
Designing DNA Microarrays with Ant Colony
Optimization

Ivković, Nikola; Golub, Marin; Jakobović, Domagoj

Source / Izvornik: Journal of computers, 2016, 11, 528 - 536

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.17706/jcp.11.6.528-536

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:793292

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-26

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://doi.org/10.17706/jcp.11.6.528-536
https://urn.nsk.hr/urn:nbn:hr:211:793292
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3418
https://dabar.srce.hr/islandora/object/foi:3418

Designing DNA Microarrays with Ant Colony Optimization

Nikola Ivkovic1*, Marin Golub2, Domagoj Jakobovic2

1 Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, HR 42000 Varaždin, Croatia
2 Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR 10000 Zagreb, Croatia

* Corresponding author. Tel.: +385 42 390872; email: Nikola.ivkovic@foi.hr

Manuscript submitted September 4, 2015; accepted September 25, 2015.

doi: ???

Abstract: DNA microarrays are manufactured by synthesizing probes on a solid surface with the help of

light and a sequence of lithographic masks. Unintentional illumination can create defects on the microarray

due to small dimensions and light properties, but a suitable arrangement of probes can reduce the

probability of defects. The problem of designing DNA microarrays is computationally hard and there is no

publicly available algorithm that can solve this problem exactly, in polynomial time. This study investigates

the suitability of the ant colony optimization (ACO) metaheuristic for finding optimal or at least good

microarray designs. This research is based on a MAX-MIN ant system variant that is enhanced with 2-opt

local optimization and max-κ-best pheromone reinforcement strategy. Experiments were conducted on

problem instances based on border length and conflict index models. The proposed algorithm found solutions

that are better than the best solutions previously published for 10 out of 14 problem instances.

Key words: biochip design, swarm intelligence, max-κ-best, MAX-MIN ant system.

1. Introduction

A DNA microarray is a set of probes placed on solid material that can be used for genetic testing. The probes

are fragments of DNA made from nucleobases: cytosine, guanine, adenine, and thymine. DNA microarrays, also

known as biochips, have applications in genetics, molecular biology, medicine, and pharmacology for detecting

genes, diagnosing diseases, inventing drugs, toxicological analyses etc. [1].

In the process of designing DNA microarrays arises a hard combinatorial problem of arranging probes in a

way that minimizes the chance of defects and reduces the complexity of masks used in production.

For many optimization problems, efficient exact algorithms are not available. The question whether NP-hard

problems can be solved in polynomial time remains unresolved in spite of serious research efforts. Over the past

few decades, researchers have developed versatile metaheuristic methods that can often find good solutions for

such problems, although they cannot guarantee finding optimal solutions.

In this paper, the possibility of using the ant colony optimization (ACO) metaheuristic for the microarray

layout problem is investigated. Ant colony optimization (ACO) is a general metaheuristic inspired by the

behavior of biological ants. It is a constructive type of a stochastic optimization algorithm whose construction

procedure is guided by pheromone trails, and possibly by heuristic information that is specific to a particular

type of the optimization problem. The pheromone trails are altered by ants to reflect the experience that the ants

have gathered in previous attempts to find optimal solutions of the problem.

Since its introduction, ACO algorithms were found to be well-suited for many challenging computational

problems: combinatorial optimization, dynamic and stochastic optimization, multiobjective optimization,

constraint satisfaction, and continuous optimization [2], [3].

The first published ACO algorithm, ant system (AS), proved to be a promising concept, but it could not

compete with state-of-the-art algorithms. In attempts to improve algorithmic performance, different variants of

ACO algorithms were published in the literature. Elitist ant system (EAS) allowed the best solution found from

the beginning of the algorithm to additionally reinforce pheromone trails in order to improve convergence

toward more promising areas in the search space [4]. Ant colony system (ACS) uses a rather greedy

pseudorandom proportional rule in the solution construction procedure; there are local and global pheromone

evaporations, and only one (“the best”) solution reinforces the pheromone trails [5]. Rank-based ant system

(ASrank) enhances AS by using more elitism in the pheromone reinforcement procedure than EAS. Only a subset

of the best solutions found in the current iteration and the best so far solution are used for the pheromone

reinforcement procedure [6]. Approximate nondeterministic tree search (ANTS) introduces a unique rule for

solution construction and does not perform explicit pheromone evaporation [7]. MAX-MIN ant system uses

explicit pheromone bounds and pheromone reinitialization in the case the algorithmic stagnation is detected [8].

Best-worst ant system (BWAS) is similar to MMAS, but in addition, it incorporates mutation of pheromone trails

(a concept from evolutionary algorithms) and negative feedback of the worst solution [9]. Three bound ant

system (TBAS) uses occasional pheromone contractions instead of regular pheromone evaporations [10]. Among

many versions of ACO, MAX-MIN ant system is the most popular owing to good results for many optimization

problems; followed by ant colony system. TBAS is a new ACO algorithm experimentally evaluated only on a few

types of optimization problems, but it showed very promising results (better than MMAS).

For the purpose of this research, MMAS with 2-opt local optimization and extended pheromone reinforcement

strategies were used. Conducted experiments showed that MMAS is well-suited for the microarray layout

problem, and for most problem instances the new best solutions were obtained.

2. Microarray Design Problem

One way of producing a DNA microarray is to synthesize probes on a solid surface made of glass or plastic. At

the beginning the microarray has empty spots, on which probes are built by adding nucleobase after nucleobase

until all probes are completed. Although one probe in not actually one DNA molecule, but rather many copies of

the same single-stranded DNA molecule on a particular spot, it is logically simpler to think about the probe as

one single-stranded DNA molecule. The probes can be produced by using photolithography similar to the process

of producing integrated circuits in microelectronics. Photolithographic masks are used to select spots on which

particular nucleobases will be inserted. Using one mask (this is one step of production) only one type of

nucleobases: cytosine (C), guanine (G), adenine (A) or thymine (T) can be inserted on unmasked spots. In all

other spots on the microarray, which are masked, nucleobases are not inserted. These steps are repeated by

using right masks in the right order until all probes are completed.

For example, Fig. 1 shows six masks for producing very simple microarray with 9 spots, organized in 3x3

matrix, where every single-stranded DNA is made from three nucleobases. The probe in the right upper corner

(AGT) is produced by inserting A in step 1 (using mask M1), G in step 2, and T in step 5. The insertion of

particular nucleobase is done by using light which goes through unmasked spots. Because of very small

dimensions and nature of light, the nearby area around selected spots might be unintentionally illuminated, and

some nucleobases might be added on wrong probes. It is more likely that this defects will happen around the

borders between unmasked and masked spots. By carefully arranging and grouping probes it is possible to

minimize defects in production. The goodness of layout might be evaluated by using two evaluation models:

border length and conflict index [11].

The total border length for microarray layout is defined with (1) as a sum of border lengths B1,…, BT, of all

masks M1,…, MT. For one mask Mt border length can be calculating by using (2), where border(x, y) is equal to 1 if

x and y are adjacent side by side or up and down, but not diagonally, and is equal to 0 otherwise. In the case of

the microarray layout from Fig. 1, the border lengths for particular masks are: B1 = 9, B2 = 7, B3 = 7, B4 = 6, B5 = 8,

B6 = 3, giving the total border length B = 34.

A A G G C

 A A G G C C

A C

AGG CGT AGT

 M1 M2 M3

G G T T

GGT AGC ACT

G T T

G G T T A A A

 M4 M5 M6

AGA CTA GTA

Fig. 1. The sequence of masks M1, M2, M3, …, M6 used for producing the microarray on the right.

Conflict index is a more general model which takes into account additional considerations about defects in

microarray production. It is defined for spot u over all masks M1 to MT by (3), where masked(u, t) is equal to 1 if

spot u is masked by Mt, and equal to 0 otherwise. Euclidian distance between spots x and y is denoted as d(x, y).

Weighting function ω(x, t) assigns higher values to spots closer to the center of the microarray and lower values

to sport closer to the edges [11]. The total conflict index C is a sum of conflict indexes for all spots of the

microarray defined by (4).

The goal of the optimization problem is to find microarray layout that minimize total border length or total

conflict index, depending on the chosen model. The both models can be coded in quadratic assignment problem.

 ∑
=

=
T

t

tBB
1

 (1)

 ∑
∈∈

=
tt YyXx

t yxborderB
,

),(
(2)

()∑ ∑

= ∈









 −
⋅⋅=

T

t uNv vud

tvmasked
tztumaskeduC

1)(
2
),(

),(1
),(),()(ω (3)

 ∑=
u

uCC)((4)

3. Ant Colony Optimization for Microarray Design Problem

The ant colony optimization is an iterative constructive metaheuristic. In every iteration of the algorithm, m

ants independently construct m different solutions. The solution is constructed by adding solution components

to a partial solution until the complete solution is constructed. The choice of selecting particular component is

affected by pheromone and heuristic values. After the end of each iteration, the pheromone values are updated

based on the quality of constructed solutions.

On the high level of abstraction, MAX-MIN ant system metaheuristic can be described with pseudocode

presented in Fig. 2. Precise implementation of particular procedures also depends on type of the problem and

design decisions made by a researcher.

Initialize()

Loop(UntilStoppingCriteriaAreNotSatisfied){

 AntConstructSolutions();

 LocalOptimization(); //optional

 PheromoneEvaporation();

 PheromoneReinforcement();

}

Fig. 2. The pseudocode of MAX-MIN ant system for microarray design problem

In procedure Initialize() algorithmic parameters are set, memory structures are prepared, pheromone and

heuristic values are initialized. Both pheromone and heuristic values are usually organized in matrices, with each

element linked to one particular solution component. For MMAS, which uses two pheromone bounds in the

pheromone update procedure, the upper pheromone bound is set according to (5), where ρ is evaporation rate

parameter and f(s*) is the fitness of the optimal solution. In practice the optimal solution is not known in advance,

but estimation of the optimal solution obtained by a simple method can be used instead.

The lower pheromone bound is set to τmin = ϑ ⋅ τmax. An appropriate value for parameter ϑ ∈ 〈0, 1〉 can be

calculated by choosing probability pSH and using approximate expression given by (6). Alternativle, more precise

formulas maight be used [12], [13]. In expression (6), |s| is the number of components in complete solution s,

and navg is the average number of components that are considered in one step of solution construction

procedure. The initial pheromone trail value is set equal to upper bound τmax. When local optimization is applied

ϑ is usually set to 0.5 ⋅ |s|.

 [] 1max *)(
−⋅= sfρτ (5)

 () ()[] 111
−

⋅−⋅−= s

SHavg

s

SH pnpϑ (6)

After the initialization is complited, inside the loop, the ant constract solutions, update pheromone trails and

optionaly some demone actions like local optimization is performed, until stoping criteria is met (e.g. predefined

number of iterations or maximum alowed time).

In AntConstructSolutions() procedure, m ants construct solutions independently. A solution is constructed by

adding a component by a component into partial solution sP until the final solution s is constructed. At the

beginning of construction, the partial solution sP is empty. The CP set contains all solution components that can be

considered for adding to a partial solution sP. In the case of assigning probes to spots on a microarray, a solution

component is one assignment of a particular probe to a particular spot. For microarray with n spots and n probes,

there are n2 possible components.

In one step of AntConstructSolutions() procedure, one component is selected using random proportional rule

defined by (7). The probability of adding the component cl into partial solution sP depends on the pheromone

trail value τc(l) associated with that component, heuristic information for that component ηc(l), parameters α and

β, and values associated with all other components that are currently in the set CP.

 () ()∑ ∈
⋅

⋅
=

PCc cc

lcicP

l scp βα

βα

ητ

ητ)()(
| (7)

When choosing solution component, i.e. probe-spot assignment, first a free spot (or alternatively an

unassigned probe) is chosen randomly, and then the assignment is based on random-proportional rule (7).

Performing local optimization is generally optional. By changing the part of solutions, e.g. by removing and

adding some solution components, LocalOptimization() procedure is used to improve solutions constructed in

AntConstructSolutions() procedure.

In PheromoneEvaporation() procedure all pheromone values are evaporated by multiplying with (1 − ρ)

according to expression (8). In the case that some pheromone value τc becomes lesser than τmin, its value is set

equal to τmin.

 Cccc ∈∀⋅−= ,)1(τρτ (8)

In PheromoneReinforcement() procedure it is necessary to choose a solution, according to some strategy,

whose components will be rewarded with additional pheromone values. In the case of κ-best strategy the best

solution found in last κ iterations is chosen. When max-κ-best strategy is used, then the best solution may be

used at most κ iterations [13], [14]. Regardless of selected strategy, for each component c of chosen solution sbest

the value of corresponding pheromone trail is increased according to expression (9). In the case that some

pheromone value τc becomes larger than τmax, its value is set equal to τmax.

 ()[] bestbest

cc scsf ∈∀+=
−
,
1

ττ (9)

4. Experimental Settings and Results

Test instances of microarray layout problem, based on both border length and conflict index models, are

publicly available on web page http://www.rahmannlab.de/research/microarray-design along with the best

solutions that are known. The shorter names for the problem instances are used in this papers, but the original

longer name can be uniquely identified by problem type and problem size. All instances are square-shaped so

every solution has eight equivalent representations. There are four possible rotations and also for each rotation

it is possible to make a mirror reflection of the solution.

Our implementation of MMAS with 2-opt local optimization and extended reinforcement strategy is done in

C++ language. Experiments were conducted on Isabella cluster (isabella.srce.hr), running Linux on machines

with various hardware. Local optimization was applied on all solutions constructed in AntConstructSolutions()

procedure in the current iteration. For each solution, 2-exchange moves with first improvement were enforced

until the solution become 2-optimal. In order to speed up local optimization, data structures with “don’t look

bits” were used. Also, look up table with precomputed values of expression (7) were used to speedup solution

constructions in AntConstructSolutions() procedure. Algorithmic parameters were set according to

recommendations from literature and our own experience [13], [15]. Parameters were set to α = 1, β = 0, and

number of ants m = 20. Few different values were tried for parameters ρ and κ (for max-κ-best strategy) in order

to tune the algorithm for better performance.

For smaller problem instances (size n ≤ 81) parameter ρ was tested with values 0.01, 0.05, 0.2 and parameter

κ with values 8, 32, ∞. For larger instances ρ = 0.01 and max-8-best were omitted.

The maximum number of iterations was set to 10000, except for instances mlpbl121, mlpci121, and mlpbl144

for which it was set to 20000. For each parameter setting experiment was repeated 40 times.

Results of our experiments based on medians are showed in Table 1 and Table 2. Solution quality is expressed

as a relative deviation of a median of solutions from the new best solutions published. It was calculated by (10)

where med is the median value of solutions and nbs is the new best solutions for a particular instance (for many

instances the best solutions were obtained by experiments published in this paper).

 %100⋅
−

=
nbs

nbsmed
med rel (10)

The backgrounds of cells in Table 1 are colored according to their values for particular problem instance. The

best results are colored with yellow, the worst with red and all the other with shades between yellow and red.

For example, in the case of mlpbl64 the best result (medrel = 0.80%) obtained by max-∞–best and ρ = 0.01 is

colored yellow and the worst result (medrel = 2.32%) obtained by max-8–best and ρ = 0.01 is colored red.

By the color distribution on Fig. 1, it can be observed that the smallest tested parameter values ρ and κ

resulted with poorer algorithmic performance, but the best parameter settings depended on problem instance.

In the case conflict index instances, the best performance was observed with max-32-best and ρ = 0.2 for the

most instances. For mlpci36 the median of solutions is equal to the new best solution published

(nbs = 168611971).

Table 1. Median solutions of MMAS with 2-opt for border length instances

max-8-best max-32-best max-∞-best
instance

ρ = 0.01 ρ = 0.05 ρ = 0.2 ρ = 0.01 ρ = 0.05 ρ = 0.2 ρ = 0.01 ρ = 0.05 ρ = 0.2

mlpbl36 1.21% 0.49% 0.12% 0.49% 0.49% 0.24% 0.61% 0.73% 0.61%

mlpbl49 2.29% 2.20% 1.14% 2.11% 0.70% 0.79% 1.23% 1.23% 1.14%

mlpbl64 2.32% 2.25% 1.79% 2.19% 1.53% 1.13% 0.80% 0.86% 0.83%

mlpbl81 2.51% 2.41% 2.15% 2.46% 1.89% 1.57% 1.00% 1.00% 1.00%

mlpbl100 2.25% 1.87% 1.27% 1.23%

mlpbl121 3.13% 2.82% 2.27% 2.23%

mlpbl144 3.24% 2.96% 2.56% 2.40%

Table 2. Median solutions of MMAS with 2-opt for conflict index instances

max-8-best max-32-best max-∞-best
instance

ρ = 0.01 ρ = 0.05 ρ = 0.2 ρ = 0.01 ρ = 0.05 ρ = 0.2 ρ = 0.01 ρ = 0.05 ρ = 0.2

mlpci36 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

mlpci49 0.01% 0.00% 0.00% 0.01% 0.01% 0.00% 0.16% 0.16% 0.16%

mlpci64 0.22% 0.22% 0.18% 0.17% 0.13% 0.13% 0.20% 0.18% 0.19%

mlpci81 0.30% 0.31% 0.29% 0.29% 0.25% 0.23% 0.28% 0.25% 0.29%

mlpci100 0.55% 0.53% 0.51% 0.50%

mlpci121 0.38% 0.39% 0.29% 0.36%

mlpci144 0.29% 0.25% 0.28% 0.32%

The best results and algorithms previously used to solve instances of microarray layout problem are taken

from web page http://www.rahmannlab.de/research/microarray-design and are presented along with our

results in Table 3 and Table 4. The previously used algorithms are greedy randomized adaptive search with path

relinking (GRASP-PR) [16], heuristic algorithms RTL-1 [17] and RTL-2 [18], and hybrid of genetic algorithm with

tabu search (GATS) [19]. The best solutions in some cases were obtained with parameter settings for which

algorithmic performance (in terms of median) was not the best. Parameters ρ and κ from max-κ-best strategy for

which MMAS obtained the best solutions are listed in the rightmost column in Table 3 and Table 4.

For instance mlpbl36, MMAS with 2-opt obtained solution equal to the best solution previously published.

MMAS with 2-opt local optimization obtained solutions that are better than the best solutions that were

published for three instances. In cases of the three largest instances, MMAS with 2-opt obtained better solutions

than GRASP-PR, but worse than GATS.

In the case of conflict index based instances of microarray layout problem, MMAS with 2-opt local optimization

obtained the new best solutions for all available test instances.

Table 3. The best solutions obtained for instances based on border length

best solution found by algorithm MMAS with 2-opt instance

name

instance

size

best solution

previously

published RTL-1 RTL-2 GRASP-PR GATS best solution parameters (ρ, κ)

mlpbl36 36 3296 - 3304 3352 3296 3296

(0.01, 32), (0.01, ∞),

(0.05, 8), (0.05, 32),

(0.2, 8), (0.2, 32)

mlpbl49 49 4564 4580 - 4660 4564 4548 (0.05, 32)

mlpbl64 64 6048 6080 - 6200 6048 6032 (0.05, ∞)

mlpbl81 81 7644 - - 7900 7644 7636 (0.01, ∞)

mlpbl100 100 9432 - - 9684 9432 9440 (0.2, ∞)

mlpbl121 121 11640 - - 12032 11640 11812 (0.2, ∞)

mlpbl144 144 13832 - - 14196 13832 14060 (0.2, ∞)

Table 4. The best solutions obtained for instances based on conflict index

best solution found by algorithm MMAS with 2-opt instance

name

instance

size

best solution

previously published GRASP-PR GATS best solution parameters (ρ, κ)

mlpci36 36 169016907 169925219 169016907 168611971 all tested

mlpci49 49 237077377 238859844 237077377 236355034 all tested

mlpci64 64 326696412 327770071 326696412 325671035 (0.2, 32)

mlpci81 81 428682120 434317170 428682120 427582150 (0.05, ∞)

mlpci100 100 525401670 532573788 525401670 523806646 (0.05, ∞)

mlpci121 121 658317466 664137090 658317466 657514941 (0.05, ∞)

mlpci144 144 803379686 813127758 803379686 802219898 (0.05, ∞)

5. Conclusion

In this research, the MAX-MIN ant system was adopted for finding optimal designs of DNA microarrays. The

basic ACO metaheuristic was enhanced with 2-opt local optimization to improve algorithmic performance.

Limited parameter exploration revealed that the best performance for the instances based on border length is

often achieved with rather greedy parameters, i.e. max-κ-best strategy and evaporation rate set to 0.2. In the case

of the conflict index based instances, the best results are achieved with slightly less greedy parameter settings.

For many problem instances, the proposed algorithm successfully obtained solutions that are better than the

best solutions that were previously published.

References

[1] de Rinaldis, E., Lahm, A., Eds. (2007). DNA microarrays: Current applications. Taylor & Francis.

[2] Dorigo, M., Stützle, T. (2010). Ant colony optimization: Overview and recent advances. In M. Gendreau, & J.-Y.

Potvin (Eds.), Handbook of Metaheuristics (pp. 227-263). Springer.

[3] Chandra Mohan, B., Baskaran, R. (2012). A survey: Ant colony optimization based recent research and

implementation on several engineering domain. Expert Systems with Applications, 39(4):4618 - 4627.

[4] Dorigo, M., Maniezzo, V., Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents.

IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26:29-41.

[5] Dorigo, M., Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling

salesman problem. IEEE Trans. Evolutionary Computation, 1:53-66.

[6] Bullnheimer, B., Hartl, R.F., Strauss, C. (1999). A new rank based version of the ant system: A Computational

Study. Central European Journal for Operations Research and Economics, 7:25-38.

[7] Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic

assignment problem. INFORMS J. on Computing, 11:358-369.

[8] Stützle, T., Hoos, H. H. (2000). MAX-MIN ant system. Future Generation Comp. Syst., 16:889-914.

[9] Cordón, O., Fernández de Viana, I., Herrera, F. (2002). Analysis of the best-worst ant system and its variants

on the QAP. In Third International Workshop, Brussel, Belgium.

[10] Ivkovic, N., Golub, M. (2014). A new ant colony optimization algorithm: Three bound ant system. In Swarm

Intelligence: 9th International Conference, ANTS 2014, Brussels, Belgium.

[11] de Carvalho, S. A. Jr. (2007). Algorithms for improving the design and production of oligonucleotide

microarrays, PhD Dissertation, University of Bielefeld.

[12] Ivkovic, N., Golub, M., Malekovic, M. (2011). A pheromone trails model for MAX-MIN ant system. In Artificial

Evolution 2011 (Evolution Artificielle 2011), 10th Biennal International Conference on Artificial Evolution,

Angers, France.

[13] Ivkovic, N. (2014). Modeling, analysis and improvement of ant colony optimization algorithms. PhD

Dissertation. University of Zagreb.

[14] Ivkovic, N., Malekovic, M., Golub, M. (2011). Extended trail reinforcement strategies for ant colony

optimization. In Swarm, Evolutionary, and Memetic Computing – Second International Conference, SEMCCO

2011, Part I, vol. 7076, Springer, 2011, Visakhapatnam, Andhra Pradesh, India.

[15] Dorigo, M., Stützle, T. (2004). Ant colony optimization. MIT Press, 2004.

[16] de Carvalho, S. A. Jr., Rahmann, S. (2006). Improving the layout of oligonucleotide microarrays: Pivot

partitioning. In Algorithms in Bioinformatics: 6th International Workshop, WABI 2006, Zurich, Switzerland.

[17] de Carvalho, S. A. Jr., Rahmann, S. (2006). Microarray layout as a quadratic assignment problem. In German

Conference on Bioinformatics GCB 2006, Tübingen, Germany.

[18] de Carvalho, S. A. Jr., Rahmann, S. (2006). Microarray layout and the quadratic assignment problem. In 14th

Annual International Conference on Intelligent Systems for Molecular Biology (ISMB), Fortaleza, Brazil.

[19] Hannenhalli, S., Hubbell, E., Lipshutz, R., Pevzner, P. A. (2002). Combinatorial algorithms for design of DNA

arrays, In Dr. Jörg Hoheisel et al. (Eds.) Advances in Biochemical Engineering/Biotechnology: Chip

Technology, 77:1-19.

Nikola Ivkovic received the MS degree in Computer Engineering and the Ph.D. degree in

Computer Science from the Faculty of Electrical Engineering and Computing, University of

Zagreb. He is a member of the research and teaching staff at the Department of Information

Technologies and Computing of the Faculty of Organization and Informatics, University of

Zagreb. His research interests include computational intelligence and optimization, parallel

programming, formal methods, operating systems, and computer networks.

Marin Golub received the BS degree (1992) in Electrical Engineering, MS degree (1996) and

Ph.D. degree (2001) in Computer Science, all at the Faculty of Electrical Engineering and

Computing, University of Zagreb. Currently he is working as an associate professor at the

Department of Electronics, Microelectronics, Computer and Intelligent Systems, Faculty of

Electrical Engineering and Computing, University of Zagreb. His interests include parallel

algorithms, operating systems, evolutionary algorithms and computer system security.

Domagoj Jakobovic received the BS degree in December 1996 and the MS degree in December

2001, in Electrical Engineering. Since April 1997, he is a member of the research and teaching

staff at the Department of Electronics, Microelectronics, Computer and Intelligent Systems of the

Faculty of Electrical Engineering and Computing, University of Zagreb. He received the PhD

degree in December 2005 on the subject of generating scheduling heuristics with genetic

programming.

