetljenja zasnovana na konvolucijskoj neuronskoj mreži s mehniz-

mom pažnje;

• metoda procjene boje osvjetljenja korištenjem klasifikacije osvjetljenja scene zasnovana

na dubokom učenju;

• metoda procjene boje osvjetljenja zasnovana na povratnoj dubokoj neuronskoj mreži s

višestupanjskom funkcijom gubitka;

• skup podataka za procjenu osvjetljenja Cube++.

U prvom dijelu disertacije predložena je metoda za procjenu osvjetljenja zasnovana na kon-

volucijskoj neuronskoj mreži s mehanizmom pažnje. Osnovna pretpostavka ove metode je da

su za procjenu osvjetljenja osim vrijednosti piksela slike bitne i dodatne informacije, npr. vri-

jeme snimanja i lokacija. Med̄utim takve informacije su rijetko dostupne i ne može ih se uzeti

u obzir, nego se osvjetljenje procjenjuje koristeći samo vrijednosti piksela slike. Drugi pristup

je korištenje nekakvog mehanizma koji na osnovu same slike može izvući dodatne informacije

o sceni. Jedan takav mehanizam u dubokom učenju naziva se mehanizam pažnje. Mehanizam

pažnje kvantitativno odred̄uje uvjerenost neuronske mreže da je odred̄eni dio ulaznih podataka

koristan za dani problem. U problemu procjene osvjetljenja mehanizam pažnje odred̄uje koje

regije u slici sadrže dovoljno informacija za odred̄ivanje vektora osvjetljenja. Tako se neu-

ronska mreža dodatno usmjerava prema regijama koje su korisne za dani zadatak i izbjegava

fokusiranje na nebitne i ponekad višeznačne regije. U ovoj disertaciji opisane su dvije metode

s mehanizmom pažnje. Princip rada obje metode je isti, a metode se razlikuju u implementaciji

mehanizma pažnje. Za odred̄ivanje mape značajki ulazne slike koristi se arhitektura iste kon-

volucijske neuronske mreže. Mapa značajki paralelno se obrad̄uje u dvije nezavisne grane.

Jedna grana računa lokalne procjene osvjetljenja, a druga grana je mehanizam pažnje. Meha-

nizam pažnje prve metode implementiran je koristeći tri konvolucijska sloja te izračunava za-

sebnu mapu uvjerenosti za svaki kanal slike. Dodatna karakteristika ovog mehanizma pažnje

je činjenica da se za svaku lokalnu regiju koriste zasebni filteri konvolucijskog sloja, tj. za

svaku lokalnu regiju odred̄uje se uvjerenost neovisno o sadržaju susjednih regija. Lokalne

procjene osvjetljenja iz prve grane množe se s odgovarajućim vrijednostima koje je odredio

mehanizam pažnje, umnožak se uprosječuje i normalizira. Rezultat je vektor koji predstavlja

globalno osvjetljenje u sceni. Drugi mehanizam pažnje razlikuje se u načinu odred̄ivanja mape

uvjerenosti i brojem tih mapa. Ovaj mehanizam računa samo jednu mapu značajki koja se ko-

risti za sve kanale slike. Vrijednosti mape se ne računaju zasebno za svaku regiju već se koristi

tradicionalni konvolucijski pristup dijeljenja težina. Prvi mehanizam pažnje u skladu je s pret-

postavkom neovisnih kanala slike, koja se korist kod korekcije slike dijagonalnom matricom.

Drugi mehanizam zasniva se na pretpostavci da ljudski vizualni sustav regije interesa odred̄uje

s obzirom na teksture, oblike i sveukupni dojam boje. Eksperimentalni rezultati pokazali su
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velika poklapanja mapa uvjerenosti s vrijednostima gradijenta slike. Ovo pokazuje da pred-

ložene metode uspijevaju odvojiti regije slike s korisnim informacijama od nebitnih regija. Kod

procjene osvjetljenja nebitnima se smatraju višeznačne regije, a to su područja kod kojih bez

uvod̄enja dodatnog konteksta postoji više kombinacija boje površine i boje osvjetljenja koje

rezultiraju istim vrijednostima piksela. Jedan primjer takve regije su jednobojni, čisti zidovi.

U drugom dijelu disertacije prezentirana je metoda za procjenu osvjetljenja koja koristi

klasifikaciju izvora svjetlosti zasnovanu na dubokom učenju. Osvjetljenja u stvarnome svijetu

na različite načine utječu na boje u digitalnim slikama. Izvori svjetlosti bliski bijelom osvjetl-

jenu imaju vrlo mali učinak na boje objekata u digitalnim slikama dok umjetna osvjetljenja vrlo

često znatno mijenjaju boje objekata prilikom snimanja digitalnim kamerama. Raznolikost boja

izvora svjetlosti najbolje se može prikazati uvidom u referentne vrijednosti osvjetljenja posto-

jećih skupova podataka. Kada se referentne vrijednosti promatraju u domeni kromatičnosti

uočava se grupiranje u tri odvojene skupine. Promatrani skup podataka sadržan je od slika

pod dnevnom svjetlošću, slika u zatvorenim prostorima i noćnih slika. Podjela u domeni kro-

matičnosti poklapa se upravo s takvom klasifikacijom slika te se na njoj zasniva i prezentirana

metoda za procjenu osvjetljenja. Poznavajući informaciju o skupini kojoj slika pripada sman-

juje se prostor mogućih osvjetljenja jer svaka skupina zauzima jednu manju zatvorenu regiju u

domeni kromatičnosti. Prezentirana metoda iskorištava tu činjenicu te za svaku skupinu koristi

zasebni estimator. Metoda se sastoji od četiri konvolucijske neuronske mreže. Zadatak jedne

mreže je klasifikacija ulaznih slika u sljedeće skupine: vanjske scene pod umjetnim osvjetljen-

jima, vanjske scene pod prirodnim osvjetljenjima i unutrašnje scene pod umjetnim osvjetljen-

jima. Ovisno o rezultatu klasifikacije, slika se prosljed̄uje jednoj od tri konvolucijske neuronske

mreže za estimaciju osvjetljenja. Sve tri konvolucijske mreže za estimaciju osvjetljenja zasni-

vaju se na istoj arhitekturi. Med̄utim, svaka od te tri mreže trenirana je za estimaciju osvjetl-

jenja isključivo na slikama jedne skupine te se stoga i primjenjuje samo za slike klasificirane

u tu skupinu. Uporaba klasifikacije slika i tri estimatora specijalizirana za pojedine kategorije

slika pokazala se preciznijom od jednostavne procjene osvjetljenja gdje se ista konvolucijska

neuronska mreža koristi za procjenu osvjetljenja svih slika. Postignuto je poboljšanje od 30%

s obzirom na najveće pogreške te je eksperimentalnim rezultatima pokazano da je prezentirana

klasifikacija bolja od klasifikacije s obzirom samo na vrstu scene (slike unutrašnje ili vanjske

scene) ili vrstu osvjetljenja (slike pod prirodnim ili umjetnim osvjetljenjem). Dodatna značajka

metode je što klasifikatori ne ovise o raspodjeli slika u skupu podataka, tj. broj slika unutar

kategorija ne mora biti isti.

U trećem dijelu disertacije prezentirana je metoda za procjenu osvjetljenja zasnovana na

iterativnoj procjeni osvjetljenja uporabom konvolucijske neuronske mreže. Ideja na kojoj se

zasniva ova metoda potiče od činjenice da oba koraka za postizanje računalne postojanosti boja

imaju svoje mane. Procjena osvjetljenja loše je postavljen problem te se pokušava riješiti pret-
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postavkama. S druge strane, korekcija boja aproksimira se jednostavnom dijagonalnom ma-

tricom. Stoga je računalnu postojanost boja u nekim slučajevima teško postići. Istraživanje u

sklopu ove disertacije pokazuje da i proizvod̄ači digitalnih kamera vrlo vjerojatno uzimaju takve

činjenice u obzir. Pokazalo se da automatsko podešavanje bijele u Canon digitalnim kamerama

ograničava prostor kromatičnosti na samo mali dio omed̄en četverokutom te tako sprječava

velike pogreške u korekciji slike, koje mogu biti uzrokovane žarko obojenim osvjetljenjima.

Prezentirana metoda procjenjuje osvjetljenje u više koraka. Svaki korak sastoji se od procjene

osvjetljenja ograničene na područje u blizini bijelog svjetla i korekcije slike uporabom proci-

jenjenog osvjetljenja pri čemu se korigirana slika koristi kao ulaz sljedećeg koraka. Produkt

ograničenih procjena osvjetljenja svih koraka odgovara globalnom osvjetljenju početne slike.

Ovakav pristup procjeni osvjetljenja cilja na smanjenje pogrešaka u najgorim slučajevima za

koje se pretpostavlja da se mogu pojaviti kada osvjetljenje jako odstupa od bijelog svjetla.

Kako bi se ograničio rad metode samo na područje osvjetljenja u blizini bijeloga, osmišljena je

specifična funkcija računanja pogreške. Ova funkcija sastoji se od dva dijela. U prvom dijelu

računa se kut izmed̄u procijenjenog globalnog vektora osvjetljenja i stvarnog globalnog vektora

osvjetljenja. U drugom dijelu penaliziraju se procjene načinjene u svakom pojedinom koraku

na način da se za svaku procjenu računa kut s obzirom na bijelo svjetlo pomnožen s težinskim

faktorom kojim se odred̄uje maksimalno dopušteno odstupanje od bijelog svjetla. Težinski fak-

tor povećava se proporcionalnu rednom broju koraka čime se osigurava postepeno smanjenje

maksimalno dopuštenog odstupanja od bijelog svjetla. U idealnom slučaju, u posljednjem ko-

raku kut izmed̄u ograničene procjene osvjetljenja i vektora bijelog svjetla trebao bi iznositi nula,

tj. posljednja procjena bi trebala biti neutralna. Metoda je implementirana kao konvolucijska

neuronska mreža koja koristi iste težine u svim koracima i množenje s dijagonalnom matricom

za korekciju boja slike.

U konačnici, u četvrtom dijelu disertacije prezentiran je novi skup podataka za procjenu

osvjetljenja u kojem su sumirana sva znanja stečena istraživačkim radom. Prezentirani skup

podataka jedan je od najvećih u području s 4890 slika visoke rezolucije. Med̄utim, ono što je

iznimno bitno je da je taj skup podataka napravljen u skladu s novo-definiranim nizom značajki

za skupove podataka za procjenu osvjetljenja, a to su: raznolikost sadržaja i osvjetljenja, veliki

broj uzoraka, bogatstvo različitih informacija o slici, jednostavno ažuriranje i praćenje prom-

jena, provjerljivost, jednostavnost pristupa i usklad̄enost s GDPR-om. Mnoge od ovih znača-

jki motivirane su nedostacima prijašnjih skupova podataka za procjenu osvjetljenja kao što su

neusklad̄enost s pretpostavkom o postojanju samo jednog osvjetljenja, nekoliko loše sinkro-

niziranih verzija istog skupa podataka te nedostatan broj slika i osvjetljenja. Prezentirani skup

podataka korisniku nudi mnoštvo informacija za svaku sliku te tako pruža visoku razinu slo-

bode u razvoju metoda. Velika količina informacija (EXIF podaci, vrijeme nastanka slike, tip

osvjetljenja, informacije o lokaciji, sjenama, broju izvora osvjetljenja, raznolikosti scene i kali-
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bracijskom objektu) te raznolikost scena i osvjetljenja plodno su tlo za razvoj metoda temeljenih

na dubokom učenju, poput metoda opisanih u ovoj disertaciji.

Doktorska disertacija sastoji se od šest radova diseminiranih u časopisima velikog fak-

tora odjeka i na konferencijama. Priloženi radovi predstavljaju izvorni znanstveni doprinos

ove disertacije koji se sastoji od prethodno opisana četiri dijela. Disertacija započinje opi-

som metodologije procjene osvjetljenja i pregledom literature. Zatim je predstavljen izvorni

znanstveni doprinos popraćen znanstvenim radovima.

Ključne riječi: postojanost boja, konvolucijske neuronske mreže, duboko učenje, procjena

osvjetljenja, podešavanje bijele

ix
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Chapter 1

Introduction

1.1 Computational color constancy

In Figure 1.1, three images of the same scene captured with the same camera are shown. Only

the white balance setting was modified for each captured image. Starting from the left image,

Shade, Tungsten light, and White fluorescent light were used. These settings tell the camera

about the scene light source and which correction to use to remove its influence on image

colors. Different auto white balance settings yield differently colored images. However, if

a person is placed in the scene while the light source changes, most likely it would perceive

colors the same regardless of the light source; due to the property of the human vision system

called color constancy. For humans, this operation is innate and subconscious. However, in

digital photography, this is an ill-posed problem called computational color constancy.

The computational color constancy objective is to render images invariant of the illumina-

tion color. When performed well, a white surface within the scene should appear white in the

image capturing the scene, that is, R = G = B in the camera’s RGB color space. Therefore, in

digital photography, computational color constancy is also called white balancing. For instance,

in Figure 1.1, the middle image was captured with the most appropriate white balance setting

Figure 1.1: The impact of different white balance settings on the appearance of digital images. Images
of the same scene are captured with three white balance settings. The settings used are the following:
left image - Shade; middle image - Tungsten light; right image - White fluorescent light. All images were
captured with the same Canon EOS 550D camera using ISO 3200, exposure time 1/15, and aperture
f/5.6.
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Introduction

(Tungsten light). Computational color constancy is achieved in two steps that are illumination

estimation and chromatic adaptation, with the former being more researched.

The straightforward way to illumination estimation is to capture an image that contains at

least one achromatic (“white”) object. For white light, the pixel values of an achromatic object

should coincide with the achromatic line R = G = B. For colored illuminations, the pixel values

for the same object would deviate from that line. Hence, the color of the scene illumination can

be represented by the R, G, and B values of the achromatic object. This approach is possible in

two cases; either a calibration object is placed in the image scene or an achromatic surface is a

part of the scene, and its location is known. Both cases are equally unlikely; having a calibration

object in the image is highly undesirable, and an achromatic object may not appear in all scenes.

Moreover, even if an achromatic object occurs, its location must be determined, which is in the

scope of a completely different research area. Therefore, illumination estimation algorithms are

applied onboard cameras at the beginning of the image formation pipeline.

The result of achieving computational color constancy is a color-corrected image. Being

able to achieve this consistency was shown beneficial in many other computer vision tasks. For

example, improperly white-balanced images impact the accuracy of classification and segmen-

tation [1, 2].

1.2 Scope of the thesis

From the two steps in computational color constancy, illumination estimation is considered

more challenging and critical task. The research community adopted a sufficiently accurate

model for chromatic adaptation. However, illumination estimation is still widely researched.

In this thesis, the emphasis is on methods for illumination estimation. The thesis aims at de-

veloping new methods utilizing convolutional neural networks. Based on the number of light

sources, illumination estimation methods are local (multiple light sources) or global (single

light source). Typically, in the real world, light is emitted from several sources. For example,

in a room, sunlight may pass through the windows, and multiple light bulbs may illuminate

the room. Therefore, some parts of the room are illuminated by the mixture of all these light

sources. However, local illumination estimation is a difficult task. In addition, it is hard to

collect the data and evaluate methods objectively, since ground-truth information is difficult

to determine. Global illumination estimation is theoretically an easier problem since a single

dominant light source is assumed. Nevertheless, no method meets the task. Therefore, in this

thesis, methods for global illumination estimation are researched.

Nowadays, deep learning is state-of-the-art in many image-related fields. Convolutional

neural networks are mainly used. They are designed assuming images as inputs. Deep neural

networks have a substantial capacity to capture a wide range of events and extract various fea-
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tures given a task. Estimating the light source color is an ill-posed problem, i.e., many inputs

map to the same output. Therefore, tackling it with deep learning could yield improvements,

especially in some border cases where traditional methods fail due to their underlying assump-

tions. In terms of accuracy, the methods proposed in this thesis aim to improve the illumination

estimation in such cases.

Quality datasets are required to tackle deep learning. However, data in computational color

constancy is rarely suitable for deep learning-based methods. The most commonly used datasets

are small and, moreover, tend to deviate from necessary prerequisites, e.g., they violate the

uniform illumination assumption. One part of this thesis is dedicated to illumination estimation

datasets.

1.3 Scientific contribution

The scientific contribution of this thesis is contained in six scientific publications, and it pursues

the illumination estimation problem regarding two interacting viewpoints: methods for illumi-

nation estimation and data acquisition. In this thesis, three illumination estimation methods are

presented:

• illumination color estimation method based on a convolutional neural network with an

attention mechanism,

• illumination color estimation method using scene lighting classification based on deep

learning,

• illumination color estimation method based on recurrent deep neural network with a mul-

tistage loss function.

In the scope of data acquisition, a novel illumination estimation dataset is presented, including

the acquisition methodology and technical information.

1.4 Organization of the thesis

The organization of the thesis is as follows. Chapter 2 is an overview of the computational

color constancy. It provides a reader with the methodology for achieving computational color

constancy and an overview of the literature on illumination estimation methods. In Chapter 3,

a brief introduction to convolutional neural networks is given, and illumination estimation ap-

proaches utilizing convolutional networks are described. The evaluation of illumination esti-

mation methods is described in Chapter 4. In Chapter 5, the scientific contribution, contained

in six scientific publications, is presented. Thesis conclusions and plans for future research are

given in Chapter 6. The list of scientific publications referring to the thesis contributions and

author’s contribution in each publication are given in Chapter 7 and Chapter 8, respectively.
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Chapter 2

Overview

Computational color constancy is implemented at the beginning of the image formation pipeline

and applied to raw-RGB images; an illustration of the typical image processing pipeline is

shown in Figure 2.1. Computational color constancy is accomplished in two steps. First, an

illumination vector is estimated from the pixel values; this step is called illumination estimation.

Second, all pixels are corrected considering the estimated vector; this step is called chromatic

adaptation. Whether a single vector is estimated for the whole image or multiple vectors relating

to different local image regions are estimated, global and local methods exist, respectively.

Computational color constancy is applied on RGB images with minimal processing and without

any non-linearity applied. Since only linear operations may have been applied, images are

referred to as “linear” or raw images. The required processing includes black level subtraction

and the removal of overexposed pixels.

Figure 2.1: An illustration of the typical image formation pipeline in digital cameras; may vary depend-
ing on the camera manufacturer and model complexity. White balancing is performed at the beginning,
before non-linear operations such as compression, tone mapping, and various proprietary color enhance-
ment operations.

This chapter introduces concepts of computational color constancy and gives an overview

of the literature. In this thesis, the taxonomy of illumination estimation methods is based on

one defined by Gijsenij et al. [3]. Since the gamut-based methods require learning of the canon-

ical gamut, they are presented within the learning-based category. Methods are divided into
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Overview

two groups: static methods and learning-based methods. The emphasis of this thesis is on il-

lumination estimation methods based on deep learning. For convenience, they are described

separately in Chapter 3 3. Many illumination estimation methods exist, and therefore, only the

most influential and well-known ones are described in the scope of this thesis.

2.1 Illumination estimation

Depending on whether the specular reflection is modeled, two image formation models can be

considered: the dichromatic reflection model [4] and the Lambertian model [5]. Lambertian

model is the simplest image formation model since it disregards specular reflection. This model

defines reflection as absolutely diffusive. That means that no matter the viewing angle of an

observer, the brightness of a pixel remains the same. The image formation model under the

Lambertian assumption is

Ic(x,y) =
∫

ω

L(x,y,λ )R(x,y,λ )ρc(λ )dλ c ∈ {R,G,B}. (2.1)

Intensity I of a pixel at the position (x,y) for the color channel c ∈ {R,G,B} is obtained by

integration over the wavelengths λ in the visible light spectrum* ω . For each pixel, L(x,y,λ )

and R(x,y,λ ) denote the spectral distribution of the light source and surface reflectance, respec-

tively. Camera-dependency is modeled with ρc(λ ) that is the sensitivity of the camera sensor

for the color channel c.

Global illumination estimation methods assume that the light source spectrum is the same

regardless of the position in the image, which simplifies the model to

Ic(x,y) =
∫

ω

L(λ )R(x,y,λ )ρc(λ )dλ . (2.2)

Then the vector of the observed, assumed global, light source color is

ec =
∫

ω

L(λ )ρc(λ )dλ , c ∈ {R,G,B}. (2.3)

The objective of illumination estimation is to estimate components ec knowing only pixel

values. Both L(λ ) and ρρρ(λ ) are, in general, unknown. That makes the problem of estimating

the illumination ill-posed. Common practice is to pose assumptions that re-formulate the task

to have a feasible solution. Since illumination can be approximated only up to a scaling factor,

occasionally, chromaticities are used instead of RGB values; thus, only the ratio of red, green,

and blue is considered while disregarding the intensity. Given R, G, and B components, the

*Visible light spectrum is in the range from 380 to 750 nm.
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Figure 2.2: Reflection types used in image formation models: Lambertian model [5] assumes only
diffuse reflection; dichromatic reflection model [4] assumes both diffuse and specular reflection.

corresponding r, g, and b chromaticities are

r =
R

R+G+B
, g =

G
R+G+B

, b =
B

R+G+B
. (2.4)

Furthermore, some approaches [6, 7] rely on uv log-chrominance components [8, 9]:

u = log
G
R
, v = log

G
B
. (2.5)

The dichromatic reflection model accounts for the specular reflection. It is a generalization

of the Lambertian model. The dichromatic reflection model is given as

Ic(x,y) = mb(x,y)
∫

ω

L(x,y,λ )R(x,y,λ )ρc(λ )dλ +ms(x,y)
∫

ω

L(x,y,λ )ρc(λ )dλ , (2.6)

where mb(x,y) and ms(x,y) are scaling factors relating to the amount of body and specular

reflection, respectively.

Of the two, the Lambertian model is obviously simpler. Nevertheless, it is sufficiently accu-

rate, and it is the basis for most methods. Throughout this thesis, the Lambertian model is used.

Figure 2.2 illustrates both image formation models.

2.2 Chromatic adaptation

Chromatic adaptation is the second step in achieving computational color constancy. It cor-

rects the color bias of the image and renders the image under a canonical illumination. Chro-

matic adaptation is formed as a linear transformation of a color-biased pixel Ĩ = [ĨR, ĨG, ĨB] to its

canonical representation I = [IR, IG, IB] using simple scaling operation as (for simplicity, here,

the spatial information (x,y) is omitted from the notation)

I = MĨ, (2.7)
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Figure 2.3: An example of applying von Kries-based chromatic adaptation model [10, 11]. Left: original
color-biased image and the corresponding illumination color; right: corrected image is shown.

where M is a 3-by-3 correction matrix. A widely used simplification of this model was intro-

duced by von Kries [10, 11]; a multiplicative scaling of each color component independently

was proposed. In other words, M is approximated as a diagonal matrix

M = diag
([

eR

ẽR
,
eG

ẽG
,
eB

ẽB

])
, (2.8)

where e = [eR,eG,eB] and ẽ = [ẽR, ẽG, ẽB] are canonical illumination vector and estimated illu-

mination vector, respectively. † Examples of Canon’s built-in diagonal white balance matrices

that were used for images in Figure 1.1 are:

MShade = diag([2.4619,1.000,1.3125]) ,

MTungsten light = diag([1.5488,1.000,2.2510]) ,

MWhite fluorescent light = diag([1.9180,1.000,2.1074]) .

The canonical illumination is most often achromatic, i.e., so-called white light. For white light,

eR = eG = eB and, since illumination can be estimated up to a scaling constant only, in practice,

M is mostly

M = diag
([

1
ẽR

,
1

ẽG
,

1
ẽB

])
. (2.9)

An example of a color-corrected image is shown in Figure 2.3.

†diag([k, l,m]) =


k 0 0

0 l 0

0 0 m


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2.3 Static illumination estimation methods

2.3.1 Statistical-based methods

Statistical-based illumination estimation methods are based on different statistical properties of

images, e.g., moments and gradients. They do not require any learning and large datasets related

to learning techniques. Typically, static methods are pretty simple and effective in terms of low

execution time, making them hardware-friendly. Nevertheless, the simplicity of static methods

is mostly their major downside. Zakizadeh et al. [12] experimentally showed that specific types

of images are hard for statistical methods and that learning-based methods can handle such

samples. In terms of accuracy, static methods are inferior compared to learning-based methods.

The simplest and the most famous assumption in illumination estimation is the Gray World

assumption [13]. It assumes that the average reflectance in the scene is achromatic, i.e., gray.

The deviation of the computed average from achromatic is then due to the impact of the illu-

mination. The color of the illumination equals the mean of the image. Gray World fostered a

family of illumination estimation methods that originate from the same base assumption. Fin-

layson and Trezzi [14] proposed the Shades of Gray method that extends the Gray World by

introducing the Minkowski norm. They estimate the illumination vector as

e = k
(x

I(x,y)p dxdy
) 1

p
, (2.10)

where p denotes the order of the Minkowski norm and k is the normalizing constant. For

p = 1, (2.10) equals the Gray World, and for p→ ∞, it becomes the Max-RGB method [15].

Max-RGB is also often called White Patch, since it assumes the presence of a white surface

in the scene that reflects illumination perfectly. Max-RGB is implemented by computing the

maximum intensity for each color channel as

e = k max
(x,y)

I(x,y). (2.11)

Joze et al. [16] extend the White Patch by including a gamut of bright pixels in computation. Van

de Weijer et al. [17] introduce local smoothing as an additional improvement of the Gray World

algorithm. They apply local smoothing by using a Gaussian filter and compute the illumination

as

e = k
(x

(I(x,y)⊗Gσ (x,y))p dxdy
) 1

p
, (2.12)

where Gσ denotes a Gaussian filter with standard deviation σ . In the same work, Van de Weijer

et al. scaled up the Gray World to higher-order statistics. The Gray Edge hypothesis was

introduced: “the average of the reflectance differences in a scene is achromatic” [17]. That

8
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leads to computing the illumination vector as

e = k
(x ∣∣∣∣∂ n(I(x,y)⊗Gσ (x,y))p

∂ nx∂ ny

∣∣∣∣dxdy
) 1

p

, (2.13)

where n denotes the order of the derivative. Assigning weights to the edges based on the edge

type further improves the performance [18]. Table 2.1 summarizes statistical-based methods

built upon the Gray World assumption that can be derived from (2.13) using different values for

n, p, and σ .

Method name (n, p, σ ) Assumption

Gray World [13] 0, 1, 0 scene average is gray

Max-RGB [15] 0, ∞, 0 scene maximum is gray

Shades of Gray [14] 0, ∗, 0 Minkowski norm of a scene is gray

General Gray World [17] 0, ∗, ∗ Minkowski norm of a smoothed scene is gray

1st order Gray Edge [17] 1, ∗, ∗ Minkowski norm of scene derivative is gray

2nd order Gray Edge [17] 2, ∗, ∗ Minkowski norm of scene second derivative is gray

Table 2.1: Statistical-based illumination estimation methods contained in (2.13) that are obtained by
varying n, p, and σ parameters. ∗ denotes arbitrary parameter value.

Qian et al. [19] propose finding gray pixels regarding some observed image statistics. The

method relies on the dichromatic reflection model characteristic of physics-based approaches

described in Section 2.3.2; however, the authors regard the methods as statistical-based due to

the underlying statistics used.

2.3.2 Physics-based methods

Physics-based illumination estimation methods examine the physical nature of illumination and

object interaction. They commonly rely on a more complex dichromatic reflection model (2.6);

hence, highlights and inter-reflections can be modeled. The simplest approach is to find pixels

for which only the specular component exists, i.e., pixels (x,y) for which mb(x,y) = 0 in (2.6).

Specular reflections are usually brighter than body reflections. Therefore, this approach comes

down to Max-RGB [15]. Methods relying on specularities or highlights include [20, 21, 22, 23].

However, in practice, these methods are difficult to apply to real-world images due to ambient

light and the lack of specular information. Quite recently, Woo et al. [24] proposed a method

that relies on finding a path for which the longest dichromatic line is produced by specular

pixels. They assume the Phone reflection model [25] and account for ambient light.

9
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2.4 Learning-based illumination estimation methods

Learning-based methods rely on a substantial amount of data for learning a model that can esti-

mate illumination from unseen image data. Learning-based methods outperform static methods

in terms of accuracy but typically at the expense of the increased computational complexity

and large memory requirements. In this section, an overview of conventional learning-based

methods such as gamut mapping, probabilistic models, and machine learning methods is given.

The emerging subgroup of learning-based methods are deep learning methods; for convenience,

they are reviewed in Chapter 3.

Gamut mapping [26] is based on the observation that, given an illumination, all observed

colors fit inside a convex hull. The set of possible colors in the image under a canonical illumi-

nation is called the canonical gamut. Gamut mapping looks for the mapping between the gamut

of an image with an unknown light source into the canonical gamut. Usually, many mappings

are feasible; thus a single mapping has to be selected regarding some selection criteria, e.g., the

mapping resulting in a most colorful scene [26] or averaging and weighted averaging [27].

Gamut mapping can also be applied in 2D chromaticity space [28, 29]. To alleviate the

problem of unrealistic illuminations, Finlayson et al. [30] defined a set of plausible illumina-

tions, and for each, they determine the gamut. For an unseen image, they estimate illumination

by simply finding the predetermined gamuts that the image data relates to most. Gijsenij et

al. [31] improve the Gamut mapping by including image derivatives up to the second-order in

gamut calculation, along with pure pixel values.

One line of research focuses on using low-level features to model the posterior probability

of different illuminations and reflectances relying on Bayesian learning [32, 33, 34, 35].

Typically, illumination estimation algorithms are assumption-based and, thus, susceptible

to error. Therefore, several methods relying on combining outputs of multiple methods were

proposed. Cardei and Funt [36] combined methods using weighted average and neural network-

based fusion. Schaefer et al. [37] used statistical and physical methods to compute likelihoods

for some predefined light sources and combined the likelihoods to estimate the illumination.

Gijsenij and Gevers [38, 39] first determine the most suitable illumination estimation method

relying on intrinsic properties of natural images and then apply only the selected network to

obtain the illumination vector.

Other learning-based approaches also include methods such as limiting the space of possible

solutions to illuminations computed by existing illumination estimation methods [40], using

linear regression [41, 42, 43], and support vector regression [44, 45].
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Chapter 3

Deep learning-based illumination
estimation methods

3.1 Convolutional neural networks

Convolutional neural network (CNN) architectures are deep structures designed to tackle the

problems with grid-like structured data, such as images. They are named after the mathemat-

ical convolution operation although, in practice, CNNs are mainly implemented using cross-

correlation (the convolution without flipping the kernel) [46]

(F ∗ I)(x,y) = ∑
m

∑
n

F(m,n)I(x+m,y+n), (3.1)

where F is the convolution filter, I is the input image, (x,y) is the spatial position in the input,

and (m,n) denotes indices of individual filter parameters. Convolutional neural networks are

based on the following properties: local connectivity *, weight sharing †, and equivariance ‡.

The three most common elements in all CNNs are the convolutional layer, nonlinear activation

function, and pooling operation.

The convolutional layer contains a set of weights, called kernels or filters, that are learned in

the training phase. The spatial extent of a filter is much less compared to the input, often 3×3.

The depth of a filter matches the depth of the input, e.g., assuming the input is an RGB image,

the filter depth should be three. A single convolutional layer typically contains multiple filters,

*CNNs account for the spatial structure in the data using filters with small receptive fields (receptive field is the
spatial extent a filter is connected to). Therefore, each filter is connected only to a small spatial portion of the input
data but along the entire input depth.

†Weight sharing corresponds to using the same set of weights at every position in the input. CNNs do not use
a separate filter for each spatial location in the input data. They use a set of filters shared across the whole spatial
extent.

‡Due to weight sharing, convolutional layers are equivariant to translation. That means that applying convolu-
tion to the translated input is the same as applying it to the original input and then translating.
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Figure 3.1: Computing the output of a convolutional layer. For illustration purposes, convolution using
only one filter is shown. The filter size (width and height) is 3× 3, and the stride is one. For values
of stride greater than one, the size of the output is spatially reduced, e.g., for stride two, the output is
spatially reduced by the factor of two in each direction.

e.g., 128, 256, or 512. The output of the convolutional layer is computed by shifting filters in

both spatial directions and then computing the dot product of each filter with the input values

for each location. That results in so-called activation maps that are responses of each filter for

each local patch. The number of units that filters are shifted by is called stride. The output depth

of the convolutional layer, i.e., the number of activation maps, matches the number of filters,

and the width and height of the output are computed following

dout =
din +2p− f

s
+1, (3.2)

where dout and din are output and input size, respectively, p denotes padding, f is the filter

size, and s is the stride. An illustration of computing the output of the convolutional layer is

shown in Figure 3.1. Modern layers types derived from the basic convolutional layer include

dilated convolution [47, 48] §, transposed convolution [49, 50, 51] ¶, depthwise separable con-

volutions [52, 53] ||, etc.

The output of the convolutional layer is the linear combination of the input data and layer

filters. Stacking multiple such layers yields nothing but a complex linear mapping of the input

and output data. Nonlinear activation functions introduce non-linearity in CNN training and

§Dilated convolution is a type of convolution that includes pixel skipping, e.g., given the dilation rate of two,
every second unit in the input is used for computation.

¶Transposed convolution is the opposite of conventional convolution, i.e., it is used to up-sample the input using
learnable weights.

||Depthwise separable convolution splits the conventional convolution into two steps. First, convolution is
applied to each input channel using filters of depth one, resulting in the same output depth as the input depth.
Second, N 1×1 convolutions are applied to expand the depth of the output to N. Such implementation results in
the reduced number of trainable weights; hence, computational efficiency is increased, and the chance to overfit is
decreased.

12
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Figure 3.2: The max pooling operator. The width and the height of the pooling region are equal to three,
and the stride is equal to two. Stride is the distance between two consecutive pooling locations, i.e. local
patches. For demonstration purposes, units affiliated with the same local patch are equally colored.

stimulate CNNs to adapt to the variety of data. Simply, they enable the model to learn diverse

features and generalize. Activation functions are applied to the output of the convolutional layer.

A frequently used activation function is rectified linear unit (ReLU) f (x) = max(0,x) [54].

Other activation functions include, e.g., sigmoid function f (x) = (1+ e−x)−1, hyperbolic tan-

gent f (x) = tanh(x), Leaky ReLU [55], and Scaled Exponential Linear Unit (SELU) [56].

The pooling operator makes the CNN invariant to small translations and distortions in the

input [57]. Pooling operates on rectangular non-overlapping patches and outputs summary

statistics for each path. A local region is replaced with a single value, and, hence, the spatial

extent of the data is reduced. Consequently, pooling enhances the computational efficiency of

a CNN. The parameters of the pooling operation are the size of the local patch and the distance

between two consecutive pooling locations. The most frequently used is the max pooling op-

erator that computes the maximum of a local patch [46], as shown in Figure 3.2. In addition,

average and L2-norm pooling also exist.

Latest CNNs utilize a broad range of additional building blocks such as batch normaliza-

tion [58], residual blocks [59], skip connections [59, 60, 61], dropout [62], and squeeze and

expand blocks [63].

3.2 CNN-based illumination estimation

About two decades ago, a simple multilayer perceptron was trained for illumination estima-

tion [64, 65]. Recently, convolutional neural network (CNN) architectures were applied on raw-

RGB images to estimate illumination, motivated by the striking performance that was achieved

by employing CNNs on other vision-based tasks [57, 66]. A large portion of CNN-based meth-

ods are trained for estimating the global illumination vector [67, 68, 69], i.e., they assume

uniform illumination and model illumination estimation as a regression problem. Nevertheless,

a number of methods utilize classification [70] and image-to-image translation [71].

13
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Figure 3.3: The architecture of CNN proposed by Bianco et al. [72]
.

Barron [6] proposed a method that learns a single convolutional filter for illumination es-

timation. They model the problem as a spatial localization task by translating images to uv

log-chrominance space defined in (2.5) [8] and learning to localize the corresponding 2D his-

togram. That was further improved using the Fast Fourier transform to operate in the frequency

domain [7].

Among the pioneers in CNN-based illumination estimation are Bianco et al. [72] that use

extremely shallow CNN architecture, as shown in Figure 3.3. They used one convolutional layer

with 240 filters of the spatial size 1×1, followed by max pooling on 8×8 patches with stride 8

(reducing the feature map eight times in each direction). That was followed by reshaping into

a vector and a fully connected layer with 40 weights. The last fully connected layer outputs

a three-dimensional vector representing the illumination estimate. The network was trained

on pairs of image patches and ground-truth triplets using the euclidean loss function and later

fine-tuned using recovery angular error as loss function.

Lou et al. [68] proposed a deep architecture inspired by AlexNet [73]. A total of eight lay-

ers was used, including five convolutional and three fully connected layers. They used transfer

learning [74] to cope with insufficient dataset sizes. First, they trained their network archi-

tecture on the ImageNet dataset [75] for classification. Second, the network was retrained on

ImageNet using euclidean loss function and illumination ground-truth generated using Shades

of Gray [14] and Gray Edge [17] methods. Last, they fine-tuned the network on the illumination

estimation dataset using the euclidean loss function.

Shi et al. [69] proposed Deep Specialized Network (DS-Net). It is a unique CNN architec-

ture consisting of two interacting networks, namely HypNet and SelNet. Hypothesis network

(HypNet) aims at estimating hypotheses of the illumination given the input image. The network
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outputs two hypotheses of the illumination vector, each computed in a separate output branch

forked from the final convolutional layer. A straightforward way to obtain the final illumination

vector is to average the hypotheses. However, this was shown inferior to using a CNN as a

voter. For that reason, a selection network (SelNet) was proposed. SelNet is trained to select

the more plausible illumination vector given the input image and two hypotheses generated by

HypNet.

Opposed to regression-based approaches, Oh and Kim [70] approached illumination esti-

mation as illumination classification. They aimed at making the illumination space sparse using

the K-means algorithm (and a varying number of cluster centers given the dataset). That means

that similar illuminations were grouped and represented by a single central point while pushing

central points as far away from each other as possible. They based their network on AlexNet

architecture, pre-trained it for classification on ImageNet, and fine-tuned it to output the proba-

bility of the input image given the illumination clusters. In the test phase, the illumination vector

is approximated as the weighted sum of cluster centers with the network output representing the

weights in the summation.

Common to many CNN-based approaches is that they split images into patches [69, 70, 72,

76] due to small datasets and large individual images. They estimate illumination from each

patch in the image and then combine estimates regarding some criterion. Typical criteria are

averaging and median pooling. However, an attribute of natural images is a high correlation

of neighboring pixels, and, thus ambiguous patches occur quite frequently. In the context of

illumination estimation, such patches lack semantic information to distinguish reflectance and

illumination; the appearance of the ambiguous patch is likely for a wide range of reflectance

and illumination combinations. Hu et al. [77] tackled noisy patch-based illumination estima-

tion by proposing a CNN that computes a map of confidence weights; a weight is assigned

to each patch to indicate its reliability. They take advantage of the weight-sharing property

of CNNs (the same set of weights is applied using the sliding window to all image regions at

once) to consider all patches simultaneously. They proposed a fully CNN based on AlexNet

and SqueezeNet [63] that computes a four-channel feature map; the first three channels cor-

respond to local illumination estimates, and the fourth channel contains confidence weights.

Each point in the four-channel feature map corresponds to a local region in the input image.

The final illumination vector is the weighted sum of local estimates using computed confidence

weights. They showed that regions containing, e.g., faces, bright pixels, or specular reflections

are particularly reliable, which relates to other proposed approaches [16, 22, 67, 78]. Choi et

al. [79] similarly approached noisy data but used the residual network and dilated convolution,

thus reducing the computational cost.

CNN-based approaches to illumination estimation generally are supervised, i.e., ground-

truth value is associated with each image in training data. Laakom et al. [80] proposed an
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unsupervised approach. They trained Convolutional Autoencoders (CAE) to reconstruct both

labeled and unlabeled data, thus providing the network with samples of images from a wider

distribution of scenes and camera models. They proposed two autoencoder-based unsupervised

approaches. In the first approach, a CAE was trained to reconstruct images, including labeled

and unlabeled samples. Next, that CAE that learned the latent representation of a broad input

distribution was fine-tuned for illumination estimation using the recovery angular error as loss

function. In the second approach, they extend the binary cross-entropy loss function as

Lext(D∪D′) = α
1
|DD′| ∑

x∈D∪D′
L(x, x̂)+(1−α)

1
|D| ∑x∈D

1
90

RAE(e, ẽ), (3.3)

where D and D′ are labeled and unlabeled domains, α is the weighting factor, |·| denotes car-

dinality, L(x, x̂) is binary cross-entropy for input image x and reconstructed image x̂. Finally,

RAE is the recovery angular loss between the ground-truth illumination vector e and estimated

illumination vector ẽ.Embracing such loss function enabled the training of an autoencoder that

simultaneously reconstructs the input data and estimates the illumination vector for labeled

samples only. Illumination estimates are obtained from the latent space in which they use only

three neurons to match the size of the illumination vector.

Illumination estimation was approached from the perspective of image-to-image translation

by Das et al. [71]. Contrasting to the typical approach in which the illumination vector is es-

timated from the image, they learn to map the input image to its white-balanced variant. They

utilized Generative Adversarial Network (GAN) architectures to learn the mapping. Given the

input image, the illumination vector is then obtained by inverting (2.7). They analyzed the

performance of three well-known GANs: Pix2Pix [81], CycleGAN [82], and StarGAN [83].

Similarly, image-to-image translation using GANs was also used for multi-illuminant compu-

tational color constancy [84].

Learning-based methods learn regularities in data and often fail to generalize on unseen

examples that do not exhibit the learned regularities. According to (2.1), illumination depends

on the camera sensor sensitivity; thus, the same set of illuminations may result in different

readings when captured with different cameras. Learning-based methods are sensitive to camera

sensor differences and are typically trained using a single camera model. A straightforward

solution is to create datasets containing a broad spectrum of camera models. Considering the

tremendous number of different cameras, this is impractical. Therefore, methods such as [85,

86, 87] propose the camera-invariant approaches to illumination estimation, e.g., by learning to

operate in space independent of the sensor [86].
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Chapter 4

Benchmark datasets and evaluation
metrics

Illumination estimation methods are usually evaluated by comparing the method’s estimate of

the scene illumination with some ground-truth value associated with each image. Acquisition

of a dataset for illumination estimation is a tedious process since it requires a calibration object

to put in the scene for extracting the ground-truth illumination information. Depending on the

use-case of the dataset, the calibration object has to be appropriately positioned, e.g., to reflect

the most dominant light source or two light sources originating from different directions. Later,

the calibration object has to be removed from the image. For illumination estimation, images

must be only linearly processed, if necessary at all. That is because illumination estimation

is performed at early stages in image processing pipelines in digital cameras before non-linear

operations such as tone mapping, gamma correction, or JPEG compression. However, it is

necessary to deal with overexposed pixels and subtract the black level, which was neglected in

some early datasets but impacts the image appearance [88].

In this chapter, benchmark datasets and the most common evaluation metrics for illumina-

tion estimation are described. Since this thesis is on global illumination estimation, the em-

phasis is on datasets with a single ground-truth illumination. However, for convenience, other

existing datasets such as hyper-spectral and multi-illuminant datasets are mentioned as well.

4.1 Benchmark datasets

Ciurea and Funt published GrayBall [89], a large dataset of 11346 images extracted from a

two-hour video sequence. It contains images of both outdoor and indoor scenes. To collect

illumination information, the gray sphere was mounted to the camera to a fixed position, which

ensures the sphere is visible in the camera’s field of view in each frame. Since images are

consecutive frames from a video sequence, the possibility of a high correlation between some
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images should be taken into account. Another downside of the GrayBall is the format of images.

Images were published in sRGB image format, which does not comply with the image formation

model where it is assumed that no non-linear operations applied to the image. Often used simple

fix to this, which only alleviates the problem, was to perform inverse gamma correction with

γ = 2.2. Example images from the GrayBall dataset are shown in Figure 4.1.

Figure 4.1: Example images from the GrayBall dataset [89].

Gehler et al. published the ColorChecker dataset [33] to account for the issues in the Gray-

Ball dataset. Nevertheless, they introduced clipped pixels, nonlinearities, and camera effects

by converting RAW images to tiff format with automatic settings [90]. This was later fixed

by reprocessing the RAW data appropriately [90]. However, several versions of the dataset and

problems such as not subtracting the black level raised the question of the credibility of the eval-

uation performed on this dataset [88, 91, 92]. With all downsides put aside, the ColorChecker

dataset contains 568 images. Two Canon cameras were used, i.e., Canon 1D and Canon 5D.

Images captur both indoor and outdoor scenes. For the extraction of the ground-truth informa-

tion, MacBeth color checker chart was used. Information was extracted from the achromatic

patches in the very bottom part of the color checker. Example images from the ColorChecker

dataset are shown in Figure 4.2.

Figure 4.2: Example images from the ColorChecker dataset [33]

The same color checker chart was used in the NUS dataset [93]. The novelty of this dataset is

that images of the same scene were taken using cameras from various manufacturers, including

multiple camera models from some manufacturers. A total of eight cameras were used, and

around 200 images per camera were captured. Like in the previous datasets, images are captured

in both indoor and outdoor environments. Example images from the NUS dataset are shown in

Figure 4.3.

Banić et al. published the Cube and Cube+ datasets [94]. Both share the same acquisition

methodology and the majority of features. Cube is entirely contained in the Cube+ and, thus,

only the latter will be described. The Cube+ is made of 1707 high-resolution images, which
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Figure 4.3: Example images from the NUS dataset [93].

include outdoor and indoor scenes. Moreover, outdoor scenes are captured in both day and

night conditions. Outdoor daytime images were originally published in the Cube dataset. This

subset contains 1365 images. The rest, which includes outdoor night and indoor scenes, was

introduced in Cube+. All images are captured with the same Canon EOS 550D camera. For

ground-truth extraction, the SpyderCube was used. Like the GrayBall dataset, it was mounted

to the cameras and positioned to appear in the bottom right corner in each image. Example

images from the Cube+ dataset are shown in Figure 4.4.

Figure 4.4: Example images from the Cube+ dataset [94].

Recently, the INTEL-TAU dataset [95] was published. The dataset was collected using

Canon EOS 5DSR, Nikon D810, and Mobile Sony IMX135 cameras. The acquired number of

images per camera was 2910, 2793, and 2120, respectively. INTEL-TAU contains images of

outdoor and indoor scenes, and in each scene, an X-Rite ColorChecker Passport was placed for

ground-truth extraction. Similar to the NUS dataset, some scenes were captured with all three

cameras, enabling cross-camera color constancy. INTEL-TAU is GDPR-compliant, unlike its

predecessor dataset Intel-TUT [96]. INTEL-TAU is provided in both raw format and processed

format for easier usage. Example images from the INTEL-TAU dataset are shown in Figure 4.5.

Figure 4.5: Example images from the INTEL-TAU dataset [95]. For demonstration purposes, images
were tone mapped using Flash tone mapping operator [97].

The described real-world datasets are typically captured in uncontrolled conditions; a scene

that complies with some rules can be chosen, but usually, it can not be altered to match the
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user’s needs. In contrast, there exist hyperspectral datasets and datasets made in laboratory

conditions [98, 99, 100, 101, 102]. Such datasets provide a user with the potential to simulate

arbitrary RGB values or observe the same object under various illuminations. However, such

datasets are scarce in content diversity because the acquisition is complex and time-consuming.

Other research directions in illumination estimation include temporal and multi-illuminant

illumination estimation, and the corresponding datasets include [103, 104, 105] and, [106, 107,

108, 109, 110, 111, 112, 113] respectively.

4.2 Evaluation metrics

The most widely used error metric in illumination estimation is the recovery angular error [114,

115]. Due to its widespread usage, it is often referred to only as angular error. If not specified

otherwise, in this thesis, recovery angular error is used to measure the method performance.

This metric computes the angular distance between the vector of the actual illumination and the

vector of the estimated one. It is computed as

εrec(e, ẽ) = cos−1
(

e · ẽ
‖e‖‖ẽ‖

)
, (4.1)

where e denotes the actual illumination vector, ẽ denotes the estimated illumination vector, · is
the scalar product, and ‖.‖ is the Euclidean norm. Finlayson et al. [116] showed that angular

error below three is an acceptable error, and below five is not noticeable to humans.

Finlayson et al. [117] proposed reproduction angular error as the angle between the RGB of

the actual white surface in the scene and the RGB of the same white obtained after correcting

the image with the estimated illumination:

εrep(e, ẽ) = cos−1
(

(e/ẽ) ·U
‖(e/ẽ)

√
3‖

)
. (4.2)

The reproduction error is motivated by observing that recovery angular error can vary, although

the color-corrected images appear the same. Finlayson et al. argued that since illumination

estimates are used to reproduce image colors as they appear under the white light, the evalu-

ation should follow this use case. Therefore, this metric measures the method’s capability of

reproducing achromatic surfaces.

Whether recovery of reproduction angular error is used to compute the accuracy of an illu-

mination estimation method, the performance on a benchmark dataset is computed in the same

way. Once the error is computed for each image, this set of error values is analyzed with some

summary statistics. Very often, the method’s performance is indicated by the mean and me-

dian measures. It is recommended to opt for the median since the error distribution tends to
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be skewed, and the mean performs poorly in such situations. Besides, minimum, maximum,

trimean, the mean of 25% lowest errors, and the mean of 25% highest errors are reported. Bar-

ron [6] introduced average error as the geometric mean of the mean, median, trimean, and the

averages of the values in the lowest and highest 25% errors.
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Chapter 5

The main scientific contributions of the
thesis

The main scientific contribution of this thesis is contained in the following. First, a method for

the estimation of the illumination color from images based on a convolutional neural network

guided with an attention mechanism, disseminated in [Pub1] and [Pub2]. Second, illumination

color estimation method which uses light source classification based on deep learning, dissemi-

nated in [Pub3]. Third, a method for the estimation of the illumination color based on recurrent

deep neural network with a multistage loss function, disseminated in [Pub4] and [Pub5]. Fi-

nally, a novel benchmark dataset and data acquisition methodology for illumination estimation,

disseminated in [Pub6]. In the appendix, an additional research paper that extends the scope of

the thesis on data acquisition is included.

5.1 Illumination color estimation method based on a convo-

lutional neural network with an attention mechanism

For some images, it can be ambiguous to determine the color of the illumination considering

only pixel intensities since different combinations of light source and surface can result in the

same pixel value. An example is an image capturing very few objects and textures, thus lack-

ing the information for determining the light source color. Moreover, if an image is dissected

into smaller regions, i.e., patches, it is likely that many patches are only flat regions with no

information about the illumination. An illumination estimation method may give a different

estimate for each such patch. Since each patch is a part of the same image and it is assumed that

illumination is uniform, this conflicts with the assumption. However, illumination estimation

is an ill-posed problem, and the color of a pixel does not have to be uniquely defined. There-

fore, such inconsistent behavior of an illumination estimation method is indeed expected for
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monotone regions. Using additional image information, such as the location, daytime, or infor-

mation that is contained in the image EXIF data, could help to direct the illumination estimation

methods towards the correct illumination color. However, such information is rarely available,

and illumination should be estimated from pixel values only. Another solution is to construct

a mechanism for determining certainty that a region in the image is informative enough to use

the illumination estimate originating from that region. In deep learning, such a mechanism is

called an attention mechanism. It helps neural networks to focus more on parts in the image

that are relevant for the task at hand rather than using all image data. In [Pub1] and [Pub2], con-

volutional neural networks with attention mechanisms were used for illumination estimation.

In the context of illumination estimation enclosed by the publications, the role of an attention

mechanism is to diminish the influence of monotonous regions in the image. The forward pass

of the network architecture proposed in [Pub1] is as follows. First, an input image is passed

through a feature extractor, which is a set of pre-trained convolutional blocks. Additional con-

volutional layer processes the resulting feature map and forks into two branches. One branch

is the attention mechanism. It is modeled as a compound of three convolutional layers. The

attention mechanism produces an individual attention map for each color channel, i.e., three

attention maps for RGB images. The second branch consists only of a single convolutional

block which computes the map of illumination vectors. Each vector corresponds to one point

in the attention map, and they both relate to the same part of the input image. The final global

illumination estimate is obtained by multiplying attention maps with the map of illumination

vectors then summing and normalizing the product for each color channel. The proposed archi-

tecture is trained in five stages. For the first stage, the gradient updates are not applied on the

pre-trained feature extractor to prevent initial gradients, which can mislead the training, from

altering the pre-trained weights in an undesirable way. In each of the remaining stages, updates

of one additional pre-trained convolutional layer were enabled to refine the model for the task

of illumination estimation. The attention mechanism of the proposed illumination estimation

network separates the color channels, i.e., considers them independent. That complies with the

use of the diagonal matrix for the chromatic adaptation step. However, it can be argued that the

human vision system does not separate color channels when looking for regions of interest in

the observed scene but rather looks for some distinct features such as shape, texture, and overall

appearance of the color. Motivated by that assumption in [Pub2], a modified attention mecha-

nism was proposed (denoted as 1D-attention from hereon). 1D-attention computes only a single

attention map which is shared across color channels. The computation of the global illumination

estimate is performed similarly to the former method: image is passed to a pre-trained feature

extractor, intermediate RGB illumination estimates and a single attention map are computed

from the obtained feature map, each color channel of intermediate estimates is multiplied with

1D-attention map, the sum of the values in each channel after the multiplication is computed
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and normalized. It has been shown that highly confident regions in attention maps produced

by 1D-attention to a great extent coincide with the parts of an image where gradients are high.

That implies that 1D-attention indeed separates informative and less informative regions in an

image. Additionally, it was shown that swapping attention mechanism with image gradients,

i.e., using image gradients as attention map, is inferior to using attention maps that the network

is trained to compute. This further implies the following two features of the proposed network.

First, it can separate content-rich from flat image regions. Second, it further selects content-rich

regions based on the amount of information valuable for illumination estimation.

5.2 Illumination color estimation method using scene light-

ing classification based on deep learning

Colors in digital images occur from the interaction between the object material and the light

source illuminating the object. By combining different materials and light sources, differently

colored images are obtained, and not all light sources have the same impact on the colors. For

instance, illuminations close to white light often have a minor influence on the final colors. On

the other hand, the effect of artificial illuminations is often more prominent. Nevertheless, both

these light sources are typical in the real world. The diversity of illuminations can nicely be

observed in the Cube+ dataset. It is a dataset of real-world scenes captured in various illumi-

nations with the color of the light source known and extracted based on the calibration object

that was placed in the scene. The majority of illuminations in images are due to daylight, and

a smaller image batch consists of outdoor scenes captured at night and indoor scenes, both il-

luminated with artificial light sources. When observed in rb-chromaticity space, ground truth

illuminations in this dataset occupy few distinct groups, as shown in [Pub3]. These groups

correspond to clustering images based on the illumination type (i.e., natural or artificial illumi-

nation) and scene (i.e., outdoor or indoor). Following these observations, a new classification

in the following groups was proposed in [Pub3]: a) outdoor natural illumination; b) outdoor

artificial illumination; c) indoor artificial illuminations. To the human eye, these types of il-

luminations and scenes form several distinct groups. The illumination estimation method that

exploits the classification is then proposed in the same publication. The approach is two-stage

and uses multiple convolutional neural networks. For the first stage, one convolutional neural

network is trained to classify input images regarding the proposed classification system. For

the second stage, three instances of the convolutional neural network from [Pub2] are trained

for illumination estimation. Each one is trained on a single class of images in the proposed

three-class classification system. Based on the outcome in the classification stage, in the sec-

ond stage, the network corresponding to the predicted class is used to estimate the illumination.

Classification of images into groups with distinct properties enables the training of estimators

24



The main scientific contributions of the thesis

specialized for specific image types, which is more accurate than using a single estimator for

a broad distribution of scenes and illumination colors. That was manifested in the reduction

of the maximum error by over 30% when using the proposed approach compared to the single

estimator case. Using multiple estimators avoids the problem of the uneven number of images

between classes since each estimator is trained only on a single image class. Although the train-

ing depends on the number of available images, the unbalanced dataset can not be the reason

for an erroneous estimator. However, the problem remains in the first step, the classification

of input images. In the proposed approach, it was alleviated using standard procedures such as

oversampling and undersampling. It was shown that the proposed classification is more suitable

than the classification concerning only scene type (indoor or outdoor scene classification) and

concerning only the illumination type (natural or artificial light source classification). However,

it was also shown as the method’s weak spot since estimator accuracy highly depends on the

classification outcome. When misclassification occurs, the estimator is forced to process an

image from the distribution different than the one used in the training process. Nevertheless, es-

timators still tend to produce outputs as close as possible to the region of illuminations to which

the correct classification would point, with accuracy subject to the proximity of the predicted

and target class. Therefore, it can be concluded that it is crucial to develop a reliable classifier

or a mechanism to detect misclassification and guide the estimation step accordingly for further

improvement of the method’s accuracy.

5.3 Illumination color estimation method based on recurrent

deep neural network with a multistage loss function

Both steps necessary for achieving computational color constancy have their flaws. Illumination

estimation is an ill-posed problem. Many methods try to solve it but often fail due to the

assumptions they use. For chromatic adaptation, a simple multiplication with the diagonal

matrix is used. Although sufficient for satisfactory results, it is still an approximation of a much

more complex problem. [Pub4] analyzed the limits of the cameras’ built-in white balancing. It

was shown that camera manufacturers limit the chromaticity space. For some Canon cameras,

it was shown that the camera’s illumination estimates get clipped inside the bounds of a regular

polygon. This way, camera manufacturers avoid correcting image colors for some undesired

illuminations defined by the bounds of the polygon. These illuminations are usually far from

the neutral white light and may spoil image colors to the extent that simple multiplication with

the diagonal matrix can not remove their influence. Consequently, high errors likely to appear

for such illuminations are reduced.

In [Pub5], a novel approach to global illumination estimation is proposed. It is motivated

by the limitations to the cameras’ chromaticity space and aims to reduce maximum errors.
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The premise of the method is that the highest estimation errors occur due to highly colored

light sources, and the current color correction model is inadequate for such illuminations types

but works well for illuminations closer to white light. It is also assumed that illumination

estimation is less prone to errors when near-white light sources are estimated. Therefore, it is

proposed to decompose the process of illumination estimation into many multiplicative steps.

Instead of estimating the illumination vector directly from the image, it is obtained as a series

of intermediate vectors. Each vector is constrained to a subset of illuminations in the vicinity

of the white light. In each step, one intermediate vector is estimated from the input image

corresponding to that step. Then the input image is corrected using the estimated vector and

passed as the input in the next step. In the end, all intermediate vectors are multiplied channel-

vise to acquire the final estimation corresponding to the total illumination associated with the

original input image. The method was constructed to gradually build the illumination vector and

correct the image so that, in the perfect scenario, in the last step, the intermediate vector would

be equal to the vector of the white light, and the image would appear as it was captured under

the white illumination. That was all embedded in a convolutional neural network. A custom

loss function was built to ensure gradual convergence toward the correct scene illumination.

In the first part of the loss function, the error of the final estimation is computed. It is the

angle between the ground-truth record and the final estimation, which is the product of all

intermediate vectors. Intermediate vectors are forced to be near white light with the second part

of the loss function. For each intermediate vector, the angle from the vector representing the

white light is computed. All computed values are fused using the weighted sum. Each weight

controls how far intermediate estimates can be from the white light in terms of the angle. The

highest distance is allowed to the first intermediate estimation and the smallest to the last one.

Total loss is the sum of both parts. The proposed iterative approach was shown very reliable

for illumination estimation. The mean of the worst 25% errors on the test set was 3.20 degree.

That is less when compared to other methods that are evaluated on the same dataset. Thereby

the goals set to achieve are met. Extensive experimental evaluation was performed to validate

that the intermediate estimations form trajectories toward the white light and progress toward

the scene illumination when combined.

5.4 The Cube++ Illumination Estimation Dataset

Deep learning methods rely on the availability of large amounts of data to learn important

features from diverse perspectives given the task. Large datasets are not usual for illumination

estimation due to the tedious and time-consuming acquisition process. However, with the rise of

deep learning-based methods, they became a must. In [Pub6], Cube++, a novel dataset designed

for illumination estimation, is proposed. It contains 4890 images associated with illumination
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information and a variety of additional semantic data. Cube++ was designed to comply with the

following set of properties: diversity in content and illuminations, a large number of samples,

rich in various image information, easy to update and track changes, verifiable, easily accessi-

ble, and GDPR compliant. Many of the listed properties were motivated by the errors reported

by the research community for previous illumination estimation datasets. Each image in the

Cube++ dataset is supplemented with various information. For each image sample, four vectors

that describe the scene illumination were given. By doing so, the dataset is not fixed only for

single-illuminant estimation. Nevertheless, a procedure for obtaining a single ground truth is

given as well. Other image information include EXIF data, time of the day when an image was

captured, type of the illumination, scene information (indoor or outdoor scene, how rich the

scene content is, are there any shadows or light sources in the scene), and information about

the calibration object. One issue with the previous datasets was the lack of information about

the dataset usage. Therefore, all the steps necessary to properly use the Cube++ dataset were

listed and described. These include black level subtraction, saturation removal, and color target

masking. Aside from the dataset itself, the methodology for collecting such a dataset was given

too. The technical setup was described and verified. Ground-truth extraction, data filtration,

and peculiarities in data collection were described. Finally, a foundation for an online bench-

mark for illumination estimation was set. The field of illumination estimation would benefit

from such a benchmark as it could remove existing problems and provide a reliable source of

information.
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Conclusions and future directions

6.1 Main conclusions of the thesis

Illumination estimation is a fundamental but very challenging task in digital photography. It

is an essential part of image processing pipelines in digital cameras, enabling them to capture

and display of the actual color of an object in digital images regardless of the color of the light

source illuminating the scene. Unfortunately, it is rather hard to perform illumination estimation

from image pixels without additional knowledge about the captured scene since distinguishing

illumination from surface reflectance is an ill-posed problem. One possible way to overcome

this issue is to simplify the problem by posing assumptions about the solution. The main focus

of this thesis is on analyzing different assumptions for illumination estimation. Three illumi-

nation estimation methods were proposed. Each of the methods was based on an assumption

about the illumination estimation task. The proposed methods were implemented utilizing deep

learning techniques with an emphasis on convolutional neural networks.

The motivation for the first part of the thesis is that color is a distinguishing characteristic

of many real-world objects. This information is convenient for illumination estimation since it

introduces prior knowledge about the scene. It can be expected what color object should have

once the illumination color cast is corrected. Motivated by this, the author proposed a convolu-

tional neural network architecture with an attention mechanism for illumination estimation. The

attention mechanism was used to find the parts in the image where some distinct features about

the illumination color exist. The design of the attention mechanism does not restrict the network

to finding only objects of some characteristic color but lets the network learn on its own what

regions to analyze. Two attention mechanisms were proposed. The first type of mechanism sep-

arates color channels and computes an individual attention map for each channel. The second

type of attention mechanism produces a single attention map which is shared across all color

channels. The latter attention mechanism is more interpretative and comparable. It was shown

that such attention mechanism relates to image gradient, which is a well-known term in image
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processing. It was shown that the attention mechanism focuses on the parts of the image where

the energy of the gradient is high, i.e., it focuses on image regions that are not monotonous.

In the second part of the thesis, the clustering-based illumination estimation method was

proposed. The proposed technique relies on clustering input images into three classes, i.e.,

indoor scenes in artificial illumination, outdoor scenes in artificial illumination, and outdoor

scenes in natural illumination. It was shown that such clustering creates three distinct groups of

images and reduces the solution space of an illumination estimation method to a well-defined

subspace. Therefore, clustering introduces prior knowledge about illumination. Based on this

knowledge, it was proposed to select the appropriate illumination estimator, i.e., the one trained

for the corresponding image class. Since the class information guides the estimation process, a

reduced presence of significantly incorrect estimations is expected. That was shown true in the

experimental results, where the worst-case scenarios were reduced by over 30%.

The third part of the thesis elaborates on an iterative illumination estimation procedure. It

was shown that illumination estimation could be formulated as a group of sub-tasks where the

goal of each sub-task is to estimate a fraction of the global illumination in the scene. When

estimates of all sub-tasks are accumulated, the global illumination vector is obtained. The goal

of the proposed estimation method was to avoid high estimation errors. Therefore, sub-tasks

were designed to operate in the vicinity of white light. Experimentally it was shown that the

proposed method indeed gradually estimates the global illumination in the scene. That was

possible because chromatic adaptation is performed as multiplication with diagonal matrix, i.e.,

inter-channel connections are ignored. Therefore, the target diagonal matrix can be modeled as

multiplication of many diagonal matrices; thus, enabling gradual illumination estimation from

differently colored variants of the input image.

In the last part of the thesis, a new dataset for illumination estimation was presented. The

current trend in the overall computer vision research is on deep learning. However, publicly

available data for illumination estimation lags behind the explosion of deep learning methods,

as was the case in the methods proposed in this thesis. Researchers try to solve the problem

of the lack of data by extending the existing dataset using techniques such as splitting images

into patches, augmenting data, creating synthetic datasets, and by using various training proce-

dures. Nevertheless, this part of the thesis shows that using existing datasets is limited by their

flaws. The guidelines to build a good quality illumination estimation dataset were specified,

and a novel dataset that complies with the guidelines is presented. The major drawback of col-

lecting such a dataset is that the process is time-consuming since many requirements need to

be satisfied. However, creating such datasets is crucial for the development of learning-based

methods. Methods based on learning from data achieve state-of-the-art in many computed vi-

sion tasks, including illumination estimation. Therefore, data of high quality and high quantity

is a must. Another feature of this dataset, which makes it different from others, is an abundance
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of information for each image. Moreover, users of the dataset are not forced to estimate a single

illumination vector but are given a set of possible solutions. The dataset was designed in such a

way to offer users as much data and freedom as possible for comprehending the ill-posed nature

of the illumination estimation task.

6.2 Future directions

The proposed neural network architectures are a proof of concept for the assumptions about the

illumination estimation described in this thesis, and each can be further improved. For this re-

search, convolutional neural architectures were mainly based on a feature extractor pre-trained

for a tasks such as object classification and object detection. These feature extractors were then

supplemented with other existing deep learning structures to suit the corresponding assumption

and trained for illumination estimation. However, such architectures are not necessarily optimal

for the given task in terms of memory and execution time. Therefore, improvement in reducing

the number of architecture parameters and reducing the execution time is a must. Proposed illu-

mination estimation methods in the current form require high-power graphical processing units

to run in real-time. They are not suitable for implementation in nowadays very computationally

powerful smartphones, let alone in much more modest digital cameras. All proposed methods

are complex concerning the number of parameters. For example, the illumination estimation

method based on light source classification proposed in the second part of the thesis relies on

four convolutional neural networks. One of the networks is used for image classification, and

three other networks are instances of the same architecture trained on different image clusters.

One may question if three instances of the same complex architecture are necessary. Answering

that and similar questions is intended for future work.

Aside from method optimization, the focus of future research is the following. Attention-

based illumination estimation methods proposed in the first part of the thesis compute the at-

tention map and intermediate illumination estimates from the whole image. These methods

take into account all image data, and that may include information irrelevant for illumination

estimation. As opposed to that, an attention mechanism could filter for image regions rich with

illumination information first and then perform the illumination estimation only from those re-

gions while completely ignoring other image parts. In other words, a future direction includes

inverting the order of operations to first remove all misleading information from the input image

and estimate illumination only from a subset of image pixels which should lead to accuracy im-

provement. The iterative illumination estimation method proposed in the third part of the thesis

is trained for the fixed number of iterations. However, the proposed seven iterations are not

optimal for all cases. For example, experimental results have shown that highly colored images

would benefit from more iterations and the opposite for slightly colored images. Therefore, a
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mechanism to determine at which iteration the method should stop processing the input image

is to be developed in the future. Such a mechanism should operate on a per-image basis.

Lastly, a significant future direction is regarding the image data. Due to more extensive

research of deep learning techniques in the scope of illumination estimation, existing datasets

are becoming too simple and of a small scale. Since deep learning-based methods are state-

of-the-art in this and many other computer vision tasks, constant improvement of the data is

necessary. In the scope of this thesis, a very detailed description of the desirable properties of

an illumination estimation dataset and technical methodology for collecting such a dataset are

given. In the future, this will be used for collecting additional image data that should set the

ground for methods with better generalization properties.
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Pub 3 Koščević, K., Subašić, M., Lončarić, S., “Deep Learning-Based Illumination Esti-

mation Using Light Source Classification”, IEEE Access, Vol. 8, 2020, pp. 84239-

84247.
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Author’s contribution to the publications

The results presented in this thesis are based on the research carried out during the period of

2018-2021 at the University of Zagreb Faculty of Electrical Engineering and Computing, Un-

ska 3, HD-10000 Zagreb, Croatia, as a part of the research projects IP-06-2016-2092 "Research

Project - Methods and algorithms for real-time color image enhancement (PefectColor)" and

DOK-01-2018 "Young Researchers’ Career Development Project - Training of New Doctoral

Students - Methods and algorithms for real-time color image enhancement" which were finan-

cially supported by the Croatian Science Foundation.

The thesis includes six publications written in collaboration with several coauthors. The au-

thor’s contribution to each paper consists of text writing, software implementation, performing

the required experiments, and the analysis and presentation of the results.

[Pub1] In the paper “Attention-based Convolutional Neural Network for Computer Vi-
sion Color Constancy”, the author proposed a convolutional neural network architecture with

an attention mechanism for illumination estimation. It was motivated by the assumption that

some image regions are ambiguous for illumination estimation. An attention mechanism was

used to assign weights to estimates from different image regions based on regions’ significance

for illumination estimation. A separate attention map was computed for each color channel.

That follows the use of the diagonal matrix for the chromatic adaptation, i.e., considers color

channels independent. The author also proposed a training scheme that does not train the whole

network at once but gradually enables the training of more network blocks. The author imple-

mented and experimentally tested the newly proposed illumination estimation approach in the

Keras framework.

[Pub2] In the paper “Guiding the Illumination Estimation Using the Attention Mecha-
nism”, the author proposed an adaptation of the attention mechanism in [Pub1]. A new version

of the attention mechanism computes only a single attention map. This attention map is shared

across all color channels. The assumption used for such an attention mechanism was that distin-

guishing individual color channel values is not how the human visual system looks for regions
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of interest in the scene. It is rather beneficial to look for objects, structures, textures, i.e., salient

image regions with respect to the scene content. The experimental results confirm that the neural

network indeed operates in such a fashion. It was shown that the attention mechanism focuses

on regions where image gradients are prominent, i.e., regions where some content exists, and

filters such image regions to get the most favorable selection. All of the code and experiments

were implemented by the author using the Keras framework.

[Pub3] In the paper “Deep Learning-Based Illumination Estimation Using Light Source
Classification”, the author proposed to use light source classification to enhance the results

of illumination estimation. The following classes were proposed: indoor scene images under

artificial illuminations; outdoor scene images under natural illuminations; outdoor scene images

under artificial illuminations. The author proposed a method that classifies input images and

uses a class-specific illumination estimation network. The same convolutional neural network

architecture was used as an estimator for all classes, but a separate instance was trained for

each image class. The author performed all analyses and implemented the classification and

illumination estimation networks in the Keras framework.

[Pub4] In the paper “Color Beaver: Bounding Illumination Estimations for Higher Ac-
curacy”, the author and the second coauthor performed an experimental analysis of illumination

estimates obtained by Canon cameras’ auto white balancing. The authors observed that cameras

estimates are limited to a small region of chromaticity space by a bounding polygon. Based on

that finding, it was proposed to look for a more suitable polygon that could be applied to any

existing illumination estimation method. The author implemented a genetic algorithm for the

search of the most suitable bounding polygon. The author has written the implementation and

experimental tests in the Matlab programming language.

[Pub5] In the paper “Iterative Convolutional Neural Network-Based Illumination Es-
timation”, the author proposed an iterative scheme for illumination estimation. The author

trained a neural network to sequentially compute multiple illumination estimates from the input

image and its chromatically adapted variants. Channel-vise multiplication of estimated illumi-

nations equals the estimated global scene illumination. The goal of the proposed scheme was

to enhance the network performance on the worst-performing samples, which was shown to

be achieved by the experimental results. The author implemented the proposed iterative tech-

nique as a convolutional neural network in the Keras framework and performed experimental

validation.

[Pub6] In the paper “The Cube++ Illumination Estimation Dataset”, the author partici-

pated in the creation of a new dataset for illumination estimation. The goal of publishing the

dataset was to alleviate issues with existing datasets in the research field. A detailed method-

ology, technical details, issues, and best practices for collecting a dataset for illumination esti-

mation were given. The author took part in defining those criteria. The dataset was collected
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in many different countries. The author also contributed by collecting images in Croatia, and

post-processing and selecting images overall.
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[78] Banić, N., Lončarić, S., “Improving the white patch method by subsampling”, in 2014

IEEE International Conference on Image Processing (ICIP). IEEE, 2014, str. 605–609.

[79] Choi, H.-H., Kang, H.-S., Yun, B.-J., “Cnn-based illumination estimation with semantic

information”, Applied Sciences, Vol. 10, No. 14, 2020, str. 4806.

[80] Laakom, F., Raitoharju, J., Iosifidis, A., Nikkanen, J., Gabbouj, M., “Color constancy

convolutional autoencoder”, in 2019 IEEE Symposium Series on Computational Intelli-

gence (SSCI). IEEE, 2019, str. 1085–1090.

[81] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A. A., “Image-to-image translation with conditional

adversarial networks”, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, str. 1125–1134.

[82] Zhu, J.-Y., Park, T., Isola, P., Efros, A. A., “Unpaired image-to-image translation using

cycle-consistent adversarial networks”, in Proceedings of the IEEE international confer-

ence on computer vision, 2017, str. 2223–2232.

[83] Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J., “Stargan: Unified generative

adversarial networks for multi-domain image-to-image translation”, in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2018, str. 8789–8797.

[84] Das, P., Liu, Y., Karaoglu, S., Gevers, T., “Generative models for multi-illumination color

constancy”, in Proceedings of the IEEE/CVF International Conference on Computer Vi-

sion, 2021, str. 1194–1203.

[85] Afifi, M., Barron, J. T., LeGendre, C., Tsai, Y.-T., Bleibel, F., “Cross-camera convolu-

tional color constancy”, in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, str. 1981–1990.

42



Bibliography

[86] Afifi, M., Brown, M. S., “Sensor-independent illumination estimation for dnn models”,

arXiv preprint arXiv:1912.06888, 2019.

[87] Gao, S.-B., Zhang, M., Li, C.-Y., Li, Y.-J., “Improving color constancy by discounting

the variation of camera spectral sensitivity”, JOSA A, Vol. 34, No. 8, 2017, str. 1448–

1462.
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Abstract—Achieving color constancy is an important part of
image preprocessing pipeline of contemporary digital cameras.
Its goal is to eliminate the influence of the illumination color
on the colors of the objects in the image scene. State-of-the-
art results have been achieved with learning-based methods,
especially when the deep learning approaches have been applied.
Several methods that are combining local patches for global
illumination estimations exist. However, in this paper, a new
convolutional neural network architecture is proposed. It is
trained to look for the regions, i.e., patches in the image where the
most useful information about the scene illumination is contained.
This is achieved with the attention mechanism stacked on top
of the pretrained convolutional neural network. Additionally,
the common problem of the lack of data in color constancy
benchmark datasets is alleviated utilizing the stage-wise training.
Experimental results show that the proposed approach achieves
competitive results.

Index Terms—Attention mechanism, color constancy, convolu-
tional neural networks, deep learning, illumination estimation,
image enhancement

I. INTRODUCTION

Colors of objects in an image are determined by three
factors, namely intrinsic properties of their surface, the color
of the light source, and the camera sensor. The human vision
system (HSV) has the ability to constantly perceive colors
in a scene notwithstanding the change of the light source.
This ability is known as color constancy [1]. As opposed
to that, when captured with digital cameras scene colors are
affected by the light source color. Therefore the same scene
may appear different when the light source changes. This
effect is illustrated in Figure 1. Intending to eliminate the color
cast, contemporary digital cameras have computer vision color
constancy implemented in their image processing pipeline. In
the literature, computer vision color constancy is often also
referred as computational color constancy, but in [2] it has
been shown that there are actually two types of computational
color constancy, namely computer vision color constancy and
human vision color constancy. The method proposed in this
paper relates to the computer vision color constancy. The
most important part of the computer vision color constancy
is illumination estimation which aims to estimate the light
source color by knowing only image pixel values. In computer

vision color constancy, the most used image formation model
f , which uses Lambertian assumption is

fc(x) =

∫

ω

I(λ,x)R(x, λ)ρc(λ)dλ (1)

where for each color channel c ∈ {R,G,B}, the value at
location x is determined by the spectral distribution of the light
source I(λ,x), surface reflectance R(λ,x), and sensitivity of
the camera sensor ρc(λ). Only wavelengths λ in the visible
light spectrum ω are observed. As previously stated, when
performing illumination estimation only pixel values f are
known and therefore it is an ill-posed problem. Additional
assumptions are necessary to solve it and many methods
have been proposed, but the problem still remains open.
When the illumination is uniform, which is the most common
assumption, the objective of the illumination estimation is to
calculate the vector of the light source color e that is invariant
given the position x in the image scene. i.e.

e =

∫

ω

I(λ,x)ρ(λ)dλ =

∫

ω

I(λ)ρ(λ)dλ. (2)

(a) (b)

Fig. 1: The same scene (a) before and (b) after the removal
of scene illumination. The image has been taken from the

Cube+ dataset [3]

Illumination estimation methods can be divided into two
main groups, namely statistics-based and learning-based meth-
ods. Although statistics-based are much faster and hardware-
friendly methods, it is learning-based methods that achieve
state-of-the-art accuracy. However, some of the recently pro-
posed learning-based methods have execution times which are
comparable with statistics-based methods [4], [5].

Motivated by the success of deep learning approaches in
many computer vision tasks, in this paper, a new convolutional
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neural network (CNN) for the task of illumination estimation
is proposed. The network has the attention mechanism which
can be thought of as a mechanism for a patch-wise illumination
estimation where patches are estimated by the network itself
and can be of any size and shape. The regions of an image
where more informative features for the task of the illumina-
tion estimation are located are given more weight and they
have a higher impact on the final global estimate. Since the
network has the large number of parameters it has been trained
in stages, i.e., the updates of layers of pretrained network were
enabled progressively.

The rest of the paper is structured as follows: Section II is
a brief overview of existing illumination estimation methods.
In Section III detailed descriptions of the proposed network
architecture and training procedure are given. Section IV
presents the experimental setup and obtained results. Section V
concludes the paper.

II. RELATED WORK

As illumination estimation is an ill-posed problem many
methods with different assumptions have been proposed. One
group of methods rely on assumptions based on low-level
image statistics and therefore they are hardware-friendly and
fast. These are methods like White-patch [6], [7] and its im-
provements [8]–[10], Gray-world [11], Shades-of-Gray [12],
1st and 2nd order Gray-Edge [13], using gray pixels [14] or
bright pixels [15], using bright and dark colors [16], exploiting
illumination statistics perception [17].

The second main group are the methods that rely on data
and the information they can exploit from it. These methods
usually require more parameter tuning, take longer time to
train and are more computationally demanding. However,
they produce most accurate illumination estimations. Such
methods are gamut mapping (pixel, edge, and intersection
based) [18], [19], using neural networks [20], using high-level
visual information [21], natural image statistics [22], Bayesian
learning [23], spatio-spectral learning [24], simplifying the
illumination solution space [5], [25], [26], using color or
edge moments [27], regression trees with simple features from
color distribution statistics [4], performing various kinds of
spatial localizations [28], [29], using genetic algorithms [30],
modelling colour constancy by using the overlapping asym-
metric Gaussian kernels with surround pixel contrast-based
sizes [31], finding paths for the longest dichromatic line pro-
duces by specular pixels [32], detecting gray pixels with spe-
cific illuminant-invariant measures in logarithmic space [33],
channel-wise pooling the responses of double-opponency cells
in LMS color space [34]. The most recent improvement in
accuracy in illumination estimation is due to the convolutional
neural networks [28], [29], [35]–[39].

III. NETWORK ARCHITECTURE

The proposed architecture uses VGG16 [40] as the base
convolutional neural network. Since the number of images
in color constancy datasets is not sufficient to train a deep

convolutional neural network from scratch, the VGG16 net-
work has been first pre-trained on the ImageNet dataset [41].
Fully connected layers were replaced with two additional
convolutional layers C1, C2, and an attention mechanism.
Both convolutional layers have kernel sizes 3 × 3 with 512
filters for layer C1 and 3 filters for layer C2. The reasoning
behind only three filters for layer C2 is to use each filter to
estimate one color channel c ∈ {R,G,B} of the illumination
vector. Based on the features obtained from convolutional layer
C1 the attention mechanism calculates a separate attention
map for each color channel c ∈ {R,G,B}. The illumination
vector is calculated as the normalized sum of the channel-wise
product of attention maps and the output of the convolutional
layer C2. There are no fully connected layers and therefore
there are no restrictions on the size of input images. All the
layers have ReLU activation function, except for the last layer
in the attention mechanism that uses sigmoid. The proposed
architecture is illustrated in Figure 2.

A. Training

As described in Section IV-B, the angular error is the most
often used metric for evaluation of illumination estimation
methods. However, in [42] has been shown that angular
error function is not an appropriate loss function for the
convolutional neural network training due to the complexity
and instability of its derivative. Hence, 1− cos(ε) is proposed
as a better loss function choice. Following that, the minibatch
loss can be calculated as

L =
1

N

N∑

i=1

(
1− ei · eEst

i

‖ei‖
∥∥eEst

i

∥∥
)

(3)

where N is the number of training samples in a minibatch,
eEst
i is the estimated illumination vector for the ith training

sample, ei is the corresponding ground-truth vector, ’·’ is the
vector dot product, and ‖.‖ is vector L2 norm.

The proposed network was trained with Equation 3 as a loss
function. Adam [43] was used as the optimizer with the learn-
ing rates 3×10−4 and 3×10−5. Although some research shows
that change of learning rate can boost the performance [44],
lowering the learning rate for Adam optimizer in this research
improved the accuracy only in the last training stage.

The proposed network architecture was trained in stages
versus the most common end-to-end manner. There are two
reasons for such a training strategy. The first is the insufficient
amount of training data to train the whole VGG16 network
from scratch. The second is that at the beginning of the training
weight updates can be very large. Therefore, if a network
would be trained in an end-to-end manner the profit of using
the pretrained model would be alleviated or even nullified.
The training has been done in 5 stages. In the first stage, only
weights of the convolutional layers C1 and C2 and attention
mechanism are updated. In stages 2-5 updates of the layers of
the last convolutional blocks of the pretrained VGG16 network
were gradually enabled. Layer block5 conv3 is unfrozen in
stage 2, block5 conv2 in stage 3, block5 conv1 in stage 4,
and finally in stage 5 layer block4 conv3. Number of training
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Fig. 2: Illustration of the proposed architecture with the attention mechanism. The conv* operation uses a different set of
weights for each patch of the input, i.e. the weights are unshared. Operators ’∗’ and ’/’ resemble the element-wise

multiplication and division of two feature maps, respectively. Sum is a simple sum pooling operation.

epochs in the stage varied as well: 48 epochs for the stage 1,
56 for the stage 2, 64 for the stage 3, 96 for the stage 4, and
only 32 for the 5. In all stages batch size was 32. Learning
rate 3×10−5 was used for stage 5 whereas 3×10−4 was used
for all other stages.

IV. EXPERIMENTAL RESULTS

A. Data

Cube+ dataset [3] was used for benchmarking. It is a
color constancy dataset of 1707 images with both indoor and
outdoor scenes captured during the day and night. Although it
is not the largest color constancy dataset, which is a desirable
feature when deep neural networks are used, it is the largest
publicly available color constancy dataset which does not have
drawbacks such as incorrect ground-truth illumination data,
a significant amount of noise, violations of some important
assumptions, or past misuses [45].

Due to the memory limitations of available hardware the
images have been resized to the width and height of 512 pixels.
All images were preprocessed as described in [3]. Usually,
deep convolutional models have some model specific prepro-
cessing of input images as well and therefore additionally
preprocessing specific to convolutional neural network VGG16
has been applied [40].

In order to test the generalization capabilities of the pro-
posed architecture, the data was split into train and test subsets.
Train set contains 76.5% of the data and the remaining 23.5%
is used as the test data. Both sets have the same ratio of day
and night images which is roughly 88% and 22%, respectively.
Ground-truth illuminations in both sets occupy the whole
domain of the Cube+ dataset. Figure 3 shows the distribution
of train and test illuminations in rb-chromaticity plane. During
the training 30% of the data in the train set was used for the
hyperparameter selection, i.e. as the validation set. The test set
was exclusively used to evaluate network performance after the
training and hyperparameter optimization have been done.

B. Performance metrics

Since in computer vision color constancy illumination vec-
tor is estimated, the most used error measure is angular error
between two vectors

err = cos−1

(
e · eEst

‖e‖ ‖eEst‖

)
(4)

Fig. 3: Distribution of train and test ground-truth
illuminations in rb-chromaticity plane.

where e is the ground-truth illumination, eEst is the estimated
illumination vector, ’·’ is the vector dot product, and ‖.‖ is
the vector L2 norm. Angular errors obtained for all images
in a dataset are usually combined using summary statistics.
The angular error distribution is non-symmetrical and therefore
most used measure is median of angular errors [46]. Nonethe-
less, mean, trimean, best 25%, and worst 25% are also often
used for additional comparisons. In [28] a new measure was
proposed, i.e. the geometric mean of median, mean, trimean,
best 25% and worst 25% summary statistics.

C. Method performance

A few combinations of convolutional layers before the
attention have been compared. It has been shown that more
than one convolutional layer is not beneficial, but rather makes
the architecture unstable and hard to train. One convolutional
layer with 512 filters has shown to be a better choice. The
accuracy in form of median angular error on validation set is
shown in Table I. All the experiments have been done using
Adam optimizer, the learning rate of 3×10−4 and 100 epochs.

The effect of the stage-wise training strategy can be ob-
served in Figure 5 and Table II. It can be seen how illumination
estimations gradually become finer and their distribution in the
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TABLE I: Accuracy of different combinations of
convolutional layers before the attention mechanism. Median

angle is used as the accuracy measure.

Layer combination Median angle
Conv512 + Conv512 19.6913
Conv512 + Conv256 19.6796

Conv512 1.8423
Conv256 1.9152

rb-chromaticity plane tends to match ground-truth distribution.
Plotted estimations have been obtained on the test set. The
angular error statistics in Table II also show the improvement
in the accuracy on the test set. For comparison, the netwok was
trained in one stage with the same set of hyperparameter as the
proposed stage-wise strategy. Updates of weights of pretrained
layers block5 conv3, block5 conv2, and block5 conv1 were
enabled from the begining. The network was trained for 264
epochs which is equal to the sum of epochs in first 4 stages
of stage-wise training. Adam with learning rate 3× 10−4 was
used. Obtained mean, median and average angular error were
2.05, 1.40, and 1.56 respectively. Stage 5 was not included
as different learning rate has been used in stage-wise training
and therefore all layers could not be trained at once.

TABLE II: Angular error statistics of the proposed method
after each training stage. Results were obtained on the test
set. The used format is the same as in [28]. (lower Avg. is

better)

Stage Mean Med. Tri. Best
25%

Worst
25% Avg.

Stage 1 2.76 2.00 2.17 0.70 6.11 2.20
Stage 2 2.16 1.48 1.61 0.46 5.08 1.64
Stage 3 2.15 1.30 1.56 0.37 5.39 1.54
Stage 4 1.97 1.17 1.42 0.37 4.86 1.42
Stage 5 1.95 1.13 1.37 0.32 4.92 1.37

In Table III accuracy of the proposed CNN architecture and
stage-wise training strategy is compared with other illumina-
tion estimation methods. It can be seen that the proposed
solution outperforms all of the other methods, except the
Color Beaver method. To the best of the authors’ knowledge,
this is currently the only CNN-based illumination estimation
method evaluated on Cube+ dataset. The angular error dis-
tribution measured on the test set can be seen in Figure 4.
Chromatic adaptation using ground-truth illuminations and
estimated illuminations has been performed on images with the
lowest, highest and intermediate error. The results are shown
in Figure 6. It can be seen that the proposed architecture works
better on images captured in more natural environments such
as outdoor scenes in the daylight. In contrast, higher error
values are obtained on indoor images.

V. CONCLUSION

In this paper a new convolutional neural network (CNN)
architecture for the illumination estimation has been proposed.
It uses attention mechanism on top of the pretrained VGG16
model. Attention mechanism guides the network towards the
regions in the image that contain the most information about

TABLE III: Angular error statistics of different color
constancy methods on the Cube+ dataset [3]. The used

format is the same as in [28]. (lower Avg. is better)

Algorithm Mean Med. Tri. Best
25%

Worst
25%

Avg.

White-Patch [7] 9.69 7.48 8.56 1.72 20.49 7.38
Gray-world [11] 7.71 4.29 4.98 1.01 20.19 5.08

Double-opponency (max pooling) [34] 6.76 3.44 4.15 0.79 18.54 4.27
Using gray pixels [33] 6.65 3.26 3.95 0.68 18.75 4.05

Color Tiger [3] 3.91 2.05 2.53 0.98 10.00 2.88
Double-opponency (max pooling) [34] 5.19 1.35 2.10 0.32 16.85 2.40

Color Mule [47] 5.16 1.30 2.03 0.25 16.93 2.25
Shades-of-Gray [12] 2.59 1.73 1.93 0.46 6.19 1.90

2nd-order Gray-Edge [13] 2.50 1.59 1.78 0.48 6.08 1.83
1st-order Gray-Edge [13] 2.41 1.52 1.72 0.45 5.89 1.76

Color Dog [5] 3.32 1.19 1.60 0.22 10.22 1.70
General Gray-World [48] 2.38 1.43 1.66 0.35 6.01 1.64

Proposed method 1.95 1.13 1.37 0.32 4.92 1.37
Color Beaver (using Gray-world) [30] 1.49 0.77 0.98 0.21 3.94 0.99

Fig. 4: Angular error distribution on the test set.

the scene illumination. Additionally, stage-wise training strat-
egy has been proposed to alleviate the lack of the training data.
As the stages progress updates of more layers of the pretrained
model are enabled. The proposed architecture was trained
and evaluated on a newer color constancy benchmark dataset
where it outperformed most of the other methods. Future
work will include experiments with the attention mechanism
architecture and pruning of the base CNN in order to reduce
the computational complexity and improve train and inference
speed.
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shown, whereas in the seconD row distributions after stages 4 and 5.

Fig. 6: Examples of images where different angular errors have been obtained. Images after the chromatic adaptation with
ground-truth illuminations are shown in the top row and images after the chromatic adaptation with estimated illuminations

are shown in the bottom row. For the demonstration purposes images have been tone mapped using Flash tone mapping
operator [49].

[2] G. Simone, G. Audino, I. Farup, F. Albregtsen, and A. Rizzi, “Termite
retinex: a new implementation based on a colony of intelligent agents,”
Journal of electronic imaging, vol. 23, no. 1, p. 013006, 2014.
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[9] N. Banić and S. Lončarić, “Color Rabbit: Guiding the Distance of Local
Maximums in Illumination Estimation,” in Digital Signal Processing
(DSP), 2014 19th International Conference on. IEEE, 2014, pp. 345–
350.
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ABSTRACT
Deep learning methods have achieved a large step forward in many
computer vision applications. With mechanisms such as attention,
deep models can now guide themselves to focus on parts of an im-
age that are more significant for a given task. In computational color
constancy, the most important step is to estimate the illumination
vector as accurately as possible. Since illumination estimation algo-
rithms can be sensitive to noise, such as ambiguous regions in the
image, the ability to have a mechanism to look for specific regions
in an image could be helpful. In this paper, a convolutional neural
network with an attention mechanism is proposed. The attention
mechanism helps the network to focus on regions that contain
more content and to avoid regions where ambiguous estimations
may occur. In the experimental results, it is shown that the atten-
tion mechanism does help the network to obtain more accurate
estimations and puts the focus of the network on the regions in an
image where gradients are high. The network with the attention
mechanism achieves up to 10% increase in accuracy compared to
the same network architecture without the attention mechanism.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression;Neural networks;Computational photography; Im-
age processing.

KEYWORDS
attention mechanism; computational color constancy; convolution;
deep learning; image processing; neural network; regression; white
balancing

1 INTRODUCTION
In the image formation pipeline, contemporary digital cameras
have a part that removes the influence of l ight source color on
scene colors. Achieving the invariance of scene colors to the color
of the light source is called computational color constancy. It is
motivated by the ability of the human vision system (HVS) to
adapt to changes in illumination in the scene. This ability, named
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human vision color constancy, enables humans to observe the true
color of objects of interest [22]. Unlike HVS, the camera sensor can
not distinguish surface reflectance from illumination and, without
additional processing, colors of objects in a digital image would be
biased to the illumination color. Consequently, with the change of
the illumination, the same scene may appear different. In digital
cameras, the color constancy is usually achieved in two steps. The
first step is to estimate the RGB vector of the illumination color.
Therefore it is called the illumination estimation step. In the second
step, i.e., the chromatic adaptation step, RGB estimate is divided
out from all pixel values of an image. The result should be an image
with colors as they would appear when taken under the white
illumination, i.e., the illumination whose RGB values are all the
same. Hence, computational color constancy is often also referred to
as white balancing. To achieve computational color constancy, the
image formation model f with the Lambertian assumption is used.
It uses three physical variables to formulate an image: 1) spectral
properties of the light source, 2) spectral reflectance of surfaces in
the scene, and 3) spectral sensitivity of the camera sensor. It can be
expressed as

fc (x) =
∫
ω
I (λ, x)R(λ, x)ρc (λ)dλ (1)

where c ∈ {R,G,B} is the color channel, f (x) is the image value
at pixel location x, I (λ, x) is the spectral distribution of the light
source, R(λ, x) is the surface reflectance, ρc (λ) is the spectral sen-
sitivity of the camera sensor for color channel c , and λ are the
wavelengths in the visible part of the light spectrum ω. From (1) it
can be observed that illumination vector e = (eReGeB ), captured
by digital camera, depends on the spectral distribution of the light
source and sensitivity of the camera sensor as follows

e(x) =
∫
ω
I (λ, x)ρ(λ)dλ. (2)

Unfortunately, in the illumination estimation step, both I (λ, x) and
ρ(λ) are unknown and the illumination vector can only be estimated
from image pixel values f . This makes illumination estimation an
ill-posed problem. Therefore, many assumptions have been made
to overcome this issue. One of the most often used assumptions,
which does not make the problem well-posed, but only simplifies it,
is that the illumination is uniform in the scene. It is assumed that
each position x in the image is illuminated by the same illumination
vector e. Hence, x can be disregarded from (2) which leads to

e =
∫
ω
I (λ)ρ(λ)dλ. (3)

During the years, many illumination estimation methods, based on
different assumptions, have been proposed. In [37] it is assumed
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that if the content of the scene is taken into account, more accurate
estimations can be achieved. A deep neural network with a separate
attention mechanism for each color channel c ∈ {R,G,B} was used
to achieve that. In this paper, a convolutional neural network with
a modified attention mechanism has been proposed. The attention
mechanism uses one attention map for all three color channels.
Experimental results have shown that such a network can learn
to look for the regions in an image where some content exist and
ignore ambiguous regions.
The rest of the paper is structured as follows: in Section 2 a short
overview of existing illumination estimation methods is given, the
motivation for the proposed solution is given in Section 3, the pro-
posed network architecture is described in Section 4, experimental
results are presented and commented in Section 5, and Section 6
concludes the paper.

2 RELATED WORK
In the literature, few classifications of illumination estimation meth-
ods exist [30, 34, 47]. Most classifications group the methods into
statistics-based methods and learning-based methods. Statistics-
based are methods such as as White-Patch [26, 38], its improve-
ments [2–4], Gray-World [16], Shades-of-Gray [25], 1st and 2nd
order Gray-Edge [45], Weighted Gray-Edge [31], using bright pix-
els [35], gray pixels [41] or bright and dark colors [19], exploiting
illumination statistics perception [11] or expected illumination sta-
tistics [9]. Assumptions used in statistics-based methods are based
on low-level image statistics. Therefore, they are characterized
by very low computational complexity and high execution speed
which makes them suitable for hardware-implementation.
On the other hand, most accurate illumination estimations are
achieved with learning-based methods, but they require more com-
putational time and parameter tuning, which makes them slower
as well. Learning-based methods are methods based on neural net-
works [17], high-level visual information [46], natural image sta-
tistics [29], Bayesian learning [28], spatio-spectral learning [18],
methods restricting the illumination solution space [6–8], using
color moments [23], regression trees with simple features from
color distribution statistics [20], spatial localizations [13, 14], con-
volutional neural networks [15, 33, 37, 40, 42] and genetic algo-
rithms [36], modelling colour constancy by using the overlapping
asymmetric Gaussian kernels with surround pixel contrast based
sizes [1], finding paths for the longest dichromatic line produces by
specular pixels [48], detecting gray pixels with specific illuminant-
invariant measures in logarithmic space [49], channel-wise pooling
the responses of double-opponency cells in LMS color space [27].
Although gamut-based methods can be considered learning-based,
due to the large impact, in [30] gamut-based methods are presented
as a separate group of methods.

3 MOTIVATION
As described in Section 1, illumination estimation is an ill-posed
problem. The most simple yet very common situation where illumi-
nation estimation methods could produce inaccurate illumination
vector is when an image is lacking content. This is because mono-
tone regions in an image are most often ambiguous in illumination
estimation. An example is a situation when a flat white wall is

illuminated with yellow illumination. An illumination estimation
method may not be able to distinguish if the illumination is truly
yellow or is it the case that the illumination is yellow and that the
wall is white. In contrast, image regions that contain some unam-
biguous content may lead illumination estimation methods towards
more accurate estimations. An illustration of this can be observed
in Figure 1.

Figure 1. Comparison of the color information in two parts 
of one image, with red region being ambiguous and green 
region being informative for illumination estimation.

To guide a convolutional neural network towards the regions more 
appropriate for a given task, recently, convolutional neural net-
works have been enriched with an attention mechanism. For a 
region of an input image, an attention map provides an estimation 
of how much does that region contribute to the final output [39]. 
Having an attention map as part of a convolutional neural net-
work for computational color constancy may help it to diminish 
the influence of ambiguous regions on the final estimate and fo-
cus on more informative regions. In [37] a convolutional neural 
network that uses a separate attention map for each color channel 
c ∈ {R, G, B} was proposed. The rationale for that is the fact that 
in chromatic adaptation a diagonal matrix is used [24]. This means 
that each color channel is considered independent of other channels. 
However, the solution proposed in this paper is motivated by the 
assumption that the color of illumination is perceived as a mixture 
of all color channels and in most cases can not be separated without 
introducing additional errors.

4 THE PROPOSED NETWORK
The architecture of the proposed deep neural network is shown 
in Figure 2. Convolutional blocks of VGG16 [44] network are used 
as a feature extractor, fully connected layers have been replaced 
with the attention mechanism and one convolutional layer which 
computes intermediate illumination estimations. Neither feature 
extractor nor attention mechanism has fully connected layers, but
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Figure 2. The proposed network architecture. ’∗’ is element-wise multiplication, ’/’ is element-wise division, and Sum is the 
sum operator in spatial dimensions.

only convolutional ones, which makes the proposed architecture
fully convolutional. This way, the proposed network can compute
illumination estimations invariant to the size of the input image.
The attention mechanism is composed of convolutional layers with
1×1 kernels. The first two layers have 64 and 16 filters, respectively.
The third convolutional layer has only one output filter which
computes the actual attention map. Sigmoid activation function is
used to normalize values of the attention map in the range from
0 to 1. The attention map is expanded to match the number of
channels of intermediate estimations using a convolutional layer
with all weights equal to one and no biases. Expanded attention
map is element-wise multiplied with intermediate estimations to
produce weighted illumination estimations. Afterward, weighted
estimations are summed along spatial dimensions to obtain a three-
component vector, i.e. a global illumination vector. To remove the
scaling caused by the multiplication with the attention map, the
global illumination vector is normalized by division with the spa-
tial sum of the attention map. The normalized vector of global
illumination is the output of the proposed network architecture.

5 EXPERIMENTAL RESULTS
5.1 Data preparation
To evaluate the proposed color constancy architecture, the Cube+
dataset [10] was used. At the time of research, it was the largest
color constancy dataset which complies with color constancy limi-
tations such as uniform illumination assumption and linear images,
i.e., images which have not been processed in any non-linear way.
Additionally, the Cube+ dataset has a wide variety of scenes, includ-
ing outdoor images captured during both day and night and indoor
images. Consequently, it has a wide distribution of illuminations.
Each image was resized to the size of 512 × 512 pixels. According
to [10], for each image, the black level was subtracted, overexposed
pixels were clipped, and the calibration object was masked out. In
all experiments, the data was split into train and test sets which
contained 80% and 20% of the data, respectively.

5.2 Evaluation metrics
To evaluate the performance of the proposed network architecture,
the angular error was used. It is the angle between two vectors
which, in this case, are ground-truth illumination vector and the
illumination vector estimated by the network. The angular error
can be computed as

A(e, ê) = cos−1
(

e · ê
∥e∥ ∥ê∥

)
, (4)

where e is the ground-truth illumination vector, ê is the illumination
vector the network estimated, ’·’ is dot product of two vectors, and
∥.∥ is vector L2 norm. Once calculated for each image in a dataset,
angular errors are usually summed up using different summary
statistics. Most often used statistics are mean, median, trimean, best
25%, worst 25% and the geometric mean of all previous statistics,
i.e., so-called average [13]. Since the distribution of angular errors
is non-symmetrical it is recommended to use the median instead of
the mean as a more significant measure.

5.3 Training setup
VGG16 network was initialized with weights obtained by training
on the ImageNet dataset [21] since Cube+ does not contain a suffi-
cient number of images to train the whole VGG16 network. Consid-
ering that and the fact that gradients can be large when the training
of the network starts, the proposed network was trained by gradu-
ally enabling updates of more layers. In the first stage only weights
of the attention mechanism were trained. In the following three
stages, weights of block5_conv3, block5_conv2, and block5_conv1
layers of the pre-trained VGG16 network were updated as well. In
each subsequent stage all the layers from the previous stage were
kept unfrozen and one additional layer was enabled for updates.
This way, in the last training stage the attention mechanism and all
convolutional layers in the last convolutional block of the VGG16
network were trained. In the case that weights of all layers were
updated from the beginning of the training process, the benefit of
pre-trained weights might be lost. At the beginning of the training
gradients can be very large since the attention mechanism was
not trained yet. These gradients would be propagated through the
layers of the pre-trained model and could cause misleading weight
updates. Training in stages helps to stabilize an unstable part of the
network so it does not disturb other, already stable, parts. Adam
optimizer with learning rate 1 × 10−3 was used for all stages. Batch
size and the number of training epochs were 32 and 75, respectively.
In [43], few loss functions for the training of convolutional neural
networks for color constancy have been researched. It has been
shown that using a function 1 − cos(A) is more suitable then using
the angular error described in Subsection 5.2. Therefore in this
paper, the following loss function was used

L(e, ê) = 1
N

N∑
i=1

(
1 − ei · êi

∥ei ∥ ∥êi ∥

)
, (5)

where ei and êi are ground-truth and estimated illumination vector
for nth sample, N is number of samples, ’·’ is the vector dot product,
and ∥.∥ is the vector L2 norm.
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Figure 3. Example outputs of the proposed network architecture.

Table 1. Angular error statistics of different color constancy 
methods on the Cube+ dataset [10] (lower Avg. is better).

Algorithm Mean Med. Tri. Best
25%

Worst
25%

Avg.

White-Patch [26] 9.69 7.48 8.56 1.72 20.49 7.38
Gray-world [16] 7.71 4.29 4.98 1.01 20.19 5.08

Double-opponency (max pooling) [27] 6.76 3.44 4.15 0.79 18.54 4.27
Using gray pixels [49] 6.65 3.26 3.95 0.68 18.75 4.05

Color Tiger [10] 3.91 2.05 2.53 0.98 10.00 2.88
Color Mule [5] 5.16 1.30 2.03 0.25 16.93 2.25

Shades-of-Gray [25] 2.59 1.73 1.93 0.46 6.19 1.90
2nd-order Gray-Edge [45] 2.50 1.59 1.78 0.48 6.08 1.83
1st-order Gray-Edge [45] 2.41 1.52 1.72 0.45 5.89 1.76

Color Dog [7] 3.32 1.19 1.60 0.22 10.22 1.70
General Gray-World [12] 2.38 1.43 1.66 0.35 6.01 1.64

Proposed method 2.05 1.32 1.53 0.42 4.84 1.54
RGB Attention CNN [37] 1.95 1.13 1.37 0.32 4.92 1.37

Color Beaver (using Gray-world) [36] 1.49 0.77 0.98 0.21 3.94 0.99

5.4 Method accuracy
To assess the overall performance of the proposed network architec-
ture and training procedure, a test set that contains 20% of the Cube+
data was used. The images and ground-truth values in the test set
were not used during the training of the network. Obtained esti-
mations were compared with corresponding ground-truth values
using evaluation metrics described in Subsection 5.2. The summary
of obtained angular error values is shown in Table 1. The proposed
network architecture achieves comparable results to other illumi-
nation estimation methods. The median angular error is much less
than 2◦, which was suggested as a good enough color constancy
performance [32]. However, it is especially important to highlight
that the highest estimation errors are much lower than for other

methods, except [36] which is in fact constructed to minimize the
maximum estimation error. Several network outputs are shown in
Figure 3.

Figure 4. Two clusters of rb-chromaticities given the envi-
ronment in which the image was captured.

In the Cube+ dataset, every fifth image is either an outdoor image 
captured during the night or an indoor image. The rest of the images 
are outdoor images captured during the day. According to that, two 
clusters of illuminations can be observed in the rb-chromaticity 
plane of ground-truth values, as shown in Figure 4. In Figure 5, error
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values obtained on the test set for those two clusters are shown.
It can be seen that for outdoor images taken during the day the
estimation error is much less than for other images. Reasons for
that could be the speckle noise present in images captured during
the night and sparsity of images in the night and indoor conditions
in the Cube+ dataset. In Table 2 the summary of error values on
the test for each cluster is shown.

Figure 5. Angular errors obtained on the test set for out-
door images captured during the day (’Outdoor day), and out-
door images captured during the night and indoor images 
(’Other’).

Table 2. Angular error statistics of the proposed network for 
a cluster with outdoor images taken during the day (’Out-
door day’) and cluster with outdoor images taken during the 
night and indoor images (’Other’) (lower Avg. is better).

Min Mean Med. Tri. Best
25%

Worst
25% Max Avg.

Outdoor
day 0.07 1.89 1.39 1.47 0.44 4.25 10.23 1.49

Other 0.62 6.25 4.76 5.15 1.78 13.25 24.43 5.15

5.5 Discussion
One of the ways to interpret the amount of content in an image
can be to look into image gradients. In the regions of an image
where some changes happen gradient amplitudes are usually high.
Whereas, in uniform regions gradient amplitudes tend to be zero.
To interpret the effect of attention maps, image gradients were used.
For each image in the test set gradients were computed. Experi-
ments confirm that attention maps tend to match regions in an
image where some gradient exists. On average, 77% of image en-
ergy is located inside regions that attention map focuses on. More
detailed correlation of attention maps and image gradients can be
observed in Table 3 and Figure 6. In Figure 6 it is shown how estima-
tion error depends on the amount of gradients captured by attention
maps. The experimental results show that the proposed network
tends to compute inaccurate estimations when the attention map

fails to capture image gradients. This confirms the assumption of 
the model that regions of an image, where more content is, are more 
significant for illumination estimation. Additionally, the majority 
of images where the network failed to capture regions with high 
gradients and estimate accurate illumination vectors are images 
captured under some unnatural light source (outdoor images cap-
tured during the night or indoor images). This again implies that 
some methods which separate outdoor images in natural lighting 
from other types of lighting could be useful for datasets such as 
Cube+. In Figure 7 the comparison of several attention maps and 
gradients is shown.

Table 3. Ratio of gradient amplitudes captured by attention 
maps for images in the Cube+ dataset.

Min Mean Med. Q1 Max
Inside 0.07 0.67 0.77 0.68 1.00
Outside 0.00 0.33 0.23 0.32 0.94

Figure 6. Dependency of estimation error on the amount of 
gradients captured by attention maps.

To additionally analyze the benefit of attention maps, several ex-
periments were conducted. Since attention maps tend to correlate 
with image gradient, a network that has a gradient map instead 
of an attention map was used. Once each image gradients were 
computed, they were downsampled to the size of the attention map 
using the max-pooling operator. Max pooling was used to match 
the pooling operator in the VGG16 network. A new network where 
the attention mechanism was replaced with a gradient map corre-
sponding to the given input was trained and evaluated. The second 
experiment was to omit the attention map from the network. In this 
experiment, the global estimate was obtained as the channel-wise 
sum of intermediate illumination estimations. Both networks have 
been trained with the same parameter set as the proposed attention-
based network for one stage. The results of the experiments were 
compared with the proposed attention-based network after the 
first training stage and given in Table 4. It can be seen that the
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Figure 7. Comparison of the attention map and image gradients.

attention-based network outperforms both the gradient-based net-
work and the network without any attention. The attention-based 
network can learn to distinguish between image regions with some 
content and image regions with content significant for illumination 
estimation.

Table 4. The comparison of angular error statistics obtained 
on Cube+ dataset for different network architectures.

Network type Min Mean Med. Tri. Best
25%

Worst
25% Max Avg.

With
attention 0.15 3.62 2.69 2.85 0.90 7.93 17.13 2.88

No attention 0.09 3.91 2.97 3.14 1.02 8.48 19.09 3.16
Gradient as
attention 0.93 6.53 3.82 3.41 2.52 15.31 32.35 5.32

6 CONCLUSION
In this paper, a convolutional neural network with the attention
mechanism for illumination estimation was proposed. It has been
shown that the addition of the attention mechanism helps the net-
work to estimate more accurate illumination vectors. Experimental
results show that the attention mechanism does indeed guide the
network to look for the regions in an imagewithmore content. Even
though regions of an image that are rich in content tend to correlate
with higher gradient amplitudes, the proposed neural network does
not only consider pure content but does a selection of the content.
The attention mechanism can learn to select the content which is
more important for illumination estimation and to discard regions
of an image where content may misguide illumination estimation.

148



7 ACKNOWLEDGMENTS
This work has been supported by the Croatian Science Foundation
under Project IP-06-2016-2092. The authors gratefully acknowledge
the support of NVIDIA Corporation with the donation of the Titan
Xp GPU used for this research.

8 REFERENCES
[1] A. Akbarinia and C. A. Parraga. 2018. Colour Constancy Beyond the Classical

Receptive Field. IEEE Transactions on Pattern Analysis and Machine Intelligence
40, 9 (Sep. 2018), 2081–2094. https://doi.org/10.1109/TPAMI.2017.2753239

[2] Nikola Banić and Sven Lončarić. 2013. Using the Random Sprays Retinex Algo-
rithm for Global Illumination Estimation. In Proceedings of The Second Croatian
Computer Vision Workshopn (CCVW 2013). University of Zagreb Faculty of Elec-
trical Engineering and Computing, 3–7.

[3] Nikola Banić and Sven Lončarić. 2014. Color Rabbit: Guiding the Distance of
Local Maximums in Illumination Estimation. In Digital Signal Processing (DSP),
2014 19th International Conference on. IEEE, 345–350.

[4] Nikola Banić and Sven Lončarić. 2014. Improving the White patch method by
subsampling. In Image Processing (ICIP), 2014 21st IEEE International Conference
on. IEEE, 605–609.

[5] Nikola Banić and Sven Lončarić. 2015. A Perceptual Measure of Illumination
Estimation Error. In VISAPP. 136–143.

[6] Nikola Banić and Sven Lončarić. 2015. Color Cat: Remembering Colors for
Illumination Estimation. Signal Processing Letters, IEEE 22, 6 (2015), 651–655.

[7] Nikola Banić and Sven Lončarić. 2015. Color Dog: Guiding the Global Illumination
Estimation to Better Accuracy. In VISAPP. 129–135.

[8] Nikola Banić and Sven Lončarić. 2015. Using the red chromaticity for illumi-
nation estimation. In Image and Signal Processing and Analysis (ISPA), 2015 9th
International Symposium on. IEEE, 131–136.

[9] Nikola Banić and Sven Lončarić. 2018. Green Stability Assumption: Unsupervised
Learning for Statistics-Based Illumination Estimation. Journal of Imaging 4, 11
(2018), 127.

[10] Nikola Banić and Sven Lončarić. 2018. Unsupervised Learning for Color Con-
stancy. In VISAPP. 181–188.

[11] Nikola Banić and Sven Lončarić. 2019. Blue Shift Assumption: Improving Illumi-
nation Estimation Accuracy for Single Image from Unknown Source. In VISAPP.
191–197.

[12] Kobus Barnard, Vlad Cardei, and Brian Funt. 2002. A comparison of computational
color constancy algorithms. I: Methodology and experiments with synthesized
data. Image Processing, IEEE Transactions on 11, 9 (2002), 972–984.

[13] Jonathan T Barron. 2015. Convolutional Color Constancy. In Proceedings of the
IEEE International Conference on Computer Vision. 379–387.

[14] Jonathan T Barron and Yun-Ta Tsai. 2017. Fast Fourier Color Constancy. In
Computer Vision and Pattern Recognition, 2017. CVPR 2017. IEEE Computer Society
Conference on, Vol. 1. IEEE.

[15] Simone Bianco, Claudio Cusano, and Raimondo Schettini. 2015. Color Constancy
Using CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 81–89.

[16] Gershon Buchsbaum. 1980. A spatial processor model for object colour perception.
Journal of The Franklin Institute 310, 1 (1980), 1–26.

[17] Vlad C Cardei, Brian Funt, and Kobus Barnard. 2002. Estimating the scene
illumination chromaticity by using a neural network. JOSA A 19, 12 (2002),
2374–2386.

[18] Ayan Chakrabarti, Keigo Hirakawa, and Todd Zickler. 2012. Color constancy
with spatio-spectral statistics. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34, 8 (2012), 1509–1519.

[19] Dongliang Cheng, Dilip K Prasad, and Michael S Brown. 2014. Illuminant esti-
mation for color constancy: why spatial-domain methods work and the role of
the color distribution. JOSA A 31, 5 (2014), 1049–1058.

[20] Dongliang Cheng, Brian Price, Scott Cohen, and Michael S Brown. 2015. Effective
learning-based illuminant estimation using simple features. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1000–1008.

[21] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[22] Marc Ebner. 2007. Color Constancy. Wiley.
[23] Graham D Finlayson. 2013. Corrected-moment illuminant estimation. In Proceed-

ings of the IEEE International Conference on Computer Vision. 1904–1911.
[24] Graham D Finlayson, Mark S Drew, and Brian V Funt. 1994. Color constancy:

generalized diagonal transforms suffice. JOSA A 11, 11 (1994), 3011–3019.
[25] Graham D Finlayson and Elisabetta Trezzi. 2004. Shades of gray and colour

constancy. In Color and Imaging Conference, Vol. 2004. Society for Imaging Science
and Technology, 37–41.

[26] Brian Funt and Lilong Shi. 2010. The rehabilitation of MaxRGB. In Color and
Imaging Conference, Vol. 2010. Society for Imaging Science and Technology,

256–259.
[27] Shao-Bing Gao, Kai-Fu Yang, Chao-Yi Li, and Yong-Jie Li. 2015. Color constancy

using double-opponency. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37, 10 (2015), 1973–1985.

[28] Peter V Gehler, Carsten Rother, Andrew Blake, TomMinka, and Toby Sharp. 2008.
Bayesian color constancy revisited. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. IEEE, 1–8.

[29] Arjan Gijsenij and Theo Gevers. 2007. Color Constancy using Natural Image
Statistics.. In CVPR. 1–8.

[30] Arjan Gijsenij, Theo Gevers, and Joost Van De Weijer. 2011. Computational color
constancy: Survey and experiments. Image Processing, IEEE Transactions on 20, 9
(2011), 2475–2489.

[31] Arjan Gijsenij, Theo Gevers, and Joost Van De Weijer. 2012. Improving color con-
stancy by photometric edge weighting. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 34, 5 (2012), 918–929.

[32] Steven D Hordley. 2006. Scene illuminant estimation: past, present, and future.
Color Research & Application: Endorsed by Inter-Society Color Council, The Colour
Group (Great Britain), Canadian Society for Color, Color Science Association of
Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation,
Colour Society of Australia, Centre Français de la Couleur 31, 4 (2006), 303–314.

[33] Yuanming Hu, Baoyuan Wang, and Stephen Lin. 2017. Fully Convolutional Color
Constancy with Confidence-weighted Pooling. In Computer Vision and Pattern
Recognition, 2017. CVPR 2017. IEEE Conference on. IEEE, 4085–4094.

[34] Hamid Reza Vaezi Joze and Mark S Drew. 2013. Exemplar-based color constancy
and multiple illumination. IEEE transactions on pattern analysis and machine
intelligence 36, 5 (2013), 860–873.

[35] Hamid Reza Vaezi Joze,Mark SDrew, GrahamDFinlayson, and Perla Aurora Tron-
coso Rey. 2012. The Role of Bright Pixels in Illumination Estimation. In Color
and Imaging Conference, Vol. 2012. Society for Imaging Science and Technology,
41–46.

[36] Karlo Koščević, Nikola Banić, and Sven Lončarić. 2019. Color Beaver: Bounding
Illumination Estimations for Higher Accuracy. In VISAPP. 183–190.

[37] Karlo Koščević, Marko Subašić, and Sven Lončarić. 2019. Attention-based Con-
volutional Neural Network for Computer Vision Color Constancy. In 2019 11th
International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE,
372–377.

[38] Edwin H Land. 1977. The retinex theory of color vision. Scientific America.
[39] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. 2018. Tell me

where to look: Guided attention inference network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 9215–9223.

[40] Seoung Wug Oh and Seon Joo Kim. 2017. Approaching the computational color
constancy as a classification problem through deep learning. Pattern Recognition
61 (2017), 405–416.

[41] Yanlin Qian, Said Pertuz, Jarno Nikkanen, Joni-Kristian K am ar ainen, and Jiri
Matas. 2019. Revisiting Gray Pixel for Statistical Illumination Estimation. In
VISAPP. 36–46.

[42] Wu Shi, Chen Change Loy, and Xiaoou Tang. 2016. Deep Specialized Network
for Illuminant Estimation. In European Conference on Computer Vision. Springer,
371–387.

[43] Oleksii Sidorov. 2018. Artificial Color Constancy via GoogLeNet with Angular
Loss Function. arXiv preprint arXiv:1811.08456 (2018).

[44] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[45] Joost Van De Weijer, Theo Gevers, and Arjan Gijsenij. 2007. Edge-based color
constancy. Image Processing, IEEE Transactions on 16, 9 (2007), 2207–2214.

[46] Joost Van De Weijer, Cordelia Schmid, and Jakob Verbeek. 2007. Using high-level
visual information for color constancy. In Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on. IEEE, 1–8.

[47] Javier Vazquez-Corral, Maria Vanrell, Ramon Baldrich, and Francesc Tous. 2011.
Color constancy by category correlation. IEEE Transactions on image processing
21, 4 (2011), 1997–2007.

[48] S. Woo, S. Lee, J. Yoo, and J. Kim. 2018. Improving Color Constancy in an Ambient
Light Environment Using the Phong ReflectionModel. IEEE Transactions on Image
Processing 27, 4 (April 2018), 1862–1877. https://doi.org/10.1109/TIP.2017.2785290

[49] Kai-Fu Yang, Shao-Bing Gao, and Yong-Jie Li. 2015. Efficient illuminant estimation
for color constancy using grey pixels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2254–2263.

149



Publications

Publication 3
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ABSTRACT Color constancy is one of the key steps in the process of image formation in digital cameras.
Its goal is to process the image so that there is no influence of illumination color on the colors of objects
and surfaces. To capture the target scene colors as accurately as possible, it is crucial to estimate the
illumination vector with high accuracy. Unfortunately, the illumination estimation is an ill-posed problem,
and solving it most often relies on assumptions. To date, various assumptions have been proposed, which
resulted in a wide variety of illumination estimation methods. Statistics-based methods have shown to
be appropriate for hardware implementation, but learning-based methods achieve state-of-the-art results,
especially those that use deep neural networks. The large learning capacities and generalization abilities of
deep neural networks can be used to develop the illumination estimationmethods, which aremore general and
precise. This approach avoids introducing many new assumptions, which often only work in some specific
situations. In this paper, a new method for illumination estimation based on light source classification is
proposed. In the first step, the set of possible illuminations is reduced by classifying the input image in
one of three classes. The classes include images captured in outdoor scenes under natural illuminations,
images captured in outdoor scenes under artificial illuminations, and images captured in indoor scenes
under artificial illuminations. In the second step, a deep illumination estimation network, which is trained
exclusively on images in the class that was predicted in the first step, is applied to the input image. Dividing
the illumination space into smaller regions makes the training of illumination estimation networks simpler
because the distribution of image scenes and illuminations is less diverse. The experiments on the Cube+
image dataset have shown the median illumination estimation error of 1.27◦, which is an improvement of
more than 25% compared to the use of the single network for all illuminations.

INDEX TERMS Color constancy, illumination estimation, classification, deep learning, white balancing,
image enhancement.

I. INTRODUCTION
One of the first steps in the image formation pipeline of con-
temporary digital cameras is computational color constancy.
Computational color constancy refers to the removal of the
influence of illumination color on the colors of objects in
the observed image scene. It is motivated by the ability of
the human vision system (HVS) to perceive object color
invariant to the illumination color, namely color con-
stancy [1]. Computational color constancy is performed in
two steps. The first step is the illumination estimation step,
where one ormultiple illumination vectors are estimated from
the target image. Illumination vector is a three-component
vector with one value for each color channel c ∈ {R,G,B}.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

In the second step, estimated illumination vectors are used to
divide out the illumination and object reflectance. This step
is called chromatic adaptation and it is achieved by multiply-
ing each image pixel with a diagonal matrix with diagonal
values d11 = 1/eR, d22 = 1/eG, and d33 = 1/eB, where[
eR eG eB

]T is the illumination vector. After the chromatic
adaptation is applied, the colors in the image should appear
as if they are captured under the white illumination, i.e., the
illumination where eR = eG = eB.

More formally, in computational color constancy,
the image formation model f with Lambertian assumption is
mostly used and it can be given as [2]:

fc(x) =
∫
ω

I (λ, x)R(λ, x)ρc(λ)dλ (1)

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 84239



K. Koščević et al.: Deep Learning-Based Illumination Estimation Using Light Source Classification

where c ∈ {R,G,B} is color channel, x is pixel location,
f is pixel value, I (λ, x) is the spectral distribution of the
light source, R(λ, x) is the surface reflectance, ρc(λ) is the
spectral sensitivity of the camera sensor for color channel c,
and λ are the wavelengths in the visible light spectrum ω.
From the image formation pipeline, it can be seen that colors
in the image are a combination of three physical values.
These are the spectral distribution of the light source, spectral
reflectance properties of surfaces in the image scene, and the
sensitivity of the camera sensor. Additionally, it can be seen
that the illumination captured by the camera is a function of
the spectral distribution of the light source and the sensitivity
of the camera sensor for different wavelengths in the visible
light spectrum. Therefore, in an ideal case, illumination vec-
tor e can be computed as:

e(x) =
∫
ω

I (λ, x)ρ(λ)dλ. (2)

And when it is assumed that illumination is the same in
the whole image scene, illumination vector e is invariant of
pixel position x. Therefore, for global illumination estimation
methods illumination vector is given as:

e =
∫
ω

I (λ)ρ(λ)dλ. (3)

The major drawback of illumination estimation is that it is an
ill-posed problem. Because most often both I (λ) and ρ(λ) are
not known, and only image pixel values f are known, there
is an infinite number of possible illumination and surface
reflectance combinations for a given image f. To overcome
this issue, different assumptions for the illumination estima-
tion have been proposed, yielding a wide variety of illumina-
tion estimation methods.

It has been shown in previous research that both illumina-
tion estimation techniques and scene classification methods
have been applied jointly in many color image processing
procedures. They were combined either by using image clas-
sification to improve illumination estimation or by using illu-
mination estimation to perform image classification [3], [4].
In this paper, an illumination estimation method that relies
on image classification is proposed. Once the input image is
classified based on the scene content and illumination type,
it is proposed to apply a deep illumination estimation network
specialized for the class of images to which the input image
was classified. Classification in three classes is performed
by combining the classification of image scenes and the
classification of illuminations.

The conducted experimental work has shown that sepa-
rating the possible illumination space into smaller regions
and applying a specialized estimator for each region yields
more accurate estimations with the median estimation error
reduced by more than 25%.

The rest of the paper is structured as follows: Section II
gives a short overview of existing illumination estimation
methods, in Section III the motivation for the proposed
method is given, Sections IV and V describe the proposed

method and experimental results, respectively, and a conclu-
sion is provided in Section VI.

II. RELATED WORK
The illumination estimation methods can be divided into
three groups [2]. In the first group are the methods which
exploit low-level image statistics and features, such as per
channel mean and max or nth order image derivations. These
methods are referred to as statistics-based methods. They
usually use a fixed set of parameters and do not require
model training. Low computational complexity and high exe-
cution speed make them suitable for hardware implementa-
tion. Many statistics-based methods are a direct variation of
Gray-World assumption that the average of an image is gray,
i.e., the mean of all three channels is equal. Such methods
includeGray-World [5], Shades-of-Gray [6], 1st and 2nd order
Gray-Edge [7], Weighted Gray-Edge [8]. A slightly differ-
ent subset of methods that can still be derived from the
Gray-World assumption is White-Patch method [9], [10] and
its improvements [11]–[13]. Statistics-based methods also
include methods which use bright pixels [14], gray pix-
els [15] or bright and dark colors [16], methods which exploit
illumination statistics perception [17] or expected illumina-
tion statistics [18]. In the second group are the methods which
require training of an illumination estimation model. Thus
they are referred to as learning-based methods. Once learned,
the model is then used to estimate illuminations, which
are correlated with the training data distribution. To train a
model with good generalization properties, these methods
require larger datasets. Due to the training process, larger
datasets and more complex structures, learning-based meth-
ods are computationally demanding and most often take a
longer time to execute. However, in the end, they produce
the most accurate illumination estimations. Learning-based
methods are methods based on neural networks [19], high-
level visual information [20], natural image statistics [21],
Bayesian learning [22], spatio-spectral learning [23], meth-
ods restricting the illumination solution space [24]–[27],
using color moments [28], regression trees with simple fea-
tures from color distribution statistics [29], spatial local-
izations [30], [31], channel-wise pooling the responses of
double-opponency cells in LMS color space [32], detecting
gray pixels with specific illuminant-invariant measures in
logarithmic space [33], modelling color constancy by using
the overlapping asymmetric Gaussian kernels with surround
pixel contrast based sizes [34], finding paths for the longest
dichromatic line produces by specular pixels [35]. Following
the classification of illumination estimation methods in [2],
gamut-based methods [36]–[38] can be considered as a sep-
arate group of illumination estimation methods. Even though
they are in some way learning-based methods as well, they
had a great impact on the field.

An important type of learning-based methods are deep
learning methods. Deep learning became the state-of-the-art
inmany fields, such as natural language processing, computer
vision, finances, advertising, and others. Since the publication
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of the AlexNet [39], along with image classification, con-
volutional neural networks have successfully been applied
in many fields of computer vision, including object recog-
nition [40], object detection [41], image segmentation [42],
etc. One of the first attempts to apply a convolutional neu-
ral network for computational color constancy was in [43].
A deeper convolutional neural network with a more complex
training procedure for illumination estimation was proposed
in [44]. In [45], two convolutional neural networks have been
used for illumination estimation with one network computing
multiple estimations and the other selecting for the plausi-
ble ones. In [46], a convolutional neural network was used
to cast the illumination estimation problem into an illumi-
nation classification problem, which computes the global
illumination based on the results of k-means clustering and
classification probabilities. In [47]–[49], convolutional neu-
ral networks with weighted local illumination pooling have
been proposed. A major drawback of the aforementioned
deep-learning methods is that they are sensor-dependent.
In contrast, in [50], deep learning was used to map the
input images in a sensor-invariant color space, which enables
sensor-independent illumination estimation.

In [3], classification-based illumination estimation is pro-
posed. The authors distinguish between indoor and outdoor
images based on the fact that different illuminations and scene
content are characteristic for each class. The authors have
shown that classification-based methods improve the illumi-
nation estimation, especially when indoor-outdoor classifica-
tion with the addition of uncertainty class is used to determine
which illumination estimation method to apply for the input
image.

In contrast to [3] and this paper, which are classifying
the input image based on its features to reduce the illumi-
nation space before the illumination estimation step, in [4],
the opposite was proposed, i.e., the illumination estimation
has been used for indoor-outdoor image classification. Con-
sidering the assumption that outdoor images are usually cap-
tured in blueish illuminations and indoor images in reddish
illuminations, the authors proposed to apply an illumination
estimation method to the input image and classify the image
as indoor or outdoor considering the position of the estimated
illumination in the chromaticity plane.

III. MOTIVATION
When capturing an image with a digital camera, the target
scene can be illuminated with many different light sources.
Some of these light sources can produce illuminations similar
to the white illumination, and they do not affect pixel color
significantly. However, for instance, in indoor environments,
it is common that the illumination color significantly differs
from white, i.e., values between red, green, and blue color
channels are different. Such illuminations cause considerable
color bias in the image towards the color of the illumination.
The difference between an image captured in a light that is
close to white and an image captured in yellow light is shown
in Figure 1. It can be observed that the yellow illumination

FIGURE 1. The difference between images captured under near-white
illumination (a) and yellow illumination (b).

in Figure 1b has a great impact on pixel colors. A similar
effect can be observed with other artificial light sources, e.g.,
when taking a picture of an outdoor scene in the night when
street lights are turned on.

The most obvious division of illuminations can be made
by dividing image scenes into outdoor and indoor classes [3].
Illuminations in outdoor scenes are a combination of natural
effects, and these illuminations tend to occupy space around
the white illumination in the rb-chromaticity plane. On the
other hand, in indoor scenes, the majority of illuminations are
produced by artificial light sources. These illuminations can
vary significantly from those close to natural illuminations to
the extreme case of illuminations produced by disco bulbs.
However, illuminations in outdoor scenes tend to be close
to the white illumination only in daytime conditions. When
captured during nighttime, it is most likely that the scene was
illuminated with some artificial light source, which differs
from light sources in outdoor scenes captured during the
daytime and most common light sources in indoor scenes.
Therefore, an additional class of illuminations can be intro-
duced, leading to a total of three classes of illuminations:

• outdoor natural illuminations
• outdoor artificial illuminations
• indoor artificial illuminations.

Separating illuminations in multiple clusters and applying
a different illumination estimator for each cluster can lead to
better estimations since each estimator can be specialized to
recognize illuminations in its corresponding cluster. Having
a less variable distribution of illuminations for each estimator
should be beneficial when training each estimator separately
than training one estimator on a dataset with a high variability
of image scenes and few different clusters of corresponding
illuminations. Additionally, the computational cost of the
classification of image scenes into three clusters and training
three specialized estimators should be compensated by the
fact that the maximum estimation error should be lower than
in the case of using one general estimator.

IV. THE PROPOSED METHOD
In this paper, before the illumination estimation, it is proposed
to classify an input image into one of three classes listed in
Section III. Based on the classification result, the illumination
is estimated using the estimator specialized for images in the
corresponding class. The pseudocode of the proposedmethod
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is given in Algorithm 1. Both classification and illumination
estimation steps are described in more detail in the following
sections.

Algorithm 1 Illumination Estimation Using Light Source
Classification

Input: image I
Output: illumination vector e

1: CN = ClassificationNet()
2: IEi = IlluminationEstNeti(), i ∈ {0, 1, 2}
3: (p0, p1, p2) = CN .predict(I) F Class probabilities
4: j = argmax

i
(pi)

5: e = IEj.predict(I)

A. IMAGE CLASSIFICATION
For image classification, a deep neural network is pro-
posed. In the field of illumination estimation, the largest
datasets have a few hundred samples, which is, in terms of
state-of-the-art image classification, which uses deep neural
networks, an insignificant number of samples. The
VGG16 network [40] pre-trained for image classification was
used to overcome this drawback. Fully connected layers and
last convolutional block in the VGG16 networkwere replaced
with a smaller stack of fully connected layers. The newly
added stack is structured as follows:

• Flatten Layer
• FC Layer, 256 output neurons
• FC Layer, 128 output neurons
• FC Layer, 64 output neurons
• FC Layer, 3 output neurons,

where the Flatten layer reshapes the feature map produced by
the last convolutional layer in the 4th convolutional block of
the VGG16 network to match the shape of the following fully
connected layer, and FC stands for fully connected. The last
fully connected layer has three output neurons, each for one
of three target classes. All fully connected layers use the ReLu
activation function, except the last fully connected layer,
where softmax function is used to compute the probability
distribution over target classes. The network structure was
experimentally determined and confirmed.

B. ILLUMINATION ESTIMATION
For illumination estimation, the convolutional neural network
proposed in [49] was used. It is a fully convolutional neural
network. It uses pre-trained VGG16 architecture as a feature
extractor on top of which the attention mechanism is placed.
The addition of the attention mechanism enables the network
to filter the local illumination estimations by considering the
usefulness of the information in the corresponding area of
an image. Therefore, the network can distinguish between
ambiguous and informative regions of an image, where, in the
sense of illumination estimation, ambiguous are regions such
as flat single-color surfaces.

FIGURE 2. Illumination clusters in the Cube+ dataset shown in the form
of rb-chromaticities.

In this paper, it is proposed to classify images into three
classes. Each class has a different set of illuminations. There-
fore, three instances of the above-mentioned deep neural
network for illumination estimation are trained separately.
The first instance is trained to estimate the illuminations on
images that are captured in outdoor scenes during the day-
time, i.e., under natural illuminations. The second instance is
trained to estimate illuminations on images that are captured
in outdoor scenes illuminated with artificial light sources.
Finally, the third instance is trained on images with indoor
scenes where all illuminations are artificial.

V. EXPERIMENTAL RESULTS
A. DATASET PREPARATION
The proposed method was evaluated on the Cube+
dataset [51]. Cube+ is a dataset of 1707 images with a known
ground-truth illumination vector for each image, and thus it
is appropriate for the evaluation of illumination estimation
methods. What makes this dataset significant is not only
diverse image scenes but also a very broad distribution of
illuminations. Illuminations that occur in the Cube+ dataset
can be divided into three clusters, i.e., natural illuminations in
outdoor scenes, artificial illuminations in outdoor scenes, and
artificial illuminations in indoor scenes. Natural illuminations
in outdoor scenes are captured during the daytime, whereas
artificial illuminations are captured in the scenes where some
artificial light source is present but the corresponding scenes
vary between outdoor and indoor scenes. In total, there are
1365 samples with natural outdoor illuminations, 52 sam-
ples with artificial outdoor illuminations, and 290 samples
with artificial indoor illuminations. In Figure 2, an exam-
ple distribution of illuminations given as rb-chromaticities
and split into three clusters is shown. Chromaticities for red
and blue channel, i.e., rb-chromaticities are calculated as:
r = R/(R+G+B), b = B/(R+G+B), where R,G, and B are
red, green, and blue pixel intensities, respectively. The differ-
ence between images illuminated with a natural outdoor light
source, artificial outdoor light source, and artificial indoor
light source can be seen in Figure 3.
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FIGURE 3. Examples of images illuminated with a natural outdoor light
source (left column), artificial outdoor light source (middle column), and
images illuminated with an artificial indoor light source (right column).

In the following sections, the proposed classes will be
referred to as:

• C0 represents the cluster with outdoor scenes in artificial
illuminations

• C1 represents the cluster with outdoor scenes in natural
illuminations

• C2 represents the cluster with indoor scenes in artificial
illuminations.

Cube+ dataset was used to train both illumination esti-
mation and image classification, with a different configura-
tion for each task. For the classification network, the whole
Cube+ dataset was used, i.e., all 1707 images. Images were
resized to the target size of 224×224 pixels and used in their
raw format. Each image was labeled with the corresponding
class label, which was then used as ground-truth data. The
dataset was split into train and test sets in a ratio of 4 to 1,
respectively. The proposed class split in the Cube+ dataset
results with imbalanced classes. Namely, when considering
both train and test splits together, class C1 has 1365 samples,
whereas classes C0 and C2 have only 52 and 290 samples,
respectively. Therefore, the data in the train set was balanced.
A subset with 20% of samples was first separated from the
train set for validation. From the remaining data in the train
set, 500 random samples were extracted from class C1, and
the remaining two classes, i.e., class C0 and class C2 have
been oversampled to match the new number of samples in
classC1. This resulted in a test set with a total of 1500 samples
(500 samples per class). The test set was used in its original
form.

For regression networks, the Cube+ dataset was split into
three parts based on the type of ground-truth illumination.
The first part contained only samples in which ground-truth
illumination is natural outdoor, the second part contained only
samples with accompanied ground-truth illumination from
a cluster with artificial outdoor illuminations, and the third
part contained only samples which ground-truth is artificial
indoor. Accordingly, the first part of the dataset was used to
train a network for natural outdoor illumination estimation,
the second part was used to train a network for artificial
outdoor illumination estimation, and the third part was used
to train a network for artificial indoor illumination estimation.

The same as for the classification, images were resized to the
target size of 224 × 224 pixels, and each regression dataset
was split into train and test sets in a ratio of 4 to 1. Ground-
truth data for the regression were ground-truth illumination
vectors from the Cube+ dataset.

B. PERFORMANCE METRICS
Illumination estimation method performance for an input
image is usually given in the form of the angle between
the ground-truth illumination vector and the estimated illu-
mination vector, namely angular error. Different summary
statistics are then used to combine individual performances
and indicate the overall performance on a dataset. Most
often, statistics are min, max, median, mean, best 25%, worst
25%, trimean, and average. Trimean can be calculated as
(Q1+2×Q2+Q3)/4, whereQ1,Q2, andQ3 are first, second
and third quartile, respectively. The average is the geometric
mean of all other mentioned statistics, and it is introduced
in [30].

In this paper, the above-mentioned summary statistics were
used to evaluate the performance of the proposed illumination
estimationmethod. Emphasis was placed on themedian value
since the distribution of the angular error is not symmetrical.

C. TRAINING SETUP
The training setup, which includes learning rates, momentum,
batch size, and the number of epochs, and which is described
in this section, was experimentally determined.

1) IMAGE CLASSIFICATION
VGG16 network was initialized with the weights obtained
by training the network for classification on the ImageNet
dataset [52]. Fully connected layers in the newly added stack
were initialized using the Xavier initialization [53]. During
the training, weights in all layers (both VGG16 and the
added fully connected stack) have been updated. The network
was trained for 20 epochs with 32 samples in the mini-
batch. Stochastic gradient optimization with the learning rate
of 0.001 and momentum 0.90 was used. Categorical cross-
entropy was used as the loss function. The balanced train set
described in Section V-A was used to train the classification
network.

2) ILLUMINATION ESTIMATION
To obtain the best overall accuracy, the parameters in each
illumination estimation network were fine-tuned on the cor-
responding class of images and illuminations. All networks
have been initialized in the same fashion. The initial layer
weights were acquired from [49]. All networks have been
optimized using the stochastic gradient descent with momen-
tum. The following loss function was used [54]:

L(e, ê) =
1
N

N∑
i=1

(
1−

ei · êi
‖ei‖

∥∥êi∥∥
)
, (4)
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where ith ground-truth illumination vector and estimated
illumination vector are denoted as ei and êi, respectively, N
denotes the number of samples, ’·’ is the vector dot product,
and ‖.‖ is the vector L2 norm. In the following paragraphs,
the parameters specific for each illumination estimation net-
work are given.

The first illumination estimation network was trained for
images with outdoor scenes captured under natural illumi-
nations, i.e., in the daytime. The learning rate and momen-
tum were 0.01 and 0.95, respectively. The network was
trained with 10 samples in the mini-batch for 100 epochs.
The first four convolutional blocks in the VGG16 network
were frozen, i.e., the weights in those convolutional blocks
were not updated. Whereas, the weights in the 5th convolu-
tional block and the weights in the attention mechanism were
fine-tuned.

The second illumination estimation network was trained
for images capturing outdoor scenes as well, but this time
the illuminations were artificial. Stochastic gradient descent
was initialized with the learning rate of 0.001 and momentum
0.95. Mini-batch size was 32, and the number of training
epochs was 200. For this class of images, the whole network
architecture was trained, which includes both the VGG16 net-
work and the attention mechanism.

The final network was trained on images captured in
indoor scenes. This class contains only artificial illumina-
tions. Momentum was set to 0.99, and the learning rate
to 0.001. The number of training epochs and the mini-
batch size was 100 and 10, respectively. Same as for the
illumination estimation network for the previous class of
images, the weights in all layers have been updated during the
training.

Each illumination estimation network was used on a dif-
ferent distribution of input images and ground-truth illumina-
tions. Therefore, when using the same set of parameters for all
networks, it is plausible that for a given distribution of input
images and ground-truth illuminations, the achieved result
if not optimal. In other words, to obtain illumination esti-
mations as accurately as possible, each network was trained
using the optimal set of parameters for the corresponding
class split.

D. METHOD ACCURACY
1) NATURAL-ARTIFICIAL ILLUMINATION CLASSIFICATION
The major drawback of the Cube+ dataset is that the number
of samples between proposed classes varies significantly.
However, after balancing the train set, the accuracy given
in Table 1 has been achieved. It should be stressed out that the
test set contained only 9 samples from classC0 and 7 samples
have been correctly classified.

2) ILLUMINATION ESTIMATION
The baseline for the evaluation of the proposed illumination
estimation on data splits, and the parameter setup described in
Section V-C.2 is the illumination estimation network trained

TABLE 1. The classification accuracy.

TABLE 2. Illumination estimation results for each proposed class of input
samples, as well as their combined performance compared to the
baseline results.

on the whole Cube+ dataset, i.e., without data splitting. The
network has the same architecture as the proposed illumi-
nation estimation networks in Section IV-A. The training
set contained 80% of the data in the Cube+ dataset. The
remaining 20%were used as test data to compute the baseline
results. Both train and test sets contained images from classes
C0, C1, and C2. The following training configuration was
used: stochastic gradient descent with a learning rate of 0.01
and momentum 0.95, mini-batch size of 10 samples, and 100
training epochs. Only the attention mechanism weights and
the weights in the 5th convolutional block of the VGG16 net-
work have been updated. For initialization, the pre-trained
weights from [49] were used.

In Table 2, the results of individual illumination estima-
tion networks with the parameter setup from Section V-C.2
are compared with the baseline. In the row labeled com-
bined, the combined performance of individual illumination
estimation networks is given. The experimental results con-
firm that the overall illumination estimation accuracy can
be improved if the data is carefully split into smaller clus-
ters. Usually, the median is considered the most important
statistic in illumination estimation, and indeed, using the
proposed approach, its value is improved. However, the most
significant improvement is achieved in terms of maximum
estimation error. It has been reduced by more than 30%. This
confirms that having multiple distinct illumination estima-
tors, which cover different illumination regions, is beneficial
over one illumination estimation network that searches the
whole illumination space.

The proposed illumination estimation with three clusters
has also been compared with the clustering in two classes.
Two combinations have been researched. For the first com-
bination, the scene type was considered, which resulted in
the following clusters: a cluster with outdoor images and
a cluster with indoor images. For this kind of split, in the
outdoor cluster, both artificial and natural illuminations exist,
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TABLE 3. The comparison of the results obtained by illumination
estimation in three clusters (3C) and by illumination estimation in two
clusters based on scene type (2C scn) and illumination type (2C ill).

while the indoor cluster is the same as it was in the proposed
approach. In the second combination, clustering was done
based on the illumination type. The first cluster contained
only outdoor images captured under natural illuminations,
and in the second cluster, images captured under artificial
illuminations in both indoor and outdoor scenes have been
contained. The proposed clustering approach outperformed
both of these clustering combinations. One plausible expla-
nation is that the illumination distributions are more compact
when three class split is used instead of any of the two-class
splits. For instance, in the second combination, where indoor
and outdoor artificial illuminations are combined, the illumi-
nation distribution is very diverse. It contains illuminations
from near-white in indoor scenes to strong, distinct yellow
illuminations in outdoor scenes. The comparison of the pro-
posed approach in its combined form and clustering in two
classes is given in Table 3.

3) COMPARISON WITH OTHER ILLUMINATION ESTIMATION
METHODS
In Table 4, the overall results of the proposed approach are
given and can be comparedwith other illumination estimation
methods evaluated on the Cube+ dataset. The results have
been obtained by first classifying the input images and then
applying the illumination estimation network trained for the
predicted class of images. Due to the classification error,
the overall illumination estimation error is slightly higher
than in Table 2. However, it has been shown that, even though
the input images are misclassified, the illumination estima-
tion networks tend to estimate the illuminations which are
close to the actual ground-truth distribution of illuminations
for the corresponding images.

On a test set of 342 images, 10 images were misclassified.
In Table 5, the angular error statistics obtained on images that
were misclassified are compared with the angular errors that
would be obtained if a classifier with 100% accuracy is used,
i.e., if all images were classified in their true class. It can be
seen that the classification is crucial for good illumination
estimation since the error values on misclassified examples
are much higher than the overall results. Even though the
classification helps to reduce the illumination space, it can
be the major limitation of the proposed method. It has been
shown that for a given image, the method tends to estimate
the illuminations as close as possible to their ground-truth,
even when misclassified, but if the ground-truth class and
predicted class are not adjacent, the estimation error can

TABLE 4. The comparison of angular error statistics of different color
constancy methods on the Cube+ dataset [51] (lower Avg. is better).

TABLE 5. The comparison of estimation errors obtained for misclassified
samples with the estimation errors for the perfectly accurate
classification.

FIGURE 4. Examples of misclassified images. True classes of example
images are C2 (a), C2 (b), C1 (c), and C1 (d), and the network classified
them as C1 (a), C1 (b), C2 (c), and C2 (d).

be high. Examples of misclassified images are shown in
Figure 4. One plausible explanation for misclassification is
that these samples have near-white illumination and the clas-
sifier is not able to distinguish their class based only on the
scene content.

VI. CONCLUSION
In this paper, a new light source classification-based illumi-
nation estimation method is proposed. It uses deep neural
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networks to classify input images and estimate illumination
vectors. Three clusters, i.e., classes, are proposed: cluster with
outdoor scenes in natural illuminations, cluster with outdoor
scenes in artificial illuminations, and cluster with indoor
scenes in artificial illuminations. For each cluster, a sepa-
rate deep illumination estimation network is trained. With
the experimental results, it has been confirmed that training
multiple illumination estimation networks using smaller por-
tions of illumination space outperforms a single illumination
estimation network. The experiments have shown that the
clustering of the illumination space has to be performed care-
fully and considering not only pure illuminations but features
such as scene content as well.
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Abstract: The image processing pipeline of most contemporary digital cameras performs illumination estimation in
order to remove the influence of illumination on image scene colors. In this paper an experiment is described
that examines some of the basic properties of illumination estimation methods for several Canon’s camera
models. Based on the obtained observations, an extension to any illumination estimation method is proposed
that under certain conditions alters the results of the underlying method. It is shown that with statistics-based
methods as underlying methods the proposed extension can outperform camera’s illumination estimation in
terms of accuracy. This effectively demonstrates that statistics-based methods can still be successfully used for
illumination estimation in digital cameras. The experimental results are presented and discussed. The source
code is available at https://ipg.fer.hr/ipg/resources/color constancy.

1 INTRODUCTION

Among many abilities human visual system (HVS)
can recognize colors of objects regardless of scene
illumination. This ability is known as color con-
stancy (Ebner, 2007). Achieving computational co-
lor constancy is an important pre-processing step in
image processing pipeline as different scene illumina-
tions may cause the image colors to differ as shown in
figure 1. In order to remove the influence of illumina-
tion color, accurate illumination estimation followed
by chromatic adaptation must be preformed. For both
tasks the following image f formation model, which
includes Lambertian assumption, is most often used:

fc(x) =
∫

ω

I(λ,x)R(x,λ)ρc(λ)dλ (1)

where c is a color channel, x is a given image
pixel, λ is the wavelength of the light, ω is the vi-
sible spectrum, I(λ,x) is the spectral distribution of
the light source, R(x,λ) is the surface reflectance, and
ρc(λ) is the camera sensitivity of c-th color channel.
With the assumption of uniform illumination the pro-
blem can be simplified, as now x is removed from
I(λ,x) and the observed light source color is given
as:

e =

eR
eG
eB

=
∫

ω

I(λ)ρ(λ)dλ (2)

(a) (b)
Figure 1: The same scene (a) with and (b) without illumi-
nation color cast.

For a successful chromatic adaptation, what is
required is only the direction of e (Barnard et al.,
2002). Since it is very common that only image pixel
values f are given and both I(λ) and ρ(λ) remain
unknown, calculating e is an ill-posed problem. To
solve this problem, additional assumptions must be
made, which leads to many color constancy methods
that are divided into two major groups. First group
of methods are low-level statistic-based methods like
White-patch (Land, 1977; Funt and Shi, 2010), its
improvements (Banić and Lončarić, 2013; Banić and
Lončarić, 2014a; Banić and Lončarić, 2014b), Gray-
world (Buchsbaum, 1980), Shades-of-Gray (Finlay-
son and Trezzi, 2004), Gray-Edge (1st and 2nd or-
der) (Van De Weijer et al., 2007a), using bright and
dark colors (Cheng et al., 2014). The second group
is formed of learning-based methods like gamut map-
ping (pixel, edge, and intersection based) (Finlayson
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 2: Color checker cast with projector light of various colors.

et al., 2006), using high-level visual information (Van
De Weijer et al., 2007b), natural image statistics (Gi-
jsenij and Gevers, 2007), Bayesian learning (Gehler
et al., 2008), spatio-spectral learning (maximum li-
kelihood estimate, and with gen. prior) (Chakra-
barti et al., 2012), simplifying the illumination so-
lution space (Banić and Lončarić, 2015a; Banić and
Lončarić, 2015b; Banić and Lončarić, 2015b), using
color/edge moments (Finlayson, 2013), using regres-
sion trees with simple features from color distribu-
tion statistics (Cheng et al., 2015), performing vari-
ous kinds of spatial localizations (Barron, 2015; Bar-
ron and Tsai, 2017), using convolutional neural net-
works (Bianco et al., 2015; Shi et al., 2016; Hu et al.,
2017; Qiu et al., 2018).

While learning-based method have a much higher
accuracy, it are low-level statistics-based methods that
are still being widely used among digital camera ma-
nufacturers since they are much faster and often more
hardware-friendly than learning-based methods. This
is also one of the reasons why statistics-based met-
hods are still important for research. Nevertheless,
since cameras are commercial systems, the fact that
they still widely use statistics-based methods is not
publicly stated. In this paper an experiment is des-
cribed that examines some of the basic properties of
illumination estimation methods for several Canon’s
camera models. Based on the obtained observations,
an extension to any illumination estimation method is
proposed that under certain conditions alters the re-
sults of the underlying method by bounding them to
a previously learned region in the chromaticity plane.
The bounding procedure is simple and does not add
any significant cost to the overall computation. It is
shown that with statistics-based methods as under-
lying methods the proposed extension can outperform
camera’s built-in illumination estimation in terms of
accuracy. This effectively demonstrates that statistics-
based methods can still be successfully used for illu-
mination estimation in digital cameras’ pipelines.

The paper is structured as follows: Section 2 lays
out the motivation for the paper, in Section 3 the pro-
posed method is described, Section 4 shows the expe-
rimental results, and Section 5 concludes the paper.

2 MOTIVATION

2.1 Do statistics-based Methods
Matter?

Digital cameras are being used ever more widely, es-
pecially with the growing number of smartphones.
This definitely means that the results of the rese-
arch on computational color constancy now also have
a higher impact so the importance of this research
grows, especially when considering that it is an ill-
posed problem. In literature and in the reviews of
papers it is sometimes claimed that there is little pur-
pose in researching low-level statistics-based methods
since there are now much more accurate learning-
based methods that significantly outperform them in
accuracy. In contrast to that many experts with ex-
perience in the industry claim that many commercial
white balancing systems are still based on low-level
statistics-based methods. The main reason for that
is their simplicity, low cost of implementation, and
hardware-friendliness. If this is indeed so, then the
research on such methods is definitely still important
and should be further conducted and supported.

To check to what degree all these claims are true, it
should be enough to examine some of the white balan-
cing systems widely used in commercial cameras. In
the world of professional cameras Canon has been the
market leader for 15 years (Canon, 2018) and in 2018
it held an estimated 49% of the market share (Pho-
toRumors, 2018). Since practically every digital ca-
mera performs white balancing in its image proces-
sing pipeline, it can be claimed that Canon’s white
balancing system is one of the most widely spread
ones. However, since Canon is a commercial com-
pany, full details of the white balancing system used
in its digital cameras are not publicly known.

2.2 Learning from Existing Systems

One approach to gain more information on Canon’s
white balancing system is to look at the results of il-
lumination estimation for various images taken under
illumination of numerous colors. The following three
camera models have been used to perform this expe-
riment: EOS 550D, EOS 6D, and EOS 750D.
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Figure 3: Comparison of chromaticities of projector light color, color of the second achromatic color checker patch, and
camera’s illumination estimation for Canon EOS 550D in the rb-chromaticity plane. The red chromaticity is shown on the x
axis, while the blue chromaticity is shown on the y axis.

The experiment was conducted in a dark room
where only a projector has been used as a light source.
The projector was used to cast illumination of vari-
ous colors, with chromaticities evenly spread in the
chromaticity plane, on a color checker as shown in Fi-
gure 2. These images of the color checker were taken
with every of the three previously mentioned cameras.

Although the illumination color was supposed to
be computationally determined by projecting specifi-
cally created content, due to the projector and camera
sensor characteristics the effective illumination color
is altered. Its value as perceived by the camera can be
read from the achromatic patches in the last row of the
color checker and it serves as the ground-truth illumi-
nation for the given image. Ideally, it is this color that
an illumination estimation method should predict.

Finally, the last step of the experiment was to
check the results of illumination estimation perfor-
med by each of the cameras. The results of a ca-
mera’s illumination estimation for a taken image can
be reconstructed from the Exif metadata stored in the
image file. The fields needed for this are Red Balance
and Blue Balance, which have the values of channel
gains i.e. the factors by which the red and blue chan-
nels have to be multiplied to perform chromatic adap-
tation. For practical reasons in cameras the green gain
is fixed to 1. The combined inverse values of these
gains give the illumination estimation vector. When
this vector is normalized, it represents the chromati-

city of camera’s illumination estimation, which can
be directly used to calculate the estimation accuracy
by comparing it to the ground-truth illumination.

A comparison between the chromaticities for pro-
jected illumination color, achromatic patch color,
and camera illumination estimations for Canon EOS
550D camera is given in Figure 3. The values read
from achromatic white patches are squeezed with re-
spect to the ones sent by the projector, but a more in-
teresting observation is that none of the camera’s il-
lumination estimation are outside of a surface that re-
sembles a parallelogram. As shown in Figure 4, simi-
lar results are obtained for other used camera models
as well. Although there are some differences between
the parallelograms mostly visible on two opposite si-
des, the parallelograms otherwise mostly cover a si-
milar space in the chromaticity plane.

2.3 Observations

Based on these observations it can be concluded that
one of the core properties of Canon’s white balancing
system is limiting its illumination estimation so that
they do not appear outside of a polygon very similar
to a parallelogram. Such limitation can be justified by
the goal of avoiding unlikely illuminations and thus
minimizing the occurrence of too high errors. This
can be useful if it can be assumed that the expected
illuminations are similar to black body radiation, but
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sometimes it can be an disadvantage if artificially co-
lored illumination sources are present like in Figure 2.

On the other hand, there is little that can be said
about the white balancing system’s behavior inside of
the parallelogram. Nevertheless, the limitation obser-
vation is already useful because of its potential to li-
mit maximum errors for illumination estimations. As
for the behavior of illumination estimation inside the
parallelogram, a possible solution is to use some of
the already existing methods. Additionally, it can be
immediately remarked that a parallelogram is a rela-
tively regular quadrangle and polygon in general.

At least two questions can be raised here: first, is
there a better quadrangle i.e. polygon for bounding
the illuminations, and second, which method to use
as the baseline underlying method that gets bounded?

Figure 4: Comparison of cameras’ illumination estimation
for Canon EOS 550D, Canon EOS 6D, and Canon EOS
750D. The red chromaticity is shown on the x axis, while
the blue chromaticity is shown on the y axis.

3 PROPOSED METHOD

Inspired by the bounds used by Canon cameras ob-
served in Figure 4 and in order to give an answer to
the two questions from the previous section, in this
paper a new method i.e. extension to any chosen un-
derlying illumination estimation method is proposed.
The extension learns a bounding polygon with an ar-
bitrary number of vertices that is used to restrict the
illumination estimations of the initially chosen under-
lying method to the chromaticity region specified by
the bounding polygon. As explained in the previous
section, the motivation for this are the observations
of boundaries used by Canon cameras and it can be
applied to any illumination estimation method.

A genetic algorithm is used to learn the bounda-
ries. First, the illumination estimations for the ini-
tially chosen underlying method are calculated on a
given set of images. The boundary polygon popula-
tion of size s is initialized by taking randomly chosen
ground-truth illumination chromaticities as polygon
vertices. Empirically, it has been shown that the four-

point polygons i.e. quadrangles are generally a good
fit for illumination restriction and there is no signifi-
cant gain when the number of points is increased. The
fitness function calculation for a given quadrangle is
based on the ground-truth illuminations and the re-
stricted illuminations that are the result of applying
the boundary polygon to the underlying method’s il-
lumination estimations. Empirically, it has been con-
cluded that the negative sum of the median angular
error and a tenth of the maximum angular error is ge-
nerally a good fitness function; angular error is ex-
plained in more detail in Section 4.1. More formally,
if A = {a1, . . . ,an} is the set of angular errors on n
images, then the chosen fitness function is given as

f(A) =−
(

med(A)+
1

10
max(A)

)
. (3)

The maximum error was also included in the fit-
ness function in order to discourage quadrangles that
perform very well on the majority of the images, but
have poor performance of several outliers. As the se-
lection method the 3-way tournament selection (Mit-
chell, 1998) with random sampling is used. Avera-
ging crossover function of the two of the best indi-
viduals produces a new child which is randomly mu-
tated. The quadrangle with the lowest fitness value
among the three ones chosen in the selection proce-
dure is replaced in the current population by the ne-
wly created child quadrangle. The mutation is done
by translating each vertex of a bounding polygon by
the value from the normal distribution with µ = 0
and σ = 0.2. Mutation rate, which states whether the
whole individual should me mutated, is set to 0.3. Af-
ter all training iterations have finished, the boundary
quadrangle with the highest fitness value is chosen as
the final result. Figure 5 shows an example of a lear-
ned quadrangle.

Figure 5: Example of a learned boundary quadrangle for
the Canon1 dataset (Cheng et al., 2014) in the chromaticity
plane. The red chromaticity is shown on the x axis, while
the blue chromaticity is shown on the y axis.

Since the proposed extension bounds illumination
estimations and beavers are known to bound water
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flows by building dams, the proposed extension was
named Color Beaver. In the rest of the paper exten-
ding a method M by the Color Beaver extension will
be denoted as Color Beaver + M. The training proce-
dure for Color Beaver is summarized in Algorithm 2.

Algorithm 1: Color Beaver Training.
Input: training images I, ground truth G, met-

hod M, iterations number N, population size s, fitness
function f

Output: boundary polygon P
1: E= estimateIllumination(I,M)
2: P= initializePolygonPopulation(s)
3: for i ∈ {1, ..N} do
4: t1, t2, t3 = tournamentSelection(P,3, f)
5: t′ = crossover(t1, t2)
6: t′.mutateMaybe(0.3)d
7: R= restrictIllumination(E, t′)
8: P.ReplaceExistingWith(t3, t′)
9: end for

10: P = P.GetFittest(f)

Algorithm 2: Color Beaver Application.
Input: image I, method M, boundary polygon P
Output: illumination estimation e

1: eM = estimateIllumination(I,M)
2: e = restrictIllumination(eM,P)

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

Eight linear NUS datasets (Cheng et al., 2014) and the
Cube dataset (Banić and Lončarić, 2017) have been
used to test the proposed extension and compare its
performance to the one of other methods. All these
datasets have linear images, which is also expected
by the model described by Eq. (3). The ColorChecker
dataset (Gehler et al., 2008; Shi and Funt, 2018) has
not been used because of much confusion that is still
present in many papers due to of its misuses in the
past (Lynch et al., 2013; Finlayson et al., 2017).

The most commonly used accuracy measure
among many proposed (Gijsenij et al., 2009; Finlay-
son and Zakizadeh, 2014; Banić and Lončarić, 2015a)
is the angular error. It is the angle between the vectors
of illumination estimation and the ground-truth illu-
mination. When the angular errors obtained on each
individual image of a given benchmark dataset need
to be summarized, one of the most important statistics
is the median angular error (Hordley and Finlayson,

Table 1: Performance of different color constancy methods
on the Cube dataset (Banić and Lončarić, 2017) in terms
of angular error statistics (lower Avg. is better). The used
format is the same as in (Barron and Tsai, 2017).

Algorithm MeanMed. Tri. Best
25%

Worst
25%

Avg.

White-Patch (Funt and Shi,
2010)

6.58 4.48 5.27 1.18 15.23 4.88

Gray-world (Buchsbaum, 1980) 3.75 2.91 3.15 0.69 8.18 2.87
Camera built-in 2.96 2.56 2.64 0.82 5.79 2.49

Color Tiger (Banić and Lončarić,
2017)

2.94 2.59 2.66 0.61 5.88 2.35

Shades-of-Gray (Finlayson and
Trezzi, 2004)

2.58 1.79 1.95 0.38 6.19 1.84

2nd-order Gray-Edge (Van
De Weijer et al., 2007a)

2.49 1.60 1.80 0.49 6.00 1.84

1st-order Gray-Edge (Van
De Weijer et al., 2007a)

2.45 1.58 1.81 0.48 5.89 1.81

General Gray-World (Barnard
et al., 2002)

2.50 1.61 1.79 0.37 6.23 1.76

Color Beaver Camera +
built-in (proposed)

1.70 0.96 1.15 0.31 4.38 1.20

Color Beaver + WP (proposed) 1.59 0.87 1.04 0.25 4.15 1.08
Restricted Color Tiger (Banić

and Lončarić, 2017)
1.64 0.82 1.05 0.24 4.37 1.08

Color Dog (Banić and Lončarić,
2015b)

1.50 0.81 0.99 0.27 3.86 1.05

Smart Color Cat (Banić and
Lončarić, 2015b)

1.49 0.88 1.06 0.24 3.75 1.04

Color Beaver + SoG (proposed) 1.51 0.81 1.00 0.22 3.97 1.01

Color Beaver + GW (proposed) 1.48 0.76 0.98 0.21 3.90 0.98

2004). Despite that fact, the geometric mean of se-
veral statistics including the median angular error has
increasingly been gaining popularity in recent publi-
cations (Barron and Tsai, 2017) and the same format
as there is also used in this paper.

For both the NUS datasets and the Cube data-
set a three-fold cross-validation with folds of equal
size was used like in previous publications. The
source code for recreating the results reported later
in the paper is publicly available at https://ipg.fer.hr/
ipg/resources/color constancy.

(a) (b)
Figure 6: A failure case for Color Beaver + SoG with chro-
matic adaptation results based on a) the restricted illumi-
nation estimation with angular error of 10.74◦ and b) the
ground-truth illumination.
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Table 2: Combined performance of different color con-
stancy methods on eight NUS dataset in terms of angular
error statisrics (lower Avg. is better). The used format is
the same as in (Barron and Tsai, 2017).

Algorithm MeanMed. Tri. Best
25%

Worst
25%

Avg.

White-Patch (Funt and Shi,
2010)

9.91 7.44 8.78 1.44 21.27 7.24

Pixels-based Gamut (Gijsenij
et al., 2010)

5.27 4.26 4.45 1.28 11.16 4.27

Grey-world (Buchsbaum, 1980) 4.59 3.46 3.81 1.16 9.85 3.70
Edge-based Gamut (Gijsenij

et al., 2010)
4.40 3.30 3.45 0.99 9.83 3.45

Color Beaver + WP (proposed) 5.40 2.12 2.75 0.58 16.08 3.12
Shades-of-Gray (Finlayson and

Trezzi, 2004)
3.67 2.94 3.03 0.98 7.75 3.01

Color Beaver + GW (proposed) 3.73 2.65 2.90 0.72 8.55 2.82
Natural Image Statistics (Gijsenij

and Gevers, 2011)
3.45 2.88 2.95 0.83 7.18 2.81

Local Surface Reflectance
Statistics (Gao et al., 2014)

3.45 2.51 2.70 0.98 7.32 2.79

2nd-order Gray-Edge (Van
De Weijer et al., 2007a)

3.36 2.70 2.80 0.89 7.14 2.76

1st-order Gray-Edge (Van
De Weijer et al., 2007a)

3.35 2.58 2.76 0.79 7.18 2.67

Bayesian (Gehler et al., 2008) 3.50 2.36 2.57 0.78 8.02 2.66
General Gray-World (Barnard

et al., 2002)
3.20 2.56 2.68 0.85 6.68 2.63

Spatio-spectral
Statistics (Chakrabarti et al.,

2012)
3.06 2.58 2.74 0.87 6.17 2.59

Bright-and-dark Colors
PCA (Cheng et al., 2014)

2.93 2.33 2.42 0.78 6.13 2.40

Corrected-Moment (Finlayson,
2013)

2.95 2.05 2.16 0.59 6.89 2.21

Color Beaver + SoG (proposed) 2.86 1.99 2.21 0.59 6.62 2.17
Color Tiger (Banić and Lončarić,

2017)
2.96 1.70 1.97 0.53 7.50 2.09

Color Dog (Banić and Lončarić,
2015b)

2.83 1.77 2.03 0.48 7.04 2.03

Shi et al. 2016 (Shi et al., 2016) 2.24 1.46 1.68 0.48 6.08 1.74
CCC (Barron, 2015) 2.38 1.48 1.69 0.45 5.85 1.74

Cheng 2015 (Cheng et al., 2015) 2.18 1.48 1.64 0.46 5.03 1.65
FFCC (Barron and Tsai, 2017) 1.99 1.31 1.43 0.35 4.75 1.44

4.2 Accuracy

Tables 1 and 2 show the comparisons between the
accuracies of methods extended by the proposed ex-
tension and other illumination estimation methods. It
can be seen that all of the extended methods outper-
form their initial non-extended versions. As a mat-
ter of fact, the extended version of the Shades-of-
Gray method outperforms the camera built-in method.
Additionally, the extended versions also outperform
many learning-based methods. All these results de-
monstrate the usability of the proposed extension. An
example of a failure case for the proposed extension

of Shades-of-Gray is shown in Figure 6.
While other methods such as Gray-edge could

also have been tested and shown in the Tables,
Shades-of-Gray was already good enough to outper-
form camera’s built-in methods. Extending Gray-
edge also increases its accuracy, but Gray-edge is slo-
wer than Shades-of-Gray (Cheng et al., 2014), more
complex, and it requires additional memory. Hence
it was left out of the testing procedures since Shades-
of-Gray is already sufficient to successfully answer
the questions that were raised in this paper.

4.3 Discussion

The fact that statistics-based methods extended by the
proposed method outperform camera built-in illumi-
nation estimation methods is significant for drawing
further conclusions about the nature of camera’s il-
lumination estimation methods. Namely, if extended
statistics-based methods outperform them, it can be
freely stated that statistics-based are good enough to
be used in digital cameras. Additionally, it may be
that the extended method managed to outperform the
camera’s built-in methods because that they are also
statistics-based, which in turn confirms that cameras
do indeed use such method. In any of these two cases
it can be concluded that research on statistics-based
methods still has a large field of applications and the
obtained results only further prove its importance.

5 CONCLUSIONS

An experiment was conducted to examine some of the
details of built-in illumination estimation methods for
several Canon camera models. Inspired by the ob-
served results, an extension to any underlying illumi-
nation estimation method has been proposed. It li-
mits the values of the illumination estimations of the
underlying method by forcing it to stay inside a pre-
viously learned region in the chromaticity plane wit-
hout adding any significant computation cost. By li-
miting some of the best-known statistics-based met-
hods, the obtained accuracy outperforms the one of
cameras’ built-in methods. This effectively demon-
strates that by only using slightly modified statistics-
based methods it is possible to be more accurate than
contemporary cameras. It also proves the claim that
statistics-based methods can and probably are used
for illumination estimation in digital cameras. Future
research will include looking for new method modifi-
cations that result in even higher estimation accuracy.
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ABSTRACT In the image processing pipelines of digital cameras, one of the first steps is to achieve
invariance in terms of scene illumination, namely computational color constancy. Usually, this is done
in two successive steps which are illumination estimation and chromatic adaptation. The illumination
estimation aims at estimating a three-dimensional vector from image pixels. This vector represents the
scene illumination, and it is used in the chromatic adaptation step, which aims at eliminating the bias in
image colors caused by the color of the illumination. An accurate illumination estimation is crucial for
successful computational color constancy. However, this is an ill-posed problem, and many methods try
to comprehend it with different assumptions. In this paper, an iterative method for estimating the scene
illumination color is proposed. The method calculates the illumination vector by a series of intermediate
illumination estimations and chromatic adaptations of an input image using a convolutional neural network.
The network has been trained to iteratively compute intermediate incremental illumination estimates from
the original image. Incremental illumination estimates are combined by per element multiplication to obtain
the final illumination estimation. The approach is aimed to reduce large estimation errors usually occurring
with highly saturated light sources. Experimental results show that the proposed method outperforms the
vast majority of illumination estimation methods in terms of median angular error. Moreover, in terms
of worst-performing samples, i.e., the samples for which a method errs the most, the proposed method
outperforms all other methods by a margin of more than 18% with respect to the mean of estimation errors
in the third quartile.

INDEX TERMS Chromatic adaptation, color constancy, convolutional neural networks, illumination
estimation, image color analysis.

I. INTRODUCTION
In digital photography, any illumination present in the scene
of interest significantly impacts the colors of the objects in
digital images. According to the image formation model [1],
the value of a pixel in an image is determined by three
functions: the spectrum of the light source, the reflectance of
the object surface, and the spectral sensitivity of the camera
sensor. If the same scene is captured with the same camera
(i.e., the reflectance of the object surface and the spectral sen-
sitivity of the camera sensor are constant) whereas the spec-
trum of the light source changes, the colors in the captured
images will most likely differ. The reason for this behavior is

The associate editor coordinating the review of this manuscript and
approving it for publication was Shiqi Wang.

that the camera sensor is a device that can only capture the
incident light but cannot detect changes in illumination itself.
Therefore, for most digital cameras, one of the first steps
in the image processing pipeline is dedicated to achieving
illumination invariance. This process can be associated with
the ability of the human visual system to adapt to changes
in scene illumination, namely color constancy [2]. Achieving
computational color constancy has proven to be beneficial in
many image-related areas such as object recognition, scene
comprehension, digital photography, and image reproduc-
tion [3]. In order to achieve computational color constancy,
two steps are usually required. First, the scene illumination
color is estimated based on the image pixel values, and
then, in the second step, its influence on the image colors is
eliminated. Color constancy is not yet fully understood and
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modeled, and estimating the scene illumination from the
image pixels is an ill-posed problem, which is regularized by
various assumptions. During the last few years, many meth-
ods for estimating the illumination color have been proposed,
with the general assumption that the illumination is uniform
in the scene [1]. Since only one illumination vector per image
is estimated, a simple diagonal matrix with reciprocal illu-
mination values on the diagonal is usually used to eliminate
color distortion.

For a successful computational color constancy, both illu-
mination estimation and chromatic adaptation should be as
accurate and similar to the image formation model as pos-
sible. However, even though the simple diagonal matrix for
chromatic adaptation is computationally efficient and suffi-
cient for a somewhat satisfactory computational color con-
stancy, it is still an approximation. Illumination estimates can
be either imprecise or out of the range of illuminations for
which color images can be properly corrected using the cur-
rent chromatic adaptation model. It is expected that the error
in computational color constancy is higher for images that
are captured in scenes illuminated with highly colored light
sources than for scenes affected by near-white illuminations.
Such illuminations can corrupt object colors, and if their
estimates are imprecise high errors in corrected images can
be expected. In [4], it was shown that camera manufacturers
bound illuminations to a narrow region in chromaticity space
so that chromatic adaptation is never performed with highly
colored illuminations. It can be speculated that the cause
for this is the inadequacy of the chromatic adaptation model
that is unfit for the highly colored illuminations. Therefore,
in this paper, a multistage illumination color estimation com-
bined with the current simple chromatic adaptation model is
proposed. The individual stages’ estimations are restricted
from highly colored estimations so that the used chromatic
adaptation model is operating in the range of slightly colored
illuminations. The final illumination estimation is obtained
by combining all of the stage illuminations so that the final
illumination estimations can still be highly colored. With this
approach, the occurrence of high estimation errors should be
alleviated, as shown in experimental results.

For the evaluation of illumination estimation methods,
the angular error is used. It is calculated as the angle between
the ground-truth illumination vector and the estimated illu-
mination vector. Usually, the RGB color space is used so
that both vectors have three components corresponding to the
red, green, and blue image channels. The median error value
of a test dataset is usually considered the most representa-
tive statistic. Nowadays, illumination estimation methods can
achieve median error values of less than 2◦, which can be
regarded as a threshold for a sufficiently accurate illumination
estimation [5]. However, even such accurate methods in terms
of median or mean error value tend to be flawed in some
cases. The maximum error values can be as large as 10◦ or
more. Correcting an image with a highly incorrect illumi-
nation color vector can distort the image colors to such an
extent that the actual information they carry is effectively lost.

FIGURE 1. Chromatic adaptation example with highly inaccurate
illumination vector: (a) original raw image with the influence of
illumination; (b) the result of the chromatic adaptation of image (a) with
ground-truth illumination vector (0.1624 0.4533 0.3843)T ; (c) the result
of the chromatic adaptation of image (a) with inaccurate illumination
vector (0.0001 0.6528 0.3471)T . The angle between the ground-truth
vector and inaccurate illumination vector is 19.54◦. For display purposes,
images were tone mapped by using the Flash tone mapping operator [6].

An example of a chromatic adaptation with a highly incorrect
illumination vector is shown in Fig. 1.

In this paper, an illumination estimation method that
reduces maximum estimation errors, which can occur when
highly colored illuminations are present in the scene, is pro-
posed. The proposed method combines both illumination
estimation and chromatic adaptation, which are usually two
distinct steps in the image processing pipeline, to obtain more
precise illumination estimates. The global illumination vector
is estimated through a series of consecutive intermediate
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illumination estimations, and chromatic adaptations of an
input image. In each step, intermediate illumination estima-
tion is forced to a subset of illuminations that are close to
the white light, i.e., a light that does not alter image colors.
Chromatic adaptation of the input image with an estimated
intermediate illumination vector is performed, and such a
corrected image is then passed as a new input. This procedure
was embedded in a deep neural network which uses convo-
lutional architecture for the estimation of intermediate illu-
minations, and simple matrix multiplications for chromatic
adaptation of input images and aggregation of intermediate
estimates into one final illumination estimate.

The rest of the paper is structured as follows: In
Section II, an overview of related methodology is given,
Section III describes the proposed illumination estimation
method, experimental results are presented and discussed in
Section IV, and in Section V, the conclusion is given.

II. RELATED WORK
The image formation model, commonly used in com-
putational color constancy, which assumes Lambertian
reflectance can be formulated as

fc(x) =
∫
ω

I (λ, x)R(λ, x)ρc(λ)dλ, (1)

where each pixel x in the image f with three color channels
c ∈ {R,G,B} is computed as the integral of the product of
light source spectrum I (λ, x), surface reflectance R(λ, x), and
camera sensor sensitivity ρc(λ) across all wavelengths λ in the
visible light spectrum ω.

A. ILLUMINATION ESTIMATION
The first step in computational color constancy is illumination
estimation, which aims to estimate the vector of the scene illu-
mination from image pixels. From (1), it can be observed that
illumination can be determined by knowing the light source
spectrum I (λ, x) and camera sensor sensitivity ρ(λ). In the
case of global illumination estimation methods, i.e., when it
is assumed that there is one dominant light source present
in the scene, spatial information x is disregarded, and the
illumination vector is defined as

e =

eReG
eB

 = ∫
ω

I (λ)ρ(λ)dλ. (2)

The estimation of e is an ill-posed problem as usually there is
no prior knowledge about I (λ) and ρ(λ) values.

To make the problem of illumination estimation feasible,
illumination estimation methods are often based on some
assumptions. One group of illumination estimation methods
are methods such as White-Patch [7], [8] and its improve-
ments [9]–[11], and gray world assumption-based methods
that include Gray-World [12], Shades-of-Gray [13], Gray-
Edge [14], Weighted-Gray-Edge [15]. Although simple and
do not generalize well, these methods are suitable for hard-
ware implementation since they use simple image features

and statistics, which are fast to calculate and have insignif-
icant computational complexity.

On the other hand, there are machine-learning based
illumination estimation methods that require computational
models to be trained on data. The most recent examples are
methods based on deep learning. These methods achieve the
most accurate estimates of scene illumination but are highly
dependent on training data distribution. Large and diverse
datasets are prerequisites for creating deep learning methods
that can generalize well. In comparison with illumination
estimationmethods in the first group, learning-basedmethods
require more computational resources and have more com-
plex structures. The earliest deep learning architectures for
illumination estimation were very shallow, containing only
a few convolutional and fully connected layers [16], [17].
Content-based convolutional neural networks that combine
weighted local illumination estimations have been proposed
in [18]–[20]. In [21], [22], illumination estimation was cast
into a deep learning classification problem. In [23], from an
image, two illuminations were estimated using one convolu-
tional neural network, and then using another convolutional
neural network, a more probable one was chosen. The prob-
lem of dependency of illumination estimation methods on the
camera sensor was tackled in [24], where two convolutional
networks were used for sensor space mapping and illumina-
tion estimation, respectively. Other learning-based methods
use Bayesian learning [25], color moments [26], gamut map-
ping [27]–[29], spatial localizations [30], [31], visual infor-
mation of high level [32], illumination space restrictions [4],
[33]–[35], gray pixel detection [36], regression trees with
simple color features [37], and others.

B. CHROMATIC ADAPTATION
The second step in computational color constancy is chro-
matic adaptation, which is used to change the color cast in
images due to the illumination color. It was shown that using
a diagonal matrix can be sufficient for a successful chro-
matic adaptation [38]. Namely, following this simplification,
which is also known as the von Kries model [39], camera
sensor responses are considered independent. Then, for an
image pixel p =

(
pR pG pB

)T , a new color corrected pixel
p̂ =

(
p̂R p̂G p̂B

)T can be computed as

p̂ = Cp, (3)

whereC denotes the correction matrix. In general, the correc-
tion matrix C can be computed as

C =

eR/eR 0 0
0 eG/eG 0
0 0 eB/eB

 , (4)

where e =
(
eR eG eB

)T denotes the illumination vector that
should be removed from an image, and e =

(
eR eG eB

)T
denotes the vector of the desired illumination. In compu-
tational color constancy, the input image should be pro-
cessed so that it appears as it was captured while illuminated
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with a white light source, i.e., the light source for which
eR = eG = eB. Therefore, e =

(
1 1 1

)T is used.

III. PROPOSED METHOD
The proposed method estimates the illumination vector from
a raw input image in multiple iterations. In each iteration,
a restricted intermediate illumination vector is computed
from the input image. The estimated vector is then used for
chromatic adaptation of the input image according to (3).
In the next iteration, the corrected image is used as input.
In the end, intermediate illumination vectors estimated in the
iterations are element-wise multiplied to produce the final
illumination vector that corresponds to the scene illumination
captured in the original raw input image. The pseudocode
of the proposed illumination estimation method is given in
Algorithm 1.

Algorithm 1 Iterative Illumination Estimation
Input: image I, convolutional neural network CNN , iter-

ation number N
Output: illumination vector e

1: e←
(
eR eG eB

)
←
(
1 1 1

)
2: for k ← 1 to N do
3: e(k)← CNN .estimate(I)
4: e← e ◦ e(k)

5: C← diag(1/e(k)R , 1/e
(k)
G , 1/e

(k)
B ) F Eq. (4)

6: Ix,y← CIx,y ∀x, y F Eq. (3)
7: I← 1

maxx,y I · I
8: end for
9: e← 1

eR+eG+eB
· e

In each iteration, an intermediate illumination vector is
estimated using the convolutional neural network. Network
parameters are the same in each iteration. Convolutional
blocks of the VGG16 [40] network architecture were used
as a feature extractor,1 on top of which one additional con-
volutional layer was placed. This layer has three filters with
a kernel of size 1 × 1. Each filter corresponds to one of
three color channels in the RGB image: red, green, and blue.
Output activation was a sigmoid function. Global average
pooling, which calculates the average across feature maps,
was used to accumulate feature maps computed by the last
convolutional layer, thus producing one value for each color
channel. Global average pooling yields the intermediate illu-
mination vector. On top of this, chromatic adaptation was
implemented, which uses the current network input and illu-
mination estimate to compute the network input in the next
iteration.

1It was experimentally determined to use the VGG16 network as a feature
extractor. The architecture of SqueezeNet [41] convolutional neural network
was also considered, which matches the accuracy of AlexNet [42] architec-
ture but with fewer weights. However, the VGG16 network outperformed
such simpler architectures.

A. DATA NORMALIZATION
The last convolutional layer in the proposed network archi-
tecture uses a sigmoid activation function that ensures that
intermediate illumination estimates are all in the first octant
in three-dimensional illumination solution space. However,
the codomain of a sigmoid function is in the range from zero
to one. When such values are used for chromatic adapta-
tion, due to the division, the values in the corrected image
may span in a different range than original image values.
Therefore, in each iteration, the input image is normalized by
dividing every image value by the image maximum. More-
over, input normalization was shown beneficial for efficient
backpropagation [43].

Estimated intermediate illumination vectors in each itera-
tion were not normalized using the standard normalization in
computational color constancy research, i.e., the division of
illumination vector with its sum. The reasoning behind this
is that the proposed method combines illumination estima-
tion, chromatic adaptation, and the abovementioned image
normalization. Namely, if chromatic adaptation is performed
with normalized illumination vector and the resulting image
is then normalized as well, the factor which would be used
to normalize the illumination would be canceled out. There-
fore, normalizing intermediate illumination vectors would
not have any effect.

B. NETWORK TRAINING
For the training of the proposed illumination estimation net-
work architecture, a custom loss function was used. It is based
on the cosine of the angle2 between two vectors and consists
of two parts. The first part of the custom loss function is
dedicated to computing the error between ground-truth illu-
minations and the end-result of the network. The second part
is used to control the behavior of intermediate illumination
estimates in each iteration by forcing them to be close to
the white light. This is achieved by minimizing the angle
between intermediate illumination estimates and the vector of
the white light. However, the extent of bounding to the white
light is not the same in each iteration. With each subsequent
iteration, intermediate illuminations have to be closer to white
light. That is achieved by assigning the weight to the loss
value in each iteration as

wk =
2k−1∑N−1
j=0 2j

, (5)

where k ∈ {1, . . . ,N } denotes the current iteration, and N
denotes the number of iterations.

2The most direct measure of error in illumination estimation is the angle
between the ground-truth illumination value and the estimated illumination
value. Taking into account that both the ground-truth and the estimation
are vectors, the angle between them, once they are both normalized to
unit length, is computed as the inverse cosine (cos−1) of their dot product.
According to [44], using cos−1makes the derivative of the loss functionmore
complex and infinite when the absolute value of the dot product is equal to
one, and therefore, using 1− cos θ as loss function is more appropriate.
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FIGURE 2. The illustration of the forward pass of the proposed method for three iterations. Arrows are enumerated in the order of execution, starting
from 1. Different line styles denote different iterations: − − − denotes the first iteration steps, · · · denotes the second iteration steps, and − · − denotes
the third iteration steps. The final estimation in step 11 is computed in parallel once the last iteration ends.

In both parts of the loss function, for a mini-batch of M
input samples, the loss L was calculated as

L(E, Ê) =
1
M

M∑
m=1

(
1−

E(m)
· Ê(m)

‖E(m)‖2‖Ê(m)‖2

)
, (6)

where E and Ê denote batches of ground-truth and estimated
illumination vectors, respectively, mth ground-truth and esti-
mated illumination vectors in the mini-batch are denoted as
E(m) and Ê(m), respectively, ’·’ is the vector dot product, and
‖.‖2 is vector L2 norm.

The total loss for a mini-batch of images is the sum of the
end-result loss and weighted intermediate estimation losses
as follows

L(E, Ê)+
N∑
k=1

wkL(U, Êk ), (7)

where U and Êk denote batches of white illumination vec-
tors and illumination vectors estimated in k th iteration,
respectively.

The forward pass in the proposed approach follows the
steps in Algorithm 1. It is crucial to emphasize that the for-
ward pass consists of multiple iterations and that the weights
of the network are shared across iterations, i.e., the same set
of network weights is used in each iteration in the forward
pass. This method of the forward pass can be thought of
as recurrent since the network is gradually computing the
solution from multiple variations of the input image while
keeping the set of weights unchanged. Each iteration results
in an image with a slight modification of colors obtained
by performing the chromatic adaptation of the input in that
iteration with illumination estimate, which is also computed
in that iteration. The modified image is the input for the
succeeding iteration. An illustration of the flow of the pro-
posed method for three iterations is shown in Fig. 2. The only

form of supervision during network training is imposed with
the loss function, and, in each iteration, in the forward
pass, the network estimates intermediate illuminations, which
result in a more accurate final estimate.

With the complex form of the forward pass, the backward
pass in the proposed approach is complex as well. This is
because the final illumination estimate in the forward pass is
the product of intermediate estimates, the loss function penal-
izes each intermediate estimate, and network weights are
shared across iterations. Therefore, the gradients propagating
through a network layer consist of the gradients induced
by the error of the final estimate and by the error of each
intermediate estimate with respect to the white light.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
Cube+ dataset [45] was used to train and test the proposed
illumination estimation network and the iterative procedure.
It is a dataset containing 1707 images labeled for global
illumination estimation. It consists of images of outdoor
scenes in day and night and images of indoor scenes with
artificial illuminations. Raw images in the Cube+ dataset are
2601 pixels wide and 1732 pixels high. For the reduction of
the computational cost and to utilize as many resources as
possible, all images have been resized to the size of 224×224
pixels. Additionally, by resizing the images to the specified
shape, the input shape of the pre-trained VGG16 network was
matched. Apart from image resizing, standard pre-processing
steps for the Cube+ dataset were applied. Pre-processing
steps include calibration object masking, black level subtrac-
tion, and overexposed pixel removal.

The angular error was used to evaluate the network accu-
racy. It is computed as the angle between the ground-truth
illumination vector and the estimated illumination vector as
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follows

A(e, ê) = cos−1
(

e · ê
‖e‖2‖ê‖2

)
(8)

For comparison with existing methods, a standard evalua-
tion procedure for the evaluation of illumination estimation
methods was followed. Mean, median, trimean, best 25%,
worst 25%, and average [30] error statistics were computed
on the test set. However, the focus of this paper is on reduc-
ing maximum estimation errors which can occur in cases
of images with highly colored illuminations. By forcing the
intermediate illumination estimates to be as close to the white
light as possible, the reduction of maximal errors is expected.
Therefore, the worst cases were additionally explored. Since
other illumination estimation methods do not have maximal
estimation errors reported, comparison with them could only
be conducted by using the worst 25% statistic.

The following convolutional neural network parameters
were used: learning rate 1 × 10−4, number of epochs 200,
min-batch size 8. The feature extraction part that corresponds
to the VGG16 network was initialized with weights from the
Keras Applications module [46] which were pre-trained on
the ImageNet [47] dataset. The newly added convolutional
layer was initialized by using the Xavier initialization [48].

B. DETERMINING THE NUMBER OF ITERATIONS
The optimal number of iterations for the proposed method
was experimentally determined. Cube+ dataset was used for
this purpose. It was split into three parts: train, test, and
validation. The train part of the dataset was used to train
the proposed network architecture for a different number of
iterations. In each experiment, training parameters were the
same, as described in subsection IV-A. The optimal number
of iterations was obtained by evaluating the trainedmodels on
the validation part of the dataset and looking for the one with
the lowest median angular error. Once determined, the model
with the optimal number of iterations was evaluated on the
test part of the dataset, and these results are reported in
subsection IV-C.

An important role in determining the optimal number of
iterations is the model complexity, which increases in accor-
dance with the number of iterations. The higher the number
of iterations is, the more computational memory is needed.
Since the proposed method was trained and tested by using
the GPU, the size of the GPU memory was a limiting factor
for the conducted experiments.

Taking into account method accuracy and GPU memory
limits, models with the number of iterations in the range
from one to nine were considered, and, as the optimal one,
the model with seven iterations was chosen. Therefore in
the proposed method and experimental results the number of
iterations and, thus, the number of intermediate illumination
estimations is set to seven. For comparison, the model perfor-
mances for a different number of iterations on the test part of
the dataset are shown in Fig. 3.

FIGURE 3. Performance of the proposed method for a different number
of iterations with respect to the median and mean error statistics.

The proposed multistage approach aimed to achieve
the asymptotic convergence of the illumination correction
towards no correction. In other words, the preliminary limit-
ing factor was only the amount of the available GPUmemory.
However, from the experiments, it can be seen that such con-
vergencewas not achieved since bothmean andmedian errors
start to increase after seven iterations. There are several pos-
sible factors for such behavior, with the main one being the
imperfection of the simple chromatic adaptationmodel. Other
possible factors include floating-point arithmetic round-
ing and neural network capacity. Therefore, the proposed
search for determining the optimal number of iterations was
conducted.

C. METHOD PERFORMANCE
1) COMPARISON WITH EXISTING ILLUMINATION
ESTIMATION METHODS
In Table 1, the illumination estimation methods’ accuracy on
the Cube+ dataset is shown. For evaluation and comparison
of the proposed method, final network estimation, i.e., the
product of intermediate illumination estimates is used. It can
be seen that the proposed method outperforms all other meth-
ods on average and in worst-case scenarios. Additionally,
both the proposed method and Color Beaver [4] have com-
parable median and average error statistics that outperform
other methods by a notable margin.

The proposed method was tested on a system with Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz central processing
unit. The average execution time on the test set using only
one core was 2.04 seconds per input image. The proposed
model has 14,716,227 weights which is less compared to
deep learning-based illumination estimations methods eval-
uated on the Cube+ dataset in [19], [20], [22], which all
use VGG16 network structure for feature extraction, but have
more complex additional layer structures, such as attention
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FIGURE 4. Examples of cumulative estimation trajectories with respect to the ground-truth in rb-chromaticity space for the proposed approach with
seven iterations: (a) cumulative estimation trajectories in comparison to all ground-truth chromaticities; (b), (c), and (d) magnified trajectories for
examples 1, 2, and 3 in (a), respectively.

FIGURE 5. Examples of intermediate illumination estimation trajectories with respect to the white light in rb-chromaticity space for the proposed
approach with seven iterations: (a) estimation trajectories in comparison to white light chromaticities; (b), (c), and (d) magnified trajectories for
examples 1, 2, and 3 in (a), respectively. Trajectories correspond to the same examples as in Fig. 4.

TABLE 1. The comparison of angular error statistics of different color
constancy methods on the Cube+ dataset [45] (sorted by Avg., lower is
better).

blocks, or have multiple instances of the same network struc-
ture with different weights.

2) METHOD BEHAVIOR VALIDATION
For the rest of the paper, it is important to define the term
cumulative estimate. A cumulative estimate in iteration k is
the element-wise product of all intermediate estimates up
to and including the iteration k . In other words, cumulative

estimate in the iteration k can be thought of as the final output
of the network if the total number of iterations is equal to k .

The proposed method introduces iterative illumination
estimation which forces intermediate illumination estimates
computed in each iteration to be close to the white light and
when multiplied element-wise altogether to be equal to the
scene illumination. By the construction of the method, it is
expected for intermediate estimates to be closer to the white
light with each iteration. Also, it is expected for cumula-
tive estimates to be closer to the ground-truth as iterations
progress. Neither intermediate estimates nor cumulative esti-
mates should fluctuate in illumination space. Such behavior
can be verified in Fig. 4, and Fig. 5 where few examples of
estimation trajectories for different input images with respect
to the ground-truth and white light are shown. A trajec-
tory represents the path enclosed by either intermediate or
cumulative estimates through iterations. In Fig. 4 cumulative
estimations with respect to the ground-truth are considered,
and in Fig. 5 intermediate estimations with respect to the
white light are considered.

Since the proposed method uses estimates from multiple
versions of an input image to compute the color of scene
illumination, naturally, a question of the benefit of using
more estimations compared to a single estimate arises. There-
fore, the proposed network architecture was also trained for
one iteration only. The same set of parameters was used
as described in subsection IV-A: learning rate 1 × 10−4,
epoch 200, and mini-batch size 8. When only one iteration
is used, chromatic adaptation is not performed, and the first
intermediate estimate is actually the final network estimate.
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TABLE 2. The comparison of angular error statistics of the proposed
method and the baseline (lower is better).

TABLE 3. The comparison of angular error statistics of the proposed
method and the baseline on worst-performing samples for the baseline
on the test set (lower is better).

TABLE 4. The comparison of angular error statistics of the proposed
method and the baseline on worst-performing samples for the proposed
method on the test set (lower is better).

In other words, illumination is estimated from the original
image directly. Consequently, calculating the loss during the
network training consisted only of the first part of the loss
calculation, which is based on the cosine of the angle between
the ground-truth and final illumination estimation. In further
text, this experiment with one iteration will be referred to
as the baseline. In Table 2, the comparison of the angular
error statistics of the baseline with the proposed method is
shown. It can be seen that the proposed method outperforms
the baseline, especially in the case of the mean statistic and
worst-performing samples.

To further validate the benefit of the proposed method,
additional comparisons were made. In Table 3, estimation
error statistics for the proposed method and the baseline
method on worst performing samples for the baseline are
shown. Worst performing samples are samples with estima-
tion angular error higher than the value of the worst 25%
statistic on the whole test set. For the baseline method, that
value is 3.73◦, and 33 samples have a higher error value.
For 90.01% of such samples, the proposed method outper-
forms the baseline. Considering only the samples for which
the proposed method is more accurate, the mean absolute
error difference between estimates of the proposed method
and estimates of the baseline is 2.43◦, and when only the
samples for which the baseline is more accurate are con-
sidered the difference is 0.73◦. The same experiment was
repeated with a different set of worst-performing samples.
In Table 4, estimation error statistics for the proposed method
and the baseline method on worst performing samples for
the proposed method are shown. Worst performing samples
were sampled using the same criterion as in the previous

TABLE 5. The comparison of angular error statistics of the proposed
method and the baseline on the worst-performing samples for both the
proposed method and the baseline on the test set (lower is better).

FIGURE 6. The distribution of highly colored ground-truth illuminations
and slightly colored ground-truth illuminations in the test set.

example. This time the threshold value was 3.20◦ since that
is the value of the worst 25% statistic on the whole test
set for the proposed method. Even though these samples
were the ones for which the proposed method had the low-
est accuracy, for 45.71% of samples the proposed method
outperformed the baseline. The mean absolute error dif-
ference between proposed method estimates and baseline
estimates when considering only the samples for which the
proposed method was more accurate was 1.45◦, and 2.04◦

when considering only the samples for which the baseline
was more accurate. Finally, estimation error statistics for the
proposed method and the baseline method on the intersection
of worst-performing samples for both the proposed method
and the baseline are given in Table 5. It can be seen that the
proposed method outperforms the baseline by a significant
margin.

Further method validation includes the comparison of
method performance on images in two extrema. One extreme
is images of scenes in artificial illuminations where scene
illumination significantly differs from white illumination (in
further text highly colored images). The second extreme
contains images in daylight where the illumination was near
white, i.e., illumination did not have a significant effect on
image colors (in further text slightly colored images). To sam-
ple highly and slightly colored images, firstly, the angular
distances between the ground-truth illuminations in the test
set and a white illumination were computed according to (8).
Then, highly colored images were sampled by taking images
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FIGURE 7. Box plot of angular errors of the proposed method and the
baseline on highly colored images and slightly colored images.

FIGURE 8. Mean angular error between cumulative estimates in each
iteration and ground-truth illuminations for highly colored images and
slightly colored images.

with corresponding angular distance within the 5% highest
values, and slightly colored images were sampled by taking
images with corresponding angular distance within the 5%
lowest values. In Fig. 6, rb-chromaticities of ground-truth
illuminations separated based the classification of highly and
slightly colored images are shown.

In Fig. 7, the box plot of angular errors for the pro-
posed method and the baseline on highly colored images and
slightly colored images is given. For both groups of images,
the proposed method outperforms the baseline with median
angular errors 0.88◦ and 1.78◦ for highly colored images and
slightly colored images, respectively. Median angular errors
for the baseline were 1.15◦ for highly colored images and
2.01◦ for slightly colored images.

Since the proposed method reduces maximal estimation
errors by forcing the intermediate illumination estimations to

FIGURE 9. Mean angular error between intermediate estimates in each
iteration and a white light illumination for highly colored images and
slightly colored images.

be close to the white light, it is expected that the convergence
to the ground-truth illumination is slower on highly colored
images than on slightly colored images. Such behavior is
shown in Fig. 8 and Fig. 9. In Fig. 8, it can be seen that
for slightly colored images cumulative illumination estimates
approach close to ground-truth values much faster than for
highly colored images and, what is more important, after the
convergence the angular error does not increase in remaining
iterations. In Fig. 9, the same trend can be observed with
respect to the convergence of intermediate illumination esti-
mates on highly colored images and slightly colored images
towards the white light.

V. CONCLUSION
Illumination estimation is an ill-posed problem and as such,
it can not be explicitly solved. Moreover, in computational
color constancy, it is usually followed by a chromatic adap-
tation that uses an illumination estimation expressed as a
diagonal matrix which assumes independence of image color
channels. Both processes are simple and may fail in some
cases but when combined together in a controlled manner
they could be used for iterative illumination estimation. In this
paper, such an illumination estimation method is proposed.
It combines illumination estimation and chromatic adaptation
in a sequence. The convolutional neural network is used to
compute multiple intermediate illumination estimates from
an input image, which, when multiplied, correspond to the
real scene illumination. By forcing the intermediate illumi-
nation estimates to be close to the white light, the proposed
method avoids the estimation of highly inaccurate illumi-
nations. The experimental results successfully validate the
proposed method and its accuracy, especially in the case
of worst-performing samples. Future research will include
looking for an early stopping mechanism that should stop the
method from entering further iterations if it already converged
to the best solution it can calculate.
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ABSTRACT Computational color constancy has the important task of reducing the influence of the scene
illumination on the object colors. As such, it is an essential part of the image processing pipelines of most
digital cameras. One of the important parts of the computational color constancy is illumination estimation,
i.e. estimating the illumination color. When an illumination estimation method is proposed, its accuracy
is usually reported by providing the values of error metrics obtained on the images of publicly available
datasets. However, over time it has been shown that many of these datasets have problems such as too few
images, inappropriate image quality, lack of scene diversity, absence of version tracking, violation of various
assumptions, GDPR regulation violation, lack of additional shooting procedure info, etc. In this paper a
new illumination estimation dataset is proposed that aims to alleviate many of the mentioned problems and
to help the illumination estimation research. It consists of 4890 images with known illumination colors
as well as with additional semantic data that can further make the learning process more accurate. Due
to the usage of the SpyderCube color target, for every image there are two ground-truth illumination
records covering different directions. Because of that, the dataset can be used for training and testing of
methods that perform single or two-illuminant estimation. This makes it superior to many similar existing
datasets. The datasets, it’s smaller version SimpleCube++, and the accompanying code are available
at https://github.com/Visillect/CubePlusPlus/.

INDEX TERMS Color constancy, dataset, illumination estimation, white balancing, multiple illumination,
mixed illumination.

I. INTRODUCTION
The human visual system is able, in some conditions, to rec-
ognize colors despite the influence of the illumination on their
appearance through the ability known as color constancy [1].
It is not yet fully understood how this ability functions and
therefore it is not possible to directly model it. Nevertheless,
various computational color constancy methods are used in
the pipelines of digital cameras. They are usually designed to
first identify the chromaticity of the light source and then to
remove its influence on the scene. The last one is described
in details here [2]–[5]. For both of these tasks, the com-
monly used image formation model that also includes the

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Sharif .

Lambertian assumption is usually given as

fc(x) =
∫
ω

I (λ, x)R(λ, x)ρc(λ)dλ (1)

where x is a pixel in the image f, c ∈ {R,G,B} is the color
channel, λ is a wavelength in the visible light spectrum ω,
I (λ, x) is the spectral distribution of the light source, R(λ, x)
is the surface reflectance, and ρc(λ) is the camera sensitivity
for the color channel c. It is often assumed that the scene illu-
mination is uniform. This means that the spatial information
is not required in the illumination estimation equations and
so the color of the observed light source e is

e =

eReG
eB

 = ∫
ω

I (λ)ρ(λ)dλ. (2)
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For a somewhat satisfying color correction, it is already
enough to know the direction of e [6], which means that e can
be described by chromaticities instead of colors. For example,
r , g, and b chromaticity components are calculated as R, G,
and B color components divided by their sum so that r + g+
b = 1. Thus, knowing only two of them is enough.

Since there are more unknowns than equations, illumi-
nation estimation is an ill-posed problem and additional
assumptions have to be made in order to tackle it. Because of
that, numerous illumination estimation methods with various
assumptions have been proposed and they are often divided
into two groups: the low-level statistics-based methods and
the learning-based methods.

The low level statistics-based methods include
White-Patch [7], [8] and its improvements [9]–[11],
Gray-World [12], Shades-of-Gray [13], 1st and 2nd order
Gray-Edge [14], Weighted Gray-Edge [15], using bright
pixels [16], gray pixels [17] or bright and dark colors [18],
exploiting illumination perception [19] and expectation [20],
etc. Interesting to note that�gray balancing� occurs also in
scope of printer calibration [21].

Learning-based methods include neural networks [22],
high-level visual information [23], natural image statis-
tics [24], Bayesian learning [25], [26], spatio-spectral learn-
ing [27], methods restricting the illumination solution
space [28]–[30], color moments [31], regression trees with
simple features from color distribution statistics [32], spa-
tial localizations [33], [34], convolutional neural networks
[35]–[38] and genetic algorithms [39], modelling color con-
stancy by using the overlapping asymmetric Gaussian ker-
nels with surround pixel contrast based sizes [40], finding
paths for the longest dichromatic line produced by specular
pixels [41], detecting gray pixels with specific illuminant-
invariant measures in logarithmic space [42], channel-wise
pooling the responses of double-opponency cells in LMS
color space [43], sensor-independent learning [44], [45], and
numerous others. Learning-based methods have much higher
accuracy than statistics-based ones, but they are usually
slower [46].

While the number of the proposed illumination estimation
methods is ever-growing, there are not too many illumination
estimation datasets and even the existing ones have various
problems. These include too few images, inappropriate image
quality, lack of scene diversity, multiple poorly synchronized
versions of the same dataset, violation of various assump-
tions, etc. A high-quality illumination estimation dataset
should be:
• Diverse. The more content and illumination cases are
covered, the higher is the testing quality.

• Large. It is important that the datasets are not only
diverse but that they also contain many images for each
particular case. This makes it possible to notice quality
improvement even for rare cases [47].

• Informative. Dataset should contain as much informa-
tion about each captured image as possible. Precisely
the information available during shooting procedure,

FIGURE 1. Examples of chromatic adaptation based on two captured
ground-truth illumination colors for an image from Cube++, a new large
dataset where each image is accompanied by ground-truth illumination
from several directions and semantic information about the scene
content. This enables the research of single and multiple illumination
scenarios as well as selection of images by various criteria.

meta-information about scene properties, information
about light sources from different angles, etc.

• Updatable. Every illumination estimation dataset usu-
ally contains ground-truth illumination errors. Because
of that, the dataset infrastructure should provide simple
and reliable way for dataset debugging and tracking of
its versions.

• Verifiable. From the previous point, it follows that the
dataset should be available for verification, namely all
provided markup and ground-truth can be collected and,
if necessary, recreated by anyone who just downloads
the source images.

• Accessible. The value of a dataset is decreasing when
the downloading process is too complicated or time-
consuming.

• GDPR compliant. Even a very good dataset can be of
limited use for European researches if it is not compliant
with GDPR, because it may prevent the researchers from
publishing some of their results without breaking the
regulations.

In this paper a new illumination estimation dataset named
Cube++ with all of these properties is described. It contains
4890 images (see Fig. 2) carefully calibrated so as to get
highly accurate ground-truth illumination. The images were
collected in numerous countries, places, and illumination
conditions. The countries in question include Austria, Croa-
tia, Czechia, Georgia, Germany, Romania, Russia, Slovenia,
Turkey, and Ukraine. In order to enable easy selection of
images with specific properties, each image is accompanied
by additional semantic information such as whether there are
shadows in the image, whether it is an indoor or an outdoor
image, whether the scene contains objects with known col-
oration, etc. An example of an image from Cube++ is shown
in Fig. 1. The dataset is appropriate for different light source
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FIGURE 2. Example images from the newly created Cube++ dataset.

estimation use cases such as: single light source estimation,
two light sources estimation, or estimation of at least one
significant light source in the scene. Finally, some of the
collected images were not included in the dataset and they are
kept aside to be released later as part of a future illumination
estimation benchmark somewhat similar to [48].

The paper is structured as follows: Section II describes the
most important existing illumination estimation datasets and
the problems associated with them, Section III gives the moti-
vation for creating a new dataset, Section IV describes the
methodology used to collect the dataset, Section V describes
the newly proposed Cube++ dataset, Section VI presents a
discussion about the scientific usefulness of contemporary
datasets’ form and about a potential improvement, and finally,
Section VII concludes the paper.

II. INFLUENTIAL EXISTING DATASETS
One of the first illumination estimation datasets with a large
number of images was the GreyBall dataset [49]. A gray ball
was placed in the scene of each of the 11346 images to extract
the ground-truth illumination. The main problem with this
dataset is that the images are non-linearly processed and as
such, they do not comply with the image formation model
given in Eq. (1). Furthermore, the images in the GreyBall
dataset are relatively small with a size of 240× 360. Finally,
the images were extracted from a video that was captured
at several locations, which means that many of them have
highly correlated illuminations and content. To cope with this
problem of high redundancy, it has been proposed to use only
a subset of 1135 images from GreyBall [50], [51].

In 2008, the ColorChecker dataset [25] with its 568 images
was published and the ground-truth illumination was
extracted by means of putting a color checker instead of a
gray ball in the image scenes. This dataset was created by
two different cameras and its images, which are individually
bigger than the ones in the GreyBall dataset, also underwent
non-linear processing, which means that similarly as with the
GreyBall dataset they are given as 8-bit per-channel JPEG
images.

In 2011, the reprocessed version of the ColorChecker
dataset that contains only linearly processed images was pub-
lished [52]. However, as observed already in 2013 [53], it was
not mentioned clearly enough that the black level was sup-
posed to be subtracted before using the images. Despite this
observation, a lot of papers continued publishing results of
methods obtained on the technically unprepared images with
the black level included. This effectively led to the circulation
of at least three versions of the ColorChecker datasets and the
problem was formally addressed in [54] by also bringing into
question the alleged advances in the illumination estimation
research. In 2018, there was an attempt to rehabilitate the
ColorChecker dataset by publishing the recalculated accuracy
of various methods by using the allegedly correct ground-
truth [55]. However, this attempt was marred by serious
technical faults and wrong calculations that included com-
paring the estimations obtained on older versions to the new
ground-truth, which only introduced further confusion [56].
This effectively opens the possibility of more future ver-
sions of the results on the ColorChecker dataset. In short,
using the ColorChecker dataset can be very confusing and
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problematic due to many circulating versions of the alleged
results and consequent inappropriate comparisons, and there-
fore, to avoid problems, it should probably be omitted as the
primary dataset choice.

In 2014, nine new NUS datasets with each of them taken
by one of nine different cameras were published [18]. The
images were only linearly processed, the black level sub-
traction was performed from the start in the initial paper,
and the number of images was sufficiently high. The cal-
ibration object used to extract the ground-truth illumina-
tion was again a color checker. However, the problems with
the NUS datasets include violations of uniform illumination
assumption when having only a single ground-truth illumi-
nation, a relatively small number of images per camera with
268 being the maximum, having the same scenes repeated in
images, and not being GDPR compliant as well as neither of
the previous datasets.

In 2017, the Cube dataset [44] was published with
1365 images taken with a single camera and with a Spy-
derCube 1 calibration tool used for calibration. Due to its
geometry that is superior to the one of a color checker,
SpyderCube allows for easier detection of the presence of two
illuminations and their extraction. This was extensively used
to carefully calibrate each of the images of the Cube dataset
and to obtain an accurate ground-truth. Special care was
also taken to avoid the violation of the uniform illumination
assumption as much as possible. The main drawback of the
Cube dataset is that it contains only outdoor images, which
also negatively affects the ground-truth illumination distri-
bution. This drawback was alleviated in the Cube dataset’s
extension named the Cube+ dataset [44]. It contains 342
additional indoor images for a total of 1707 images and a
wider span of ground-truth illumination distribution similar
to the one in other datasets.

A relatively recent dataset is the INTEL-TAU dataset [57],
a successor to the INTEL-TUT dataset [58], with
7022 images taken by three different cameras. While the
number of images is sufficiently high, its main drawback is
the fact that most of its images do not contain a calibration
object in their scenes. Namely, it was removed after the
initial calibration. Although this removes the requirement for
masking it out, it also makes it impossible to reliably check
and verify the ground-truth calibration and it is known that
such errors occur [59]. Additionally, since the original raw
image files are not provided, the EXIF data with the meta-
information that may be important to some methods is also
not available. The INTEL-TAU dataset is also completely
GDPR compliant. Instead of avoiding problematic scenes,
GDPR compliance was achieved by having ’’privacymasking
applied on all sensitive information’’ such as ’’recognizable
faces, license plates, and other privacy-sensitive informa-
tion’’. The masking was performed so that ’’color component
values inside the privacy masking area were averaged’’.

1https://www.datacolor.com/photography-design/product-
overview/spydercube/

However, this effectively changes the original content and it
may be undesirable in some cases.

A relatively recent dataset is the one for temporal color
constancy [60], which contains 600 sequences of varying
length between 3 and 17 frames. The dataset has not yet
been made publicly available at the moment of writing this
paper.

It is also important to mention that in contrast to all the
described datasets that contain real-world images taken in
mostly uncontrolled conditions, there are a lot of datasets
made in fully controlled or even laboratory conditions, such
as [6], [61]–[66].

The main advantage of the laboratory dataset is that it
allows to research particular problem in fully-controlled con-
ditions, but the variability of such datasets is often too low.

While other illumination estimation benchmark datasets
also exist, it can be argued that the ones mentioned here are
the most influential ones. They also share many problems
with other existing datasets and thus their descriptions also
cover most of the problems of other datasets. Some char-
acteristics of the datasets mentioned here are summarized
in Table 1.

III. MOTIVATION
After laying out the brief descriptions of some of the
best-known illumination estimation benchmark datasets, it is
possible to identify some of their main problems already
recognized by the wider interested research community.
Therefore, the motivation for creating a new illumination
estimation is to try to reduce or entirely eliminate some of
the mentioned problems of the existing datasets.

A. SIMPLE TECHNICAL FAULTS
Probably the most serious and most detrimental problem
is the one connected to the technical shortfalls that can
happen when creating and publishing a dataset. Some of
the main such shortfalls are using non-linearly processed
images and providing confusing information on black level
subtraction.

As for the non-linearly processed images, the solution is to
simply avoid performing non-linear processing and this can
be simply carried out.

In the case of the black level subtraction, with the earlier
datasets, this problem occurred due to a lack of explicit men-
tioning of the black level value in the papers that originally
described these datasets. Additionally, in some cases, even a
script that demonstrates the proper handling of the black level
was either missing or put to a somewhat obscure location.
In the case of the ColorChecker, such problems have led to
multiple circulating versions of the ground-truth data and
experimental results. Therefore, in the case of publishing a
new dataset, such and similar problems motivate to clearly
provide all necessary details on the required data for the
black level subtraction and also to provide an example of how
to do it.
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TABLE 1. Characteristics of different illumination estimation datasets; the Cube++ dataset is described later in Section V.

B. RELIABLE GROUND-TRUTH
One of the probably least detectable technical faults with seri-
ous consequences is erroneous calibration and ground-truth
illumination extraction. Based on the experiencewith existing
datasets, it usually happens that there are multiple illumina-
tions in the scene and the calibration object is under the influ-
ence of only one of them,whichmay not even be the dominant
one. In that case, even if a method estimates the dominant
illumination, it will be penalized because the ground-truth is
based on another illumination. As mentioned earlier, this was
already reported for the ColorChecker dataset.

To make the ground-truth reliable, one should use such a
calibration objects that can detect the presence of multiple
illuminations. Examples of such calibration objects include
a gray ball such as in the GreyBall dataset or a SpyderCube
instance such as in the Cube+ dataset, because they make
it possible to simultaneously observe illuminations coming
from different angles, and these can then be checked for any
significant difference. An example of capturing two signif-
icantly different illuminations with a SpyderCube instance
and showing the difference in how they affect color correc-
tion is given in [44]. If a significant difference is present,
additional steps can be taken to either correctly determine
which of the illuminations is the dominant one or to discard
the image to prevent any future problems, which finally
results in a correctly extracted and reliable ground-truth
illumination.

C. VERIFIABLE GROUND-TRUTH
While the ground-truth should primarily be reliable, it should
also be verifiable in order to add an additional layer of
reliability. The simplest way of making the ground-truth of
a dataset verifiable is to have all the dataset images con-
tain a calibration objects in their scenes. In that way the
ground-truth can easily be extracted by other researchers and
then compared to the originally provided one to look for

potential errors. Additionally, the very visual information can
help identify cases such as e.g. having the calibration object
in a shadow while the majority of the scene is outside of that
shadow.

D. CONTENT VARIETY
A new illumination estimation dataset should have a high
content variety. While this seems rather obvious, it is not
always put into practice to the full extent. For example,
while the GrayBall dataset contains over 11k images, they are
highly correlated and thus effectively not as rich in content
as it may seem at first. In the case of datasets such as the
ColorChecker dataset or the NUS datasets, all images were
taken at the same geographical location and during the same
season. None of the images there were taken e.g. during
winter or at night. Such content choice restriction results in
failure to cover many interesting and challenging environ-
ments that illumination estimation methods encounter in real-
world applications and that should also be included in the
research.

E. ILLUMINATION VARIETY
Having an appropriate ground-truth illumination variety in
an illumination estimation dataset is important for several
reasons. The most important one is to closely cover as
much as possible of the illuminations that are encountered
in the real-world applications because in that way the illu-
mination estimation methods can be properly trained and
tested.

An additional reason to have a sufficient ground-truth
illumination variety is to prevent abuses of some often used
error statistics that are possible if the ground-truth illumi-
nation are too clustered [67]. Such abuses can lead to false
conclusions about the performance of the tested methods and
consequently be detrimental for the research community and
practitioners.
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F. CHECKING FOR MULTIPLE ILLUMINATIONS
The majority of the illumination estimation datasets provide
only a single ground-truth illumination per image. This effec-
tively means that in terms of evaluation these datasets implic-
itly assume an uniform illumination. However, it is know that
in illumination estimation datasets this is generally not the
case [56]. As a matter of fact, any image with shadows has
already effectively at least two illuminations that may differ
significantly and this can also have a significant outcome on
the later color correction step [44]. Additionally, even if there
are no shadows, it is still possible for an image to be under
the influence of multiple illuminations. In that case having
a calibration object that is designed to successfully capture
the illumination from only one direction at a time will fail to
capture all the illuminations in the scene, let alone to detect
their presence. Capturing only a single illumination when
there are more present also leads to a problem during the
evaluation. Namely, if a method correctly estimates one of the
illuminations, but the other one is marked as the ground-truth,
it may be argued that in this case the method is being unfairly
judged. Because of that, an illumination estimation dataset
should preferably use calibration objects that can simultane-
ously capture the illumination color from multiple directions.
This would solve at least two problems. First, it would detect
whether there are multiple illuminations in the first place, and
second, if there really are multiple illuminations in the scene,
then such a calibration object will capture more information
on them. An example of such a calibration object is the
SpyderCube object that has been described earlier.

G. NUMBER OF IMAGES
While some of the previous datasets with non-linearly pro-
cessed images are obviously disadvantageous, some of them
like the GreyBall dataset have the advantage of having thou-
sands of images, which still makes them attractive to many
researchers. Therefore, besides having a technically correct
dataset, it is also important to make it have a sufficiently
large number of images. This can result in both making the
dataset desirable by offering a lot of useful data as well
as simultaneously discouraging researches from using the
inferior older datasets just because of their size. As for how
large exactly a dataset should be, it should contain several
thousands of images to outsize the existing datasets of lower
quality and also to enable new breakthroughs. Finally, having
a dataset with a large number of images is a prerequisite for
achieving the previously mentioned content and illumination
variety.

H. SEMANTIC DATA
In numerous cases, additional semantic information
can be useful for research of specific illumination

2Images are highly correlated. The GreyBall images are taken from
2 hours of video. The TCC images are taken from 600 video sequences.

3The cited version of ground-truth values were published in 2020, the orig-
inal dataset was published in 2008.

4Expected in 2020, the data is not published at the time of writing.

estimation methods. For example, some of the methods may
be interested in being explicitly trained only on indoor or out-
door images. Others may be interested in training images
that contain no shadows whatsoever since they introduce
additional illuminations. More generally, it may be useful to
know whether there is a violation of the uniform illumination
assumption on a given image. In such cases, it can be highly
practical to be able to efficiently filter out images from a
dataset based on some given criteria.

Because of that, a useful addition to a new illumination
estimation benchmark dataset would be semantic informa-
tion for each image. In that way, the research could be
speeded up by not requiring researchers to label the images
from scratch. Additionally, if such semantic information were
given in advance, a lot of potential label mismatches between
the labels created by different researchers could also be
prevented.

I. PRIVACY CONCERNS
With the recent arrival of regulations such as the General Data
Protection Regulation (GDPR), it becomes ever more impor-
tant to respect privacy in publicly available images. This
also means that using images from previous datasets with
e.g. recognizable people or registration plates may nowadays
be potentially seen as problematic. With respect to this, for
the sake of respecting privacy, any new illumination estima-
tion dataset should also take care of avoiding images that
would contain any content that could compromise someones
privacy.

On the other hand, if a public dataset is also supposed
to be useful for development of methods that rely on e.g.
faces [68], [69] or sclera [70], then it should obviously also
contain images with faces. However, in that case it would
be appropriate to obtain the consent for public use from the
persons present in the image scenes. That would enable the
researchers to use and show these images publicly in papers.

J. MULTIPLE INSTANCES OF THE SAME SENSOR CLASS
There can be significant differences between spectral char-
acteristics of different sensors used by various cameras. This
effectively means that a learning-based method that has been
successfully trained on the images created by a camera of one
model will not necessarily perform well on images created
by a camera of another model without some adjustments.
As a result, the problem of inter-camera color constancy has
recently started to gain ever more attention [44], [45], [71].
Since almost every dataset was taken with another camera
sensor, there is no shortage of training and testing images.

On the other hand, it is known and it can be shown that
even for the instances of the same sensor class there are
measurable differences in the spectral characteristics [72].
Hence, to check the significance of the impact of these dif-
ferences on the accuracy of illumination estimation methods,
an interesting feature of an illumination estimation dataset
would be to have images created by several instances of the
same sensor class. In addition to ground-truth illumination,
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such a dataset would also have to provide the sensor instance
labels for each image.

IV. ACQUISITION METHODOLOGY
By identifying the problems with the existing datasets and
describing some desired properties of the future datasets,
the guidelines for creating a new illumination estimation
dataset have been laid out. One of the main goals of this
paper is not just to provide a theoretical framework, but also
to create and propose a dataset by following these guidelines.
The first step in doing so is to describe the used acquisition
methodology.

A. TECHNICAL SETUP
1) COLOR TARGET (SpyderCube) CHARACTERISATION
As the calibration tool in the newly proposed dataset, the Spy-
derCube instances were used. SpyderCube is a color target
for photographers whose main purpose is to help them to
adjust the white balance manually. The general look of the
SpyderCube is given in Fig. 3. A chrome ball is used to
analyze specular highlights, the white on two faces is used
to estimate true highlight value, the gray on two faces rep-
resents the midtone of the image and its color temperature,
and the bottom black face is used to evaluate shadow values
in the scene in relation to the black trap i.e. the hole, which
represents absolute black.

FIGURE 3. SpyderCube general look.

According to the manufacturer company Datacolor,
the gray cube faces are neutral gray with a reflection coef-
ficient of 18%.

Since SpyderCube is a relatively low-cost tool, some
doubts about its declared optical properties could arise.
To validate its properties, two SpyderCube instances, labeled
SC1 and SC2, were compared. Individual faces of these
SpyderCube instances were named G1, G2, and W1, W2,
as shown in Fig. 3.

Reflection spectra of SpyderCube parts were measured
using a Eye-One Pro spectrophotometer by X-Rite in the
high-resolution mode of 3.3 nm with the help of the spotread

FIGURE 4. SC1 and SC2 white parts reflectance spectra.

FIGURE 5. SC1 and SC2 gray parts reflectance spectra.

utility from Argyll CMS.5 For each part, three measurements
were made and the results were averaged. Figures 4 and 5
show the spectral reflection coefficients of the white and gray
parts of the SC1 and SC2, respectively.

These measurements lead to the following observations:

• Gray parts of both SpyderCube instances are not ‘‘ideal’’
gray, i.e. the reflection spectra slightly depend on the
wavelength. The sensitivity of the blue sensor in many
cameras has a maximum at around 450 nm wavelength,
and the reflection coefficients of gray parts G1 and
G2 have a noticeable drop in the blue band.

• Each SpyderCube instance has small differences
between reflection coefficients of its own gray parts
G1 and G2.

• There are rather big differences between the gray parts
reflection coefficients of the two measured SpyderCube
instances.

5http://www.argyllcms.com/
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• White parts of both SpyderCube instances are also not
‘‘ideal’’ white, i.e. the reflection spectra are not horizon-
tal lines.

• Differences of the white parts W1 and W2 reflection
coefficients of the both SpyderCube instances are small.

The idea behind SpyderCube as a calibration tool is that
it does not distort the color of the illumination source, i.e. it
is assumed to be ‘‘color neutral’’. From this point of view,
what is important is the similarity between the shapes of
the curves of reflection coefficients for the two SpyderCube
instances and not the differences between the curves’ val-
ues. From the measurements, it can be concluded that the
curve shapes are indeed very similar. Therefore, the Spyder-
Cube ‘‘color neutrality’’ assumption generally holds with one
exception being the blue region of the spectrum for the white
faces.

The degree of SpyderCube’s color neutrality is one of
the most important factors for accurate ground-truth extrac-
tion. The height of the grey reflection coefficient curve
does not significantly influence the ground-truth extraction.
Compared to other uncertainties, the measured deviations
from color neutrality have only rather a small impact on the
ground-truth.

Nevertheless, tomeasure the amount of this impact in terms
of practical use, several images of two SpyderCube instances
that were simultaneously in the same scene were captured
with a Canon 600D camera under a D50-like illumination.
The average difference between the ground-truth illumina-
tions extracted from the faces of each SpyderCube instance
and measured in terms of the angular reproduction error [73]
was about 0.15◦, which is in terms of color reproduction
insignificant and invisible [74].

Performed measurements effectively demonstrate that
using grey faces of different SpyderCube instances in differ-
ent images has no significant effect on the overall ground-
truth extraction quality. Still, SpyderCube quality should be
studied in details also for all types of complicated artificial
light sources (such as gas discharge lamp, etc.).

2) HANDHELD SETUP
To collect the dataset in natural conditions, the following
equipment shown in Fig. 6 was used:

• Canon 550D camera or Canon 600D,
• SpyderCube calibration tool, and
• special attachment of the cube to the camera.

Special cube fasteners were built that allows the cube to be
positioned so that it appears near the lower right corner of the
image. The fasteners can also be rotated both in horizontal
and vertical planes. The distance of the cube from the camera
can be adjusted using a telescopic monopod and during the
dataset, images capturing it was set to 50 cm. The experience
gained while collecting the dataset images has led to the
conclusion that the custom-built handheld setup is convenient
to use.

FIGURE 6. The general look of the handheld setup with Canon 600D
camera.

FIGURE 7. Examples of images that should be excluded from the dataset:
a) the color target is illuminated by the local lantern from the near shop,
the color is different from the lighting of the most of scene; b) the color
target is illuminated by sources that have almost no effect on the lighting
of the observed scene; c) overexposed color target; d) the overly dark
image.

B. DATA COLLECTION AND FILTRATION
The main thing to pay attention to during the image capturing
was to assure that the used target cube and the majority of the
observed scene are under the same illumination or illumina-
tions. Examples of images with scenes where this require-
ment was not met are shown in Fig. 7.

Another significant factor that prevents accurate ground-
truth extraction is the occurrence of glare on the color
target. Images with this issue are usually characterized by
clipping of the values in one of the color channels on the
gray or white faces of the color target. The overexposure can
be avoided in at least two ways: either by using manual cam-
era settings or by specifying relative exposure compensation.
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Dimming by one step usually turned out to be enough during
the image collecting. Manual camera settings and one step
lighting can also help to properly deal with the overly dark
images. Examples of an overexposed and a too dark image
are shown in Fig. 7c and Fig. 7d, respectively.

It should again be mentioned that there may often be sev-
eral different illumination sources in one scene, commonly
two, e.g., sun and sky or sky and streetlight. In this case,
especially if the areas of the scene parts illuminated by differ-
ent light sources are comparable, it is preferable to place the
cube so that both illumination colors are captured by different
cube faces. By doing so, it is later possible to simultaneously
extract the illumination color of both influential scene light
sources.

One of the main problems during image acquisition was to
find the right position for the photographer to avoid differ-
ences between illuminations influencing the target cube and
most of the observed scene. A lot of interesting scenes are
available only in urban areas where there are a lot of different
artificial illuminations. However, scenes in urban areas are
usually full of different personal data like faces or plate
numbers, which means that there are some difficulties related
to GDPR. To make Cube++ GDPR compliant, the images
with humans in the scene were filtered out and removed.
This was done both automatically by using YOLOv3 [75] and
manually by additionally checking each image.

FIGURE 8. Examples of images with partial illumination estimation: a)
and b) some scene parts are illuminated by the light source not captured
by the cube; c) illumination significantly varies in the scene due to the
interreflections d) all of the scene is in the shadow, while one of the cube
faces is illuminated by the sun.

During the final quality filtration, all images were divided
into three categories: a) images with full light source esti-
mation, where the cube was illuminated by all the main light
sources in the scene, b) incorrect images where the cube does
not allow to determine the illumination rating consistent with
the scene, and c) the rest i.e. images with partial light source
estimation, see Fig. 8.

As a result, about 400 images were marked as incorrect and
removed from the dataset, about 524 images were marked as
difficult images with a partial light source estimation, and the
rest of the images were marked as good.

Additionally, the fiber on the top of the cube may fall on
a cube or remain on the image after cropping out the color
target. To prevent it, the fibers were glued to the cube or just
cut off on most images. All of the images are captured hori-
zontally without the use of a camera flash.

C. GROUND-TRUTH EXTRACTION
The ground-truth extraction was performed on raw images.
First, a simple debayering has been performed by transform-
ing each RGGB Bayer pattern square into a single pixel. The
red and blue channels of the pixel color were obtained directly
from the R and B components of the pattern, while the green
was obtained by averaging the two G values. No interpolation
was performed and therefore the number of image rows and
columns was halved. Next, the oversaturated pixels were
masked out, and then the black level of 211 was subtracted
from all pixels. Finally, the ground-truth illumination values
were extracted by calculating the average chromaticity of the
manually annotated areas of the SpyderCube triangles.

Four chromaticities were calculated for every image. They
correspond to white and gray triangles on the left and right
cube faces. Note that on the brightly illuminated cubes,
the white triangles may have oversaturated areas that cannot
be properly used. On the contrary, the gray triangles chro-
maticities on the darker images may not be stable due to the
black level noise. It is important to note no image contains
saturated grey edges, while some of the images contain satu-
rated white edges and in such cases, a corresponding mark is
provided.

The illuminations for a triangle were calculated as the
mean illumination of its area after 50% downscale to the
barycenter. The value of 50% is selected as a simple empirical
trade-off. Namely, a full-size triangle may contain non-
triangle pixels because of unfocused cube or markup inac-
curacies, while a tiny triangle would contain too few pixels
and would be affected by noise.

D. SEMANTIC MARKUP
When developing and testing an algorithm for illumination
estimation in a scene, it is useful to be able to analyze the
structure of errors. The average error over the entire dataset
will often not help to reveal whether e.g. the accuracy of
the method for indoor images is much less accurate than
for outdoor images. To enable performing such and similar
checks faster and easier, additional information about the
scene and shooting conditions were added to each image
in the dataset. In addition to the information available dur-
ing the shooting, this also includes the following manual
annotation:

• Time of day (field daytime, with values day/night/
unknown).
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• The presence of objects with known coloration
(has_known_objects field with values true/false).

• Scene illumination type (illumination field with values
artificial/natural/unknown). It is worth noting that there
are no flash photos in the dataset.

• Image sharpness (is_sharp field with values true/false).
• The presence of light sources in the scene (the
light_objects multiple choice field with the values
lamp/sky/sun/none).

• The place where the image was captured (the place field
with the values outdoor/indoor/unknown).

• Scene richness (field richness with values rich/simple).
• The presence of shadows in the scene (shadows field
with values yes/no/unknown)

• The cube illumination by all the main light sources in
the scene (estimation field with values full/partial)

Finally, it is important to note that none of the fields had a
preset default value. In that way, the value of every field had
to be explicitly set by an annotating person. Namely, if some
default field values were to be set in advance, it could increase
the annotation bias.

V. THE PROPOSED DATASET
Having in mind all of the concerns and motivation from
the previous section, a new dataset named Cube++ is pro-
posed that continues on the previous Cube+ dataset. The
dataset download link, the accompanying code, and the
technical file description are available at https://github.com/
Visillect/CubePlusPlus/.

The Cube++ dataset contains 4890 images. It includes
only 1359 of the 1707 images from the Cube+ dataset
and only 330 of the 363 images from the 1st Illumination
Estimation Challenge (IEC#1) test set [76]. Other images
were excluded because they may go against respecting pri-
vacy by containing personal data such as faces and license
plates or theymay be problematic for ground-truth extraction.
The remaining 3201 images are brand new.

Cube++ has diverse scene illumination cases as demon-
strated by Fig 9. There it can be seen that the chromaticity
coverage area is wider than in e.g. Cube+. In other words,
the illumination variability has been significantly improved.

The ground-truth illumination distribution for Cube++
and its parts can also be seen from another point of view by
taking a look at Fig. 10.

This figure shows that Cube+, which includes Cube, and
Cube++ have somewhat similar distributions, which in turn
means that a lot of images were taken under outdoor daylight
illumination.

One of the important features of the proposed dataset is the
fact that it contains two ground-truth illumination records per
image, one for each side of the SpyderCube instance. Even
though in many of the images there is effectively only one
dominant illumination in the scene, Fig. 11 helps to better
understand the relation between the two recorded illumina-
tions over the dataset images. Currently, the average angular

FIGURE 9. Scatter plot of ground truth illumination chromaticities
captured by the SpyderCube gray faces.

FIGURE 10. Stacked histogram of the red chromaticity values
r = R/(R + G + B) of Cube++ ground-truth illuminations.

FIGURE 11. Histogram of angular differences between SpyderCube’s left
and right gray faces for Cube++.

error of state-of-the-art illumination estimation methods is
arguably somewhere between 1◦ and 2◦. With that in mind,
all images with larger angular difference between their illu-
mination records can be treated as two-illumination cases.
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TABLE 2. Feature statistics for various Cube++ subsets.

Another important feature of the proposed dataset that has
to be stressed additionally is that it contains semantic data
for each image. All semantic information features are shown
in Table 2. Different features provided in the semantic data
can be helpful for algorithm tuning and profiling as they give
potentially useful information about each image individually.

A. TECHNICAL DESCRIPTION
The dataset consists of several parts. First, there are the raw
images with only simple linear debayering performed that
are stored in 16-bit PNG format. Next, there are CSV files
with ground-truth illumination values and CSV files with
additional related properties. Furthermore, there are JPEG
images generated by using the dcraw open-source tool.7

Finally, there are also additional files for storing auxiliary
information. All these files are automatically built from
sources included in the dataset by running a script that is also

7https://www.dechifro.org/dcraw/

provided. The sources contain the original CR2 images from
the camera and JSON files with the manual annotation data.

The original camera JPEG images are not included as their
generation depends on cameras’ settings, which means that
they cannot be recreated simply or even accurately [77].

1) PNG AND JPEG IMAGES
The main 16-bit PNG images are generated from the original
CR2 files in three steps. First, the CR2 files are decoded by
using the dcraw tool with the options -D -4 -T. This gen-
erates a 16-bit 1-channel TIFF image. Second, the [10, 10+
5184] × [4, 4 + 3456] rectangle was cropped, to have the
same area as the default camera JPEG, which comes with
certain advantages. Finally, a naive debayering is applied so
that every R, G1,

G2, B pattern is converted to a pixel of color(
R, G1+G2

2 ,B
)
. After that the size of the generated PNG

images is 2592 × 1728 = 2534 × 2633. Even though the
color channel values have 16 bits of storage, in practice their
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maximal value is always below 214 − 1. The black level that
can be used for every dataset image is 2048 = 211.

For visualization purposes, the modified versions of JPEG
images generated by thedcraw tool are included aswell. The
modification includes cropping and downscaling in order for
the JPEG images to have the same size as the PNG images.
Downscaling is required because JPEG images generated by
dcraw are not downscaled like the PNG images. On the
other hand, JPEG images generated by the camera were not
included because they depend on camera settings and the
camera’s white balancing algorithm, which is proprietary,
not fully documented, and it may differ for Canon 550D
and 600D cameras that have been used for image capturing.
Because of that, they can not be recreated reliably.

2) THE GROUND-TRUTH
The ground-truth illumination records are stored in the
gt.csv file. Ground-truth illuminations are calculated as
described in Section IV-C. The columns are: image and for
each of the 4 triangles (left, right, left bottom, right bottom)
it contains three columns r, g, b with the corresponding RGB
illumination chromaticities so that r+g+b = 1. The triangles
brightness values are given in the properties.csv file.

Usually, computational color constancy datasets contain
only a single ground-truth illumination vector, which repre-
sents the dominant illumination in the scene. In the Cube++
dataset such illumination is not given, because the precise
single illuminant estimation may require specialist annota-
tion. Moreover, some images have two significantly different
illuminations, which makes it harder to select the dominant
one. If only a single ground-truth illumination is required and
the possible errors that it leads to are acceptable, then one of
the following methods can be used to obtain it:
• sample images with relatively similar left and right
ground-truth illuminations (the sugested answers for
such images are denoted in properties.csv);

• select from the left and right sides the brighter one;
then select the white triangle for a dark image, and grey
triangle for a bright image.

Note that the difference between the sensitivities of the
white faces is greater then the difference between the sen-
sitivities of the gray ones (see Section IV-A). Additionally,
since the white faces are more often overexposed than the
gray ones, using the gray faces should be preferred. On the
contrary, using white faces may be better on dark images as
mentioned in Section IV-C.

We also estimated if the ground truth values are distorted
by the pixels with the clipped values. The images with over-
exposed grey triangles were removed from the dataset. The
images with the clipped values on white triangles are present
in the dataset, but the overexposed triangles are marked in
properties.csv.

3) RELEVANT META-INFORMATION
The properties.csv file contains the most relevant
meta-information about the Cube++ images. It includes

the average triangle brightness R+B+G
3 , manual annotation

data, information about overexposed triangles, and a carefully
selected subset of EXIF data fields.

The EXIF data was extracted from CR2 files using the
PyExifTool library.8 All the extracted values can be found
in the corresponding JSON files. The properties table con-
tains only a few selected ones. The EXIF data format slightly
differs between the Canon EOS 550D and 600D cameras:
there are 312 common fields, 2 in 550D only, and 21 in 600D
only. All the selected EXIF fields are common.

The cam_estimation.csv file contains the EXIF
fields of the camera that contains the camera’s light source
estimation

B. IMAGE PREPARATION
Finally, it is important to clearly specify how to properly
prepare the provided Cube++ images before handing them
over to illumination estimation methods that are to be tested.

There are three main steps that have to be taken.

1) BLACK LEVEL SUBSTRACTION
The first step is to subtract the approximate black level of
2048 from all image pixel color components. In some cases
this can result in negative values, but such values should then
be set to 0.

2) SATURATION DETECTION
The second step is to calculate the maximum value m for
all pixels across all color channels. After that all pixels that
have a value greater than or equal to m − 50 in any of
their channels should have all their channel values set to 0
This would remove most of the incorrect pixels with clipped
values. Nevertheless, it would leave some rare overexposed
pixels, because demosaicing procedure may mix them with
the normal ones. To get precise information about saturated
pixels it is recommended to analyse images before demosaic-
ing (the last one can be extracted from CR2 files).

3) COLOR TARGET MASKING
The last step is to mask out the lower right rectangle of the
image that contains the color target to remove any potential
bias and thus to have a relatively fair testing. The size of
this rectangle is 700 × 1000 for all images. The rectangle is
masked out by setting all channel values of all its pixels to 0,
i.e. by making it black.

C. INTENDED DATASET USAGE
With all its features, especially the two ground-truth illumina-
tion records, Cube++ is appropriate for several illumination
estimation use cases. All datasets mentioned in Section II,
except for maybe TCC dataset, are designed for the most
widely used classical illumination estimation problem: esti-
mation of the single light source in the scene. Therefore, each
image is provided with only single light source ground-truth,

8https://pypi.org/project/PyExifTool/
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even in cases when the scene is obviously under the influ-
ence of multiple illuminations. In contrast to these datasets,
Cube++ allows to work on following problem statements:

1) Estimate one and only dominant lighting in a scene;
2) Estimate two dominant light sources in a scene;
3) Estimate at least one dominant light source in the scene.
For each of the listed problem statements we propose the

following rules to filter the Cube++ images that are suit-
able for it. To form the dataset subset for the first problem,
one needs to select all images where the angular differ-
ences between its two extracted ground-truth illuminations
is below 1◦ (except partially light source estimation part, see
section IV-B). For the two light source estimation problem,
one needs to do the opposite, i.e. to select all images that are
not selected for the first problem (except partially light source
estimation part). Finally, to work on the third problem, all
images can be chosen.

FIGURE 12. Example of chromatic adaptation based on illumination
extracted from a) left and b) right gray face of the SpyderCube calibration
object placed in the scene.

Here it is important to mention that the proposed rules are
arbitrary, that they will result in some of the images being
inappropriately selected, and that they may be improved. One
example where these rules fail is shown in Fig. 12. There the
extracted ground-truth illuminations differ significantly, but
practically the whole scene is mostly under the illumination
captured by the right cube face. This means that even though
the scene is effectively under uniform illumination, the men-
tioned rules will result in the opposite conclusion based on
the difference between the extracted illuminations on the two
cube faces.

Also it is important to mention what at the moment par-
tially light source estimation part of the dataset is not provided
with subjective single illumination estimation choice. The
plan is to solve this in future work.

D. SimpleCube++ DATASET
In addition to the main 200GBCube++ dataset, a 2GB-small
and simpler version of it is prepared. The small dataset
contains 4x downscaled images that have less than 1◦ dif-
ference between ground-truth illuminations of SpyderCube’s
left and right grey faces. It includes only images with a sin-
gle illumination source, and consequently, the ground-truth
file contains only one ground-truth per image. This ground-
truth was extracted in the following manner: firstly, average
values for both gray faces were calculated as in the main

Cube++ dataset; secondly, they were normalized by using
l1-norm (r + g+ b = 1 for both gray faces); finally, obtained
ground-truth values were averaged and normalized again by
using l1-norm. This dataset has two main advantages: small
weight (around 2GB) and a single answer per image.

SimpleCube++ contains PNG and JPG files, gt.csv
with ground-truth data, and properties.csv with man-
ual annotation data. In addition, this dataset was divided into
train and test parts. Each image was independently assigned
to the test set with a probability of 20%.

VI. DISCUSSION
Having another high-quality illumination estimation dataset
such as the one proposed in this paper is certainly beneficial
to the interested research community as well as the industrial
sector and there should probably be no discussion about that.
However, proposing a new dataset is still only an incremental
move in terms of the overall paradigm of illumination estima-
tion research since this has been done on numerous occasions
while the dataset usage has remained relatively unchanged.

A much more constructive and necessary discussion that is
rarely taken forward should be about the direction of how to
better use or not use the datasets to achieve better progress in
illumination estimation research. In terms of that, one of the
burning issues is that the results in most illumination estima-
tion papers are unverifiable and thus questionable. Therefore,
for the sake of improving the state of the illumination estima-
tion research, it would be quite useful to further discuss this
problem as well as the potential solutions to it in more detail.

A. QUESTIONABLE RESEARCH PROGRESS
Obtaining low illumination estimation errors on a benchmark
dataset is a regularly used approach when trying to demon-
strate the superiority of a proposed illumination estimation
method. For all well-known datasets the ground-truth illumi-
nation used during the test phase is publicly available and the
actual error statistics calculation is usually performed by the
authors themselves and published in their papers. However,
this introduces several problems with the most serious being
data dredging, i.e. p-hacking and erroneous reporting.

The problem with data dredging in illumination estimation
is that in cases when a model selection is required, the final
results that are reported were not always obtained through
nested cross-validation [78]. Instead, the reported results are
the ones that were used to select the model in the first place.
By using these results, a method’s true performance on new
unknown data may be masked and unfairly shown to be
better than it actually is. This can prevent or slow down the
progress in illumination estimation research by giving mis-
leading clues about the validity of the method’s underlying
assumptions.

In the area of visual odometry similar problems with
e.g. the KITTI dataset [48] have been prevented by simply

8Not including Cube, Cube+, IEC#1 test part images, removed from the
Cube++ dataset because of GDPR restrictions or possible problems with
ground-truth extraction.
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keeping the ground-truth for the test secret. By having the
evaluation of the results on the test set carried out by the
dataset administrators, any serious attempts of p-hacking
have been prevented.

Another problem that can be prevented if the evaluation is
carried out by a third party is erroneous reporting. For exam-
ple, in [18] the results of the proposed illumination estimation
method on several datasets were allegedly all obtained by
using the same value of a hyperparameter. However, trying to
re-implement themethod fails to produce the same results and
only after checking the associated webpage [79] it becomes
clear that the hyperparameter value has to be changed for each
dataset to fully reproduce the published results.

A somewhat similar example is the 2007 paper by van
de Weijer et al. [23]. In an erratum published in 2008 [80]
it was explained how testing was inadequately performed,
which consequently resulted in reporting of erroneous error
statistics.

Finally, any doubts in the validity of some reported error
statistics could be reduced or fully eliminated if they were
calculated not by the authors themselves, but by a reliable
third party. This would also help the overall research progress.

B. ILLUMINATION ESTIMATION CHALLENGES
Inspired by the ideas mentioned in the previous subsection,
two international illumination estimation challenges have
already taken place [76], [81]. The challenges provided the
participants with thousands of training images and their
respective ground-truth illuminations, while for the test set
only the images were provided and the ground-truth remained
secret until the end of the challenge. Because of that the
error statistics for the illumination estimations sent over by
the authors were calculated by the challenge organizers,
which prevented a lot of problems described in the previ-
ous section. The results were thus more trustworthy and
they have shown e.g. high errors for some methods that
were previously reported to be highly accurate. Additionally,
the challenges helped to recognize additional problems such
as training a method to obtain excellent values for a given
error metric [82], which results in issues related to the so
called Goodhart’s law [83].

C. BENCHMARK
While the described international illumination estimation
challenges have shown the advantages of having a reliable
third-party calculate the error statistics, they were fixed in
time and they cannot be repeated on the same images any-
more. Therefore, the next stepwould be to create a benchmark
dataset similar to the KITTI dataset with an online user inter-
face for submitting the results at any given time. This would
surely represent a significant contribution to the illumination
estimation research since it would simultaneously provide the
researchers with trustworthy results and also eliminate many
of the serious problems that were described earlier in this
paper.

For the above reasons, creating such a benchmark is
already underway at the time of writing this paper. At present
time we are working on the question of benchmark creation.
Possible benchmark will be based on the images that were
taken during the same time as the rest of the Cube++ images,
but that were excluded from its final version. Because of that,
in this paper there are purposely no error statistics obtained
on the Cube++ dataset by any of the illumination estimation
methods. The error statistics will be published online and
they will be based on the first version of the benchmark test
set. This aims to avoid providing any results obtained on
the Cube++ images with known ground-truth illumination.
Namely, the idea is to separate the testing and the associated
problems from the dataset and to relegate it to the benchmark.
Therefore, the overall goal of this paper is to provide high
quality training data without any testing. The role of testing
data is to be assumed by the future benchmark.

VII. CONCLUSION
A new illumination estimation dataset named Cube++ has
been proposed. Unlike similar existing illumination estima-
tion datasets, it provides rich, reliable, and verifiable data on
scene illumination with specific care being given to precise
calibration. For every one of its 4890 images, there are two
ground-truth illumination records as well as a multitude of
semantic information and it is GDPR-compliant. Further-
more, a wide variety of scene content is covered, and numer-
ous illuminations are captured. Cube++ contains images
taken with several instances of the same model of the camera
sensor. In addition to that, a centralized versioning control
system for Cube++ has been established to simplify and
document possible future changes in the dataset and error
handling. By having these properties and novelties, Cube++
is technically superior to most similar illumination estimation
datasets. One of the future steps that should also be significant
progress in the overall illumination estimation research is to
create an online illumination estimation benchmark based on
the infrastructure that was used to create the Cube++ dataset.
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ABSTRACT
Implementing color constancy as a pre-processing step in
contemporary digital cameras is of significant importance as it
removes the influence of scene illumination on object colors.
Several benchmark color constancy datasets have been created for
the purpose of developing and testing new color constancy
methods. However, they all have numerous drawbacks including a
small number of images, erroneously extracted ground-truth
illuminations, long histories of misuses, violations of their stated
assumptions, etc. To overcome such and similar problems, in this
paper a color constancy benchmark dataset generator is proposed.
For a given camera sensor it enables generation of any number of
realistic raw images taken in a subset of the real world, namely
images of printed photographs. Datasets with such images share
many positive features with other existing real-world datasets,
while some of the negative features are completely eliminated.
The generated images can be successfully used to train methods
that afterward achieve high accuracy on real-world datasets.
This opens the way for creating large enough datasets for
advanced deep learning techniques. Experimental results are
presented and discussed. The source code is available at
http://www.fer.unizg.hr/ipg/resources/color constancy/.
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1. INTRODUCTION
Color constancy is the ability of the human vision system (HVS)
to perceive the colors of the objects in the scene largely invariant
to the color of the light source [25]. Most of the contemporary
digital cameras have this ability implemented into their image
pre-processing pipeline. The task of computational color
constancy is to estimate the scene illumination and then perform
the chromatic adaptation in order to remove the influence of the
illumination color on the colors of the objects in the scene. Three
physical variables can describe the perceived color of objects in
the image: 1) spectral properties of the light source, 2) spectral
reflectance properties of the object surface, and 3) spectral
sensitivity of the camera sensor. Under the Lambertian assumption,
the resulting image f formation model is



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where )x(cf is the value at the pixel location x for the c-th

color channel, )x,( I is the spectral distribution of light
source, )x,( R is the surface reflectance, and )(c is the
camera sensor sensitivity for the c-th color channel. The value at
pixel location x is obtained by integrating across the all
wavelengths  in the visible light spectrum  . When
estimating the illumination it is often assumed that it is uniform
across the whole scene. With this, x can be disregarded and the
observed light source e is calculated as
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Since only pixel values f are known and both )(I and

)( remain unknown, it is an ill-posed problem to calculate
the illumination vector e . Illumination estimation methods try
solve this problem by introducing new assumptions. On one side,
there are methods that rely on low-level image statistics such as
White-patch [44, 32] and its improvements [10,11,12],
Gray-world [20], Shades-of-Gray [29], Gray-Edge (1st and 2nd
order) [49], using bright and dark colors [22], exploiting the
illumination color statistics perception [14], exploiting the
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expected illumination statistics [9], using gray pixels [46].
Appropriately, these methods can be found in the literature as
statistics-based methods. They are fast, hardware-friendly, and
easy to implement. On the other hand, there are learning-based
methods, which use data to learn their parameter values and
compute more precise estimations, but they also require
significantly more computational power and parameter tuning.
Learning-based method include gamut mapping (pixel, edge, and
intersection based) [28], using high-level visual information [50],
natural image statistics [34], Bayesian learning [33], spatiospectral
learning (maximum likelihood estimate, and with gen. prior) [21],
simplifying the illumination solution space [4, 5, 13], using
color/edge moments [26], using regression trees with simple
features from color distribution statistics [23], performing various
spatial localizations [17, 18], genetic algorithms and illumination
restriction [40], convolutional neural networks [19, 48, 38].

To compare the accuracy of these methods, several publicly
available color constancy datasets have been created. While they
significantly contributed to the advance of the illumination
estimation, they have several drawbacks. The main one is that they
contain relatively few images due to the significant amount of
time required for determining the ground-truth illumination. This
was shown to have an impact on the applicability of the deep
learning techniques. Other common drawbacks include cases of
incorrect groundtruth illumination data, significant noise amounts,
violations of some important assumptions, etc. In the worst cases
the whole datasets are being used completely wrong in the pure
technical sense [2], which may have led to many erroneous
conclusions in the field of illumination estimation [27]. In order to
try to simultaneously deal with most of these problems, in this
paper a color constancy dataset generator is proposed. It is
confined only to simulation of taking images of printed
photographs under projector illumination of specified colors, but
in terms of illumination estimation the properties of the resulting
images are shown to resemble many properties of real-world
images. The experimental results additionally demonstrate the
usability of the generated dataset in real-world applications.

This paper is structured as follows: Section 2 gives an overview of
the main existing color constancy benchmark datasets, in Section
3 the proposed dataset generator is described, in Section 4 its
properties and capabilities are experimentally validated, and
Section 5 concludes the paper.

2. RELATEDWORK
2.1 Image Calibration
The main idea of color constancy benchmark datasets is for them
to have images for which the color of the illumination that
influences their scenes is known. That means that along images
every such dataset also has the ground-truth illumination for each
of these images. For a given image the ground-truth is usually
determined by putting a calibration object in the scene and later
reading the value of its achromatic surfaces. Calibration objects
include gray ball, color checker chart, SpyderCube, etc. Due to the
illposedness of the illumination estimation problem, determining
the ground-truth illumination for a given image without calibration
objects can often not be carried out accurately enough. While in
such images some of the scene surfaces with known color under
the white light could be used, this could lead to inaccuracies due
to the metamerism.

2.2 Existing Datasets
The first large color constancy benchmark dataset with real-world
images and ground-truth illumination provided for each image was

the GreyBall dataset [24]. It consists of 11346 images and in the
scene of each image a gray ball is placed and used to determine
the ground-truth illumination for this image. However, the images
in this dataset are non-linear i.e. they have been processed by
applying non-linear operations to them and therefore they do not
comply with the image formation model assumed in Eq. (1).
Additionally, the images are small with only the of size 240×360.

In 2008 the Color Checker dataset has been proposed [33]. It
consists of 568 images with each of them having a color checker
chart in the scene. Several version of the dataset and its
ground-truth illumination found their way into the literature over
time with most of them being plagued by several serious problems
[27, 36, 2].

Cheng et al. created the NUS dataset in 2014 [22]. It is a color
constancy dataset composed of natural images captured with 8
different cameras with both indoor and outdoor scenes under
various common illuminations. With the same scene taken using
multiple cameras, the novelty of this dataset is that the
performance of illumination estimation algorithms can be
compared across different camera sensors.

In [7] a dataset with 1365 images was published, namely the Cube
dataset. It consists of exclusively outdoor images with the
SpyderCube calibration object placed in the lower right corner of
each image to obtain the ground-truth illumination. All images
were taken with the Canon EOS 550D camera. The main
disadvantage of the Cube dataset i.e. restriction to only outdoor
illuminations was alleviated in the Cube+ dataset [7]. It is a
combination of the original Cube dataset and additional 342
images of both indoor scenes and outdoor scenes taken during the
night. Consequently, besides the larger number of images, a more
diverse distribution of illuminations was achieved which is the
desirable property of the color constancy benchmark datasets.

A dataset for camera-independent color constancy was published
in [1]. The images in that dataset were captured with three
different cameras with one of them being a mobile phone camera
and the other two high-resolution DSLR cameras. The dataset is
composed of images in both laboratory and fields scenes taken
with all three camera sensors.

Recently a new benchmark dataset with 13k images was
introduced [45]. It contains both indoor and outdoor scenes with
the addition of some challenging images. Unfortunately, at the
time, this dataset is not publicly available. Another relatively large
dataset with challenging images which is not publicly available
was used in [47]. Although the authors report the performance of
their illumination estimation methods on these datasets,
comparison with other methods is hard since they are not publicly
available.

During the years of research in the field of color constancy
numerous other benchmark datasets such as [15, 16] were created,
but they are not commonly used for the performance evaluation of
illumination estimation methods.

2.3 Problems
The main problem with the previous datasets is the limited number
of their images, which is due to the tedious process of the
ground-truth illumination extraction. This effectively limits the
full-scale application of deep learning methods like for some other
problems and various data augmentation techniques have to be
used with variable success.



Another problem that can occur during image acquisition is to
choose scenes for which the uniform illumination estimation does
not hold. This is especially problematic if the less dominant
illumination is affecting the calibration object because the
extracted ground-truth is then erroneous and results in allegedly
hard to estimate image cases [51].

Even if all of the ground-truth illumination data was correctly
collected, it often consists of only the most commonly observed
illuminations. This lack of variety makes some of the datasets
susceptible to abuse cases of methods that aim to fool some of the
error metrics [3]. It also prevents the illumination estimation
methods from being tested on images formed by the presence of
extreme illuminations.

In some of the worst cases, some datasets were used technically
inappropriately [2], which made the obtained experimental results
to be technically incorrect and put in question some of the
allegedly achieved progress [27].

3. THE PROPOSED DATASET
GENERATOR
A solution to many problems mentioned in the previous section
would be the possibility to generate real-world images whose
scenes are influenced by an arbitrary chosen known illumination
and exactly such a solution is proposed in this section. When
taking into account everything that has been mentioned here,
several conditions have to be met:

 there has to be a big number of available illuminations,

 the colors of any material present in the scene that are
known for the canonical white illumination have also to be
known for every other possible illumination,

 and the influence of a chosen camera sensor on the color of
illuminated material has also to be known.

All this can be accomplished by recording enough real-world data
and then use it to simulate real-world images. Knowing the
behavior of colors of various materials under different
illuminations would require too much data both to collect and to
control during the image generation process. Because of this and
motivated by existence of images like the one in figure 1, the
proposed dataset generator is restricted only to the colors printed
by the same single printer on the same single sheet of paper. To
assure uniform illumination and some control over its color, all
scenes are illuminated by a projector that projects single color
frames. In short, the proposed dataset generator is able to simulate
taking of raw camera images of printed images illuminated by a
projector. More details are given in the following subsections.

3.1 Used Illuminations
To assure a big variability of available illuminations, 707 of them
were used. They are composed of colors whose chromaticities are
uniformly spread and of colors of a black body at various
temperatures. The latter colors are important because they occur
very often in real-world scenes. The relation between all these
colors is shown in figure 2a. Due to the projector and camera
characteristics, the final appearance of these colors is changed. For
example, if the achromatic surfaces of the SpyderCube calibration
object are photographed under all these illuminations, their
appearances in the RGB colorspaces of two different cameras
described in Section 3.3 are as shown in figure. 2b.

Figure 1. Example of an image from the Cube+ Dataset [7]
whose scene consists only of another printed image.

Figure 2. (a) rb-chromaticities of the illuminations used to
illuminate the printed color pattern; (b) rb-chromaticities of
the achromatic surfaces of the SpyderCube calibration object

colors in the camera RGB after It is illuminated by
illuminations with colors from (a) and its image taken with a

camera.

3.2 Printed Colors
In order to simulate the real-world images, lots of material types
would have to be analyzed as the spectral reflectance properties
are varying between materials. This is because the material
properties determine how a color will change under different
illuminations, which is important information for simulating
real-world behavior. As handling so much data is hardly feasible
in terms of both the data acquisition stage and the image
generation stage, the proposed dataset generator uses only one
material, namely paper. When printing on paper, RGB colors with
8 bits per channel are used, which leads to a total of 2563 i.e. more
than 16 million different possible colors. For each of these RBG



colors, its behavior when printed on paper has to be known for
every illumination chosen in Section 3.1. Such behavior for a
given illumination can be recorded by photographing the printed
colors under the projector cast. For the illumination to really be
the same for all colors, all of them have to be photographed on the
paper simultaneously. Namely, if they were taken partially over
several shots, there is the possibility of slight projector cast color
changing due to e.g. projector lamp heating. If all 2563 colors were
used, they could hardly be printed on one paper and later
photographed in a high enough resolution. For this reason, instead
of using 2563 color values, for the proposed generator only 323

were used. They were generated by putting the three least
significant bits in the red, green, and blue channel to zero. This
number of colors was shown to be appropriate for printing on a
single paper sheet of size A0, which can be photographed in one
shot while still having a high enough resolution. The colors were
arranged in the grid shape as shown in figure 3. Each square
represents one RBG color under the canonical white illumination.
To reflectance properties are constant for each color since they
were all printed on the same paper by using the same printer and
photographed under the same illumination. Once the printed paper
was photographed under all of the 707 chosen illuminations, a 5×
5 pixel area was taken from each of the squares to represent a
single color under some illumination. This means that for each of
323 colors there are 25 realistic representations under for of the
707 chosen illuminations that can be used to simulate the effects
of randomness as well as noise.

3.3 Generator Cameras
The printed color pattern was photographed under different
illuminations with two Canon cameras, namely Canon EOS 550D
and Canon EOS 6D Mark II. In order to obtain the linear PNG
images that comply with the model in Eq. (1) from raw images,
the dcraw tool with options -D -4 -T was used followed by simple
subsampling and debayering. The sensor field resolution for the
former Canon camera is 5202×3465, whereas the latter camera
model has the sensor field resolution of 6384 × 4224. Higher
camera resolution enables higher precision when extracting the
color values from the squares of the photographed color pattern as
the boundaries of squares tend to get blurred when using lower
resolution images. By investigating figure 2b, which show the
rb-chromaticities of the illuminations captured with two cameras,
the difference in rb-chromaticities of the illuminations can be
noticed. This clearly shows how camera sensor characteristics
differ, with the Canon EOS 6D Mark II producing smoother
illumination estimations.

Figure 3. Squares in all simplified colors arranged in the
pattern that was printed on a single big paper, illuminated by

707 different illuminations, and photographed.

3.4 Image Generation
Generating a new image includes choosing the source image, the
desired illumination, and the camera sensor. The source image is
first simplified following the same procedure as for the creation of
the color pattern described in Section 3.2, i.e. the three least
significant bits in the red, green, and blue channel are put to zero.
That way, the colors in the source image are constrained to the
ones in the color pattern shown in figure 3, whose behavior on
paper under the previously selected illumination is known. Then,
the color of every pixel in the simplified image is changed to a
color observed on the pattern square of the same color when it was
photographed under the desired illumination. As mentioned earlier,
there are 25 possible choices for this change. Doing this for all
pixels gives a raw linear image as if the initially chosen image is
printed, illuminated by the projector using the initially chosen
illumination, and then photographed. Figure 4 illustrates the
described steps for the whole image generation process. Repeating
this procedure by having a fixed camera sensor results in a new
dataset.

Figure 4. The diagram of the image generation process; the
flash tone mapping operator [6, 8] was used for the final

image.

4. EXPERIMENTALVALIDATION
4.1 Error Metrics
The angular error is the most commonly used among many error
metrics that have been proposed to measure the performance of
illumination estimations methods [35, 3]. There are two kinds of
angular error, namely the recovery angular error and the
reproduction angular error. When neither of these two is explicitly
mentioned, it is commonly understood that the recovery angular
error is used. The recovery angular error is defined as the angle
between the illumination estimation and the ground-truth
illumination
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where the stE is the illumination estimation, E is the
ground-truth illumination, and ’·’ is the vector dot product. The
reproduction angular error [30, 31] has been defined as
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where WE , is the vector of the white surface color in the image

RGB color space under the scene illumination, U is the vector of
the ideally corrected white color, i.e. [1, 1, 1]T . Although the
recovery angular error has been and still is extensively used, it has
been shown in [31] how the change in the illumination of the same
scene can cause significant fluctuations of the recovery angular
error, while the reproduction angular error has been shown to be
stable.



Figure 5. Influence of color reduction: (a) Without color reduction; (b) to (h) with color reduction, starting with only one bit i the
red, green, and blue channel put to zero for (b) up to seven bits for (h).

To evaluate the illumination estimation method performance on a
whole dataset, the error values calculated for all dataset images are
summed up using various summary statistics. As the distribution
of the angular errors is non-symmetrical, it is much better to use
the median instead of the mean angular error [37]. However, other
measures such as mean, trimean, and best and worst p% are also
used for additional comparisons of methods. In [17] the measure
often called as the average was introduced. It is the geometric
mean of the mean, median, trimean, best 25%, and worst 25% of
the obtained angular errors. In the following experiments, the
median angular error of the reproduction angular error has been
used as the reference summary statistic.

4.2 Influence of Color Reduction
As described in Sections 3.2 and 3.4, the number of colors in both
the printed pattern and the input image are reduced to the total of
323 different colors by setting the three least significant bits in the
red, green, and blue channel to zero. Figure 5 shows how this type
of color reduction influences the quality of sRGB images for
different number of bits being set to zero. To test the effect of bits
removal on the performance of illumination estimation methods,
linear images of the Canon 1Ds Mk III dataset from the NUS
datasets [22] were used. Since the dataset generator manages bits
on sRGB images, for the sake of simulating bits removal the linear
images were first tone mapped and converted to sRGB images
with 8 bits per channel by applying the Flash tone mapping
operator [6, 8]. Next, the three least significant bits were set to
zero, and then the image was returned to its linear form by
applying the reversed formula of the Flash tone mapping operator.
Finally, illumination estimation methods were applied to such
changed images. The results for Gray-world [20], Shades-of-Gray
[29], and 1st order Gray-Edge [49] applied on raw images with
reduced colors are shown in figure 6. In some cases of bits
clearing the median angular error for Gray-World and
Shades-of-Gray methods is better than when the original linear
images are used. Since bits clearing can eliminate darker pixels,
this reminds of [39] where using only bright pixels for
illumination estimation resulted in improved accuracy. As
opposed to that, the 1st order Gray-Edge method did not improve
when removing the bits. This method relies on the edge
information to estimate the illuminations and in that case the color
reduction can be detrimental since it can reduce edges.

Figure 6. The effect of color reduction on the performance of
illumination estimation methods.

4.3 Comparison to the Usual Image
Augmentation
One of the techniques of data augmentation used for
computational color constancy methods’ training is to multiply the
image color channels in order to simulate another illumination in
rough accordance with Eq. (1). Let (e)f be an image taken under

the observed light source e . If )e(f̂  is the simulation of )e(f
being taken under the observed light source e , the channel c
value of a pixel at location x is then

)x()x(ˆ )e()e(
c

c

c f
e
ef


 (5)

For example this can done by multiplying the color channel values
of images and their corresponding ground-truth illuminations by
random factors so that ]2.1,8.0[
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42] in accordance with the von Kries diagonal model [41]. Since
Eq. (5) is a vast oversimplification of Eq. (1) that does not include
inter-channel connections, it should have no effect on the error of
moment-based methods such as Gray-world if the effects of
intensity rounding are ignored. The illumination estimation of
Gray-world is
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The error of Eq. (6) obtained on the augmented images should by
definition remain the same except for the rounding errors, which is
demonstrated by figure 7. The reproduction angular errors
obtained by Gray-world for the images there are 7.0°, 7.06°, 4.63°

and 4.62°, respectively, which means that despite a change in the
appearance Eq. (5) had little effect on the Gray-world method,
while the proposed dataset Generator’s result had a significant
impact on it.

(a) (b) (c) (d)
Figure 7. Examples of data augmentation by illumination
simulation on images generated by the proposed dataset

generator: (a) the linear raw image of the printed
photography taken under the red light, (b) the simulation of
taking the image under the white light by applying Eq. (5) to
the previous image, (c) the linear raw image of the printed

photography taken under the white light, and (d) the



simulation of taking the image under the red light by applying
Eq. (5) to the previous image.

4.4 Method Performance
Several dataset were created to evaluate the behavior of some
simpler illumination estimation methods on generated images and
compare it to the behavior on real-world datasets. To create the
test datasets, two options were used for the scenes whose printing
was to be simulated, two options were used for the camera sensors,
and two options were used for the illuminations. When these
options were combined through Cartesian product, they resulted in
8 triplets of inputs for the proposed dataset generator and
consequently in 8 datasets. Two options for the scenes were the
sRGB images of the Canon 1Ds Mk III dataset, which is one of
the NUS datasets [22], and synthetic images where all pixel values
were randomly drawn from uniform distribution. The camera
options included Canon EOS 550D and Canon 6D Mark II. As for
the illuminations, the mentioned two options were a subset of
illuminations from Section 3.1 that are closest to the ground-truth
illuminations of Canon 1Ds Mk III dataset and a subset of
randomly chosen illuminations described in Section 3.1. The
results for White-Patch [32], Gray-world [20], and
Shades-of-Gray [29] on the 8 generated datasets are reported in
table 1. The obtained angular error statistics and their relations for
different methods are very similar to the ones obtained on other
well known real-world datasets [22, 7]. Particularly interesting are
the results of the White-patch method. Namely, for the datasets
where the Canon EOS 6D Mk II camera was used, the Whitepatch
method performed surprisingly well when compared to the
datasets where the Canon EOS 550D camera was used. This can
be attributed to higher resolution of the former Canon camera as
well as of its higher sensor quality due to its being of a
significantly newer production date. In other words, the datasets
where the Canon EOS 550D camera was used contain more noise
then the ones where for the Canon EOS 6D Mk II camera.

4.5 Real-world performance
To check to what degree the datasets generated by the proposed
dataset generator resemble the real-world and help coping with it,
an experiment with the Cube+ dataset [7] was carried out. This
dataset happens to consist of images taken by the very same
Canon EOS 550D camera the was used during the creation of the
proposed dataset generator. Therefore, the proposed dataset
generator was used to simulate the use of the Canon EOS 550D
camera to take photos of printed sRGB Cube+ images illuminated
by the illuminations similar to Cube+ ground-truth illuminations.

Several learning-based methods were then first trained on the
artificially generated dataset and tested on the realworld Cube+
dataset. The obtained results are shown in table 2. Training on
real-world images is obviously better, but for methods like Color
Beaver the difference in performance with respect to the used
training data is not too big and statistics like the median and the
trimean angular error are even better. For the Smart Color Cat
method the number of bins was restricted due to the colors
themselves being restricted. As for the regression trees, their
performance was affected the most, but they still obtained
relatively accurate results. Some of the performance degrading
may be attributed to the Canon EOS 550D data having more noise
as previously mentioned, while for Canon EOS 6D Mk II a
similar experiment could not have been conducted since it was not
used to create any real-world public dataset. The obtained results
can be said to serve as a proof-of-concept that learning from

realistically generated artificial images can lead to high accuracy
on the real-world images.

Table 1. Performance of white-patch [32], gray-world [20],
and shades-of-gray [29] on 8 generated datasets (Lower Avg.
Is Better). The used format is the same as in [17]. “C1” is the
abbreviation for canon 1Ds Mk III dataset, which is one of
NUS datasets [22], “550D” represents canon EOS 550D
camera, “6D” represents canon 6D mark II camera, and

‘RND’ is the abbreviation for random.
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Table 2. The performance of some learning-based methods on
the cube+ dataset [7] with respect to the training (Lower Avg.

Is Better). The used format is the same as in [17].
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Trained on the generated dataset and tested on the Cube+ dataset
Regression trees (simple

features) [23]
2.54

2.47

1.73

1.66

1.43

0.74

1.89

1.76

0.97

0.45

0.40

0.37

6.07

6.21

4.75

1.85

1.73

1.17

Smart Color Cat [5]
Color Beaver (using

Gray-world) [40]



4.6 Influence of More Data on Deep Learning
Models
To check whether the proposed dataset generator can help deep
learning methods to achieve better accuracy by merely providing
an abundance of training data, an experiment with the method
described in [19] was performed. Tens of thousands of publicly
available real-world images were downloaded from the English
Wikipedia and transformed by using the proposed dataset
generator and the illuminations close to the ones in the Canon1
dataset [22]. From these images several train sets of various sizes
ranging from 100 up to 32000 and used for separate trainings, but
always with the same fixed validation set. Additionally, any kind
of hyper-parameter tuning was intentionally avoided in order to
strictly check only the influence of the train set size on the
illumination estimation error. Part of the obtained results shown in
figure 8 shows that with the abundance of data even simpler
architectures with purposely non-optimal hyper-parameters can
achieve state-of-the-art accuracy.

4.7 Comparison to Datasets with Real-world
Images
Some of the advantages of using the proposed CroP are:

 there is a large variety of possible illuminations that can be
used when images are being created and the illumination
distribution can easily be controlled

 the images contain no calibration objects that would have to
be masked out to prevent any unfair bias,

 there is no black level and there are no clipped pixels,

 the generated images can be influenced by arbitrary many
illuminations with clearly defined ground-truth,

 the number of dataset images can be arbitrarly high. Some of
the disadvantages of the proposed CroP include:

 only one material i.e. paper is used in all images,

 the spectral characteristics of the illuminations are limited by
the ones of the lamps in the used projector.

Figure 8. The effect of color reduction on the performance of
illumination estimation methods.

5. CONCLUSION
In this paper, a color constancy dataset generator that enables
generating realistic linear raw images has been proposed. While
image generation is constrained to a smaller subset of possible
realistic images, these have been shown to share many properties
with the real-world images when statistics-based methods are
applied to them. Additionally, it has been demonstrated that these

images can be used to train learning-based methods, which then
achieve relatively accurate results on the real-world datasets. This
potentially means that the proposed dataset generator could be
used to create large amounts of images required for some more
advanced deep learning techniques. Future work will include
experiments with generating images with multiple illuminations
and adding new camera models and illuminations.
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Dataset Generator”, Proceedings of the 2020 4th International Conference on Vision,

Image and Signal Processing, Bangkok, Thailand, 2020, pp. 1-9
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