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Abstract

Color constancy can be defined as the property of the human visual system (HVS) that allows

humans to perceive the colors of objects independent of the color of the illumination that is

illuminating them. However, the main mechanism behind it is still unknown and much research

is being conducted in this area. While this property is sometimes challenged, the HVS can

adapt and react quickly to a wide variety of changes in the illumination conditions. This means

that objects remain perceived mostly the same in the changing illumination conditions. For

example, a banana would look yellow under both sunlight, led or fluorescent light sources.

Computational color constancy, refers to a subset of computer vision problems, where the

goal is to reproduce this property in digital image processing. Unlike the HVS, digital camera

sensors do not possess this ability inherently. Thus, it is important to be able to recreate it

using image processing. The process of computational color constancy can be done in two

steps, illumination estimation and color correction (also referred to as white balancing). Out

of those two problems, illumination estimation is the more difficult of the two. In the above-

mentioned example with a banana, without any other knowledge, it is impossible to tell, just by

looking at the RGB values, whether the banana is yellow and illuminated by white light, white

illuminated by yellow light, or some other combination of those properties. This means that this

problem is ill-posed. Furthermore, this problem can be split into two main categories, based on

the number of illuminants present in the scene. Those categories are single-illumination and

multi-illumination estimation methods.

The focus of this thesis is on multi-illumination methods. These can be separated into

multi-illumination estimation methods and image segmentation methods based on the illumi-

nation. The goal of segmentation methods is to create a mask indicating the areas where only

one illuminant is present. They are designed to work in concert with more well researched

single-illumination estimation methods. Multi-illumination estimation methods, on the other

hand, ideally produce an estimation for each pixel in the scene. In this work, the focus is on

the implementation and analysis of methods for both multi-illuminant estimation and segmenta-

tion. They are implemented using deep-learning based techniques, and achieve state-of-the-art

performance on their respective problems. Deep-learning models based on convolutional lay-

ers are selected because they show great performance and generalization capabilities on image

processing tasks. Additionally, for deep-learning methods, the question of the training dataset

is important. For the proposed task, a real-world dataset with 2500 images was used for scenes

with two sources of illumination. For scenes with three or more sources, an artificial dataset

was created.

Keywords: Color Constancy, Illumination Estimation, Image Segmentation, Deep Learning



Prošireni sažetak

Postojanost boja definira se kao svojstvo ljudskog vizualnog sustava koje nam omogućava da

vidimo boje objekata neovisno o boji svjetla koje ih osvjetljava. No, glavni mehanizmi koji

upravljaju tim svojstvom su i dalje samo djelomično poznati, te se mnogo istraživanja provodi u

ovom području. Takod̄er, premda ljudski vizualni sistem ponekad ima poteškoća s postojanosti

boja, on je sposoban relativno brzo se prilagoditi raznim uvjetima osvjetljenja. Dakle, percep-

cija boje objekata ostat će konstantna kroz razna osvjetljenja. Tako će, na primjer, banana će

izgledati žuto pod sunčevim svijetlom, LED rasvjetom ili fluorescentnim osvjetljenjem.

Računalna postojanost boja se odnosi na podskup problema računalnog vida, kojima je cilj

reproducirati svojstvo postojanosti boja ljudskog vizualnog sustava. Potreba za time se javlja

jer, za razliku od ljudskog vizualnog sustava, digitalni senzori ne posjeduju to svojstvo inher-

entno. Time, to svojstvo se mora reproducirati koristeći metode obrade slike. Pojam računalne

postojanosti boja se obično sastoji od dva osnovna koraka. To su procjena osvjetljenja te ko-

rekcija boje (takod̄er poznato u literaturi kao kromatska adaptacija). Od ta dva koraka, prvi

korak je složeniji te će na njemu biti naglasak u ovoj disertaciji. Glavni razlog za složenost je

taj da je problem poddefiniran. U primjeru s bananom, ako gledamo samo na RGB vrijednosti,

nije moguće znati radi li se o žutoj banani na bijelom svijetlu, bijeloj banani osvijetljenoj žutim

svjetlom, ili nekoj trećoj kombinaciji koja izgleda žuto. Dakle, prvi korak svakog algoritma pos-

tojanosti boje je procijeniti vektor osvjetljenja scene u odred̄enom dijelu slike. Granularnost tih

regija može se razlikovati od jednog slikovnog elementa, preko dijela slike (obično kvadratnog

oblika), pa sve do cijele slike. Ta granularnost procjene definira vrstu metode za procjenu osv-

jetljenja koja je potrebna. Metode koje procjenjuju osvjetljenje za kvadratne regije scene ili na

razini slikovnog elementa spadaju pod metode za procjenu više od jednog osvjetljenja.

Glavni fokus ove disertacije je procjena osvjetljenja u scenama s više izvora. One se mogu

podijeliti na metode za procjenu više osvjetljenja te na metode za segmentaciju slike u ovis-

nosti na boju osvjetljenja. Metode za segmentaciju su dizajnirane tako da budu kompatibilne

s metodama za globalnu procjenu osvjetljenja, koje su mnogo više istraživane nego metode

za procjenu više osvjetljenja. S druge strane, metode za procjenu više od jednog osvjetljenja

idealno proizvode je razviti set metoda baziranih na dubokom učenju koje su sposobne seg-

mentirati sliku u ovisnosti o osvjetljenju te procjenjivati osvjetljenje scene na razini slikovnog

elementa u scenama s više osvjetljenja. Ove metode implementirane su modelima dubokog

učenja, poglavito konvolucijskih neuronskih mreža, jer trenutna istraživanja pokazuju prednost

takvih metoda nad ostalim metodama obrade slika. Metode su implementirane, trenirane i te-

stirane na novo razvijenom skupu slika, posebno pripremljenom za ovaj problem. Skup slika

sadrži 2500 tisuće sirovih slika dobivenih s 5 kamera, scena s osvijetljenih s dva izvora svjetla.

Za metode koje rade s varijabilnim brojem osvjetljenja, posebno su izrad̄ene umjetno obojene



slike bazirane na Cube+ bazi podataka [1]. Ta umjetna baza služi kao baza za treniranje te testi-

ranje generalizacijskih mogućnosti predloženih metoda jer se metode trenirane na njoj ispituju

na drugim skupovima podataka koji sadrže samo prirodne slike. Cilj tog ispitivanja bio je otkriti

koje metode dobro generaliziraju procjenu i segmentaciju osvjetljenja neovisno o broju izvora

svijetla.

Doprinosi ove disertacije su:

• Metoda za segmentaciju osvjetljenja za scene s dva osvjetljenja s najviše jednim poznatim

osvjetljenjem bazirana na konvolucijskim i transformerskim mrežama

• Metoda za usporednu procjenu osvjetljenja na razini slikovnog elementa te segmentaciju

u slikama s jednim ili više osvjetljenja koristeći duboku autoenkodersku mrežu

U ovom radu prikazane su metoda za segmentaciju scena u ovisnosti o osvjetljenju, metoda

za procjenu dva osvjetljenja, te metoda za procjenu nepoznatog broja osvjetljenja. Takod̄er,

prikazana je i metoda za detekciju pogrešne korekcije, koja proizlazi iz korištenja globalne ko-

rekcije. Disertacija je podjeljenija u 5 glavnih dijelova. U prvom dijelu su prikazani uvodni

podaci potrebni za razumijevanje problematike te metoda koje su prikazane. Zatim, u dru-

gom dijelu opisana je metoda za detekciju pogrešne korekcije. U trećem dijelu prikazana je

metoda za segmentaciju scene u ovisnosti o poznatim osvjetljenjima. Nakon toga, u četvrtom

dijelu prikazana je metoda za procjenu nepoznatog broja osvjetljenja trenirana na autoenkoder-

skoj mreži, dok je u petom dijelu opisana metoda za estimaciju osvjetljenja u scenama gdje se

nalaze dva izvora. Ove metode predstavljaju razvoj od metoda za procjenu jednog osvjetljenja

do metoda koje mogu predvidjeti te segmentirati osvjetljenja u kompleksnim scenama s više

osvjetljenja.

U prvom dijelu disertacije opisana je metoda za segmentaciju dijelova scene u kojima je

procjena, te samim time i korekcija, bila pogrešna. Ova metoda zasnovana je na transformerskoj

arhitekturi. Originalna sirova slika korigirana je globalnom procjenom, te je zatim podjeljenija

je na preklapajuće kvadratne regije koje čine jedno susjedstvo. Te kvadratne regije su zatim

opet podijeljene u još manje, nepreklapajuće kvadratne regije. Svaka regija unutar susjedstva

kodirana je korištenjem matrice kodiranja, te su ti kodovi predani u transformerski model. Zatim

transformerski model, korištenjem samo mehanizma pažnje, za svaku malu regiju predvidi radi

li se o ispravno korigiranoj regiji ili regija nije dobro korigirana. Finalna segmentacijska maska

se zatim dobije spajanjem svih predvid̄enih regija nazad u sliku. Eksperimenti koji su provedeni

s ovom metodom pokazuju da ona postiže odlične rezultate na stvarnim slikama iz predložene

baze. Uz odlične rezultate, prednost ove metode naspram drugih metoda dubokog učenja je

relativno mali broj parametara, što pozitivno utječe na brzinu izvod̄enja te memorijsko zauzeće.

Nadalje, ova metoda direktno se nadovezuje na metode za procjenu jednog osvjetljenja, jer

omogućuje da se detektiraju regije gdje takve metode griješe u scenama s više osvjetljenja.

Prednost ovog pristupa je u tome što omogućuje korištenje vrlo dobro istraženih metoda za

v



procjenu jednog osvjetljenja bez ikakve modifikacije u scenama s više osvjetljenja.

Drugi dio disertacije prikazuje metodu za segmentaciju scena u ovisnosti o osvjetljenju uz

pretpostavku da je jedno osvjetljenje scene poznato. Metoda se temelji da ideji da je moguće rel-

ativno precizno napraviti relativno točnu globalnu procjenu osvjetljenja čak i u scenama s više

osvjetljenja, te time procijeniti dominantno osvjetljenje u sceni. Samim time pretpostavku da je

jedno osvjetljenje poznato je moguće zadovoljiti korištenjem neke od dobro istraženih metoda

za procjenu jednog osvjetljenja. Tada zadatak metode postaje lokalizirati utjecaj tog poznatog

osvjetljenja na odred̄ene dijelove scene. Metoda to predvid̄a na temelju originalne sirove slike te

poznatog dominantnog vektora osvjetljenja, korištenjem metoda dubokog učenja. Sama metoda

sastoji se od dva dijela. Prvi dio je duboka mreža čiji je cilj napraviti kodiranje originalne slike

na razini slikovnih elemenata. Kroz eksperimente se pokazalo da je najbolje koristi kodiranje

čiji je cilj proizvesti procjenu osvjetljenja na razini slikovnog elementa. Drugi dio metode je još

jedna duboka mreža koja na ulazu prima originalnu sliku, kodiranu sliku (izlaz prvog dijela),

te poznati vektor osvjetljenja. Zadatak ovog dijela je proizvesti binarnu segmentacijsku masku

koja pokazuje u kojem dijelu scene je poznato osvjetljenje dominantno. Ovako implementi-

rana metoda mogla bi raditi samo sa scenama s dva izvora osvjetljenja. Kako bi se zaobišlo to

ograničenje, predložena je iterativna metoda koja više puta primjenjuje opisani model, te time

svaki prolaz segmentira regiju osvijetljenu odred̄enim izvorom svjetla. Nadalje, kako bi se u

svakom koraku moglo predvidjeti dominantno osvjetljenje, za globalnu procjenu sve prethodne

regije su maskirane te se za procjenu koristi samo regije za koje osvjetljenje još nije poznato.

Eksperimentalni rezultati pokazuju da ovakva metoda za segmentaciju postiže najbolje rezultate

na skupu slika s dva ili više osvjetljenja. Nadalje, rezultati pokazuju da je pretpostavka da je

globalna procjena jednako dobra kao i unaprijed poznato osvjetljenje ispravna, jer je preciznost

modela jednaka neovisno o izboru.

U trećem dijelu disertacije opisana je metoda koja procjenjuje osvjetljenje svakog slikovnog

elementa scene. Ova metoda je takod̄er temeljena na dubokom učenju. Problem procjene

svakog osvjetljenja za svaki slikovni element je u tome što jedan slikovni element nosi veoma

malo informacija o svojoj okolini te samim time i o osvjetljenju. S druge strane, metode koje

rade globalnu procjenu, mogu koristiti sve informacije prisutne u sceni kako bi napravile proc-

jenu osvjetljenja. No njihov problem je što mogu predvidjeti samo jedno osvjetljenje po sceni.

Opisana metoda bazira se na arhitekturi koja kombinira globalna i lokalna svojstva, kao što

su U-Net i mreža s piramidom značajki (FPN). Takve arhitekture omogućuju da se globalne i

lokalne informacije uzmu u obzir prilikom procjene za svaki slikovni element. No, korištenje

samo takve arhitekture rezultira u nedovoljno točnoj procjeni, zbog poddefiniranosti problema

procjene osvjetljenja. Zbog toga, predložena je i posebna metoda treniranja takvih arhitektura

koja omogućava točniju procjenu te smanjuje količinu šuma na izlazu modela. Trening se bazira

na autoenkoderskim mrežama, gdje je cilj rekonstruirati ulaznu sliku. Prije rekonstrukcije,
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metode moraju procijeniti mapu osvjetljenja te korigiranu sliku, te se konačna rekonstrukcija

ostvaruje kao umnožak tih izlaza. Ovakva rekonstrukcija tjera mrežu da nauči svojstva objekata

neovisno o svojstvima osvjetljenja. Nadalje, treniranje se odvija tako da se sva tri izlaza (mapa

osvjetljenja, korigirana slika i rekonstrukcija), predaju složenoj funkciji gubitka. Ona se sastoji

od tri kvadratna gubitka za svaka od tri izlaza, te regularizacijskog člana koji je zadužen za

smanjivanje lokalne varijabilnosti mape procjene. Regularizacija se koristi zato što je obično

promjena osvjetljenja unutar scene spora, dok promjena objekata u sceni nije. Na kraju, za

korištenje modela, zadržava se samo procjena osvjetljenja na razini slikovnog elementa, dok

se korigirana slika i rekonstrukcija odbacuju. Eksperimentalni rezultati pokazuju da ovakva

vrsta treninga poboljšava rezultate procjene osvjetljenja na razini slikovnog elementa. Takod̄er,

prednost ovakvog modela i treninga je taj da je model neovisan o broju osvjetljenja u sceni.

U konačnici, četvrti dio disertacije posvećen je metodi za procjenu osvjetljenja u scenama

gdje postoje samo dva izvora osvjetljenja. Glavni razlog za razvoj specijalne metoda s dva

izvora je taj da su prirodne scene najčešće osvjetljenje s maksimalno dva izvora. Na primjer,

vanjske scene su osvjetljenje sunčevim svijetlom te nebom, dok su scene u zatvorenom prostoru

osvjetljenje umjetnim izvorom te dnevnim svijetlom koje dolazi kroz prozor. Ova metoda bazi-

rana je na metodi predstavljenoj u drugom dijelu disertacije, odnosno na metodi za segmentaciju

s poznatim izvorom. Ideja metode je da se kombiniraju dobro istražene metode za procjenu

jednog osvjetljenja, koje je moguće trenirati na puno većim skupovima nego one za više osv-

jetljenja, s metodom za segmentaciju osvjetljenja. Tijek metode je takav da prvo jedna metoda

za procjenu osvjetljenja procjeni globalno osvjetljenje u sceni Tako metoda za segmentaciju

slična onoj opisanoj u drugom dijelu podjeli ulaznu sliku u regije gdje je samo jedno svijetlo

dominantno. Zatim se originalna slika maskira tako da na njoj ostanu samo regije osvjetljenje

jedim svijetlom, te se maskirane slike predaju metodama za procjenu jednog osvjetljenja. Kon-

ačna procjena na razini slikovnog elementa za cijelu scenu dobije se linearnom kombinacijom

osvjetljenja pomoću segmentacijske maske. Maska odred̄uje koeficijente za linearnu kombi-

naciju za svaki slikovni element. Duboke mreže koje su glavne sastavnice ove metode prvo

se treniraju posebno, svaka za svoj problem, te se konačno mreže spajaju te se cijela metoda

još trenira zajedno. Rezultati pokazuju da ovakvo treniranje poboljšava ukupnu točnost mreže

naspram metoda koje su samo trenirane zasebno. Nadalje, rezultati pokazuju da ovakva metoda

postiže najbolje rezultate na skupu s dva izvora osvjetljenja, te da postiže usporedive rezultate

na slikama sa samo jednim izvorom osvjetljenja.

U sklopu ove doktorske disertacije razvijene su četiri metode koje omogućuju adaptiranje

jednostavnijih i bolje istraženih metoda za globalnu procjenu jednog osvjetljenja na scene s

više izvora osvjetljenja. Predložene metode za segmentaciju osvjetljenja omogućuju direktnu

primjenu metoda za procjenu jednog osvjetljenja na regije scene koje sadrže samo jedno osv-

jetljenje te se time poboljšava kvaliteta reprodukcije slike. S druge strane, metode za procjenu
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omogućavaju direktnu korekciju slike s procijenjenom maskom osvjetljenja te one pokazuju

odlična svojstva generalizacije na scenama s drugačijim brojem izvora osvjetljenja. Nadalje,

eksperimentalni rezultati za svaku od metoda pokazuju da postižu odlične rezultate na svojem

problemu. Vizualna usporedba rezultata takod̄er pokazuje da su dobivene slike realna repro-

dukcija stvarnih uvjeta.

Ova doktorska disertacija sastoji se od četiri radova objavljenih u časopisima velikog fak-

tora odjeka te med̄unarodnim konferencijama. Priloženi radovi predstavljaju izvorni znanstveni

doprinos disertacije. Na početku disertacije nalaze se pregled metodologije procjene i seg-

mentacije osvjetljenja i pregled postojeće literature. Nakon toga je predstavljen izvorni doprinos

popraćen znanstvenim radovima.

Ključne riječi: Postojanost boja, Procjena Osvjetljenja, Segmentacija Osvjetljenja, Duboko

Učenje
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Chapter 1

Introduction

Color constancy is the property of the human visual system that allows humans to see the color

of objects independent of the color of the illumination that is illuminating them. On the other

hand, computational color constancy refers to the image processing problem, where the goal is

to remove the influence of the illumination from images. This property is important for image

processing in digital cameras, as correct illumination estimation and removal produces realistic

reproductions of scenes. Furthermore, it has been shown that incorrect color constancy can

result in lower performance of down-stream image processing and analysis tasks [2]. For this

reason, research and development of deep learning-based models for color constancy in various

conditions is the topic of this thesis. In this chapter, a brief overview of color constancy is

given, followed by the description of the problem of illumination estimation and segmentation.

Thereafter, the main scientific contributions are listed, and finally, the description of the thesis

structure is given.

1.1 Computational Color Constancy

As was stated earlier, computational color constancy is the process of estimating the illumina-

tion of the scene and correcting for it to produce an image that looks as it was taken under white

light. Modern digital cameras have this ability integrated into it in the form of automatic white

balancing. This property is usually based on some predefined illumination categories, such as

Daylight, Shade, Tungsten, Cloudy, etc. However, if the image is taken under more challeng-

ing conditions, such as some uncommon illuminants or multiple illuminants per scene, these

simpler algorithms will fail and produce incorrectly white balanced images. Incorrectly white

balanced images are those where white surfaces are not reproduced as white, i.e., pc = [R,G,B],

where R ̸= G ̸= B. Because of this reason, a need for more complex methods for illumination

estimation is required. However, this problem is ill posed, as many combinations of illumina-

tion and surface color can produce the same R G B response on the camera sensor. So, to solve
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it, additional assumptions about the scene or the illumination have to be introduced. This can

be done either by manually using some assumptions, or can be learned using some learning-

based methods. In this thesis, the focus will be on using deep learning-based methods to create

methods that are capable of detecting regions in images illuminated by one illuminant, as well

as methods that are capable of producing a per-pixel map of illumination values for the whole

scene.

1.2 Problem Statement

The main problem behind this thesis is illumination estimation and segmentation in realworld

scenes. These scenes are often illuminated by more than one illuminant. In such cases, multi-

illuminant estimation methods are needed. Furthermore, illumination localization is as impor-

tant as estimation in those scenes. Thus, a method that can estimate per-pixel illumination

vectors in scenes with multiple sources of illumination is needed.

The goal of this thesis is to create a multi-illumination estimation and segmentation method

that can work with realworld scenes. Furthermore, it can be shown that many realworld scenes

have at most two sources of illumination. In addition to that, the only large enough dataset with

annotated realworld multi-illuminant scenes contains only scenes with two sources of illumi-

nation. Thus, the proposed methods focus mostly on this case, even though some of them can

work on scenes with an unknown number of illuminants.

1.2.1 Illumination Estimation

Illumination estimation is the central problem of any computational color constancy algorithm.

Its goal is to detect the value of the illumination for some part of the scene. These methods can

be separated by the granularity of the estimation. Global methods produce only one illumina-

tion vector for the whole scene. On the other hand, local estimation methods produce estimation

vectors for different areas in the scene. These areas can vary in size, from pixel perfect estima-

tions, to estimations for larger patches or regions in the image. Furthermore, this means that

if the illumination of the scene is constant, global illumination methods are enough. However,

in numerous realworld scenes, this is not true, with a common example being outdoor scenes

illuminated by sunlight and skylight. This means that local illumination estimation methods

(often referred to as multi-illumination estimation methods) are necessary in most scenes to

create accurately white balanced images. For this reason, this will be the central topic explored

by this thesis. However, these local estimation methods can benefit greatly if the influence of

the illuminants can be localized. For this, segmentation methods based on illumination can be

used.
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1.2.2 Segmentation Based on Illumination

The second problem explored in this thesis is the problem of scene segmentation based on il-

lumination. The goal of these methods is to detect areas in the input scene that are illuminated

by one source of illumination. This allows for the use of global illumination estimation meth-

ods on those regions. The use of global estimation is beneficial as those methods are usually

simpler that produce only one illumination estimation for the input. This way, multi-illuminant

estimation can be separated into two simpler steps, rather than having to directly solve the more

complex problem of producing the per-pixel estimation map for the input scene.

1.3 Scientific Contributions

This thesis presents two main contributions. First, a novel method for illumination segmentation

in scenes where one illuminant is known is presented. Then, that segmentation method is incor-

porated into a framework that is capable of accurately predicting the per-pixel illumination for

realworld scenes. This is achieved by combining the segmentation model with well researched

single-illumination estimation models. Furthermore, it is shown that this type of framework can

be trained end-to-end, and that it then exceeds the performance of individually trained models.

The second contribution is a method capable of direct estimation of the illumination. This

method is completely agnostic to the number of illuminants. The method is trained using a novel

autoencoder procedure, using a novel triplet loss. This type of training is designed to make the

model learn the best assumptions about the reflectance properties of common realworld scenes.

Finally, methods are compared to other state-of-the-art models, in both segmentation and

estimation tasks. A statistical analysis is conducted and conclusions are drawn about the per-

formances and tradeoff of the proposed models.

1.4 Thesis Structure

This thesis is structured as followed. First, an overview of theoretical background about image

formation, color, color constancy and deep learning is given. In Chapter 3, an overview of

current research into illumination estimation for single and multi illuminant scenes is given, as

well as research about image segmentation based on illumination. Then, in Chapter 4, two new

multi-illuminant datasets used in this thesis are described. The main scientific contributions are

presented in chapter 5, while Chapter 6 presents the conclusion of the thesis. Chapter 7 presents

the list of publications that describe in full the main scientific contributions. Finally, a summary

of the author’s contributions in the included publications is given in Chapter 8.

3



Chapter 2

Overview

2.1 Color Constancy

The sense of sight is one of the most important senses possessed by human beings. It allows

us to perceive things in our surroundings, navigate around, avoid potential dangers, recognize

objects and people etc. Furthermore, its mechanisms are not yet fully understood. One such

mechanism is the ability of the Human Visual System (HVS) to adapt to the color of illumi-

nation. This allows humans to perceive the colors of objects independent of the colors of the

illumination that is illumination in many natural scenarios. This property is called color con-

stancy. Even though its mechanisms and scope are still not fully understood, it has long been a

highly studied topics. The first modern experiments date back at least 200 hundred years, with

[3, 4, 5, 6, 7, 8] being just a few examples of such experiments. More recently, numerous exper-

iments testing various aspects of color constancy in humans have been conducted. They usually

focus on six main questions. How is color constancy physically possible? What do observers

judge? What experimental methods are suitable? What physical scene properties are relevant?

What neural mechanisms support color constancy? Are natural scenes and surfaces special?

This shows the importance of color constancy and the research done in trying to understand its

underlying mechanisms. However, color constancy is not only related to the HVS. It is also

closely related to digital cameras and the field of image processing. There, the goal is to mimic

the human ability of color constancy to produce images that look natural.

However, to understand aspects of color constancy, it is important to first understand the

spectral properties of light and creation of perceived images. Any scene can be understood as a

collection of materials, each with their on spectral reflectivity function R, illuminated by some

incoming light with the spectral function I. The function R defines the amount of incoming light

that will be reflected by the material for each wavelength. Spectral function I defines the power

for each wavelength. The product of those two functions defines the spectral characteristics of a

scene. This energy in turn excites the receptors in the human eyes and produces a reaction that
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Figure 2.1: Spectral response of the human cone cells defining the LMS color space.

is translated in the visual cortex of the human brain, producing the image we see. This can be

described using the following mathematical equation:

pc(x,y) = mb(x,y)
∫

ω

I(x,y,λ )R(x,y,λ )Sc(λ )dλ +mc(x,y)
∫

ω

I(x,y,λ )Sc(λ )dλ , (2.1)

where ω is the visible spectrum, pc is the final response per channel c, and mb and mc are

scale factors. These factors model the amount of body and specular reflectance of the light

reflected from coordinates (x,y), thus accounting for different types of surfaces. Furthermore,

Sc describes the spectral sensitivity of the sensor that takes in the light, for each of the channels

c it contains. In the case of the HVS, the sensors are the cone cells located on the retina of the

human eye. Research [9] has proved that they can further be separated into three types, S-, M-,

and L-cones, responsible for the short, medium, and long wavelengths respectively. Thus, they

represent the different three channels c in the trichromatic human visual system. These spectral

characteristics are shown in Figure 2.1. This equation can be simplified by introducing the

Lambertian assumption, i.e., that the specular reflectance can be ignored. With this assumption,

the model for each part of the scene is as follows:

pc(x,y) = m(x,y)
∫

ω

I(x,y,λ )R(x,y,λ )Sc(λ )dλ , (2.2)

where m(x,y) is Lambertian shading [10].

However, as we can see from both Equations (2.1) and (2.2), the excitation of the sensor is

related to the product of spectral functions I and R. This poses a problem, as it is impossible
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to know exactly which combination of those functions produced the observed function at the

sensor. Furthermore, since a whole continuous spectral functions is compressed down into

three discrete responses, different functions will be mapped to the same three responses. This

is known as a metameric match. It indicates that the task of color constancy is ill-posed. These

issues show that exact color constancy is a very difficult problem. Furthermore, there exists

some research showing that color constancy does not work well under highly chromatic light

scenarios [11, 12, 13, 14]. Nevertheless, a large corpus of research still indicates that under

normal conditions, the HVS is capable of discerning the colors of objects invariant to the color

of illumination. Thus, it remains a highly studied topic in both perceptional and behavioral

science, with some experiments in this area have been published in [15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29].

On the other hand, the similar problems arise when a scene is captured through a camera.

In this case, the sensor that is capturing the light is not the human eye, but the camera sensor.

While it does have different spectral characteristics than the human eye, the Equations (2.1)

and (2.2) are still applicable. This means that all the previously mentioned problems still hold

true. However, unlike the HVS, digital cameras have to rely on image processing to deter-

mine the color of illumination. This type of color constancy is known as computational color

constancy. It can be best described in two steps. The first step is the estimation of illumina-

tion. Second is color correction (also commonly referred to as white balancing). The goal of

computational color constancy is to create an image that looks like it was taken under white

(canonical) light, thus eliminating the influence of illumination. This is the underlying problem

that will be addressed in this dissertation. A broader overview of the problem definition, per-

formance metrics, currently implemented methods, image datasets and proposed methods will

be described in other chapters. However, the following sections will give a general definition of

the underlying physical properties of lights and scenes, as well as assumptions that are made on

those properties.

2.1.1 Image Creation and Color Spaces

In the last section, the mechanism for creating an image based on the three types of cone cells

was described in Equation (2.1). However, the choice of Sc was not strictly defined. The usage

of Long, Medium and Short spectral response functions defines the appearance of color in the

LMS color space. This is a color space that represents the response of the three types of cones

of the human eye. The term color space refers to the mapping of the physically produced colors

from mixed lights, pigments, surfaces etc. to a numerical representation of the color sensation

that is exciting the receptors in the human eyes. In addition to the LMS color space, many other

color spaces have been used to quantify colors.

One well-known space is the CIE XYZ color space. It is often utilized as a standard refer-
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Figure 2.2: Example of two RGB color spaces over the CIE1931 xy plane. The RGB color spaces are
additive, and all colors are created by some combination of the three primaries (vertices of the triangles).
The xy plane encompasses both of the RGB color spaces.

ence color space. It is device-invariant and encompasses all colors that are visible to a human

with average eyesight. Similarly to the LMS color space, it is defined by three color matching

functions. Furthermore, it is possible to convert colors from the LMS color space to XYZ space,

and back, using only linear matrix transformations. This is true of many other color spaces, such

as the CIE RGB, sRGB, LUV, Lab and many others. A prominent example of such conversion

is shown in Equation (2.3), which defines the Hunt-Pointer-Estevez matrix [30] for converting

from LMS to XYZ color space.
X

Y

Z

=


1.91020 −1.11212 0.20191

0.37095 0.62905 0

0 0 1.00000




L

M

S

 (2.3)

In some cases, the resulting conversion will not produce viable colors, as different color spaces

can represent only certain colors. This can best be seen in Figure 2.2.

More recently, with the advent of the internet and the prevailing usage of computers, there
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was a need for a standardized color space for displaying images. This was done by creating the

sRGB color space. It defines the standard color space for the internet. Moreover, it is possible

to convert sRGB space to a XYZ space using linear transformation. This allows us to display

all of our images in this space for easier visualization of the results.

2.1.2 Chromatic Adaptation

Chromatic adaptation is the ability of the HVS to adapt to the changing color of illumination.

It allows us to retain the appearance of the colors of objects invariant to the changes in the

illumination. This means that to us, a yellow banana will look yellow under both sunlight and a

fluorescent office light. However, as stated earlier, this mechanism is not fully understood. For

digital cameras, which have to produce images similar to those produced by human eyes, this

is a hard problem. There, the process of removing the influence of illumination is sometimes

referred to as white balancing. To achieve this, an often used method in digital cameras is the

von Kries [21] coefficient rule. It assumes that color responses of each cone can be individually

manipulated. This means that a diagonal matrix can be used to adapt the tristimulus values of

each pixel. Von Kries transformation is described in the following equation:
cL

cM

cS

=


dL 0 0

0 dM 0

0 0 dS




uL

uM

uS

 , (2.4)

where dL,dM,dL are the coefficients for the transformation from one adaptation state to another.

They are calculated as a ratio between the LMS values of the illumination in the second adapta-

tion state and the first adaptation state. This means that the pixel values recorded by the camera

sensor have to first be transferred to the LMS space, usually through the XYZ space. How-

ever, this usually does not present a problem as all of those operations are linear and reversible.

Thus, this can be expressed as just a series of matrix multiplications. The most common type of

transformation used in digital cameras is the adaptation to the canonical illuminant. This means

that the goal is to convert the image to look as though it were taken under white light. It is

done by setting the second adaptation state to white light and the first to the original illuminant.

However, this presents a problem. The value of the original illuminant is often unknown. That

is why this is only one step in performing the task of computational color constancy.
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Figure 2.3: Creation of the color of a pixel as seen by a camera sensor.

2.1.3 Illumination Estimation

When a scene is captured by a camera sensor, the value of each pixel is equal to the amount

of electric current produced by a sensor element. Then this current is converted to a value for

either red, green, or blue component of a pixel. However, this RGB value is a product of all the

factors described in Equation (2.1). Figure 2.3 shows the whole process of how a pixel value is

created. This means that if the illumination I and reflectivity R are both unknown, then there is

not enough information from the RGB values to reconstruct either of those functions. That is

why the problem of illumination estimation is ill-posed.

One way to solve this problem is to incorporate some surface, whose reflectivity spectral

distribution R is known, into the scene. While this is done in professional settings, where

the exact illumination value is demanded, it is not a generally acceptable solution for most

scenarios. However, if some assumptions are made, it is possible to estimate the illumination

value approximately. This is usually done by assuming some property of the whole scene or of

some objects in the scene. Initially, those assumptions were handcrafted, but recently, more and

more methods use some sort of learning-based methods to learn the best set of assumptions.

One common way to do this is by using deep neural networks, that are described in detail in

Section 2.2 Furthermore, there is no one assumption that will work in all scenarios, which gave

rise to many methods for the task of illuminant estimation. Another common assumption made

was to assume the presence of only one illumination in the scene. These types of methods

are called global illumination estimation methods. However, this assumption can be broken in

many realworld scenes, as can be seen in Figure 2.4. Common examples of such scenes are an

outdoor scene with sunlight and skylight illuminating different parts of the scene, or an indoor

scene with artificial illumination and sunlight coming in through a window. A more detailed

overview of current methods for illumination estimation is presented in Chapter 3

Once the illumination vector has been estimated, the process of white balancing can take

place as described in Section 2.1.2. These two steps are necessary for any computational color

constancy method. However, an error in the illumination estimation part will have a negative

effect on the white balanced image. This creates two main problems. First, the image will look
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Figure 2.4: An outdoor daytime, nighttime, and indoor realworld scene where the single illuminant
assumption is broken.

unnatural, which is a problem for camera manufacturers and users. Second, it has been shown

that incorrect white balancing of an image can produce errors in downstream image processing

and analysis tasks [2]. That is why it is important to estimate the illumination as accurately as

possible for each part of the scene.

2.2 Deep Learning

This section summarizes the main ideas and techniques used in deep learning. It also shows

some of the models that are used for image processing, that will be used further on in the

dissertation.

Deep learning can be described as a collection of mathematical and computer science tools

and techniques, which are used for solving complex computer science problems. The main

idea is that some unknown function that maps some input to an output, can be approximated

using a learning-based model, given enough input and output pairs. Such an approach is called

supervised learning. The idea behind learning-based algorithms has been proposed a long time

ago, with the main drive being the simulation of connected neurons in the human brain. This

gave rise to the perceptron [31], a machine learning algorithm for binary classification. With

further combination of multiple perceptrons, fully connected networks were created. And as

the computational power of computers increased, more and more layers were added to these

networks, which allowed them to represent functions of greater and greater complexity.

However, these types of fully connected networks did little to include any sort of induction

bias about the data they were representing. They proved to be less effective at specific appli-

cations, such as time series or image processing. For these tasks, specialized networks such as

recurrent networks, transformers, and convolutional networks were created.

In the following sections, the underlying mechanisms of deep learning and training of such

algorithms will be described. Moreover, a broader description of fully connected, convolutional

and transformer networks will be provided. Finally, common tasks set before deep learning

models, that these networks perform, will be presented.
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Figure 2.5: A schema of an artificial neuron. f represents the activation function, x are the inputs, w are
the weights and y is the nonlinearity applied to the weighted sum z.

2.2.1 Artificial Neuron

An artificial neuron is a main building block of all modern artificial neural networks. It is

modeled to mimic a real neuron that is found in the brain. A simplification of a biological

neuron is composed of a body, which has small tendrils known as dendrites, and one long tail

known as an axon. Dendrites are used to connect to axons of other neurons, and they conduct

electric current from the previous neurons. When a sufficient charge is reached, the neuron is

activated and discharges thorough its axon, which can in turn be connected to other neurons.

The idea behind an artificial neuron is similar. It has input connections, and one output.

This output is passed through an activation function f . Furthermore, each of the inputs contains

a weight that multiplies the value coming in at that input. The output is computed as a sum of

all the weighted inputs. A schema of the artificial neuron can be seen in Figure 2.5. Thus, the

operation of one neuron is described in Equation 2.5.

y = f (xTw+w0) , (2.5)

where y is the output, x is the input, w are the weights, f is the activation function, and w0 is the

bias of the neuron. Equation 2.5 shows that a neuron is fairly simple, and it does nothing more

than a dot product of the input and the weights, and the application of the activation function.

2.2.2 Fully Connected Networks

Fully connected networks, which can also be called multi layer perceptrons (MLP), are some

of the first invented deep neural networks. They consist of an input layer, hidden layers, and

an output layer. Each hidden layer can be described as performing some function fh, and the

goal of the network is to approximate some function f . Thus, the whole network is performing

a composition of all the functions of hidden layers. Finally, then the approximation of the

function f can be described as f ∗ = fo( fh( fh−1 . . . f1( fi(x)))). Each of these hidden layers is
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Figure 2.6: Schema of a fully connected feedforward neural network with two hidden layers and an
output layer with two components.

Figure 2.7: Three different nonlinearity functions commonly used in deep learning.

composed of neurons, which are connected to all the neurons in the previous layer, and their

output is passed to all neurons in the next layer. This is where the name fully connected comes

from. The output of each neuron is passed through some nonlinear function. A schema of a

fully connected network is shown in Figure 2.6.

An important factor in any deep neural network is the activation function of the neurons. If

the activation function is linear, the whole deep network can be viewed as just having one layer.

This comes from the fact that each neuron then does just a linear combination of the inputs, and a

linear combination of linear combinations is again a linear combination. To fix this, a nonlinear

function must be used as the activation of the neurons in the hidden layers. There exists a wide

variety of nonlinear functions that can be chosen. However, to assure adequate performance,

these functions need to have a few key features. One of the most important feature is that

they should be easy to compute. Furthermore, the same should hold true for their gradients.

Some common nonlinear functions used are the rectified linear unit (ReLU), sigmoid, tanh, etc.

Graphs of these functions are shown in Figure 2.7.
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2.2.3 Convolutional Networks

The previous section described one of the fundamental type of network, the fully connected

network (FC). They treat every input as separate. However, that is why they are not ideally

suited for image processing.

Consider an example of an image containing a dog. For a fully connected network, each

pixel is considered a separate input with its weights, and different contributions to the output.

This means that there is a difference to the network if the dog is located in the upper right or the

lower left part of the image. However, if the goal is just to tell whether this is an image of a dog,

its position should not play any part in that decision. Thus, fully connected neural networks

are not invariant to translation. To solve this issue, a strong prior about translation should be

introduced. This is how convolutional neural networks (CNN) [32] were created.

Convolutional neural networks are a specialized type of network that work with a structured

grid of data. Such grids can either be 1-D (time series), 2-D (images) or even 3-D (CT scans).

The main idea behind CNNs is the use of a small kernel sliding over input to create a transla-

tion equivariant feature map. The kernel contains a set of learnable weights and performs the

convolution* operation with the elements of the structured grid. The convolution operation as it

is used in CNNs for image processing can be described as:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n) , (2.6)

where K is the kernel with learnable parameters, I is the 2-D grid of pixels, m,n are the posi-

tions in the kernel, and i, j are positions in the image. There are three main benefits of using

convolution: sparse interactions, parameter sharing and equivariant representations.

Sparse interactions feature means that not every input unit has an interaction with the output

unit, unlike in FC networks. This is important as the image can have several millions of pixels,

but important features can be discovered using kernels of much smaller size. This can drastically

improve computational time. However, this does not mean necessarily mean that the kernel

interacts only with this small number of parameters. By adding more layers to the CNN, the

effective receptive field of a kernel increases, as each deeper layer processes the information

from higher layers, which contain information about greater are in the original image.

The second feature of CNNs is parameter sharing. It refers to the usage of the same param-

eters for more one computation in the model. In the case of FC networks, each parameter of the

weight matrix is used only once. However, in CNNs each kernel is moving across the image,

and for each position i, j it performs the convolution operation (Equation (2.6)). This, combined

with sparse interactions, decreases the number of parameters of CNN drastically compared to

*In fact, it performs the cross-correlation operation, but since the parameters are learned, their place is not
relevant, as long as it is consistent.
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Figure 2.8: Example of a classic 2-D convolutional layer with convolutions, nonlinear activation and a
max pooling layer. Both kernels shown are of size 2×2 and with stride 1×1.

FC networks.

Finally, the parameter sharing and sparse interactions give CNNs the additional property of

equivariance to translation. Equivariance of a function means that if the input to the function

changes in some way, the output changes in the same way. In case of translational equivariance,

it means that if the input is translated by n pixels, then the output will also be shifted by n pixels.

In the example with the picture of a dog from the beginning of this section, if the dog is moved

from top right to bottom left, the output of the CNN that detects the dog will move from top

right to bottom left as well.

A typical CNN is usually composed of a set of layers stacked on top of one another. A CNN

layer is usually composed of three main operations. First, several kernels perform convolution

in parallel to create a set of linear activations. Then, those activations are passed through a

nonlinear activation function like the ones shown in Figure 2.7. Finally, a pooling function is

applied to the nonlinear activations. A pooling function transforms the output at the location

i, j with the summary statistics of its neighborhood n,m. One popular type of pooling is max

pooling [33], where the output is replaced by the maximum value of its neighbors. Other types

include average pooling, L2 norm of the neighborhood, weighted average pooling etc. The

pooling operation is also shown in Figure 2.8. One useful feature of pooling layers is that they

reduce the overall dimension of the feature map produced in the first two stages of the layer.

Finally, a typical CNN layers are used as an encoder for the input image. This produces

an encoding that can then later be used for different tasks. One common task is the image

classification, where this encoding is used to determine what object (from a predetermined set)

is present in the image. This can be done using fully connected layers that are added to the end

of the convolutional layers. This is a viable strategy as the usage of pooling layers in the CNN

reduced the overall dimension of the input, making it feasible to employ the more memory

intensive FC layers. Another approach is to utilize fully convolutional networks, which rely

solely on convolutions to generate the final output of the model. This approach can be invariant

to the size of the image and still has a reduced number of parameters compared to the network
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using fully connected layers.

2.2.4 Transformer Networks

Transformer networks [34] are a much newer type of network than CNNs and fully connected

networks. They were created for natural language processing tasks. The main idea behind

transformers is that a series of inputs can be encoded, and then a self-attention (relevance) score

can be assigned between each pair of embedded inputs. Thus, each part of the input data is

weight differently. Another benefit of the self-attention approach, is that the model can access

the whole state at the same time, which greatly improves the parallelization capabilities of

such models when compared to traditional recurrent models. This is essential, for example, in

language translation, where there is a need to access the whole context of the sentence.

A transformer is composed of several layers which, all of which contain multi-head self-

attention modules (MHSA) followed by layer normalization. Layer normalization is then con-

nected to two fully connected (FC) layers with ReLU activation. MHSA and FC layers are

connected through skip connections. The jth,k ∈ 1...K layer performs operations:

The input Pj−1 is passed to the MHSA layer which computes the query qi, key ki and value

vi matrices. This is done using learnable weights Wq,i,Wk,i,Wv,i for each attention head i∈ [0,m].

qi =Wq,iPj−1,ki =Wk,iPj−1,vi =Wv,iPj−1 (2.7)

Ai = so f tmax(qikT
i ) (2.8)

SAi = AiVi (2.9)

The self-attention output are of each head i is concatenated. This creates the final self-

attention matrix SA = [SA0,SA1, . . .SAi, . . . ,SAm]. The self-attention is added to the input Pj−1

X j,sa = Pj−1 +SA j (2.10)

The output X j,sa of the MHSA layer is then normalized by layer normalization. Then, it is

passed through two fully connected layers. The skip connection adds X j,sa to the output of the

fully connected layer X j, f c and then it is again normalized through layer normalization.

X j, f c = ReLU(X j,saWj,1 +b j,1)Wj,2 +b j,2 (2.11)

Xk = X j, f c +X j,sa (2.12)

This creates an encoding for each of the inputs, and the relevance of each one pertaining

to all the others. This encoding can then be used for various purposes. Another benefit of this
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approach is that this encoding can be pretrained on a large corpus of data.

As was mentioned before, transformer models were first introduced in the field of NLP.

Nevertheless, they have achieved great success in the field of computer vision as well. One well-

known example of such a model is the Vision Transformer [35]. It used image patches to create

a sequence out of a single image. However, unlike the CNN models described in Section 2.2.3,

transformer models do not introduce any hard inductive bias about locality. This can be both

helpful in some task, but detrimental in others. Moreover, it has been shown that transformers

can learn to focus on local context in images. However, they do require a considerable corpus of

data to match the performance of CNNs. This, combined with their size, can prove problematic

in some problem where performance is critical and data is not abundant. Nevertheless, they do

remain an active area of research for NLP and CV related problems.

2.2.5 Deep Learning Training

All learning-based models contain parameters that have to be learned based on the data that is

given to the model. This process is known as training. To train a deep learning model, a few

things need to be defined. These include the data, loss function and the optimizer. Finally, an

algorithm for training deep networks that is fast and can propagate the error through the whole

network is needed.

For supervised deep learning, data comes in the form of pairs of input and expected output,

also known as the label. For unsupervised learning, no label is provided. Training of a deep

learning model is done in epochs, where one epoch means one pass through the training data.

However, since it is impractical in terms of memory to pass all the data through a model at the

same time, the data is split into batches. The size of the batches influences the speed of training,

with the smaller batches taking less memory, but more time, while it is the opposite for larger

batches.

Furthermore, a separate set of labeled data is set aside and is used as validation. A model is

considered to generalize the best, when it achieves the minimum error on the validation data. It

is important to note that validation data is never used for training. Finally, when the model has

achieved the desired performance on the validation data, it is used on a new data that has not

been seen anywhere during the training process. This data is called test data. This data is used

to evaluate the final performance of the model.

Loss Function

A loss function L defines the error in the output of the model and the real output. If deep learning

is looked at as function approximation, then the loss function would measure the difference

between the output of the real function and the learned approximation. However, in most cases
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the real function is not known, and only a set of labeled data is available. In that case, loss is

computed between the output and the label for each set in the training data. A choice of a loss

function is important for the task that the neural network is trying to solve.

Another key property that the loss function has to have is a derivative that is different from

zero. This gradient will then point in the direction in which the loss function increases. So, to

minimize the loss, the parameters of the model should be moved in the opposite direction. The

amount of movement applied is calculated using an optimizer.

Optimization

Optimization of the parameters of a deep neural network is done using an optimizer. An op-

timizer can be considered as a way of calculating the amount that the parameters have to be

moved depending on the gradient of the current loss function, and the gradients from the previ-

ous steps. Another value important for training is the learning rate. It multiplies the gradient to

prevent too fast changes in the parameters of the model.

The parameters are then updated using the computed gradient, learning rate and the back-

propagation algorithm. Backpropagation will be explained in the next section. One possible

optimizer would be to calculate the gradient of all the outputs and update the parameters using

these gradients. This type of optimization is called gradient descent. However, the amount of

data can be massive, and in that case, the process would be very slow. That is why a commonly

used alternative is the stochastic gradient descent (SGD) [36]. It samples the output data and

calculates the average on some sampled set. Then this gradient is used to update the parameters.

This way, only a portion of the output data is used randomly.

Stochastic gradient descent does not contain any knowledge about the previous computed

gradients. This means that it is relying solely on the learning rate being set properly to prevent

the parameters of the network from diverging. However, some other optimizers incorporate

the previous gradients into the calculation of the move in each training step. They rely on the

rolling averages of gradient or gradient moments. A few notable examples are AdaGrad [37],

RMSProp [38], and Adam [39] optimizers.

Backpropagation Algorithm

The backpropagation algorithm is the most used method for training feedforward neural net-

works like the ones described in this chapter. The main idea of this algorithm is to compute the

gradients of the loss function in relation to the weights of networks. This can be done either on

a single example, or averaged over multiple examples of the training data. However, unlike di-

rect computation of the gradients for each weight, which would be computationally expensive,

backpropagation does this efficiently.
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The main part of this algorithm is the efficient passing of the gradients from the output

towards the input. Here, the chain rule of calculus plays an important part:

∇xz =
(

∂y
∂x

)T

∇yz (2.13)

∇Xz = ∑
j
(∇XY j)

∂ z
∂Y j

, (2.14)

where Equation (2.13) is the chain rule for vectors and Equation (2.13) is the chain rule for

tensors, and Y = g(X) and z = f (Y). The chain rule can recursively be applied to components

of the network to produce the backpropagation algorithm. Thus, the gradient for any weight w

of the network f , with the activation function, σ can be computed in relation to the inputs x as:

δ
H
j =

∂L
∂yH

j
σ
′(zH

j ) (2.15)

δ
h
j = ∑

k
wh+1

k j δ
h+1
k σ

′(zh
j) , (2.16)

where h is a hidden layer, H is the output layer, k goes over all the neurons in the layer h, and

δ h
j is the gradient of neuron j in the hidden layer h, in relation to the input. zh

j is the output

of the neuron j in the hidden layer h before the activation function has been applied. yH
j is the

output of the j neuron in the output layer. Finally, these two equations allow us to update the

parameters of the network based on the gradient of the loss function.

2.2.6 Deep Learning Application to Computer Vision

The previous sections described various forms of neural network architectures and their training

procedures. However, they were not applied to any concrete problems. This section presents

some of the most common problems in computer vision that can be solved using deep learning

methods. The list is not exhaustive, but presents only the problems related to those that will be

explored in this dissertation.

Image Classification

Image classification is one of the most common usage of neural networks in computer vision.

The goal of such methods is to take an image as input and classify it into one of the predeter-

mined classes. One of the largest datasets in computer vision is the ImageNet dataset, which

is created for the image classification problem. It features more than 14 million images and

corresponding labels are separated into more than 20000 classes. Furthermore, this is one of the

easier computer vision tasks, as the output for one image is just the class score for each class.

18



Overview

Image Estimation

The goal of image estimation is to estimate some value from the given image. It differs from

image classification as there is no predetermined class given to each image. The output of the

network is a continuous scale of numbers, and the goal is to estimate the number as accurately

as possible Computational color constancy is an example of such a problem. There, an input to

the deep learning model is a raw image taken directly from a camera sensor, and the output is

the value of the illumination vector. Another example of estimation is estimating of the age of

a person based on their dental X-rays.

Object Detection

Object detection is a computer vision problem where some set of object have to be located in

the scene. This is usually done using bounding boxes to describe the objects. The output of

such networks is usually a set of zero or more bounding boxes and corresponding class labels

for each of the detected images in the scene. A common example of object detection would be

traffic sign detection done by remotely controlled vehicles.

Image Segmentation

Image segmentation is a task of finding the class label for each pixel in the input image. This

means that each pixel in the scene will correspond to one class. This type of task is, similar to

object detection, often used in autonomous vehicles. There, the goal is to segment out classes

such as roads, traffic signs, pedestrians, other vehicles etc. Furthermore, image segmentation

will be used extensively in the scope of this dissertation. Many realworld scenes contain more

than one illuminant. Thus, it would be useful to be able to segment a given scene based on the

illumination that is illuminating each part.
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Related Work

This chapter describes the state-of-the-art methods used for color constancy. If focuses on two

main types of methods, the single-illuminant and multi-illuminant estimation methods. The

main difference between those types of methods is that single-illuminant methods assume the

existence of only one global illuminant. On the other hand, multi-illuminant methods do not

have this assumption. This means that they have to estimate the illumination vector for each

point in the input scene. Furthermore, a boundary between the illuminants can be detected.

This gives rise to the need of multi-illumination segmentation methods. The following sections

describe first the single illuminant methods, followed by multi illuminant methods. Finally,

current datasets and performance measures for the task of color constancy are described.

3.1 Single Illuminant Methods

3.1.1 Statistics-Based Methods

Statistics-based methods represent some of the first methods used for color constancy. They

use low-level image statistics to impose assumptions on spectral reflectance R. This provides

enough definition to make finding the illumination vector solvable. Most of these methods can

be described using a single framework [40]. Equation (3.1) describes the framework:

(∫ ∥∥∥∥∂ n fc,σ (x)
∂xn

∥∥∥∥
p
dx
) 1

p

= ken,p,σ
c , (3.1)

where ∥ ·∥p is the Minkowski norm of order p, n is the order of the derivative, and x is an image

pixel. Derivatives of the image are defined by applying convolution to the original image with

Gaussian derivative filters with deviation σ .

One basic method which is encapsulated in this framework is the Max-RGB (White-Patch)

method [41]. It assumes that in each image, there is a specular highlight, which is the brightest
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part of the image. The highlight is a direct reflection of the illuminant. This assumption can be

represented as:

∥ fc(x)∥∞ = ec , (3.2)

where the Minkowski norm becomes the max norm when p → ∞. Thus, it is equivalent to

Equation (3.1) when n = 0,σ = 0, p → ∞.

Another often used statistics-based method is the Gray-World [42] method. It assumes that

the average reflectance of any scene is gray. Thus, any deviation from this is caused by the

illumination. This assumption can be expressed by the equation:∫
fc(x)dx = k′ec , (3.3)

This method is a special case of Equation (3.1) with n = 0, p = 1,σ = 0. A small variation

from this method is the Shades-of-Gray [43] algorithm. It is derived by setting n = 0,σ = 0 and

leaving p as a free parameter in Equation (3.1):

(∫
∥ fc(x)∥pdx

) 1
p

= k′ep
c . (3.4)

Finally, the Gray-Edge algorithm [44] is a generalization of the Gray-World assumption.

Where Gray-World assumes that the average reflectance of the whole scene is gray, Gray-Edge

assumes only that some derivative of the image is gray. The name Gray-Edge comes from the

fact that the first derivative of the image is used for edge detection. This algorithm can be

expressed using Equation (3.1) by using p = 0, σ = 0, and by leaving n as a free parameter

which defines the order of the derivative:(∫
∂ n fc(x)

∂ nx
dx
)
= kec , (3.5)

where n is usually set to either 1 or 2.

Furthermore, newer statistics-based methods are still being developed. The benefit of such

methods is that they are usually faster to compute and invariant to the sensor of the camera that

took the image. These two factors make them ideal for implementation in low-power devices,

such as digital cameras. However, because of their simplicity, they do not perform adequately

in more difficult conditions. In [45] authors show that specific types of scenes present a problem

for statistics-based methods. Thus, more complicated methods need to be taken into account.

3.1.2 Physics-Based Methods

One such approach is to try to model the physical properties of illumination and its interaction

with objects. These methods tend to be more complex than statistics based methods. They
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usually rely on the dichromatic reflectance model, which separates the reflectivity into specular

and body reflectances. Here, specular reflections are usually much brighter than their body

counterparts and only reflect the pure color of the illuminant (e.g., mirrors). Max-RGB [41]

method can be considered as the simplest physics-based method. Some other physics based

methods include [46, 47, 48, 49, 50]. However, these methods are usually quite difficult to

compute while not providing much improvement in performance compared to their statistics-

based counterparts.

3.1.3 Learning-Based Methods

Learning-based color constancy methods can roughly be separated into classical machine learn-

ing models and deep learning models. One classical machine learning approach was proposed

in [51]. The authors use exemplar learning to learn surfaces in the train set. Surface represen-

tation is used to determine N nearest neighbors to each surface. These are used to determine

N possible illuminant estimations. The final estimation is obtained using either their mean or

median once outliers have been removed.

Other machine learning methods like [52], [53], [54] use linear models like kernel or sup-

port vector regression. Methods like [55], [56], [57], [58], [59] model the illumination and

reflectance functions as random variables.

Deep learning models for color constancy cover a wide variety of different methods. They

have proven to perform much better than statistics-based methods and simpler machine learning

methods in many categories. However, they are computationally more complex than statistics-

based methods.

One of the first methods that used convolutional deep neural networks for illuminant estima-

tion was proposed in [60]. The authors proposed a small CNN that was composed of only one

convolutional layer with 1×1×240 kernels. This was followed by a max pooling layer with size

8×8 and stride 8. Two fully connected layers with ReLU activation followed the max pooling

layer, and they produced the three channel illumination vector. The network was trained on

image patches to increase the number of training examples. Median pooling was used to create

the final estimation from image patches.

The authors proposed a similar approach based on image patches in [61] However, all the

patches were given to the network to at the same time. This network was fully convolutional.

However, the main contribution was the last layer of the network, which introduced an attention

mechanism to combine image patches. Three channels of the output were the illumination

vector, while the fourth was the attention map. The attention was used to scale the illumination
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estimations for each patch. The scaling was computed using the following formula:

pg = normalize(∑
i

ci p̂i) , (3.6)

where ci is the scaling factor. The scale determines how much the estimation of the patch i con-

tributes to global estimation. pg represents final global estimation, while p̂i is the illumination

estimation of patch i.

The previously shown models were all relatively small compared to many deep learning

models used for other computer vision tasks. There was some research that suggested that the

increase in depth of the network does not benefit estimation accuracy. However, there exist

some color constancy methods that utilize large CNNs. One such approach was presented in

[62]. There, the authors use a large VGG16 [63] network iteratively to achieve state-of-the-

art performance. Furthermore, in [64] authors propose a very deep architecture which uses

residual connections to stabilize training. On the other hand, in [65] propose an ensemble of

two networks. One of these networks provides two hypotheses about the illumination of a given

patch, and the second one chooses the correct hypothesis. In [66] a novel feature extraction

layer is used. This feature extractor disregards the spatial information in the image and focuses

solely on chromaticity. Finally, in [67] the authors propose a two stage method. The first stage

is to classify the type of illumination present in the scene. Then, the second stage chooses an

appropriate model for such classification, and that model produces the illumination estimation.

Another approach to convolutional color constancy was proposed in [68]. Unlike all the

previously described deep learning methods, this method discards spatial information. It fo-

cuses only on the chromaticity log UV histograms of images. The 2-D log UV histogram H

was passed through a convolutional filter F(u,v). This linear activation is passed through the

softmax activation function. This is done to filter out noise and learn the distribution of possible

illuminations. The output is the P(u,v) filtered histogram. The final estimation was done by

simply taking argmaxu,vP(u,v). The log UV color space is then converted back to RGB color

space. To train their model, the authors use a novel loss function:

L = ∑
u,v
(P(u,v)C(u,v,Lu,Lv)) , (3.7)

where P is the filtered histogram and C is the angular distance (see Equation (3.8)). In [69], the

same idea was extended with mapping more than one illuminant value to the same point in the

UV histogram. This was done by wrapping the original histogram around a torus. This reduced

the size of the histogram and improved computation time.
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3.2 Multi-Illuminant Methods

The multi-illuminant estimation problem has been much less studied than single-illuminant

estimation. One reason for this is the lack of a large multi-illuminant dataset. It is difficult to

accurately annotate multi-illuminant images. Numerous methods proposed for this problem are

learning-based. Nevertheless, it is important to note several statistics-based methods have been

proposed in [70], [71], [72], [73]. They usually view segmentation and estimation as separate

tasks that are combined later. The first task of such methods is localization. For this, image

textures are used in [72]. On the other hand, Kmeans is used in [71]. Then, Max-RGB method

is used for estimation. The localization is used to compute the final per-pixel illumination of

the scene.

On the other hand, in [74] the authors propose a white-balancing method for scenes in which

the total number of illuminants is not known. They achieve this by selecting N white-balance

points that are then mapped to ground truth ones. Finally, [75] proposed a method that imitates

the properties of the human eye. They use Adaptive Surround Modulation (ASM) capability

of the human eye to regulate the receptive field of neurons based on contrast. This method

achieves excellent results, especially in single-illuminant estimation conditions.

Some single-illuminant methods described in the previous chapter can be adapted to work

with multi-illuminant scenes. These are [60], [65], [51]. Still, they were primarily designed

for single illuminant estimation tasks. One machine learning method for multi-illuminant es-

timation was proposed in [76]. The method uses Conditional Random Fields to model the

dependency between illumination estimation for patches of the image.

In [77] the authors proposed a convolutional neural network that was a multi-illuminant up-

grade to the method proposed in [60]. The main idea was still to perform illuminant estimation

on image patches. However, median pooling is replaced with a more complex Kernel Density

Estimation (KDE) method. The benefit of this approach is that can detect the presence of an

unknown number of illuminants. Then, the illuminants are grouped, and the final illumination

estimation is computed for the whole scene. Another deep learning approach, described in [78],

used Generative Adversarial Networks (GANs) to estimate illumination. Here, methods such

as Pix2Pix [79] were completely agnostic to the number of illuminants.

In [80], a simple brightness threshold-based method for outdoor images was proposed. Their

method had two stages. The first step was to create a segmentation of the image into sunlit and

shaded regions. This was done using a brightness threshold. Thereafter, one statistics-based

method for single-illuminant estimation (see Section 3.1) was used on the sunlit regions. Final

estimation for the shaded regions was done by adapting the ratio of the red and blue channels.
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3.3 Datasets

Color constancy dataset can, like the methods, be split into single- and multi-illuminant datasets.

There is much more variety of single-illuminant datasets. Moreover, single-illuminant datasets

contain vastly more images than the multi-illuminant ones. The biggest reason for such a dis-

crepancy is the fact that multi-illuminant datasets are much harder to create. In addition to cap-

turing the image and the groundtruth using some calibration object, multi-illuminant datasets

require spatial distribution masks of the illuminants. These masks can be generated automati-

cally in laboratory conditions. However, for realworld images, these masks have to be manu-

ally annotated. This poses a problem for the development of multi-illuminant methods. Most

multi-illuminant methods were either trained on image patches, or were trained on artificially

generated images.

Single illuminant datasets are much more diverse. Some of the most commonly used

datasets are the Gray Ball [81], the ColorChecker [82], NUS8 [83], Cube+ [1], and Intel TAU

[84] datasets. All single illuminant color constancy datasets (except the Gray Ball dataset)

provide raw, unprocessed linear images. These types of images are used most often in color

constancy research.

The ColorChecker uses a Macbeth Color Checker placed in the scene to extract ground truth

illumination. It contains 568 images taken with two Canon DSLR cameras. However, it proved

problematic as many scenes contained multiple sources of illumination. Later, in [85], it was

reprocessed to mitigate some issues. Despite that, it remains an often misused color constancy

dataset [86].

A more modern color constancy dataset was introduced in [1]. It contains 1707 indoor and

outdoor images. It uses a SpyderCube calibration object to acquire ground truth illumination

in the scene. Examples of indoor, outdoor and nighttime images are shown in Figure 3.1. It

contains images taken by only one Canon DSLR camera. This poses a problem as all the

images are captured using only one sensor, with its sensor function S.

The issue with the small number of sensors was addressed in NUS and Intel TAU datasets.

They both contain images taken with multiple camera models and manufacturers. The NUS

dataset incorporates images taken by 8 different cameras. In the Intel TAU dataset, three dif-

ferent cameras were used to take the images. These include two DSLR and one Sony mobile

phone sensor. An example of the images from this dataset can be seen in Figure 3.2. It is the

largest single-illuminant dataset with raw images, containing 7022 images.

As stated earlier, the number of multi-illuminant datasets is much smaller. Moreover, they

contain much fewer images. The first multi-illuminant dataset was proposed in [87]. It contains

67 small images (256 × 384 pixels), divided into two sets. The first set contains laboratory

images. The second set contains outdoor images. They are stored in sRGB color space that
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Figure 3.1: Three different images from the Cube+ dataset. Outdoor, indoor and nighttime scenes are
presented, respectively.

Figure 3.2: Three different images from three different camera sensors from the Intel-Tau dataset.
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Figure 3.3: Laboratory and realworld images with two sources of illumination and the groundtruth
information. a) Dataset proposed in [87] b), c) Dataset proposed in [76]

were only later converted to linear images. This means that these are not real raw images, and

are thus not useful for most color constancy research.

Another similar dataset with laboratory and realworld images is the dataset presented in

[76]. It contains 60 laboratory images and 20 realworld images. The groundtruth masks were

generated automatically. However, this was possible only since both sources of illumination in

the scene were artificial. The groundtruth was automatically by alternately switching off light

sources. However, this is not possible in realworld images. Examples of images from these two

datasets can be found in Figure 3.3.

In [80], the authors mention they use approx. 30 realworld linear images taken by a mobile

phone camera. However, those images are not publicly available. The lack of a large unified

multi-illuminant dataset poses a problem for the creation of larger learning-based multi illumi-

nant methods.

3.4 Performance Metrics

Evaluation of color constancy methods is closely tied to the accuracy of illumination estimation.

For single-illuminant estimation methods, the estimated and groundtruth illumination values are

compared. This means that the comparison is done on a single vector. The most widely used

metric is angular distance. It is computed as:

errang = cos−1
(

er · ep

erep

)
, (3.8)

where · is the dot product, er is the true illuminant and ep the estimated illuminant.

However, in [88], it is shown that this metric can become unstable. That is why, in [88], the

authors proposed a metric called reproduction angular error. It calculates the angular distance

of the correction factor from the canonical light ec = [1,1,1]T . Equation (3.9) shows the way
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this metric is calculated:

errrep = cos−1
(
(er/ep) · ec

(er/ep)
√

3

)
. (3.9)

During training of learning-based models, angular error can be unstable because of the use

of the inverse cosine function, which tends to infinity when the angular distance approaches π .

In [89], the authors propose the loss function described in Equation (3.10):

err = 1−
er · ep

erep
, (3.10)

which simplifies computation and also makes the derivative stable.

Another loss that was recently proposed in [90]. It is more robust regarding different distri-

butions of illumination. It can be computed as:

errrob =

∥∥∥∥ep − egt

egt

∥∥∥∥
2
, (3.11)

where ep is the estimated illuminant and egt is the true illuminant.

The above described loss functions and performance metrics were all proposed for single-

illuminant estimation. However, they can be used in multi-illuminant with multi-illuminant

estimation methods. The most common use of these metrics is to compute the mean value

of the metric for all the estimated illuminants. However, it is important to note that then, the

illumination maps have to be balanced. Otherwise, one of the illuminants will more greatly

influence the final performance metric.

Multi-illuminant segmentation tasks require the definition of a metric related only to seg-

mentation. It does not incorporate any information about the color of the illuminants. For this

purpose, Dice coefficient [91] or Intersection over Union (IoU) metrics can be used. Definitions

of the Dice coefficient and IoU are shown in Equation (3.12):

Dice =
2|TP|

2|TP|+ |FP|+ |FN|

IoU =
A∩B
A∪B

,

(3.12)

where TP, FP, FN are true positive, true negative and false negative values when comparing the

prediction to the groundtruth. | · | represents the cardinality (number of elements) of the set. A

and B are areas in the real and predicted masks that are classified in the same class.

These metrics are reported on the test set, which was not seen during training of learning-

based methods. Furthermore, it is important that the test set is the same for all the methods that

are compared. Once all the results are reported, a statistical analysis is conducted. For color

constancy related task, the most often reported statistics in literature are the mean, median,
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trimean, average of the best 25% and the average of the worst 25% samples. In [92], the

authors show that the usage of the median statistic for illuminant estimation is encouraged, as

the distribution of angular errors is not symmetrical. The worst 25% metric is also important

as it quantifies the robustness of the model, since most of the models produce the mean and

median values that are lower than the human eye can distinguish [93].

29



Chapter 4

Multi-illuminant Dataset

This chapter describes the multi-illuminant dataset that was used to train and test models de-

scribed in this thesis. It was created as a joint effort on development of multi-illuminant es-

timation and segmentation project at the Image Processing Group of the Faculty of Electrical

Engineering and Computing. It contains 2500 images of real-world scenes with two sources of

illumination. The next section describes the dataset in detail.

Furthermore, an artificially created set of images with more than two sources of illumination

was created. It was used to test the performance of proposed methods on images in scenes that

were difficult to capture in real-world conditions. Images from the Cube+ dataset [1] were used

in the creation of this set of images.

4.1 Two Illuminants Dataset

In this section, a large dataset with real-world images with two sources of illumination is de-

scribed. The dataset contains over 2500 different images. The images were taken using 5

different cameras. These were: Canon 5D, Canon 550D, Motorola one fusion+, Sony α300,

and Panasonic FZ1000. The dataset contains approximately equal number of images taken by

each camera.

Additionally, images can be separated based on the type of illumination. There are three

different types of images: indoor images, outdoor daytime, and outdoor nighttime. They are

each characterized by different illuminations sources. Outdoor daytime images are illuminated

by sunlight and skylight, taken at different times during the day. Outdoor nighttime images con-

tain mostly artificial LED and sodium vapor lights. Finally, indoor images contain the widest

variety of illuminants. They include outdoor sunlight, LEDs, fluorescent lights, etc. The illu-

mination distributions by camera type and scene type are shown in Figures 4.1a and 4.1b.

All the images are GDPR-compliant. This is done by putting a black box over privacy-

violating areas. The illumination was extracted from each image using SpyderCube calibration
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(a) (b)

Figure 4.1: Illumination distributions in the two-illuminant dataset. (a) The distribution by camera. (b)
The distribution by type of scene.

objects that were placed in the scene. Additionally, a binary segmentation mask was manually

annotated. The mask segment the image into 2 regions based on which illuminant of the two

is dominant. Thus, each of the regions is, in fact, a scene illuminated by only one illuminant.

The dataset has a diverse set of scenes that were taken from three different countries: Croatia,

Slovenia, and Italy. Images were taken during all four seasons of the year.

Each scene contains two illuminants: the dominant illumination and the ambient illumina-

tion. For example, in a daytime scene, the sun is the dominant illuminant the ambient illuminant

is the sky. To extract the illumination vectors for the scene, SpyderCube calibration objects were

placed at various point in the scene. Two examples of scenes, per-pixel ground truth illumina-

tion vectors and marked SpyderCube calibration objects are shown in Figure 4.2.

Figure 4.2: Example of two scenes and corresponding per-pixel illumination vectors. SpyderCube cal-
ibration objects are highlighted by red and blue squares, for ambient and dominant illuminants, respec-
tively.
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Each image in the dataset contains three or four SpyderCube calibration objects. One Spy-

derCube object was placed in the region illuminated by the dominant illuminant. The rest were

placed in the regions illuminated by the ambient illuminant. More calibration objects are placed

in the regions with the ambient illuminant because the ambient illumination can vary greatly

through the scene. This is not the case with the dominant illuminant. To determine which im-

ages were illuminated by only two sources, the values extracted from the calibration objects

for the ambient regions were compared. If the angular distance between the extracted vectors

was higher than 3°, the illumination was considered nonuniform. This was done because, in

[94, 95], the authors show that the human eye is sensitive to angular changes in illumination

that exceed 2°-3°. This was the case for 20% of images. Therefore, these images were not

included in the dataset.

The segmentation masks were obtained manually, similar to the procedure described in [87].

Masks were difficult to produce, as it was necessary to accurately annotate regions where illumi-

nants were different. To minimize errors, the annotations were done by one person and another

then checked all the annotated masks. This procedure was repeated until all the masks were

satisfyingly annotated. However, since all the images contained only ambient and dominant

illuminants, the amount of illuminant mixing in the scenes was minimal. Thus, the illumination

masks could be approximated by hard binary masks. Without this property, manual annotation

would not have been possible. However, this means that there still exists some error in the

transitory areas between illumination regions.

4.2 Three Illuminants Artificial Dataset

In the previous section, real-world images with two sources of illumination were described.

However, to test the performance of models that work with more than two illuminations, a

dataset with at least three sources of illumination is needed. Thus, a dataset of artificially

illuminated scenes is presented in this section.

The images with three sources of illumination were created artificially, as the process of

gathering and annotating such images would be difficult. Furthermore, even if a number of

such images could be collected, they would have to be taken in very specific conditions. This

would limit the number of images well below the needed number for training of deep learning

models.

The artificially illuminated images were created by taking canonically illuminated images

from the Cube+ [1]. They were then illuminated with new illuminants using the von Kries

model. The segmentation masks for the creation of the artificial illumination were generated by

combining random linear segments. This creates a complex enough mask to be representative

of real-world scenarios. Further experimentation using simpler masks was conducted There,
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the regions were separated by straight lines, or by coloring random patches. However, those

but those proved to be less representative of real-world scenes. Figure 4.3 shows examples of

artificially relighted images.

Figure 4.3: Example of scenes that were artificially illuminated by three illuminants.

These images were used to train models capable of estimating more than two illuminants

per scene. They were also used for testing. However, models that were trained on such images

were also tested on real-world images from the two illuminant dataset described in Section 4.1.

This was done so that generalization performance of the trained models could be tested.
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The Main Scientific Contributions of the
Thesis

The main scientific contributions of this thesis are as follows:

1. A method for illumination estimation error detection based on a transformer architecture

Pub1

2. Method based on deep learning illumination encoding and detection for illuminant-based

segmentation in multi-illuminant scenes with known illuminants Pub2

3. Deep learning-based method and corresponding training procedure based on autoencoder

network for per-pixel multi-illuminant estimation in scenes with unknown number of il-

luminants Pub3

4. Deep learning framework for simultaneous illumination-based segmentation and multi-

illuminant estimation for scenes with two sources of illumination Pub4

5.1 Transformer-Based Illumination Estimation Error Detec-

tion

Vision Transformers [35] have become a popular tool alongside convolutional neural networks

for computer vision tasks. One such use case is the image segmentation tasks. First developed

for segmentation of medical images [96], they can be repurposed, with some modifications,

for other tasks. Thus, in Pub1 a method based on that transformer architecture was proposed

to detect regions where the image was incorrectly white balanced. These images can easily be

created by applying a global correction to scenes with more than one source of illumination. The

method is based on overlapping image patches, which are then separated into smaller patches.

These smaller patches are encoded using an encoding matrix and feed to the transformer, where

the multiple layers of multi head self attention mechanism is used to transform those encodings
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into the final prediction for each patch. The final segmentation is created by taking the smaller

middle patches, and arranging them back into the image.

The method achieves state-of-the-art results, outperforming simpler models, and achieving

comparable results to those produced by much more complex models. Furthermore, visual

comparison of results shows that unlike simpler models, which rely heavily on brightness, the

proposed model incorporates both brightness and color to create a more accurate segmentation.

5.2 Deep Learning Illumination-Based Segmentation

Illumination segmentation tasks are important because they allow for localization of the in-

fluence of different illuminants. In this section, the proposed deep learning-based method for

illumination-based segmentation is presented. The method relies on the knowledge of at least

n−1 illuminant values in scenes with n sources of illumination. However, it is shown that this

isn’t too restrictive of an assumption because it can be shown that global illumination estimation

methods are good at accurately estimating one illuminant in the scene. The proposed method

consists of two main parts. The first part performs the encoding of the illumination based on

the original input image. It was shown that the best encoding is to produce an estimation of the

illumination for each pixel. However, this encoding is error-prone and is not suitable for use

as is. Thus, this encoding, alongside the original image and the dominant illuminant, are fed

to another network which produces the final segmentation mask of the influence of that illumi-

nant. Furthermore, an iterative approach is proposed to segment images with more than two

illuminants.

The experimental results demonstrate that this method achieves state-of-the-art results on

multi-illumination segmentation tasks. Furthermore, it is shown that if the dominant illuminant

is first estimated instead of provided as an input, the performance does not decrease. This proves

that the assumption about accurately estimating the dominant illuminant holds.

5.3 Autoencoder Based Training for Illumination Estimation

The main problem of color constancy is the fact that illumination estimation is an under-defined

problem. This means that some sort of assumption has to be made about the surfaces and scenes

to create an estimation. However, deep learning has proven to be a very efficient at producing

implicit assumptions about the problem that is being solved. For this reason, an autoencoder

type method was proposed, whose main goal was to recreate the input, but by first separating

it into a per-pixel map of illumination and the canonically illuminated image. By doing this,

the encoder network is forced to learn the best encoding to produce the canonically illuminated

image. Furthermore, a new tri-component loss function is proposed, where mean squared error
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is calculated for all three outputs (illumination estimation, canonical image, and the reconstruc-

tion). Another regularization term is used to keep the output of the illumination estimation map

smooth. This regularization is based on the Laplacian filter of size n, which is used to find the

discrete second derivative of the image. Finally, a K-means clustering algorithms is applied to

the per-pixel estimation mask to produce the segmentation based on the illumination.

When compared to the other state-of-the-art models, the proposed model achieves better

results, while also being completely independent of the number of illuminants. Furthermore, it

is shown that the autoencoder model has the best generalization properties out of all the tested

models. This was tested by training the model on artificial images with three illuminants and

tested on real-world images with two or one illuminants.

5.4 Framework for Multi-Illumination Estimation and Seg-

mentation

Previous sections describe methods for segmentation and estimation in scenes with multiple

sources of illumination. In this section, a framework encompassing both of these tasks is pre-

sented, for the scenes with a known number of illuminants The number of illuminants must be

known before training. Here, the number of illuminants is set to two, as most realworld scenes

are illuminated by two sources (i.e., indoor scenes with daylight and artificial illumination, out-

door scenes with sunlight and skylight, early nighttime scenes with artificial illuminants and

skylight). The framework is based on the idea that global illuminant estimation methods can

produce a good estimate of the dominant illuminant in the scene. This is followed by a seg-

mentation model that can localize the influence of the dominant illuminant to some regions of

the scene. Finally, two estimation models are used to produce estimations for the areas with

the dominant illuminant and the secondary illuminant. These components are first trained sep-

arately and then trained jointly.

The framework achieves state-of-the-art results for both image segmentation and estimation

tasks. Furthermore, it achieves results comparable to other state-of-the-art single illumination

models on single illuminant datasets, even though it was never trained on those. Finally, the

results indicate that the joint training of the framework greatly increases the performance of the

framework.
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Conclusion and Future Work

6.1 The Main Conclusions of the Thesis

The conclusions of the thesis can be separated into two parts, for the illumination estimation

and segmentation. Firstly, the discussion about the image segmentation models based on the

illumination was conducted. Then, models and techniques for multi-illuminant estimation were

presented. These are both challenging problems that cannot be solved explicitly because they

are severely under-defined. For that reason, models and methods for approximately solving

these problems in various conditions are presented as the main scientific contributions of this

thesis. Each of these contributions has its own conclusion. However, all of these form a whole

in the problem space of multi-illuminant color constancy methods.

First, the conclusions about the scene segmentation based on illumination are presented. As

a part of the thesis, two new segmentation models were presented. First is capable of detecting

regions where the white balancing was not done correctly. This model is based on the vision

transformer architecture. It achieves state-of-the-art performance on the two-illuminant dataset,

while having at least 10 times fewer parameters than other tested models that achieve compa-

rable results. Then, a method capable of segmenting scenes into regions illuminated only by a

single source of illumination. It requires that all but one illuminant are known in the image. The

method is composed of two deep convolutional neural networks which are employed to solve

two tasks. The first task is to produce an encoding of the illumination from the scene, while the

second model is responsible for creating the final segmentation mask based on the encoding, the

known illuminant and the scene. This model outperforms all other state-of-the-art segmentation

models, while having a reasonable number of parameters. Furthermore, it is shown that global

illuminant estimation methods are good at estimating one illuminant in the scene accurately

enough so that the real-world performance of the model is not limited by the need to know the

illuminants.

By presenting these two illumination-based segmentation models, the problem of multi-
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illumination estimation is simplified. These models create regions where only one illuminant

is present. Now, more researched and accurate single illumination estimation models can be

applied to these segmented regions. This approach was also presented as part of the contribu-

tions of this thesis in the form of a framework for simultaneous estimation and segmentation.

The framework is based on the idea that, first, global illumination can be estimated using sin-

gle illuminant models. Then, using the above presented segmentation models, regions with

only one source of illumination are acquired. Finally, single illumination estimation models

are applied to those regions to produce illuminant estimations, which are then combined using

the segmentation mask into the final per-pixel estimation of the scene. This type of approach

produces the best results on the two-illuminant dataset out of all the tested models, by a large

margin. Furthermore, it achieves comparable results to other state-of-the-art models on single

illuminant images, even though it was never trained on those datasets. However, one drawback

of this model is the need to know the number of illuminants at the start of training. On the other

hand, most models are still limited by the datasets in the number of illuminants they can learn

to estimate.

Finally, a direct deep learning-based per-pixel estimation model was presented. It is based

on an autoencoder network which is trained to learn to reproduce the canonically illuminated

image and the per-pixel map of illumination of the scene. A novel tri-component loss function

with smoothness constraint is used to train such a model to produce accurate reconstructions

and estimations. This model again shows excellent generalization properties because it can

adapt to estimating any number of illuminants when trained on artificial images with more than

two sources of illumination.

Thus, it can be concluded that the problem of multi-illumination estimation is possible and

has been implemented a part of this thesis. This can be done either directly or by using segmen-

tation and single illuminant estimation as separate steps. Furthermore, visual comparison of

the results also shows the clear benefits of using multi-illumination estimation models in multi-

illuminant scenes. However, benefits can also be seen in images from single illuminant datasets,

where some images can be illuminated by two sources of illumination accidentally. Finally, the

use of multi-illumination methods in single illuminant images produces visually pleasing im-

ages in most scenarios, which shows the good generalization properties of the proposed models.

6.2 Future Work

Even though reliable methods based on deep learning have been presented in this thesis, there is

still much research that can be done in the field of multi-illuminant estimation and segmentation.

These can best be summarized in three research directions. First is the need for a large dataset

with more than two sources of illumination. However, the creation of such a dataset is limited
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by the number of such realworld scenes, thus some sort of artificial dataset would need to be

constructed to augment training of deep learning models.

The second area of research is the problem of cross camera deep learning-based methods.

As it stands currently, most deep learning-based methods for color constancy are implicitly

tied to the sensors of the cameras present in the training dataset, and their performance usually

degrades when a new camera sensor is introduced. This poses a big problem for reusability of

such methods. Thus, it is necessary to create either a model or some training strategy for models

that could generalize well over different and unseen camera sensors.

Finally, light sources and reflectances are inherently defined by their spectral characteristics.

Thus, methods that could, in some ways, incorporate or estimate those functions, would be

beneficial to solving the problem of color constancy. For that, models that can estimate the

illumination spectral function for each pixel of the image could be researched. These methods

would then inherently be invariant to the camera sensor, as the output would not be tied to any

camera, but instead to the realworld physical property.
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Author’s contribution to the publications

The results presented in this thesis are based on the research carried out during the period

of 2020-2022 at the University of Zagreb, Faculty of Electrical Engineering and Computing,

Unska 3, HR-10000 Zagreb, Croatia, as a part of an industry financed project.

The thesis includes four publications written in collaboration with coauthors of the pub-

lished papers. The author’s contribution to each paper consists of the experiment idea, software

implementation, performing the required experiments, results analysis and text writing.

[Pub1] In the paper ”Illuminant estimation error detection for outdoor scenes using
transformers” the author has proposed a novel transformer network capable of detecting re-

gions in images where white balancing is incorrect. The method is used on multi-illuminant

images to determine regions where further correction will need to be applied. The benefit of

this approach is the ability to utilize well-researched single illuminant estimation methods on

multi-illuminant images.

[Pub2] In the paper ”Illuminant segmentation for multi-illuminant scenes using latent
illumination encoding” a deep learning-based method for segmenting multi-illuminant scenes

based on known illumination vectors is proposed. The method is tested on realworld images

with two sources of illumination, as well as on artificially generated images with more than

two sources. On all images, this method produces the best results, outperforming even more

complex methods.

[Pub3] In the paper “Autoencoder-based training for multi-illuminant color constancy”
a model for per-pixel estimation of illumination is presented. The model is based on the au-

toencoder network, where the goal is to recreate the raw input image. The evaluation of the

autoencoder training method shows it outperforms other methods and achieves better general-

ization properties independent of the number of illuminants.

[Pub4] In the paper “Framework for Illumination Estimation and Segmentation in
Multi-Illuminant Scenes” the author proposed a framework capable of segmenting and es-

timating per-pixel illumination in scenes with two sources of illumination. The method pro-

41



Author’s contribution to the publications

duces outperforms other state-of-the-art results on the two-illuminant dataset. Additionally, it

achieves comparable results to other state-of-the-art methods on single illuminant dataset, even

though it was not trained on them, demonstrating good generalization properties.
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Abstract—Color constancy is an important property of the
human visual system that allows us to recognize the colors of
objects regardless of the scene illumination. Computational color
constancy is an unavoidable part of all modern camera image
processing pipelines. However, most modern computational color
constancy methods focus on the estimation of only one illuminant
per scene, even though the scene may have multiple illuminations,
such as very common outdoor scenes illuminated by sunlight.
In this work, we address this problem by creating a deep
learning model for image segmentation based on the transformer
architecture, which can identify regions in outdoor scenes where
the global estimation and subsequent color correction of the
image is not accurate. We compare our convolution-free model
to a convolutional model and a more simple baseline model and
achieve excellent results.

I. INTRODUCTION

Color constancy is the ability of the human visual system
(HVS) to perceive colors of objects independent from the color
of the light that is illuminating them. Computational color
constancy refers to the method for eliminating the color of
illumination in the scene (and thus making the scene look as if
it was taken under canonical illumination) and is usually done
as a post-processing step in modern camera image processing
pipelines. However, unlike the HVS, which can perform this
operation very accurately and in real-time, this problem is
very difficult to solve using only the R, G, B values of pixels
captured from the camera sensor. The problem arises because
the captured pixel pc, c ∈ {R,G,B} values are the product of
three factors: spectral reflectance properties R(λ) and colors
of objects, the spectrum of light that illuminates them I(λ),
and the spectral characteristic of the sensor Sc(λ) (Eq. 1). In
most cases, both I(λ) and the R(λ) are not known, which
makes the problem of computational color constancy ill-posed,
as there are infinite combinations of surface reflectance and
illumination that could produce the captured pixel values:

pc(x, y) =

∫
ω

I(x, y, λ)R(x, y, λ)Sc(λ)dλ (1)

This means that to solve the illuminant estimation problem,
additional assumptions have to be made. The most common
assumption is to remove the spatial component and assume
that there is only one global illuminant present in the scene.
However, this is not enough and further assumptions and
constraints have to be set on the reflectance properties of
the scene. These assumptions can vary a lot, resulting in a
wide variety of color constancy methods.

Figure 1. Image showing two different corrections of a raw image obtained
by Nikon D7000 DSLR camera. The first image is corrected for the primary
illuminant which is the sun, which casts the shadow regions to an unnaturally
blue hue. The second image is corrected for the shaded illuminant, which casts
the sunlit region into an orange hue. Values for the primary and secondary
illuminants were obtained from the gray sides of the SpyderCube calibration
object.

In this work, we focus on the first assumption used by
most modern color constancy methods - that the scene is
illuminated by a single global illuminant. This assumption can
often be incorrect in many common scenes, such as outdoor
images taken under direct sunlight. Two illuminants can be
found in those scenes, one in the sunlit regions and one in
the shaded regions, which can appear very different to the
observer. The shaded regions differ from the sunlit regions
because they are illuminated by the ambient illumination of the
sky, where atmospheric diffraction and absorption create a blue
illuminant in comparison to the yellowish illumination of the
sun. However, many global methods can accurately estimate
one of these illuminants while ignoring the other. If such an
estimation is used to correct the image, the resulting image
will have areas where the illumination is almost canonical (i.e.
white, ec = [ 13

1
3
1
3 ]) and other areas where that is not the case,

as can be seen in Figure 1. This difference in illumination
can make the image appear wrong to the observer and can
even fool computer vision methods for classification and object
recognition [2].

In this work, we propose a novel method using a vision
transformer architecture for segmentation of outdoor scene
based on the difference of illumination correction. The proposed
method can accurately segment regions of the scene where the
non-canonical eu illuminant is present, which would allow us
to detect areas in the original image where the illumination
has to be re-estimated. To test and train the proposed model,
we collected and annotated outdoor images with multiple
illuminations which are available online [14]. However, the
work on this new dataset is still in progress and we use only
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a subset of images in all of our experiments. We show that
our method outperforms baseline models and achieves results
that are on par with a much more complex Unet model based
on the VGG16 architecture. We also show that those results
are achieved with only a small number of parameters, which
makes it more feasible to implement in lower-end hardware,
such as digital cameras and smartphones.

In the next section, we will explore the current state of
the art in color constancy and image segmentation, as well
as the ever more prevalent use of transformer architecture for
computer vision tasks. In Section III we provide a detailed
description of the model architecture and and implementation
details, whose code is available online 1. Then, in Section IV
we describe the experiments and results of our models, which
we tested on a set of outdoor multi-illuminant images.

II. RELATED WORK

A. Color Constancy

Color constancy is a field that has been studied for almost
200 hundred years, starting with publications by [26], [25] and
others. However, this work focused on the human perception
of illumination and the physical properties of light. With the
advent of digital cameras, computational color constancy has
become a highly studied topic, as it is one of the first steps in
all modern camera pipelines. For this reason, computational
color constancy has been extensively studied, and most color
constancy methods can be sorted into two categories: statistics
based and learning based methods. Statistics-based methods
exploit low-level statistical properties of images to offset the
fact that color constancy is an ill-posed problem. These methods
assume some property of the reflectance, such as that the mean
color of all pixels in an image is gray [8], or that the brightest
part of the image is the pure reflection of the illuminant [19], or
that the nth derivation of the image is gray [23]. These methods
usually have very low complexity and high performance and are
suitable for implementation on camera hardware. On the other
hand, learning-based methods require training on images to
learn the best assumptions needed to solve the color constancy
problem. Such methods can be used to learn the gamut mapping
of illuminants[11], or some higher-level statistical properties
like the use of exemplar learning to find similar surfaces in
images [15]. With the popularization of convolutional neural
networks (CNNs) for computer vision tasks, many modern
learning based color constancy methods utilize some sort of
deep learning to estimate the illuminant. The first use of CNNs
to solve illuminant estimation was done by [7], which used
a relatively simple CNN. Other methods such as [4] and [5]
utilize only chroma histograms to predict the illumination,
while [13] proposed a fully connected network with simple
attention mechanism for illuminant estimation. [18] simplifies
estimation by first doing light source classification to reduce
the space of illuminant that the model has to predict.

One thing all of the methods described above have in
common is that they assume that there is only one global

1https://github.com/donikv/TIEED

illumination in the scene. However, even in the case of outdoor
scenes, this assumption is often broken (See Section I), which
results in wrong estimation of both or just one illuminant. In
[6], the authors proposed a method that used image patches
and applied a conditional random field to try to offset the
inherent problem of estimating illumination from a small patch.
However, their method had high computational complexity
for predicting the illumination mask. On the other hand, a
simple method based on brightness threshold for outdoor
images presented in [20] is the closest method that can be
used for comparison as, to our knowledge, there aren’t any
other published methods that perform segmentation based
on illumination. However, as with many multi-illuminant
estimation methods, the main problem is the lack of a large
well annotated dataset, as all work that has been done in the
field was tested only on small datasets, each of which provided
only a small number of images. In this work, we tested our
method on a subset of annotated images from our dataset,
which we will make available online as a whole in the future,
while the images used in this work are already available online
[14].

B. Vision Transformer Model

Transformer architecture [24] has gained a lot of traction
in the natural language processing (NLP) space as it provided
State of the Art (SOTA) performance and could be trained on
large corpora of unannotated text. Because of the great success
of transformers in natural language processing, [10] used the
architecture on an image classification task. They achieved
results comparable to the state of the art CNNs while not using
any convolutions. However, the main drawback is that to train
the model, significant time and computational resources were
required, as well as a lot of pretraining on a large number of
images. Recent advances in training optimization for vision
transformers as well as combination with convolutional layers,
such as [22], [9] and [12] made vision transformers easier to
train. Applications of transformer models in computer vision
extended into medical and volumetric image segmentation,
where [16] proposed an architecture for block segmentation of
3D CT images without using any convolutional layers. In this
work, we propose a method that is based on the same idea
proposed in [16], but we adapted the architecture to serve the
need of 2D illumination segmentation for outdoor scenes.

III. MODEL DESCRIPTION

A. Transformer model

Figure 2 shows the architecture of the model, which takes
a block B ∈ Rb×b×c of image I ∈ RH×W×c as input and
outputs the segmentation class for the center patch of the
block. The input block is then split into N = n × n non-
overlapping patches pi ∈ R b

n× b
n×c which are flattened and

stacked to form the input P ∈ RN× b
n

2
c, embedded to match

the dimensions of the transformer model dmodel using an
embedding matrix Wemb ∈ R b

n
2
c×dmodel . Learnable positional

encoding Wpos ∈ R b
n

2
c×dmodel is added to the embedded
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Figure 2. Image showing a simple diagram of the input pipeline to the
transformer model. The transformer model is composed of K MHSA blocks.
The final output for one block of the input image is determined by the
classification of the central patch of the block. Blocks are taken from the input
with overlap, using stride equal to the size of one patch of the block. Thus the
resolution of the segmentation map is only reduced by the size of the patch,
and not by the size of a whole block.

input Pemb to create the final input to the transformer model
Pin = PWemb +Wpos.

The transformer model is composed of several layers which
are in turn composed of multi-head self-attention (MHSA)
followed by layer normalization and two fully-connected layers
with ReLU activation. Skip connections are added between
MHSA and FC layers. The jth, k ∈ 1...K layer of the
transformer performs the following set of operations:

1) The input Pj−1 is passed to the MHSA layer which first
computes the query qi, key ki and value vi matrices
using learnable matrices Wq,i,Wk,i,Wv,i ∈ Rdmodel×dh

(dh = dmodel/m) for each attention head i, where m is
the number of heads in multi-attention.

qi = Wq,iPj−1, ki = Wk,iPj−1, vi = Wv,iPj−1 (2)

Ai = softmax(qik
T
i ) (3)

SAi = AiVi (4)

2) The self-attention output are of each head i is concate-
nated to create the final self-attention matrix SA =
[SA0, . . . SAi, . . . , SAm] which is added to the input
Pj−1

Xj,sa = Pj−1 + SAj (5)

3) The output Xj,sa of the MHSA layer is then feed through
layer normalization and through two fully connected
layers. The output of the MSHA layer Xj,sa is finally
added to the output of the fully connected layers Xj,fc

and passed through another layer normalization.

Xj,fc = ReLU(Xj,saWj,1 + bj,1)Wj,2 + bj,2 (6)

Xk = Xj,fc +Xj,sa (7)

4) The output of the final layer XK is passed through
another fully connected layer with sigmoid activation to
predict the segmentation class YK for the central patch
pdN/2e of block B. The predictions for the other N − 1
patches in the block are discarded.

YK = sigmoid(XKWK + bK)

WK ∈ Rdmodel×1, YK ∈ RN×1
(8)

Figure 3. Example of the input and the groundtruth images in the dataset.

5) The final prediction is done by arranging the block
segmentation predictions into an output mask M ∈
RHn

b ×Wn
b ×1. To compensate for the reduction in size of

the predicted mask we upscale the prediction by a factor
of b

n .
The input to the transformer model was corrected for the
illumination of the sun using the Von Kries model [25] to
simulate the effects of global correction which is correct for
some regions of the image and wrong for others. The goal of
our model is to predict which areas were wrongly estimated
and corrected.

B. Dataset

The lack of a large well annotated multi-illuminant dataset
has slowed down the progress of multi-illuminant estimation
methods. For this reason, we collected and manually annotated
more than 600 images, predominantly of outdoor scenes. This
initial version of the dataset is freely available [14], but is
still considered a work in progress as we are still collecting
and annotating images. We used this initial set of outdoor
images to train our segmentation model for the task of detecting
wrongly corrected regions in images. We split the data into
training, validation, and testing sets, with 310, 77, and 96
images respectively. Figure 3 shows an example of the image
from the dataset and the globally corrected image which fed
into the model.

Prior to giving the corrected images to our model, we
removed underexposed and clipped pixels (as they provide
no additional data) and applied brightness normalization as a
pre-processing step. We didn’t do per-channel normalization
common in other computer vision tasks as it can affect
the colors of the image, thus making the annotation labels
inaccurate. To combat the limited number of training examples
and prevent overfitting, we augmented the data using random
center cropping, rotation from -15 to 15 degrees, and horizontal
and vertical flipping.

C. Experiments and Training

The model was implemented in TensorFlow 2.4.[1] and
trained on an RTX 2080Ti GPU. The training was done over
10000 epochs, where each epoch consisted of a pass through
1/50th of the dataset. Learning rate was set using cosine
annealing warm restart [21] schedule, with range from 1∗10−4

to 1∗10−6 and the weights were optimized by Adam optimizer
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[17] with weight decay of 1 ∗ 10−7. We implemented two
different types of models, a smaller transformer model with
m = 8 multi-attention heads, of depth K = 7 and dmodel = 64,
and a larger model with m = 8 and K = 10 and dmodel = 128.
Both models used the same block size and number of patches
in a block of b = 25 and n = 5. We trained these models
on outdoor images which were pre-processed and augmented
as described in Section III-B. We also tried pretraining the
larger model on a set of artificial images to offset the need for
more training examples to prevent overfitting, as is described in
[10]. Each artificial image consisted of several images from the
Cube+ dataset [3] which were put into a collage. The border
between the images in the collage was constructed using a
segmented linear function to create a more complex border to
prevent overfitting.

IV. RESULTS

In this section, we present the results of our models in
comparison to two baseline models and a convolutional model
based on the UNet architecture with a VGG16 encoder. We also
performed tests with other smaller architectures, such as the
SEResnet18 UNet and a smaller custom FPN architecture with
approx 6 million parameters, but for brevity, we only present
the results of the VGG16 based architecture as it performed
the best out of those architectures. The baseline models used
are based on setting a threshold in the brightness histogram of
the corrected image. We set the threshold either to the value
of ct = 0.1 of the maximum image brightness or by using
OTSU threshold [27] method. We then classify each pixel under
the threshold value as the wrongly corrected pixel (since we
corrected the image for the primary illuminant created by direct
sunlight, that is present in the brighter parts of the image) and
those above the threshold as correctly illuminated pixels. We
use the static threshold to compare our model to [20], the only
other (to our knowledge) method which performs illumination
segmentation independent of estimation. However, we changed
the ct value from 0.08 to 0.1 because it achieved slightly better
results on our images.

Table I shows the comparison of the results between the
transformer models and the baseline models, as well as
with the more complex convolutional models. We report the
Dice coefficient between the predicted and groundtruth mask.
The results show that our transformer model significantly
outperforms the OTSU and static threshold [20] methods while
performing on par with the larger convolutional model. Figure
4 shows the graph of the performance of the model in relation
to the number of parameters of the models. One can see that
the transformer models perform on par with convolutional
models while having fewer parameters. The improvement in
the performance of our model compared to simple baseline
models can be attributed to two main factors, first, they do
have more parameters and thus have a greater capability of
learning important features, but more importantly, they work on
full RGB images which carry important information for color
constancy, that is discarded when using only image brightness.

Figure 4. The relation of the performance of tested models to the number of
parameters of each model.

Segmentation Outdoor
Model Mean Std Median Trimean Best Worst Best 25 Worst 25
OTSU 0.82 0.12 0.85 0.84 0.99 0.46 0.96 0.65

THRES[20] 0.79 0.14 0.83 0.82 0.97 0.38 0.93 0.57
VGG16 UNET 0.87 0.08 0.88 0.88 0.98 0.55 0.95 0.76

T-SMALL 0.86 0.09 0.87 0.88 0.99 0.59 0.96 0.74
T-LARGE 0.88 0.09 0.90 0.89 0.99 0.60 0.96 0.76

T-LARGE PT. 0.88 0.08 0.88 0.89 0.99 0.60 0.96 0.76
Table I

COMPARISON OF DICE COEFFICIENT RESULTS OF THE SEGMENTATION
USING PROPOSED MODELS AND BASELINES. THE PT. SUFFIX INDICATES

THAT THE MODEL WAS PRETRAINED ON THE COLLAGE IMAGES.

Figure 5 shows a comparison between the output of the
baseline model and the larger transformer model. The results
show that the proposed transformer model is more robust and
can detect the areas where the correction was applied incorrectly
while being more resilient to darker colors of the objects, as
can be seen on the darker patch of grass. One can also see that
the borders between the classes in the predicted segmentation
masks show more uncertainty than areas deep in the shaded
or sunlit regions. However, even though this information is
not present in the manually annotated groundtruth, there is
usually some illuminant mixing in transitory areas between
illuminants due to reflections of nearby objects, and one can
see that the proposed model can learn this information without
any supervision.

V. CONCLUSION

In this work, we presented a method based on the transformer
architecture that can be used to detect regions of images
where color correction was incorrectly applied. The usage of
transformer models for image segmentation allowed us to create
a model with relatively few parameters. It outperformed the
baseline segmentation models by a large margin and achieved
results that were on par with much larger convolutional models
based on the Unet architecture with VGG16 encoder. The
larger transformer architecture even slightly outperforms the
convolutional models, while still having fewer parameters (See
Figure 4).

Training of all of our models was done on approx. 300
images from our new multi-illuminant color constancy dataset,
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Figure 5. Comparison of the results between the groundtruth, OTSU baseline method, and the transformer model. In columns 2-4 is the comparison between
the predicted probability masks that are the direct output of the transformer’s sigmoid layer. Columns 5-7 show the comparison between the rounded hard
segmentation masks used to compute the Dice coefficient. The green areas in the rounded masks represent clipped or underexposed pixels.

whose development is still in progress. In the future, we plan to
include even more images with more than two illuminants and
images with only one illuminant to make the dataset even more
representative test case for both segmentation and estimation
models. However, these results offer that, with the collection
of more images in the dataset, even greater results could be
achieved in both the task of detecting wrongly color corrected
regions as well as multi-illuminant estimation tasks.
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A B S T R A C T

Color constancy is an important part of the Human Visual System that allows us to recognize colors of object
invariant to the light that is illuminating them. Computational color constancy is the process of estimating the
illumination of a scene using some computational method. However, this problem is inherently ill-posed. The
RGB value of each pixel is dependent on spectral reflectance of the object and the spectral power distribution
of the illumination. Hence, methods that try to solve the computational color constancy problem have to
introduce assumptions about the illumination. One common assumption is that there is only one global source
of illumination, i.e., that the illumination is constant across the whole scene. Under this assumption, modern
color constancy methods achieve excellent results, usually predicting the illumination color with accuracy
better than the human eye. This assumption is broken in many real-world multi-illuminant scenes, e.g., outdoor
images where parts of the scene are illuminated by either sunlight or skylight. This leads to significant drop
in accuracy of single-illuminant estimation methods. Therefore, in this work, we propose a novel method for
segmenting images based on illumination in multi-illuminant scenes. This method detects regions where there
is only one illuminant, thus detecting areas where the single-illuminant assumption holds. We show that our
method produces excellent results and outperforms all baseline models by a large margin.

1. Introduction

Color constancy is the ability of the human visual system (HVS) to
adapt to illumination so that the colors of objects remains relatively
constant under different illumination conditions. This allows humans
to more easily recognize objects. While the HVS does this constantly
in real time, replicating this functionality is difficult because the un-
derlying neurophysiological mechanism is still not fully understood.
However, when considering images, color constancy is an ill-posed
problem, as the resulting chromaticity of an image is a combination
of the intrinsic colors of objects and the illumination. The color value
of each pixel 𝑝𝑐 (𝑥, 𝑦) (where 𝑐 ∈ {𝑅,𝐺,𝐵} and 𝑥, 𝑦 represent the
coordinates of the pixel) in an image is a function of three main factors
and can be expressed as [1,2]:

𝑝𝑐 (𝑥, 𝑦) =𝑚𝑏(𝑥, 𝑦)∫𝜔 𝐼(𝑥, 𝑦, 𝜆)𝑅(𝑥, 𝑦, 𝜆)𝑆𝑐 (𝜆)𝑑𝜆+

𝑚𝑐 (𝑥, 𝑦)∫𝜔 𝐼(𝑥, 𝑦, 𝜆)𝑆𝑐 (𝜆)𝑑𝜆 ,
(1)

where 𝜔 is the visible spectrum and 𝑚𝑏 and 𝑚𝑐 are scale factors that
model the ratio of body and specular reflectance of the light reflected
from coordinates (𝑥, 𝑦). The first part is the illumination distribution,
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E-mail address: donik.vrsnak@fer.hr (D. Vršnak).

1 Served as an associate editor of the EURASIP Journal of Image and Video Processing.

𝐼(𝑥, 𝑦, 𝜆) where 𝜆 represents the wavelength of the illumination at (𝑥, 𝑦)
coordinates of the image. 𝑅(𝑥, 𝑦, 𝜆) is the surface reflectance of objects
in the scene at coordinates (𝑥, 𝑦) and 𝑆(𝜆) represents the sensitivity of
the camera sensor at wavelength 𝜆. We can simplify this equation by
introducing the Lambertian assumption, i.e., that the specular reflectance
can be ignored. With this assumption, the model for each pixel is as
follows:

𝑝𝑐 (𝑥, 𝑦) = 𝑚(𝑥, 𝑦)∫𝜔 𝐼(𝑥, 𝑦, 𝜆)𝑅(𝑥, 𝑦, 𝜆)𝑆𝑐 (𝜆)𝑑𝜆 , (2)

where 𝑚(𝑥, 𝑦) is Lambertian shading [3]. Furthermore, we can take that
the observed color of the light source 𝑒(𝑥, 𝑦) = ∫𝜔 𝐼(𝑥, 𝑦, 𝜆)𝑆(𝜆)𝑑𝜆 is
dependent on both the illumination 𝐼(𝑥, 𝑦) and the sensitivity of the
camera 𝑆. So, we can see that the estimation of the observed light
source 𝑒(𝑥, 𝑦) from only the RGB values of the pixel 𝑝(𝑥, 𝑦) is under-
constrained if we do not know the reflectance properties of the object
𝑅, which is usually the case. However, additional assumptions can be
made, and an approximate solution for the color of the illumination
can be acquired. Moreover, most state-of-the-art methods assume that
there is only one global illuminant present in a scene. This removes
the spatial component of the illumination, which greatly simplifies
estimation. However, this means that multi-illuminant estimation and
segmentation is still a mostly unsolved problem.

https://doi.org/10.1016/j.image.2022.116822
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Fig. 1. Image showing the effects on the shaded parts of an outdoor image when applying correction for the sun illuminant. The top corrected image is corrected by the sun and
looks natural at the first glance, but the smaller cutout shows that the shaded parts of the image appear to blue. The rightmost image is corrected using the shadow illuminant,
which produces an image with unnaturally orange shade in the sun, while the color of the shaded region looks correctly reproduced.

Even though single global illuminant assumption is widely used, it
does not hold true even in some common scenes, e.g., in outdoor scenes
illuminated by the sun with shaded regions which are illuminated
by the sky or indoor scenes where the illumination can come from
multiple natural and artificial sources. Fig. 1 shows images where the
single illuminant assumption is broken, and the correction done with
global-illuminant estimation can lead to parts of the corrected image
being incorrectly reproduced. This incorrect illuminant estimation and
correction can lead to images looking unnatural to human observers
and can also impact the performance of various image classification,
object recognition and detection tasks [4]. This motivated us to create
a method which can iteratively segment one illuminant from the rest
of the image.

In this work, we propose a novel deep fully convolutional neural
network image segmentation method based on scene illumination for
images where at least one illuminant is known. If we assume that we
can accurately estimate one illuminant in a multi-illuminant scene,
which can be done using a variety of methods, we can use the proposed
method to segment the image into regions that have the estimated
illuminant and those that are illuminated by the unknown illuminants.
In Section 2 we first take a look at current methods for single and multi-
illuminant estimation and image segmentation and then, in Section 3,
we continue by describing the proposed segmentation method. In Sec-
tions 4 and 5 we describe the experiments and our results on different
subsets of the problem of image segmentation based on the illuminants,
and in Section 6 we conclude our article.

2. Related work

Color constancy has been studied as part of cognitive and behavioral
science, color science and computer science for more than 200 years,
with works from [5–9] among others. Computational color constancy
refers to methods used in computer vision to estimate and correct
the influence of unknown illumination and retrieve original colors
of the scene when it is illuminated by a canonical illuminant. As
Eq. (2) shows, color constancy from RGB data is an inherently ill-posed
problem, so computational color constancy methods have to impose
further assumptions about the properties of some parts of the scene. The
earliest such assumption was the Gray World assumption [10], which
states that the average reflectance of any scene under white illumina-
tion is some shade of gray, and that any deviation from gray is caused
by the illumination of the scene. Similarly, broad assumptions about
the scene properties include the White Patch (Max RGB) assumption
and different forms of Gray Edge framework (Eq. (3)).
(
∫

||||
𝜕𝑛𝑓𝑐,𝜎 (𝑥)

𝜕𝑥𝑛
||||
𝑝
𝑑𝑥

) 1
𝑝
= 𝑘𝑒𝑛,𝑝,𝜎𝑐 , (3)

where | ⋅ | is the Frobenius norm, 𝑐 ∈ 𝑅,𝐺,𝐵, 𝑛 is the order of the
derivative and 𝑝 is the Minkowski-norm. These methods fall into the
category of simple statistics methods. The next step in color constancy
was the use of more complex learning based statistical models and
gamut models [11,12], classical machine learning methods [13–15],

generative and Bayesian models [16–20] among others. In the last
decade, fast rise in computing power and the advent of deep learning
networks has given rise to color constancy methods based on convolu-
tional neural networks (CNNs, [21]). Methods described in [22] show
that CNNs can outperform other statistics and learning based methods.
On the other hand, [23,24] completely ignore the spatial relations of
pixels and only use convolutional filters on log-chromaticity histograms
to determine illuminant color. In [25] a fully convolutional network
with simple attention is used to achieve state-of-the-art performance on
many color constancy datasets. However, all of those methods assume
that there is only one single illuminant present in the scene. In other
words, they show that it is possible to very accurately predict the global
illumination. The use of attention mechanism in [25] makes the model
learn to ignore some parts of images which carry little information
for estimation of illumination. This also means that the model can
more easily focus on very accurately estimating the dominant global
illuminant of multi-illuminant scenes, while discarding the information
about the secondary illuminants. The main idea behind our model is
to work in tandem with such state-of-the-art (SOTA) single illuminant
estimation models to determine the presence of secondary illuminants,
which single illuminant methods do not take into account.

There also exist some multi-illuminant estimation methods, but
a lack of a large multi-illuminant dataset has slowed down the de-
velopment of such methods. Hence, most proposed multi-illuminant
estimation methods utilize some low level image statistics. One such
method is described in [11], where they learn the properties of surfaces
on train images and using those to produce illumination estimations
for each surface in the test image. A multi-illuminant method based
on estimating illumination for image patches and achieved improved
performance compared to single illuminant estimation methods if the
illuminants present in the scenes differed by more than one degree is
proposed in [26]. On the other hand, in [12] a multi-illuminant esti-
mation method based on conditional random fields (CRF) is developed.
Both of these works included a small (≤ 100 images) datasets. However,
both of these datasets do not contain raw unprocessed linear images,
which have become the standard in modern color constancy datasets.
More recently, [27] proposed a two-step illuminant estimation method
for outdoor images, which was tested on 30 images that are not publicly
available. Also, [28] proposed a multi-illuminant estimation model
which incorporates bottom-up estimation and top-down refinement, in-
spired by the color constancy mechanisms of the human visual system.
In order to train and test our method, we are creating a new large
multi-illuminant dataset which will be publicly available. However,
this dataset is still under development as we are still collecting and
annotating images and the images will be changed in the future.

Image segmentation is a computer vision task where the goal is to
assign a label to each pixel of the input image. Most modern state-of-
the-art solutions (e.g., [29] or [30]) utilize some deep neural network
consisting of an encoder and a decoder, where the encoder is used to
extract features on different scales and the decoder is used to combine
multi-level features into the final output. These methods are most often
used in medical images and object detection tasks. As far as we know,
there aren’t any methods that try to do image segmentation based on
illumination, like those described in this paper.
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Fig. 2. Schematic representation of the proposed framework for illuminant segmentation. The input to the framework is the raw debayered image 𝑥 taken directly from a camera
sensor with no processing from the camera. The bottom path consists of estimating the dominant illuminant in the image (it can be considered optional, as it is not strictly part of
the framework). It can be done using any method for single illuminant estimation. The top and middle paths compose the actual framework, with two identical subnetworks. The
encoder subnetwork is responsible for creating the latent illumination encoding ℎ, which is then given as the input to the similarity subnetwork, along with the original image 𝑥
and the estimated illuminant 𝑒. The final output of the framework is the segmentation map 𝑝̂ which represents the influence of the estimated (or known) dominant illuminant 𝑒
on the illumination of the whole image.

3. Illuminant segmentation framework

In this work, we propose a novel segmentation framework that
can be used to segment multi-illuminant images depending on local
properties of illumination. We make the assumption that the dominant
illuminant is known. After running experiments, the results demon-
strate that the assumption that the dominant illuminant is known
can be made without sacrificing real-world performance. The rea-
son we accept the need for one illuminant is that state-of-the-art
single-illuminant estimation models tend to work well even in multi-
illuminant scenes, where they estimate one illuminant with a high
degree of precision. In the following sections, we will present our novel
illuminant segmentation framework and then present the results on
our multi-illuminant dataset. We also implement several strategies and
show that our approach outperforms all of them in real-world scenes.

3.1. Illuminant segmentation framework

The goal of our framework is to approximate a function 𝑓 (𝑥; 𝑒)
that can identify the influence of a known illuminant 𝑒 on different
regions of the image. We formulate this problem as a segmentation
task, where the goal is to segment the input image into regions where
the known illuminant 𝑒 is present. If we define the output of our
model as 𝑝̂ = 𝑓 (𝑥; 𝑒), where 𝑒 represents the known illuminant, and
𝑝̂ is the per-pixel influence of that illuminant for each pixel in the
input image 𝑥. In our work, the known illuminant is chosen to be the
dominant illuminant in the scene, where dominant refers to the brighter
illuminant, e.g., sunlight in outdoor images.

The proposed framework consists of two identical subnetworks, as
is shown in Fig. 2. The first subnetwork (the encoder subnetwork)
is tasked with producing a latent representation of illumination ℎ.
The dimensions of the latent representation ℎ can be arbitrarily large,
however we decided to limit it to three channels. This means that ℎ
can be considered as a per-pixel estimation of the illumination. Thus,
it allows us to train the encoder in a supervised fashion, as we possess
the ground truth information about per-pixel illumination. However,
this representation contains errors in estimation and would, if used as
is, produce an inferior reproduction of the corrected image. That is the
reason for using the second subnetwork, which we call the similarity
subnetwork. Its goal is to create a mask 𝑝̂ = 𝑓 (𝑥, ℎ; 𝑒), which is the
estimated segmentation mask of the illuminants. It takes as input the
original input image 𝑥, the latent estimation ℎ (which is the direct
output of the encoder subnetwork) and the known illuminant 𝑒, and
determines in what amount is the known illuminant 𝑒 present for each

image pixel. Both subnetworks were implemented using the deep neural
network architecture described in Section 3.2.

The framework, as it is proposed, would be able to perform segmen-
tation of only two illuminants. However, real-world scenes can, in some
scenarios, contain more than two sources of illumination. We make our
method fully general in regard to the number of illuminants by iterative
application of the segmentation framework on regions in which the
illuminant of the previous iteration was not present. The iterations can
be stopped either after 𝑛 segmentations or automatically after more
than some threshold 𝑡 percent of the image has been attributed to one
of the 𝑛 − 1 illuminants. The main advantage of this approach is that
the number of scenes with 𝑛 = 2, 3,… illuminants in real-world scenes
decreases as 𝑛 increases. However, this also poses a problem for training
and evaluating such models, as there are currently no annotated images
with three illuminants. We use artificially generated images to train and
test our model for more than 2 illuminants.

The framework is trained in a supervised setting, as both illumina-
tion and segmentation ground truth information is available. Thus, the
loss function used to optimize the parameters consists of two terms, one
corresponding to the estimation ℎ and the other segmentation 𝑝̂. Each
term is computed by taking the average mean absolute error between
the predicted value and the ground truth over all pixels:

𝑀𝐴𝐸(𝑦(𝑝), 𝑦(𝑔𝑡)) = ( 1
𝑛 ∗ 𝑚

)
𝑛∑
𝑖=0

𝑚∑
𝑗=0

|||𝑦
(𝑝)
𝑖𝑗 − 𝑦(𝑔𝑡)𝑖𝑗

|||
𝐿 = 𝛼𝑀𝐴𝐸(ℎ, 𝐼𝑔𝑡) + 𝛽𝑀𝐴𝐸(𝑝̂, 𝑝𝑔𝑡) ,

(4)

where (𝑛, 𝑚) are the height and width of the image, 𝑝̂ the segmentation
output of the model and 𝑝𝑔𝑡 is the segmentation ground truth, ℎ is
the latent three channel representation and 𝐼𝑔𝑡 ground truth map of
per-pixel illuminations.

3.2. Network architecture

Deep convolutional neural networks have shown as very promising
in image segmentation and illuminant estimation tasks. We propose a
custom novel architecture based on an FPN architecture (Feature Pyra-
mid Network [30]), which is suitable for both illumination estimation
and segmentation tasks. Thus, we are able to use this architecture for
both our encoder and similarity subnetworks in our framework. This
architecture is presented in Fig. 3. An FPN network usually consists of
two parts, a bottom-up and top-down part, where the goal of the former
is to extract features and the goal of the latter is to create an output
of sufficient spatial dimensions using those features. The bottom-up
part in our model consists of two branches, one with large pooling
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Fig. 3. Scheme showing the custom FPN model with the bottom-up part with two branches. One branch has large filters to capture more spatial information, while the smaller
branch has a large pooling layer and small filters. The input is fed directly to both branches. On the scheme, blue layers represent convolutional layers followed by batch
normalization and ReLU activation. Yellow layers represent the up-sampling operation and red layer represents maxpooling. Fitconv layers are used to fit the number of features
of intermediary outputs of the bottom-up branches to the number of features maps which are the output of tdconv convolutional layers in the top-down part. Sconv layers are
used to remove any artifacts that can appear by adding together top-down feature maps and fitted bottom-down feature maps. The final layer of the network can have different
activation and number of output channels based on the task. The boxes on the bottom of the scheme show a more detailed view of the parts of the network to improve readability.

layers and convolutions with 1 × 1 receptive fields, while the other has
convolutions with large 8 × 8 kernels. This allows our architecture to
simultaneously attend to extraction of both local and global features
without an increase in depth. As can be seen in Fig. 3, the outputs
at different spatial resolutions from both branches are up-scaled and
added to feature maps produced at different stages of the top-down part
of the network. The final set of feature maps is produced from these
intermediary outputs of the top-down part with 3 × 3 convolutions
whose output is then up-scaled to the final resolution which is two
times smaller in both height and width to the original image. The
output of the network is done using a single 3 × 3 convolution with
the appropriate number of output channels 𝑐.

Our network was built as to satisfy two important requirements for
models designed for color constancy:

1. The model needs to be complex enough to detect important
semantic features in images, such as faces, street signs, trees etc.,
which can all be useful for color constancy, as their colors do not
change much from scene to scene, and thus make ideal places for
illumination color of the scene to be estimated.

2. Increase in depth of neural networks has shown to decrease the
performance on color constancy tasks [25]. They were primarily
designed for the task of image recognition and classification,
both of which benefit greatly from invariance to the color of
the illumination, as those models need to, for example, correctly
classify an apple whether it has been illuminated by white or
orange light.

We also took into consideration that our model had to be trained from
scratch, on a limited number of multi-illuminant images (compared to

other modern computer vision datasets with tens of millions of images).
When we combine the limited number of training examples with the
constraint that most color constancy work is done on camera hardware,
and therefore should not be computationally too expensive, we focused
on creating an encoder that has the fewest parameters with adequate
performance. Table A.6 (see Appendix A) provide more details about
the implementation.

3.3. Dominant illuminant estimation

To prove that global estimation on multi-illuminant scenes can be
used to provide the first known illuminant, we remove the known
dominant illuminant 𝑒 and replace it with an estimation from a global
estimation method 𝑒. The estimation was done using a custom variant
of the FC4 model [25]. We replaced the AlexNet feature extractor of
the original model with the bottom-up of our custom FPN architecture
(see Fig. 3). This custom architecture is identical up to the b2conv2
and b1maxpool layers (see Table A.6), which are concatenated and
followed by one convolutional layer with 256 filters, 5 × 5 kernel and
stride 1 × 1. The final prediction was done using the two convolutional
layers and an attention layer as described in [25]. This network was
then pretrained for global illuminant estimation on the Cube+ [31]
dataset, with further refinement on the same set of training images used
for training of the segmentation framework. However, it was trained to
predict only the dominant illumination 𝑒 (as can be seen in the top part
of the scheme in Fig. 2). After we acquired 𝑒, we fed it and the image
𝑥 to the segmentation framework just like we would if the illumination
was known. This allows us to test the performance of our framework
on real-world images where no illumination is known.
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Fig. 4. Comparison of the segmentation results between the best performing baseline Otsu segmentation method and our model with estimation of the dominant illuminant
(FPN-SIM+EST). The upper row shows the results of the segmentation, while the bottom row shows the comparison between the ground truth for the dominant illuminant and its
estimation, as well as the comparison of the ground truth illumination mask and the output of the encoder subnetwork. We can see that the Otsu method can be fooled by darker
objects which are sunlit (and vice versa), such as the grass patch in the left of the image, while our method can determine that the grass is a darker object but is illuminated by
the sun, which can also be seen in illumination map output by the encoder.

Fig. 5. Comparison of the segmentation results between all models where all illuminants are unknown (see Table 4). The left column represents the segmentation mask produced
when the raw image (on the top) is given to each of the models. The middle and right columns show the regions that remain when the segmentation mask is applied by multiplying
it with the raw image. The topmost row with three columns shows the ground truth, while other rows correspond to segmentation models rows in Table 4, i.e., brightness threshold,
Otsu brightness threshold, SE-ResNet with dominant illuminant estimation and our framework with dominant illuminant estimation. Our framework produces the most accurate
segmentation masks, and produces masks with much greater levels of confidence than the SE-ResNet model.

3.4. Baseline models

In addition to the proposed model, we implemented three classes
of baseline models for comparison. We had to create those models as,
to our knowledge, there is currently only one model that deals with
the problem of illuminant segmentation [27]. The most simple class of
baseline models was to apply a threshold on the values found in the
image. We used 5 types of thresholds:

• Image brightness > some set value (as described in [27])

• Otsu threshold based on brightness
• Adaptive Gaussian threshold on brightness
• Image hue > 𝑔𝑡1ℎ𝑢𝑒+𝑔𝑡2ℎ𝑢𝑒

2
• Otsu threshold based on hue
A more complex baseline model uses a random forest classifier on a

collection of image feature patches. These features include mean, max,
and median angular distances to each of the illuminants in addition
to the mean, median, and max average brightness of the patch. The
classifier was then used to classify whether the patch was illuminated
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Fig. 6. Comparison of the corrected images using the ground truth, the predicted segmentation mask and the output of the encoder. The predicted mask assigned the uncertain
areas, where illuminant mixing is probable due to the shadows being cast by foliage, as the dominant illuminant. This produced more visually more pleasing results than the
correction using the ground truth mask, since the dominant illuminant contributed more tho the overall color of the illumination than the secondary illuminant.

using the first or the second illuminant. The third method is unsuper-
vised clustering, which is done using Gaussian mixture models that
can be performed on hue and brightness histograms of the image.
Two histograms were used because hue clustering performed better
on indoor images, while brightness segmentation performed better on
outdoor images. In order to determine which histogram to use on
different images, we used a pretrained Places365 model [32] to classify
images into outdoor or indoor class, after which we applied brightness
or hue histogram respectively. Hue clusters were initialized using the
two hue values of the two known illuminants. Note that the second and
third baseline models require that all the illuminations are known.

4. Experiments

The proposed model architecture is fully convolutional and can be
trained end-to-end to predict the ground truth illuminant segmentation
mask using the combined loss function as described in Section 3,
Eq. (4). For our main experiment, we trained the encoder subnetwork
by minimizing the proposed loss function. In this way, both the en-
coder and the similarity subnetworks of our framework are trained
in parallel. We did this because we noticed that it was possible for
the encoder, when trained separately, to converge to the mean global
illumination of the image. However, we did not have this problem
when the whole framework was trained in parallel. We believe that this
happens because the illuminations in outdoor scenes are similar, and as
such provide a smaller training signal than the 0–1 segmentation masks.
The visual results shown in Fig. 5 show that the learned segmentation
benefits from this approach. It can be seen that the segmentation
produced by our framework is much more certain (i.e., mask values are
much closer to 0–1 values) than the next best performing CNN model,
which does not use any encoder subnetwork. This is inline with the
ground truth, where the borders between the illuminations are hard,
i.e., there is no gradual transition in the areas near the class borders.
However, some images contain shadow regions produced by foliage,
where illuminant mixing is present, but the manually annotated ground
truth does not reflect this property. In such images, our model was able
to learn to produce masks where there is either some uncertainty on the
borders or, more commonly, it produced masks where the dominant
illuminant was extended further into the region than the ground truth.
Fig. 6 shows examples of two images showing this property. We can see
that the correction done using the predicted masks produced visually
more satisfying images in the uncertain areas. Additionally, as can
be seen in Fig. 4, the accuracy of estimated latent illumination maps
ℎ falls short of most SOTA models for estimating illuminations (and
angular error is above 3 degrees which is considered to be the limit

of human perception of illumination). We then performed a series of
experiments (see Section 4.2) to show the benefits of using this latent
illuminant representation ℎ, which improves performance compared to
much larger models.

4.1. Training setup

The models were all implemented in TensorFlow 2.4 and trained
on a system with an RTX 2080Ti GPU and AMD Ryzen 3700x CPU.
Training was done using backpropagation over the parameters of the
framework, 1000 epochs with cosine annealing warm restart [33]
schedule for the learning rate, with range from 1 ∗ 10−3 to 1 ∗ 10−6

combined with Adam optimizer [34] with weight decay of 1 ∗ 10−7,
and the parameters 𝛼 and 𝛽 were both set to 1. All the hyperparameters
were tuned once on outdoor images and used later for all experiments.

The models were tested on a variety of indoor and outdoor images,
but since our dataset currently contains predominantly outdoor images,
the results for outdoor-type images are the most representative of the
real performance of the model. The outdoor models were trained on
310 images and validated on 77 images, and the test set contained 96
images (results are shown in Table 2). Models trained on outdoor (both
nighttime and daytime images) and indoor images were trained on 367
images, validated on 60 images and tested on 63 images. For training,
outdoor and nighttime images were re-sampled to somewhat mitigate
the issues with image class imbalance. Because of the relatively small
number of training images, we applied data augmentation during train-
ing in order to reduce overfitting. Each training image was randomly
cropped, flipped and then rotated for a random angle between −15 and
15 degrees. Prior to feeding the image to the model, the brightness
of the image was normalized so that ∑𝑖,𝑗 ‖𝑝𝑖,𝑗‖2 = 20, but we did not
perform per channel standardization as such processing can change the
colors of the image which would affect the ability of our model to learn
to differentiate regions based on illumination color.

We experimented with different types of pretraining using artifi-
cially generated images with multiple illuminants, but this approach
showed no significant improvement in performance of the model when
tested on real images. However, because of the lack of annotated real-
world images with more than two illuminants, testing for scenarios
on scenes with more than two illuminants was performed on artificial
collage images where three illuminants are present, in order to test the
validity of our approach. Results of all segmentation models can be seen
in Table 2.
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Table 1
Comparison of the number of parameters of deep learning models and their computa-
tional time. The proposed architecture has fewer parameters than the more complex
U-Net models, but approximately double the number of parameters compared to its
variants without the similarity network. Computational times correlate with the number
of parameters, except for the VGG16 model. However, this can be explained by the
fact that the VGG16 model uses only basic convolutional operators (unlike the more
complex Squeeze-and-Excitation layers of the SEResnet18 model [35]). Also, both the
SE-ResNet and VGG models were taken from a library of segmentation models [36],
and are optimized in terms of number of operations and computational complexity.
On the other hand, our models were implemented without considering optimization
of computational times. However, even unoptimized, our model can still be executed
at 50 fps. All measurements were done on a PC with Ryzen 3700x CPU and Nvidia
2080Ti graphics card. M indicates 106 parameters.
Model N. Parameters Computation time (s)

FPN-RBF 3M 0.0136
FPN 3M 0.0135
VGG16 U-NET 19M 0.0158
SERESNET U-NET 14M 0.0231
FPN-SIM 6M 0.0201

4.2. Ablation and comparison study

In this section, we will describe the ablation study of each part of the
encoder-similarity network we performed, to show that the supervised
latent representation ℎ of the illumination significantly improves the
segmentation performance of our model.

In order to test how each subnetwork of our proposed framework
worked, we trained and tested first the similarity subnetwork 𝑔(𝑥, 𝑒) in
isolation, using only the image 𝑥 and one illuminant 𝑒 as input. How-
ever, to test the encoder subnetwork in isolation we needed to create a
function 𝑓 (ℎ, 𝑒) which would take as input the latent representation ℎ
and either one illuminant 𝑒, or all illuminants 𝑒1,… , 𝑒𝑛. For this we used
an inverse quadratic RBF (Radial basis function, [37]) kernel function
to map the latent illuminant estimations ℎ𝑖,𝑗 into the final segmentation
mask. The RBF kernel measures the normalized distances of each latent
predicted illuminant to the known illuminant 𝑒𝑖:

𝑝𝑒𝑖 (𝑥; 𝛾) =
1

1 + (𝛾 ∗ ‖ℎ − 𝑒𝑖‖2)2
(5)

Those distances are then combined to represent the probability of the
pixel being illuminated by the secondary illuminant (note that this
approach assumes that all illuminants are known instead of just one):

𝑝′(𝑥; 𝛾) =
𝑝𝑒1 − 𝑝𝑒2 + 1

2
(6)

We also decided to compare our approach with some well known
networks used for image segmentation, based on the U-Net architec-
ture [29], with encoders based on well known architectures such as

VGG-16 [38] and SEResnet18 [35]. Here, we changed the input to the
network by first correcting it for one of the known illuminants. The
goal of the networks was to segment regions that were illuminated by
the canonical illuminant from those that were illuminated by unknown
illuminants. Segmentation output mask 𝑝̂(𝑥) = 𝜎(𝑓𝑖𝑗 (𝑥)), where 𝜎 is
the sigmoid activation function, again represents the probability that
each pixel (𝑖, 𝑗) of the input is illuminated by an unknown illuminant.
Comparison of the number of parameters of each model and the com-
putational time needed to process a single image is shown in Table 1.
We present the results of all of these experiments in Section 5. All the
models used for testing and comparison are shown in the appendix
(Table B.7).

5. Results

Tables 2 and 3 present the results of the proposed segmentation
model on only outdoor and both indoor and outdoor images, respec-
tively, in terms of Dice coefficient. The number of illuminants known
to each model is represented by the number of ∗ symbols next to
the model, while -LUM and -HUE suffixes indicate that brightness and
hue threshold were used, respectively. In Table 2 Best 25% and Worst
25% refer to the mean performance of the models on the 25% of
the highest scoring images and 25% of the lowest scoring images,
respectively. The results show that our model outperforms all other
segmentation models used for comparison, managing to achieve the
highest Dice coefficient score on both outdoor and combined indoor
outdoor images, with means of 0.92 and 0.89 respectively. These results
correspond to 12% and 14% improvement over the best performing
baseline, and 2%–3% improvement over the other best performing
deep model (SEResNet18), while having approx. 50% of the parameters
(see Table 1 for comparison of the number of parameters of different
models). We also see that there is a significant improvement in the
worst 25% Dice coefficient over both the baseline models and the
other proposed segmentation models, which illustrates the robustness
of our method for illuminant segmentation. On the other hand, the RBF
model performed much worse in the worst case scenario (indicated
by the Worst 25 column in Table 2). This decrease in performance
happens when two illuminants were very similar and small errors in
the estimation could change the class of the output pixel, underlying
the importance of a dedicated segmentation network. However, using
only the dedicated segmentation network (either our custom FPN ar-
chitecture or larger VGG-16 and SE-ResNet18 U-Net models) without
an encoder also performed worse than when both an encoder and
a similarity subnetworks were combined. For combined outdoor and
indoor images, the best median results were achieved by the VGG
model. We postulate that such results can be explained due to VGG
model being slightly worse at adapting to a smaller set of indoor images

Table 2
Comparison of Dice coefficient results of outdoor segmentation for our model and other baseline and deep
models. The first seven models are the baseline models are, while deep models are shown below them. The
proposed method outperformed all other models, with a significant improvement to the worst 25% metric.
This metric is very important for color constancy related tasks, as the HVS is very sensitive to even very
small errors in illuminant correction. The best results are shown in bold.

Segmentation Outdoor Images
Model Mean Std Median Trimean Best Worst Best 25% Worst 25%

THRES-LUM 0.79 0.14 0.83 0.82 0.97 0.38 0.93 0.57
OTSU-LUM 0.81 0.12 0.83 0.83 0.98 0.49 0.94 0.64
GAT-LUM 0.67 0.08 0.69 0.68 0.80 0.45 0.74 0.56

THRES-HUE** 0.67 0.17 0.69 0.68 0.95 0.28 0.87 0.44
OTSU-HUE** 0.68 0.19 0.71 0.70 0.97 0.06 0.89 0.41
GMM** 0.65 0.13 0.65 0.65 0.92 0.33 0.81 0.48
RF** 0.75 0.25 0.88 0.81 0.97 0.07 0.95 0.37

FPN-RBF* 0.85 0.16 0.91 0.90 0.99 0.36 0.97 0.63
FPN* 0.87 0.09 0.89 0.88 0.99 0.57 0.96 0.74
VGG* 0.87 0.08 0.88 0.88 0.98 0.55 0.95 0.76

SERESNET* 0.89 0.08 0.91 0.91 0.99 0.61 0.97 0.77
FPN-SIM* 0.92 0.07 0.94 0.94 0.99 0.72 0.98 0.82
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Table 3
Comparison of Dice coefficient results of outdoor and indoor segmentation for our model and other baseline
and deep models. The best results are shown in bold.

Segmentation Outdoor & Indoor
Model Mean Std Median Trimean Best Worst Best 25% Worst 25%

THRES-LUM 0.77 0.15 0.82 0.80 0.96 0.35 0.92 0.54
OTSU-LUM 0.78 0.13 0.83 0.82 0.99 0.40 0.92 0.58
GAT-LUM 0.67 0.08 0.70 0.69 0.78 0.44 0.74 0.55

THRES-HUE** 0.69 0.18 0.70 0.71 0.95 0.18 0.89 0.44
OTSU-HUE** 0.62 0.20 0.63 0.64 0.97 0.11 0.86 0.34

VGG* 0.88 0.10 0.92 0.91 1.00 0.65 0.97 0.73
SERESNET* 0.81 0.10 0.80 0.81 0.98 0.60 0.93 0.68

FPN* 0.87 0.11 0.90 0.89 1.00 0.55 0.96 0.69
FPN-SIM* 0.89 0.09 0.91 0.91 1.00 0.65 0.97 0.75

Table 4
Comparison of dice coefficient results of outdoor segmentation using SE-ResNet and our model with known
and with estimated illuminants to best performing baseline models. These results show that there is no
difference in performance if the illuminant is known or if it was estimated. This validates our assumption
that modern color constancy methods are able to predict one of the illuminants with adequate accuracy for
our model to work reliably. The best results are shown in bold.

Segmentation Outdoor with Illuminant Estimation
Model Mean Std Median Trimean Best Worst Best 25% Worst 25%

THRES-LUM 0.79 0.14 0.83 0.82 0.97 0.38 0.93 0.57
OTSU-LUM 0.81 0.12 0.83 0.83 0.98 0.49 0.94 0.64
SERESNET* 0.89 0.08 0.91 0.91 0.99 0.61 0.97 0.77
FPN-SIM* 0.92 0.07 0.94 0.94 0.99 0.72 0.98 0.82

SERESNET+EST 0.89 0.08 0.91 0.91 0.99 0.61 0.97 0.77
FPN-SIM+EST 0.92 0.06 0.94 0.94 0.99 0.73 0.98 0.83

Fig. 7. Comparison of the segmentation results between two deep models on the artificially generated images with 3 illuminants. The first column represents the segmentation
mask after two iterations (all known illuminants were found in the image) and the second column represents the mask after the first iteration. The third, fourth, and fifth columns
show the regions that remain when the segmentation mask is applied by multiplication with the raw image (image in the first row next to the ground truth segmentation mask).
In the second row is the output of SE-ResNet model, and in the third row is the output from the proposed framework.

(i.e., overfitting on outdoor images). That is why our model manages to
achieve better overall performance, but the median is shifted because
of the much larger number of outdoor images.

Table 4 reports the results of the experiment, where the domi-
nant illuminant was estimated before performing segmentation. If we
compare the results of the same models with known illumination
and with estimation (represented by +EST suffix in Table 4), we see
that not knowing the illuminant does not decrease the segmentation
performance of the model. The estimation was done using the model
described in Section 3.3. This network was trained separately to predict
the dominant illuminant of the scene, and achieves a mean angular er-
ror of 1.41 degrees when estimating the dominant illuminant on images
in the outdoor test set. This is in line with our assumption about modern
color constancy methods being able to relatively accurately estimate
the dominant illuminant while ignoring secondary illuminants.

Fig. 5 shows the performance of all models where no illuminants
were known. Visual inspection of the results shows that our proposed
framework creates the most accurate segmentation maps. If we com-
pare the output of the framework and the output of the SE-ResNet

model, we can see that our model is also much more confident in
its prediction, as noted by the much larger areas where the output is
clamped close to 0–1 values (see the last two images in the first column
in Fig. 5). This shows greater certainty of our model in areas where
there is relatively little mixing of the illuminants. However, if we take a
look at additional images and segmentation results that can be found in
Appendix C, we can see that for some images (see Figs. C.10(c), C.11(b),
C.11(d), C.13(b)) the predicted border between illuminants has a more
gradual change between regions. This shows that our model manages to
somewhat learn about the mixing property of illumination, even though
it is not present in the original ground truth information (which all
contain only hard borders). We postulate that the model learned this
property because MAE loss function was used during training, which is
more commonly associated with regression tasks, and thus encouraged
the model to keep parts of the output uncertain. Another mechanism
that the model learned in these regions was to extend the dominant
illuminant to the mixing regions (see Figs. C.12, C.12(d), C.13(c)),
which produces more visually pleasing results than the correction using
the ground truth mask (see Fig. 6). This property also makes sense, as
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Table 5
Comparison of Dice coefficient results of the three illuminant segmentation problem for our model and other
baseline and SE-ResNet model and baseline clustering models. The best results are shown in bold.

Segmentation Three Illuminants
Model Mean Std Median Trimean Best Worst Best 25% Worst 25%

THRES-CLUSTER*** 0.30 0.12 0.30 0.30 0.75 0.04 0.46 0.16
THRES-HUE** 0.30 0.18 0.28 0.28 0.91 0.01 0.53 0.09

SERESNET** 0.67 0.17 0.66 0.67 1.00 0.27 0.90 0.45
FPN-SIM** 0.69 0.16 0.70 0.70 0.98 0.19 0.88 0.44

Table A.6
Brief description of the custom FPN model used. Each Convolutional entry (except the last one) represents
a convolutional layer, followed by batch normalization and ReLU activation. Multiple inputs into a layer
are concatenated before being passed to the layer.
FPN Model Description

Layer Type Parameters Inputs

input Image dim = (256, 512, variable) –
b1conv1 Convolution f = 240, k = (1, 1), s = 1 input
b1maxpool Maxpooling k = (8, 8), s = 8 b1conv1
b2conv1 Convolution f = 128, k = (8, 8), s = 4 input
b2conv2 Convolution f = 256, k = (4, 4), s = 2 b2conv1
fitconv1 Convolution f = 256, k = (1, 1), s = 1 b1maxpool
fitconv2 Convolution f = 256, k = (1, 1), s = 1 b2conv2
fitconv3 Convolution f = 256, k = (1, 1), s = 1 b2conv1
fitconv4 Convolution f = 256, k = (8, 8), s = 2 input
tdadd1 Add – fitconv1, fitconv2
tdconv1 Convolution f = 256, k = (3, 3), s = 1 tdadd1
upsample1 Upsampling size = (2, 2) tdconv1
tdadd2 Add – upsample1, fitconv3
tdconv2 Convolution f = 256, k = (3, 3), s = 1 tdadd2
upsample2 Upsampling size = (2, 2) tdconv2
tdadd3 Add – upsample2, fitconv4
tdconv3 Convolution f = 256, k = (3, 3), s = 1 tdadd3
sconv1 Convolution f = 64, k = (3, 3), s = 1 tdconv1
supsample1 Upsampling size = (4, 4) sconv1
sconv2 Convolution f = 64, k = (3, 3), s = 1 tdconv2
supsample2 Upsampling size = (2, 2) sconv2
sconv3 Convolution f = 64, k = (3, 3), s = 1 tdconv3
seg Convolution f = variable, k = (3, 3), s = 1 supsample1,supsample2,sconv3

Table B.7
Description and usage of all models used for comparison and evaluation. The number of known illuminants needed for each method is shown
in the last column.
Model Description Usage N. Illuminants

THRES Fixed luminance/chromaticity
based threshold

Comparison with a non learning
based method

0

GAT Gaussian luminance/chromaticity
threshold

Comparison with a non learning
based method

0

OTSU Otsu luminance/chromaticity
threshold

Comparison with a non learning
based method

0

RF Random forest patch based model
using angular distance from the
know illuminants

Comparison with a simpler
machine learning approach

2

GMM Histogram clustering model based
on Gaussian mixture model

Comparison with an unsupervised
learning method

2

FPN-SIM Framework with FPN architecture
encoder and similarity networks

The proposed model 1

FPN FPN similarity architecture used
on images corrected for one
illuminant

Ablative comparison to a model
without the encoder

1

FPN-RBF FPN (encoder sub-network) with
RBF layer instead of the
similarity network

Ablative comparison to a model
without the similarity network

2

SERESNET Unet VGG16 segmentation
architecture used on images
corrected for one illuminant

Comparison with well known
segmentation architecture

1

(continued on next page)
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Table B.7 (continued).
Model Description Usage N. Illuminants

VGG Unet SqueezeNet ResNet 18
architecture used on images
corrected for one illuminant

Comparison with well known
segmentation architecture

1

FPN-SIM + EST Framework with FPN architecture
encoder and similarity networks
with dominant illuminant
estimation

Determining the impact of
estimating the dominant
illuminant on segmentation
accuracy

0

SERESNET + EST SqueezeNet ResNet 18
architecture with dominant
illuminant estimation

Determining the impact of
estimating the dominant
illuminant on segmentation
accuracy

0

Fig. C.8. Visual comparison of the output, the ground truth segmentation, threshold, Otsu, SE-ResNet and our proposed framework.

the dominant illuminant contributed more to the overall illumination
in those areas. Nevertheless, our method was trained and works best on
images where the mixing of the illuminants is minimal (e.g., outdoor
scenes during both day and night, or indoor scenes with a clearly
defined border between illuminants), and will need to be retrained in
order to fully encapsulate the problem of illuminant mixing.

Table 5 shows a comparison of our model with baseline models and
the SEResNet18 segmentation model on the artificially generated set
of images with three illuminations. We can see that the results show
lower dice coefficient than on the two illuminant segmentation task.
However, both deep models still significantly outperform the baseline
models. The quantitative and visual results seem to show that the main

10
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Fig. C.9. Visual comparison of the output, the ground truth segmentation, threshold, Otsu, SE-ResNet and our proposed framework.

weakness of our algorithm on the artificially illuminated images is
that the models lack the capacity to discriminate between very similar
illuminant colors used in artificial images (see Fig. 7, C.14 and C.15).
Also, in the artificial images the illuminants are independent of the
other properties of the scene, and as such require more capacity to
represent both semantic and illuminant features. We can also see that
both the SE-ResNet model and our framework perform similarly, but
with overall lower performance compared to real images, which further
points to artificial image segmentation being a harder problem. We can
also see that the SE-ResNet model performs slightly better in the best
and worst case scenario. We believe that this happens due to the larger
number of parameters of that model, which allows it to learn a wider
variety of scenes, which is important in artificial images due to the
before stated independence of illuminations and scene properties.

6. Conclusion

In this work, we have shown a novel framework capable of segment-
ing images based on illumination. The framework was based on the idea
of approximately encoding per-pixel illuminations of the image can
augment the performance of the segmentation based on illumination.
We tested our proposed framework on outdoor and indoor images

with two illuminants against five different baseline models and three
different deep learning models to test the validity of our approach
since, to our knowledge, there is only one other model [27] that does
explicit illuminant segmentation. All the proposed deep models assume
that at least one illuminant is known. In Section 5 we showed that the
proposed model outperforms all baseline and deep-learning models on
outdoor and indoor images. We also show that the models work best
when evaluated on outdoor images with well-defined borders, because
the dataset currently contains more outdoor images than indoor ones.
Even without knowing the illuminations, the results can be obtained by
estimation. Besides, the performance is not decreased when combined
with global estimation. This validates our claim that SOTA illuminant
estimation methods work well on estimating only the dominant illumi-
nant and can be used in conjunction with our models. We also proposed
an iterative method which extends our segmentation model to perform
the segmentation on scenes with more than two illuminants by iterative
segmentation of regions with known illumination from those where the
illumination is not known. We tested the iterative approach on artificial
images, as we currently do not have any real annotated images with
more than two illuminants.

11
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Fig. C.10. Additional results in the same format as Fig. 4.
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Appendix A. Model description

See Table A.6.

Appendix B. Models

See Table B.7.

Appendix C. Results

See Figs. C.8–C.15.
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Fig. C.11. Additional results in the same format as Fig. 4.
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Fig. C.12. Additional results in the same format as Fig. 4.
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Fig. C.13. Additional results in the same format as Fig. 4.
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Fig. C.14. Visual comparison of the proposed framework and the SERESNET model on artificial images with 3 illuminants. This image shows the failure case in which the final
mask is almost identical to the mask after the first iteration (first and second column). It can be seen that here the models could not distinguish between the illuminant on the
top left and the illuminant in the bottom right part of the scene, which is why the image in the fourth column is almost completely black in both rows.

Fig. C.15. Visual comparison of the proposed framework and the SERESNET model on artificial images with 3 illuminants.
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Color constancy is an essential component of the human visual system. It enables us to discern the color of objects
invariant to the illumination that is present. This ability is difficult to reproduce in software, as the underlying
problem is ill posed, i.e., for each pixel in the image, we know only the RGB values, which are a product of the
spectral characteristics of the illumination and the reflectance of objects, as well as the sensitivity of the sensor. To
combat this, additional assumptions about the scene have to be made. These assumptions can be either handcrafted
or learned using some deep learning technique. Nonetheless, they mostly work only for single illuminant images. In
this work, we propose a method for learning these assumptions for multi-illuminant scenes using an autoencoder
trained to reconstruct the original image by splitting it into its illumination and reflectance components. We then
show that the estimation can be used as is or can be used alongside a clustering method to create a segmentation map
of illuminations. We show that our method performs the best out of all tested methods in multi-illuminant scenes
while being completely invariant to the number of illuminants. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.457751

1. INTRODUCTION

Color constancy allows us to perceive the colors of objects
invariant to the colors of the lights illuminating them. To mimic
this behavior, modern digital cameras have to emulate this proc-
ess using image processing. However, unlike the human visual
system, which can perform this operation in real time, the RGB
values taken from the camera sensor provide little information
about the nature of the illumination and the underlying scene.
The captured pixels pc , c ∈ {R, G, B} are the product of three
properties: reflectance of objects R(λ), the spectrum of illumi-
nation I (λ), and the spectral characteristic of the sensor Sc (λ)

{Eq. (1), [1,2]}. For real-world scenes, neither I (λ) nor R(λ) is
known. Hence, the problem of color constancy is inherently ill
posed, as there is an infinite number of combinations of surface
reflectance and illumination that could produce the captured
pixel values:

pc (x , y ) =

∫
ω

I (x , y , λ)R(x , y , λ)Sc (λ)dλ. (1)

Computational color constancy can be separated into two
sub-tasks. The first task is illumination estimation, which is the
more difficult of the two, since it is constrained by the ill-posed
nature of the problem. The second task is color correction,
whose goal is to retrieve the canonically illuminated image using
the original image and the estimated illumination. The correc-
tion is done using the von Kries model [3]. This operation can
be written in matrix form as follows:

 cR

cB

cG

 =

 dR 0 0
0 dB 0
0 0 dG

  pR

pB

pG

 , (2)

where [cR cB cG ]
T is the corrected image pixel, [pR pB pG ]

T

is the original image pixel acquired from the sensor, and
[dR dB dG ]

T represents the correction factor from the unknown
estimated illuminant eu to the canonical illuminant ec

(i.e., white, e c =
[

1
3

1
3

1
3

]
) and can be calculated as dR

dB

dG

 =

 e c ,R/eu,R

e c ,B/eu,B

e c ,G/eu,G

 . (3)

So, to solve the illuminant estimation problem, additional
assumptions have to be made about either the properties of
the scene or the properties of the illumination. These assump-
tions can vary a lot, resulting in a wide variety of color constancy
methods. Usually, these assumptions are based on the reflectance
properties of the whole scene; however, this allows such methods
to predict only one illumination in the scene, which in turn leads
to improper correction of some areas in multi-illuminant scenes
(see Fig. 1). Section 2 gives a more detailed overview of these
assumptions. We propose a novel method that can learn these
assumptions about the reflectance properties of the scene, and
thus is able to extract the color of the illumination. To encode
information about the reflectance properties and illumination,
our method takes the raw image as input X and produces two
separate outputs C and I . The first output is the canonically

1084-7529/22/061076-09 Journal © 2022Optica PublishingGroup
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Fig. 1. Two corrections by different illuminants present in the raw image obtained from a Nikon D7000 DSLR camera. The middle image is cor-
rected for sunlight, which results in the shaded regions having an unnatural blue hue. The right image is corrected for skylight, which gives the sunlit
region an orange cast. Values for the primary and secondary illuminants were obtained from the gray sides of the SpyderCube calibration object.

illuminated image C and the second is the per-pixel estimation
of the illumination I . The final output of the network R is the
reconstructed input image X , which is obtained by multiplying
the canonical image with the illumination estimation [inverse of
the von Kries correction; see Eq. (2)]. The use of the canonical
image helps our model learn the normal appearance of scenes
under canonical illumination, and allows for easier convergence
and improved estimation and segmentation results. Also, since
our estimation is not constrained in any way, it allows our model
to estimate illumination in multi-illuminant scenes with an
arbitrary number of illuminants. To test the performance of our
model in a multi-illuminant scenario, we used real-world images
with two illuminants and artificially generated images with
three illuminants. However, this type of per-pixel estimation can
still produce local artifacts and noticeable errors in estimation.
For this reason, we propose a simple clustering strategy that
can convert the per-pixel estimation into a segmentation mask,
where each region of the image is illuminated with only one illu-
minant. This in turn allows us to convert any multi-illuminant
image, which would require multi-illuminant methods to solve,
into a series of single illuminant estimation problems, which
is beneficial as single illuminant estimation methods usually
preform much better than their multi-illuminant counterparts.

In the next section, we will describe other color constancy
methods and different types of autoencoder networks. Then, in
Section 3, we describe our model and the loss function used for
training, and in Section 4, we present the results of our method
on real-world and generated multi-illuminant images, for both
illuminant estimation and segmentation. Finally, in Section 5,
we provide a conclusion.

2. RELATED WORK

A. Color Constancy

Color constancy in humans and our perception of illumination
is a phenomenon that has been studied for almost 200 years,
starting with [3–7], among others. More recently, with the rapid
development of digital cameras, computational color constancy
has become an important area of research, as it is implemented
in all modern cameras. Furthermore, as shown by Eq. (1), color
constancy with illumination estimation is an ill-posed prob-
lem. This means that additional assumptions have to be made
about the properties of the scene and the illumination. These
assumptions can vary greatly, which gives rise to many types of
color constancy methods. Roughly speaking, there are two main

categories of color constancy methods [8]: statistics based and
learning based. The most common example of statistics-based
methods is the gray world method [9], where it is assumed
that the natural reflectance of a scene is gray, and any deviation
from that has to be caused by illumination. Gray world can be
considered as a subset of a larger framework called the gray edge
framework [10], where the assumption about gray reflectivity is
imposed on the nth derivation of the image.

On the other hand, learning-based methods, as their name
suggests, use machine learning or deep learning techniques to
learn the properties of both illuminations and scenes. Some such
machine learning methods include illuminant gamut mapping
models [11], higher-level statistics of the surfaces in the images
[12], typical machine learning methods [13–15], and generative
and Bayesian methods [16–20], among others. One notable
multi-illuminant approach utilized conditional random fields
to predict more than one illuminant per image [21], while [22]
proposed a method based on the top-down and bottom-up
mechanisms of the human visual system. With the development
of deep learning methods, computational color constancy meth-
ods also started to employ those techniques. Some of the earliest
deep learning models included simpler convolutional neural
networks (CNNs), such as [23–25]. Other methods such as
[26,27] utilize only chroma histograms to predict illumination.
More recently, many network architectures have been utilized
for color constancy, such as generative adversarial networks [28]
or a combination of illumination estimation and classification
of the type of illuminant [29,30]. There have also been special-
ized networks, such as the one proposed in [31], where the final
layer uses an attention mechanism to detect regions suitable
for illuminant estimation. The method most similar to ours is
the one proposed in [32], where an autoencoder network ([33],
Ch. 14) is used to learn illuminant estimation. However, unlike
our approach, this method was limited to single illuminant
scenes, as it was able to predict only one illuminant. Another
method similar to ours, in terms of illuminant segmentation,
was proposed in [34], where a vision transformer architecture
segments images based on illumination, and detects errors in
estimation.

One of the main problems with modern multi-illuminant
color constancy methods is the lack of a large multi-illuminant
dataset. Methods proposed in [21,35] both included small
multi-illuminant datasets. However, both contained less than
100 images, which is considerably too small for training larger
deep learning models. Another small dataset was proposed in
[36], but these images were not publicly available. To combat
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Fig. 2. Examples of images used for training. The first and
second rows show an outdoor and indoor scene, with four and
three SpyderCube calibration objects, respectively. Multiple cubes
marked by red squares are placed in the region illuminated by the
ambient illuminant, which can vary throughout the scene more than
direct illumination (e.g., sunlight or one light bulb). We used only
images where the difference in the ground truth between the mea-
sured ambient illumination was less than 1◦ to ensure that the manual
annotation of the regions shown in the second column is accurate. Our
annotation procedure is similar to that described in [35]. The third
row shows an example of an artificially generated image and its ground
truth illumination.

this, most methods used artificially relighted images. However,
it is questionable how methods trained and tested on artificial
images perform in real-world environments. In this work, we
trained and tested our proposed model on many real-world
outdoor and indoor images with two illuminants that we col-
lected and annotated (which we will make available online),
and on artificial images with three illuminants. We also tested
the performance of our model trained on artificial images on
real-world images, to assess how representative our artificial
images were of real-world scenes. It was possible to test our
method that was trained on images with three illuminants
on images with two illuminants, because our model is not
dependent on the number of illuminants (this is also true of the
convolutional model (BCNN) presented in [24], which we use
for comparison). Figure 2 shows different types of real-world
and generated images that were used for training our model,
as well as the manually annotated and generated ground truth,
respectively. Figure 2 also shows that the artificial images were
generated so that each illumination is present in larger areas of
the image, to closer match the distribution found in real images.
We decided on this approach because our experiments showed
that it improved the generalization properties of models trained
on such images. Additionally, a similar approach was also used in
[24], which we use for comparison with our model.

3. AUTOENCODER MODEL

In this work, we propose a novel training method for learning
the assumptions required for multi-illuminant scenes. The
network is trained similarly to a classical autoencoder, where
the goal is to reconstruct the original image. However, unlike
traditional autoencoders, where the architecture is composed of

Fig. 3. Schema of the autoencoder training strategy. The output of
the encoder is the canonically illuminated image C p and the per-pixel
estimation Ip , whose multiplication creates X̃ , the reconstructed input
image X . The loss is calculated using all three outputs as described in
Eq. (5).

an encoder whose goal is to create an embedding z and a decoder
that uses z to reconstruct the input, our approach can be used
with any network architecture that produces an output of the
same spatial dimensions as the input. The procedure can be
described as follows (for the schema, see Fig. 3).

1. The final layer of the encoder network p , whose spatial
dimensions (h, w) match those of the input X , is com-
posed of six channels. The first three channels of p are the
canonically illuminated scene C p , while the other three
channels represent the normalized per-pixel estimation
of the illumination Ip . We emphasize that this estimation
is independent of the number of illuminants in the scene
(i.e., the model does not know anything about the number
of illuminants in the scene).

2. The input image X (which is a colored image with three
channels) is then reconstructed at the output by sim-
ply multiplying C p and Ip , following the von Kries [3]
approximation.

3. For training, a loss function can be computed for all three
outputs of the network, since the ground truth information
is available in our dataset for the intermediary outputs C p

and Ip , and any reconstruction loss usually used for train-
ing autoencoders can be used for the reconstructed input
[Eq. (2)].

This type of supervised training of the model for color con-
stancy improves the performance by encouraging it to create
a valid canonical image and thus learn to separate the color of
the illumination from the colors of objects in the scene. We
apply this training strategy to a custom fully convolutional deep
neural network with 4 million parameters, based on a feature
pyramid network (FPN) [37] architecture. All three outputs
of the network, along with the ground truth information from
the dataset, can be used to compute the composite loss L used
in training. For the illumination estimation loss, we propose a
new regularized loss function designed to preserve the gradual
transition between illuminations in real-world scenes. This loss
is composed of the mean squared error (MSE) term between
the predicted and actual illumination for each pixel, as well as a
regularization term that ensures smoothness, by penalizing fast
changes in the color of illumination. We use this regularization
to reduce the number of artifacts in the estimation that can arise
from large colored objects present in the scene (see Fig. 5). The
regularization term is computed by convolution of the image
with a “uniformity” filter of size n × n:
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fn =

−1 −1 . . . −1 −1
...

. . . (n2
− 1)

. . .
...

−1 −1 . . . −1 −1

 . (4)

As Eq. (4) shows, the “uniformity” filter is an approximation
of the Laplacian filter of size n × n, which serves as a discrete
filter to find the second derivative of the image and highlights
areas of rapid change of values ([38], pp. 98–99). Since we want
our estimation to have smooth transitions, we wish to keep
the Laplacian of the image as close to zero as possible. Another
useful property of the Laplacian is that it is very sensitive to
noise, and thus its minimization will also tend to minimize the
noise in the image. We apply regularization to the per-pixel
illumination estimation only. For both the reconstruction and
the extracted canonical image, MSE is used without any regu-
larization, because, unlike in the case of illumination, we want
to preserve details about the edges and sharp transitions in color.
This encourages the model to learn that in real-world scenes, fast
and large changes in the color of the scene are usually the result
of a change in surface reflectively and not in illumination. The
final loss function is computed as

L(Ip , C p , R, Ir , Cr , X ) = αMSE(C p , Cr ) + βMSE(X̃ , X )

+ γ MSE(Ip , Ir ) + δ
1

M

∑
i, j

( fn ∗ Ip)
2
i, j ,

(5)

where I is the per pixel illumination map, C is the canonical
image, X̃ is the reconstruction, X is the original image, and
α, β, γ, δ are coefficients used to tune the importance of each
component to the overall loss.

Another use of our model is image segmentation based on
the dominant illuminant in regions of the scene. We propose
this use of our model because it is possible for the model to
inaccurately predict the color of the illuminant in some more
difficult scenes; the regions where that illuminant was detected
were consistent with one of the illuminants in the scene. So, in
those scenarios, we can use the segmentation mask to separate
the scene into regions with only one illumination, and use some
more complex and accurate single illuminant estimation meth-
ods to produce a new estimation map for the scene. To achieve
that, we use the per-pixel estimation output of our model and
apply k-means clustering to it. The number of clusters was set
manually to either two or three for real-world and artificial
images, respectively. The output per-pixel estimation was first
down-sampled eight times to reduce the number of points given
to the clustering algorithm. The clustering was done in RGB
three-dimensional space using the Euclidean distance between
points. The final segmentation mask was produced by finding
the nearest centroid produced by the clustering algorithm for
each pixel in the per-pixel estimation.

A. Experiments and Training

We implemented our model in TensorFlow 2.4 [39], and it was
trained on a computer with a Ryzen 3700x CPU and Nvidia
RTX 2080Ti GPU. Training was done over 5000 epochs, and
each epoch consisted of passing through 1/50th of our dataset.
Learning rate was set using a cosine annealing warm restart

[40] schedule, with range from 1 ∗ 10−4 to 1 ∗ 10−6, and the
weights were optimized by the Adam optimizer [41] with weight
decay of 1 ∗ 10−7. For images with two illuminations, dataset
contained 600 images of outdoor scenes taken by two digital
single-lens reflex (DSLR) cameras (Canon EOS 550D and
Nikon D7000), for each of which ground truth illumination
was extracted using SpyderCube calibration objects, and the
regions where the illuminants were present were annotated
manually. Figure 4 (first row and first column of second row)
shows an example of the image from the dataset and the corre-
sponding map of per-pixel illuminations. The training was done
using the loss function described in Eq. (5) with the parameters
set to α = 1, β = 1, γ = 1.4, δ = 1.4, and the filter size was set
to n = 5. These hyperparameters were tuned on outdoor images
and were kept the same for all experiments. We also applied
contrast normalization by stretching the image histogram such
that the pixel values for each image were in the range [0, 1].
Augmentation that consisted of random rotation from −15◦ to
15◦, random center cropping, and random horizontal and ver-
tical flipping was applied during training to prevent overfitting,
since the number of outdoor images available is not large.

Images with three illuminants were artificially created since,
to our knowledge, there does not exist any dataset with such
images and per-pixel illumination ground truth. These images
were created by taking canonically illuminated images from
Cube+ [42], which were then illuminated with new illuminants
using the von Kries model. The spatial distribution of illumi-
nants was generated by combining random segments of linear
functions to create a complex enough mask. We experimented
with using simple masks where the regions were separated by
straight lines, or by coloring random patches, but those proved
to be less representative of real-world scenes, which resulted in
much lower performance when the models were tested on real-
world scenes. We trained a subset of models on only artificial
images with three illuminants, and tested them on real-world
images with two illuminants, to allow us to better test the gen-
eralization properties of the models on different types of images
from those used for training. We also tested the best performing
model on images from the Color Checker [16] and Cube+
[42] datasets, and we present our findings on those images in
Section 4.

To test the improvements in performance that can be
obtained using our training method, we performed an ablation
study by removing the canonical image and the reconstruction,
and the model was trained to simply minimize the MSE between
the ground truth illumination map and the estimation. We also
experimented with removing the smoothness regularization
from our loss function, which also led to decreases in perform-
ance in some areas. We also compared our model to illumination
segmentation models proposed in [34,36], a U-Net model
with a Visual Geometry Group network (VGG16) [43] as the
encoder (implemented such that one illuminant was known, the
same as the vision transformer in [34]) and to a baseline Otsu
threshold applied to the brightness histogram of the image. The
segmentation results are shown in Tables 3 and 4 for outdoor
and artificial images, respectively. For illuminant estimation, we
implemented some classical single illuminant estimation mod-
els, as well as the multi-illuminant CNN model described in
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Fig. 4. Example of all outputs of the model and the comparison to the ground truth. The first row shows the input image, the second shows, in
order, ground truth illumination, estimated per-pixel map, and clustered estimation with only two illuminants. In the third row, the illuminant cor-
rected images are shown, with the first column showing the ground truth correction, the second and third showing corrections by the second and third
illumination maps from the previous row, respectively, and the fourth column shows the canonical output when using the proposed training strategy.
The bottom row shows the masked output of the segmentation task, where the first two columns are the segmentation produced by clustering the illu-
minant map, while the second two are the ground truth segmentation. The model was given linear raw images, but gamma correction was applied to
these images for easier visualization.

[24] and the Multi-Illuminant Random Field (MIRF) method
described in [21].

4. RESULTS

In this section, we present the results of our autoencoder train-
ing method for both illuminant estimation and segmentation
tasks. We tested our method for illumination segmentation on
real-world and artificial images by applying k-means clustering
to the output illuminant estimation, and compared our model
with two baselines and four other deep learning models.

For illuminant estimation, we experimented with three
different ways of acquiring the final per-pixel estimation of
the illuminants. The first approach simply used the estimation
output from our network, which is independent of the number
of illuminants in the scene. This is also true for the BCNN [24].
For the second approach, cluster centers from the k-means
clustering used for segmentation were applied as the global
estimation for the region where they were the centroid. For the
third approach, a Fully Convolutional Color Constancy with
Confidence-weighted Pooling network (FC4) [31], trained
on Cube+ [42], was used to produce a global estimate for each
segmented region, which was then used instead of cluster centers
for the final estimation map. We purposefully trained the FC4
model on the Cube+ dataset to show that our model can be
used in combination with different single illuminant estimation
methods, while still obtaining good results. To make the com-
parisons fair, we applied the estimated values from the second
and third approaches to the segmentation maps and thus once
again obtained per-pixel estimates, then calculated the mean
angular error between each pixel in the per-pixel estimate and
the ground truth. The results on outdoor and artificial images

Table 1. Comparison of Angular Errors on Real-World
Images

a

Real-World Estimation

Model Mean Median Trimean Best 25% Worst 25%

GW [9] 5.55 5.37 5.45 2.54 8.84
GE1 [10] 5.44 5.63 5.51 1.98 8.93
GE2 [10] 5.77 5.71 5.75 2.22 9.45
FC4 [31] 4.09 3.85 3.91 1.78 6.76
MIRF [21] 7.08 6.20 6.40 2.70 12.67
BCNN [24] 3.11 2.77 2.82 1.75 5.14
AE-EST 3.17 2.75 2.88 1.79 5.18
AE-EST (pt) 3.13 2.74 2.80 1.80 5.11
AE-NOSMO 2.96 2.66 2.67 1.66 4.88
AE-FULL-GW 4.68 4.14 4.31 2.17 7.75
AE-FULL-MIRF 6.04 5.29 5.51 2.30 10.76
AE-FULL-FC4 3.01 2.74 2.71 1.73 4.90
AE-FULL 2.96 2.71 2.67 1.72 4.81

aThe suffixes (GW, MIRF, and FC4) added to the AE-FULL model indicate
that the segmentation mask was used to determine the single illuminant regions
and the method in the suffix was used to estimate the illumination for each
region. We can see that when those methods were combined with the segmen-
tation mask, they produced better results than when used only to produce the
single illuminant estimation. However, it is important to note that we need to
know the number of illuminants when employing this segmentation strategy.
Methods without those suffixes do not need to know the number of illuminants
in advance.

are reported in Tables 1 and 2, respectively. We can see that the
performance for illuminant estimation is highest when direct
output is used, and is again achieved by our model. However,
the proposed segmentation and estimation approach allows us
greater flexibility, as different estimation methods can be used.
So, as the more researched single illuminant methods continue



Research Article Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1081

Table 2. Comparison of Angular Errors on Artificial
Images with Three Illuminants

Artificial Estimation

Model Mean Median Trimean Best 25% Worst 25%

GW [9] 6.29 5.49 5.69 3.21 10.82
GE1 [10] 5.92 5.25 5.43 3.25 9.69
GE2 [10] 7.98 7.15 7.35 4.32 13.04
FC4 [31] 3.51 3.24 3.25 2.46 5.12
AE-EST 4.04 3.77 3.70 1.68 7.08
BCNN [24] 3.58 3.50 3.52 1.80 5.52
AE-NOSMO 3.44 3.33 3.39 1.53 5.41
AE-FULL 3.41 3.35 3.40 1.46 5.35

to improve, the current FC4 model can easily be replaced with
a more accurate model. We see the same behavior on artificial
images with three illuminants. The visual comparison of the
estimation results among methods can be seen in Figs. 5 and
6. In Fig. 6, we can see that our model was able to produce
accurate corrections, and even managed to learn the mixing
properties of illumination, as can be seen in the indoor scenes

Fig. 5. Comparison of per pixel estimation results and corrections
for different methods: (a) ground truth, (b) patch-based BCNN [24],
(c) per pixel estimation using FPN network, (d) FPN autoencoder
without smoothing, and (e) FPN autoencoder with smoothing and
tri-component loss. Our models in the bottom row produced the best
estimation and the correction with the fewest artifacts. We can also
notice that methods (b) and (c) were not able to fully discriminate
between the red paint on the ground and the color of the illumination,
resulting in wrong corrections on those parts of the image, while our
proposed method did not have that problem.

in the third, second to last, and last columns. We can also see
that the model struggled with the scene in the second to last
column, where the illumination was produced by a fluorescent
bulb, which produces strongly colored illumination, making it
more difficult to accurately predict. Another probable reason
for the poorer performance on those images is the fact that our
dataset contained the fewest scenes under such illumination.
In all of our tables, we use different abbreviations to describe
different models and their variations. AE-FULL represents
the autoencoder model trained with both smoothing and all
three outputs, AE-NOSMO is the autoencoder model without
the smoothing constraint, and AE-EST is the model trained
using only the loss between the estimated illumination and
the ground truth, without the reconstruction and canonical
outputs. Furthermore, “gen” stands for generalization, and
indicates that the model was trained on the artificial images
and tested as is (without any fine-tuning) on real-world images,
while “pt” stands for pretraining, and means that the model
was first trained on the artificial images and then fine-tuned on
real-world images before testing.

We present the results of the segmentation based on illumina-
tion for real-world images in Table 3. As we can see, our method
outperforms all other methods on the illuminant segmentation
task. The first baseline method uses a brightness threshold
as described in [36], however with the threshold value set to
c t = 0.1 instead of c t = 0.08 as described in the original paper,
as it achieves better performance on our dataset. Our model,
trained using our tri-component loss function, outperformed
all other models as well as the same model when it was trained
using only simple MSE loss (visual comparison of results can be
seen in Fig. 7). Also, when we compare our model to the vision
transformer model from [34] or VGG U-Net model, our model
does not rely on the fact that one illuminant will be known.
However, it is important to note that model is specialized for
illuminant segmentation, is more complex (19 million param-
eters compared to 4 million parameters of our model), relies on
knowledge about or estimation of one illuminant a priori, and
is also limited to segmenting only two illuminants in a single
pass. On the other hand, when we take a look at the performance
of our model on the harder problem of artificial images with
three illuminants (see Table 4), we can see that our model, when
trained using the proposed training strategy, outperforms all
other models.

The last set of experiments that we conducted was to test
the generalization of models trained on artificial images with
three illuminants by evaluating them on real-world images with
two illuminants. The test set of real-world images was selected
to match the test set used in previous experiments to allow for
fair comparison of the results. Additionally, in Tables 5 and 6
results with the “gen” suffix show the results of models trained
on artificial images and then tested on real-world images. The
much smaller drop in performance of models trained using the
proposed training strategy shows that they generalized much
better than models trained using other methods. This indicates
that our training strategy allows the model to simultaneously
learn the correct distribution of both illuminants and reflectance
properties of real-world scenes, which is beneficial because of the
lack of larger multi-illuminant datasets that could be used for
training.
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Fig. 6. Comparison of per pixel estimation results and corrections between the ground truth (second and fifth rows), patch-based BCNN [24]
(third and sixth rows), and FPN autoencoder with smoothing and tri-component loss (AE-FULL, fourth and seventh rows). Images in the indoor
scenes in the third, second to last, and last columns show the more difficult indoor examples, where the scenes contain mixing of very different illumi-
nants, e.g., sunlight and light bulbs.

Table 3. Dice Coefficient Results of Segmentation on
Outdoor Images

Real-World Segmentation

Model Mean Median Trimean Best 25% Worst 25%

Otsu [44] 0.82 0.85 0.84 0.96 0.65
TRESH [36] 0.79 0.83 0.82 0.93 0.57
VGG16 (U-Net) 0.87 0.83 0.82 0.93 0.57
T-LARGE [34] 0.88 0.90 0.89 0.96 0.76
BCNN [24] 0.88 0.90 0.90 0.96 0.77
BCNN (gen) 0.59 0.59 0.59 0.71 0.49
AE-EST 0.88 0.89 0.89 0.96 0.76
AE-EST (gen) 0.87 0.88 0.88 0.95 0.75
AE-EST (pt) 0.89 0.91 0.91 0.97 0.76
AE-NOSMO 0.88 0.91 0.90 0.97 0.75
AE-NOSMO (gen) 0.88 0.90 0.89 0.96 0.75
AE-FULL (gen) 0.87 0.89 0.89 0.96 0.76
AE-FULL 0.90 0.92 0.91 0.97 0.78

Finally, we tested our best performing model trained on
real-world images with two illuminants (AE-FULL) on single
illuminant images from the Color Checker [16] (we used the
latest version of ground truths [45]) and Cube+ [42] datasets.
We present a visual comparison of those results in Fig. 8. As we
can see in those example scenes, some images in those datasets
actually contain more than one illumination, which our model
was able to predict and produced a subjectively more pleasing
correction than the single illuminant ground truth. For exam-
ple, some outdoor images contain more than one illuminant
(i.e., sun and shadow), such as the example in the first column,
where the white part of the Japanese flag looks orange when
corrected using the provided ground truth, and white when
corrected using our method. We do not provide any numerical
comparison of the results, as our model produced a per-pixel
illumination estimation and the ground truth contained only a
single illumination value, even though, as we show, some scenes

Fig. 7. Comparison of illumination segmentation for different
methods: (a) input image, (b) ground truth mask, (c) Otsu seg-
mentation, (d) patch-based BCNN [24], (e) transformer network
[34], (f ) FPN network without the autoencoder tri-component loss
training, (g) FPN autoencoder without smoothing, and (h) FPN
autoencoder with smoothing and tri-component loss. The methods
in the bottom row, which were both trained using the autoencoder
procedure, produced the most accurate segmentation masks.
Furthermore, methods (c), (d), and (f ) were not able to fully dis-
criminate among the red paint, green grass, and colored objects in
the background, which resulted in inaccurate segmentation in those
regions.

contain more than one illumination, which would make the
comparison to other methods unfair.
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Table 4. Dice Coefficient Results of Three Illuminant
Artificial Images

Artificial Segmentation

Model Mean Median Trimean Best 25% Worst 25%

LUM-TRESH 0.57 0.55 0.56 0.71 0.44
BCNN [24] 0.74 0.75 0.74 0.88 0.58
AE-EST 0.79 0.82 0.81 0.93 0.61
AE-NOSMO 0.81 0.84 0.83 0.95 0.62
AE-FULL 0.81 0.83 0.82 0.94 0.64

Table 5. Comparison of Angular Errors on Real-World
Images, between Models Trained on Artificial Images
and Tested on Real-World Images

Real-World Estimation Generalization

Model Mean Median Trimean Best 25 % Worst 25%

BCNN (gen) [24] 3.47 3.08 3.19 1.97 5.57
AE-EST (gen) 4.22 4.07 4.02 1.43 7.35
AE-NOSMO (gen) 3.32 3.17 3.09 1.54 5.48
AE-FULL (gen) 3.41 3.18 3.16 1.73 5.61

Table 6. Dice Coefficient Results of Generalization
Segmentation Test on Real-World Images

Real-World Segmentation Generalization

Model Mean Median Trimean Best 25% Worst 25%

BCNN (gen) 0.59 0.59 0.59 0.71 0.49
AE-EST (gen) 0.87 0.88 0.88 0.95 0.75
AE-NOSMO (gen) 0.88 0.90 0.89 0.96 0.75
AE-FULL (gen) 0.87 0.89 0.89 0.96 0.76

5. CONCLUSION

In this work, we presented an efficient method for training deep
neural networks for both illuminant estimation and illuminant
segmentation. The models were trained to simultaneously pre-
dict the illumination and the reflectance properties of objects by
creating a per-pixel estimation of illumination and a canonically

illuminated image. These images are then combined using
the von Kries model to recreate the input image, with all three
images being used by our tri-component loss function. For
evaluation and usage, the information about the recreated image
and the canonically illuminated image can be discarded, and
only per-pixel estimation is used. Additionally, we show that
clustering these per-pixel illuminant estimations can be used to
create a segmentation of illuminants in the scene. The results
of our experiments show that our method benefits from our
approach on both real-world and artificial multi-illuminant
images, for both estimation and segmentation tasks, where it
performs the best for illuminant estimation and is on par with
more specialized illuminant segmentation methods. We also
show that, when using our training method, our models show
greater generalization, as they outperform all other models
when trained on purely artificial images and then evaluated on
real-world images. Another benefit of our approach is that it is
invariant to the number of illuminants, and can even be used
on images from single illuminant datasets, with the possibility
to detect images containing more than one illuminant, e.g., in
Color Checker [16] or Cube+ [42] datasets. Furthermore,
the segmentation mask produced by our method can be com-
bined with different single illuminant estimation methods,
which results in the improvement of their performance on
multi-illuminant scenes and allows for greater flexibility, as the
segmentation and estimation models can be changed depending
on the scenarios in which they are used. In the future, another
avenue of research in the area of image segmentation end estima-
tion is the use of unannotated images, which are easy to acquire
but difficult to annotate. This could be achieved by adapting our
tri-component loss function to allow for different combinations
of annotated and unannotated images, but more research is
required to find the best performing function.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

Fig. 8. Comparison of per pixel estimation results and corrections between the ground truth (second and fourth rows) and FPN autoencoder with
smoothing and tri-component loss (AE-FULL, third and fifth rows) on the images from the Cube+ [42] (first three columns) and Color Checker [16]
datasets.
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ABSTRACT Color constancy is an important part of the human visual system, as it allows us to perceive
the colors of objects invariant to the color of the illumination that is illuminating them. Modern digital
cameras have to be able to recreate this property computationally. However, this is not a simple task, as the
response of each pixel on the camera sensor is the product of the combination of spectral characteristics
of the illumination, object, and the sensor. Therefore, many assumptions have to be made to approximately
solve this problem. One common procedure was to assume only one global source of illumination. However,
this assumption is often broken in real-world scenes. Thus, multi-illuminant estimation and segmentation
is still a mostly unsolved problem. In this paper, we address this problem by proposing a novel framework
capable of estimating per-pixel illumination of any scene with two sources of illumination. The framework
consists of a deep-learning model capable of segmenting an image into regions with uniform illumination
andmodels capable of single-illuminant estimation. First, a global estimation of the illumination is produced,
and is used as input to the segmentation model along with the original image, which segments the image
into regions where that illuminant is dominant. The output of the segmentation is used to mask the input
and the masked images are given to the estimation models, which produce the final estimation of the illu-
minations. The models comprising the framework are first trained separately, then combined and fine-tuned
jointly. This allows us to utilize well researched single-illuminant estimation models in a multi-illuminant
scenario. We show that such an approach improves both segmentation and estimation capabilities. We tested
different configurations of the proposed framework against other single- and multi-illuminant estimation and
segmentation models on a large dataset of multi-illuminant images. On this dataset, the proposed framework
achieves the best results, in both multi-illumination estimation and segmentation problems. Furthermore,
generalization properties of the framework were tested on often used single-illuminant datasets. There,
it achieved comparable performance with state-of-the-art single-illumination models, even though it was
trained only on the multi-illuminant images.

INDEX TERMS Color constancy, segmentation, multi-illuminant, illumination estimation, deep learning,
framework.

I. INTRODUCTION
Color constancy is an important part of the human visual
system, as it allows us to adapt to different colors of illu-
mination. This enables us to recognize the colors of objects
and illuminants independently. For images taken by digital

The associate editor coordinating the review of this manuscript and

approving it for publication was Essam A. Rashed .

cameras, it is essential to be able to estimate the color of
illumination as accurately as possible. Accurate estimation
allows us to create a fateful reproduction of the scene which
is satisfactory to the human observer. Furthermore, inaccurate
estimation creates images that are influenced by illumination,
which can decrease the performance of downstream image
processing tasks, as described in [1]. Thus, computational
color constancy has been studied by numerous authors since
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the advent of digital cameras, and many methods have been
proposed. Equation (1) describes the amount of light pc(x, y)
recorded for each channel c ∈ R,G,B at the position x, y in
the scene:

pc(x, y) =

∫
ω

I (x, y, λ)R(x, y, λ)Sc(λ)dλ , (1)

whereR(λ) and I (λ) are the reflectivity and illumination spec-
tral functions, respectively. Sc represents the spectral sensitiv-
ity of the observer (camera). Equation (1) also shows that for
each value pc, there are an infinite number of combinations
of I ,R, S that can produce it. Since I ,R, S are normally
unknown, that makes the problem of illumination estimation
under constrained.

However, assumptions about the properties of the illumi-
nation or the properties of the scene can be introduced. This
makes it feasible to approximate the value of the illumina-
tion present in the scene. That step of computational color
constancy is called illuminant estimation. The second step is
to white-balance the image, usually to make it look as it was
taken under a canonical illuminant, thus eliminating the influ-
ence of the illumination. The most common approximation
used is the von Kries [2] model:cRcB

cG

 =

ec,R/eu,R 0 0
0 ec,B/eu,B 0
0 0 ec,G/eu,G

 pRpB
pG

 (2)

where [cR cB cG]T represents the corrected image, and
[pR pB pG]T is the value retrieved from the sensor. Canonical
illumination is represented by ec and eu is the estimated
illuminant.While Equation (2) does not provide true compen-
sation for the illumination, it is an approximation that works
well.

Different assumptions have been applied to the problem
of illuminant estimation. One such assumption is that there
was only one illuminant present in the scene. However, for
many real-world scenes that is not the case. They contain at
least two sources of illumination, e.g., outdoor scenes that are
illuminated with direct sunlight and with shaded areas illumi-
nated by skylight, or indoor scenes where one illuminant is a
light bulb and the other is the sunlight coming through the
window. For such scenes, illuminant localization is as impor-
tant as the estimation, as just the color of the illumination
does not provide enough information for accurate correction
of the image. Figure 1 shows an example of a real-world scene
with two illuminants. The effects of global correction are also
shown.

In this work, we propose a novel deep learning framework
that is capable of both segmentation and estimation of scenes
with two sources of illumination. The main idea behind the
framework is to separate the problem of illuminant local-
ization and estimation to different specialized methods. This
allows us to utilize well-researched single-illuminant estima-
tion models for multi-illuminant scenes. The framework is
composed of three main steps. First, a global illumination
vector for the image is estimated. Next, this illumination

FIGURE 1. Two corrections by different illuminants present in the raw
image, with gamma correction applied for easier visualization. The middle
image is corrected for the sunlight, and the shaded regions end up having
a blue hue. The right image is corrected for illumination in the shadow,
which corresponds to the blueish skylight. This gives the sunlit region an
orange cast. Groundtruth values were obtained from the gray sides of the
SpyderCube calibration object that are highlighted by red squares.

vector is fed into a segmentationmodel, alongside the original
image. The output of this step is the segmentation mask,
which shows where the first estimated illuminant is dominant
in the scene. Then, the original image is masked, and the
masked images are fed to global estimation models. The
outputs of estimation models are combined with the segmen-
tationmask to produce the final estimation of the illumination
in the whole scene.

Furthermore, we incorporate the possibility of illumi-
nant mixing, and the proposed framework is capable of
providing a per-pixel estimation of illumination. This is
achieved by linear combination of estimated illuminants
using the segmentation mask. We show that by incorporat-
ing joint end-to-end training of the framework, we achieve
state-of-the-art results. Additionally, we show that joint
training further improves the performance of underlying
models when compared to the same models that were
only trained separately. The training of the framework was
done on a large multi-illuminant dataset [3] containing
2500 indoor and outdoor images. Testing was done on
a hold-out set of images from the dataset for the multi-
illuminant scenario. The generalization performance was
tested by training the framework on multi-illuminant images
and testing it on single-illuminant images fromCube+ [4] and
ColorChecker [5] datasets. On multi-illuminant images, the
proposed framework achieves state-of-the-art results. It also
achieves results comparable with best single-illuminant esti-
mation methods on single-illuminant datasets. Furthermore,
usage of separate models for each sub-task makes the frame-
work modular. This allows us to easily train and test different
variations of the framework, thus balancing the accuracy
with complexity. We describe our framework in detail in
Section III, and show the quantitative and qualitative results
for both the segmentation and per-pixel estimation compared
to other single- and multi-illuminant methods in Section IV.
Finally, in Section V we conclude the paper.

II. RELATED WORK
The term computational color constancy usually includes
two basic steps. These are illumination estimation and color
correction (also referred to as chromatic adaptation). The
first step is determining the illumination vector for some part
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of the image. The granularity of the estimation can vary,
from per-pixel, through image patches all the way up to the
whole image. This defines the type of estimation method
that is needed, with single-illuminant estimation methods
estimating only one illuminant for the whole input image.
Patch and per-pixel estimations fall under multi-illumination
estimation methods, as they estimate more than one illumi-
nant per image. Since color constancy is an ill-posed prob-
lem, most research in the past focused on the problem of
single-illuminant color constancy. With this assumption, it is
assumed that the whole scene (or at least the vast majority) is
illuminated by one global illuminant. One of the first methods
for single-illuminant color constancy methods were simple
methods that relied on low-level image statistics. Two of those
methods are the Gray-World [6] and the White-Patch [7]
(Max RGB) methods. Gray-World method assumes that for
each scene, the average reflectance under white light is gray,
and thus any deviation from gray is caused by the color of the
illumination. On the other hand, theWhite-Patch (Max-RGB)
method assumes that the brightest part of the scene is the
reflected color of the illuminant from a specular surface.
However, it is easy to find common real-world examples
where these assumptions are broken. For example, for the
Gray-World method, any scene with numerous plants (like
forests and parks) will not have a gray reflectance under
white light but instead that average will be green. For White-
Patch, if the scene does not contain any specular highlights,
the assumption will be broken. More complex methods were
proposed over the years. They can be split into two main cat-
egories, statistics based and learning-based methods. Some
of the more well-known statistics-based methods include the
Gray-Edge framework [8], which generalizes all methods
such as Gray-World and White-Patch by adding the possi-
bility of using image gradients and different image norms,
as described by (3):( ∫ ∣∣∣∣∂nfc,σ (x)∂xn

∣∣∣∣pdx) 1
p

= ken,p,σc , (3)

where | · | is the Frobenius norm, c ∈ R,G,B, n is the order
of the derivative and p is the Minkowski-norm.

There are also gamutmappingmethods, such as themethod
proposed in [9]. There, the goal of the method is to find the
gamut that the illuminant spans in the chromaticity diagram
and then use that knowledge to find the most probable illu-
minant color. On the other hand, learning-based methods are
more complex, and can be split into two categories: simpler
machine learning methods and more complex deep learning
methods. One of these learning-based methods [10] learns
the common surfaces in the train scenes and then uses the
exemplar approach to match the surfaces in the test images
to those learned surfaces. Other methods, such as [11], [12],
and [13] use a probabilistic model of the illumination and
reflectance as a random variable. Unfortunately, all of these
methods do not achieve good enough results, particularly in
more challenging conditions.

This is the reason more complex deep learning models
were proposed for the task of color constancy. The first
attempt at such a model was proposed in [14], where a simple
network was given a raw image and produced the estimation
of the illumination in the scene. Because there was no large
dataset, this method was trained mostly on image patches.
However, this reduced the semantic information present in
each patch, and eliminated cross patch information. This was
addressed in [15], where the authors proposed a method that
took as input the whole image and produced estimation for
patches of the image. Additionally, the method produced an
attention map which was used to multiply the patch estimates
and produce the final estimation mask. This approach was
successful because it allowed the model to reason about
the patches of the image that carry more information about
the color of the illumination. In [16], the authors propose
a very deep model for illuminant estimation (CRNA) that
uses cascading residual connections and ResNet architecture
to stabilize learning and improve performance. Similarly,
in [17], the authors propose a deep network which iteratively
estimates the illumination, which is also used to stabilize
training and improve performance. On the other hand, in [18],
a small network that still achieves state-of-the-art results for
illuminant estimation is proposed. Furthermore, some meth-
ods, such as [19] and [20], use only image histogramswith the
deep learning models to perform illuminant estimation. This
removes any spatial information and focuses only on colors
present in the scene.

On the other hand, multi-illuminant color constancy has
been much less studied in the past than single-illuminant
color constancy. One reason for this is the lack of a large
multi-illuminant dataset, since it is difficult to accurately
annotate multi-illuminant images. Most of the methods that
were proposed for this problem are learning-based and model
the spatial distribution of illuminants. However, several
statistics-based methods have been proposed in [21], [22],
[23], and [24]. They share some similarity with our approach,
as they separate segmentation and estimation into separate
tasks that are combined. They use image texture [23] or
Kmeans [22] for localization and then use Max RGB method
for estimation. Finally, similar to our method, the localization
is used to compute the final per-pixel illumination of the
scene. On the other hand, [25] propose a white-balancing
method for scenes in which the total number of illuminants
is not known. They achieve this by selecting N white-balance
points and map them to ground truth ones. Finally, [26]
proposed a method that imitates the Adaptive SurroundMod-
ulation (ASM) capability of the human eye to regulate the
receptive field of neurons based on contrast. One classical
machine learning approach was presented in [27], where the
authors use conditional random fields to create the MIRF
algorithm, which can localize and estimate illuminants in
the scene. The main drawback of this approach is its high
computational cost and lower accuracy. Deep learning-based
approach for multi-illuminant color constancy was proposed
in [28] as an upgrade on the network proposed in [14], where
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the authors use kernel density estimation to determine the
number of illuminants in the scene. In [29], authors propose
a framework of two networks, HypNet and SelNet. HypNet
network proposes two hypotheses about the illumination of
each patch, and SelNet chooses which of those hypotheses to
use for the estimation.

More recently, in [30] the authors proposed a simple model
that used brightness threshold to perform image segmen-
tation, to which they applied simple estimation methods.
This method works very fast, but it produces many arti-
facts and incorrect corrections in parts of the scene where
the brightness assumption does not hold. Furthermore, three
methods for image segmentation and estimation using deep
learning models were proposed. In [31], the authors intro-
duced a vision transformer method that was able to perform
segmentation of parts of the scene that were incorrectly
white-balanced. In [32], the authors proposed an autoencoder
training strategy and a novel loss function which was capable
of learning the common distribution of colors in scenes,
to produce per-pixel estimation of the illumination. Finally,
in [33] the authors created a segmentation model that was
able to segment scenes with two sources of illumination
by first producing an estimation of the primary illuminant.
We based our framework on the same principle: that it is
possible to relatively accurately estimate one of the illuminant
sources in the scene using global methods, and then localize
its influence. However, unlike the model in [33] we do not
stop at segmentation, as our framework allows for accurate
estimation of both illuminant sources and their localization.

III. PROPOSED FRAMEWORK
In this work, we present a novel framework for simultane-
ous estimation and segmentation of illumination for scenes
with two sources of illumination. The main idea behind our
framework was to leverage well-researched single-illuminant
estimation models for multi-illuminant scenes. The proposed
framework consists of three main parts. A scheme of the
framework can be found in Figure 2. The first part is global
estimation of the dominant illuminant. Then, a segmenta-
tion model is used to localize the influence of the dominant
illuminant, which is represented as a binary segmentation
mask. This mask is used to create masked inputs for the
two estimation models. Then, those two single-illuminant
estimation models are used to estimate the dominant and
secondary illuminants. Finally, the per-pixel estimation of
illumination for the scene is obtained by linear combination
of the estimated illuminants based on the weights from the
segmentation output, using Equation (4):

p(x, y)c = (1 − Sp(x, y))Ip1 + Sp(x, y)Ip2 , (4)

where (x, y) are the coordinates in the image, pc is the final
per-pixel estimation, Ip1 and Ip2 are dominant and secondary
illumination estimations, respectively, and Sp is the predicted
segmentation mask.

Each layer of the framework is implemented so that it
allows for the free flow of gradients using backpropagation.

This allows us to train the framework end-to-end. We refer
to this as joint training. Gradients in the upper layers dur-
ing training of the framework are computed from both the
estimation and the segmentation errors. This effect is not
present when layers are only trained separately. Another ben-
efit of this approach is in the transitional regions between
the illuminations. In those regions, the segmentation model
is encouraged to keep the output such that the linear com-
bination of the illumination sources corresponds to the real
mixed illumination. Thus, the segmentation output is pushed
closer to 0.5 than to 0 or 1 for those areas. In the case of
the pure segmentation training, where the goal is to create
hard borders between classes, no such regularization effect
is present. Furthermore, those regions carry less useful infor-
mation for either of the single-illuminant estimation models
that come after the segmentation. For them, this ambiguity in
the segmentation acts as an attention mechanism, by shifting
focus more to the parts of the scene where illumination is less
ambiguous. We show later that this type of joint training of
our framework improves the performance of both segmenta-
tion and estimation model compared with their counterparts
that were trained independently.

Moreover, we propose an additional recurrent component
because it can sometimes be difficult to estimate the domi-
nant illuminant from the whole image in the first step. The
recurrent connection is shown with a labeled dotted arrow
in the red part of Figure 2. It naturally follows that, if we
can localize and estimate one illuminant in the scene, the
estimation produced would be better than the global esti-
mation. Thus, the recurrent component enables additional
passes through the framework. In the second pass through
the framework, the recurrent connection replaces the initial
global dominant illuminant estimation with the output of
the local dominant illuminant estimation from the first pass.
For the final output of the framework, all the intermediary
estimation and segmentation steps are averaged. Such recur-
rent behavior can be implemented in as many steps as it is
necessary. However, since the task of color constancy usu-
ally needs to be performed quickly, we implemented only a
two-step recurrent framework. We compare the performance
of this recurrent framework to that of the base framework
as well as other multi- and single-illuminant models
in Section IV.

For the estimation task, the framework is designed in such
a way that it is interoperable with any state-of-the-art single-
illuminant estimation methods. In the scope of this paper,
we implemented a single-illuminant estimation model based
on the FC4 [15] model, with a reduced number of parameters.
We reduced the number of parameters to decrease the overall
complexity of the framework. We use one of these models
to first predict the dominant illuminant in the scene. Later,
we use two more such models to predict the illumination in
the regions highlighted by the segmentation model. Further-
more, in some variations of our framework, the weights are
shared between these two models. (In practice, this is imple-
mented with only one estimation model, to reduce memory
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usage.) These estimation models are shown in yellow
in Figure 2.

Finally, we limit the number of illuminants for two main
reasons. Firstly, we are limited by the types of datasets that
are available for multi-illuminant scenes, which are needed to
train our model. All the labeled datasets that have per-pixel
groundtruth information about the illuminants in the scene
contain only two illuminants. Moreover, most real-world
scenes actually contain either one or two illuminants. One
exception are very dynamic nighttime scenes like clubs or
urban areas. However, we show that even with this reduction
in the number of illuminants, our model can handle com-
plex scenes. We achieve this by allowing illuminant mixing,
which is very common in real-world scenes. Furthermore,
the results show that our model preforms well on single-
illuminant scenes, even though it was trained only on scenes
with two sources of illumination.

A. TRAINING
The framework was trained in two steps. First, each compo-
nent of the framework was trained on their respective task
separately. The segmentation part was trained to segment
the areas of the scene where the primary illuminant was
dominant, similar to the method proposed in [33]. The esti-
mation models were trained to predict either the dominant
or the secondary illuminant. After the pretraining step, the
framework was combined into the final model as described in
Section III and then trained end to end using backpropagation.
The framework was implemented in TensorFlow 2.4 and
trained on a system with an RTX 2080Ti GPU and AMD
Ryzen 3700x CPU. Pretraining was done over 500 epochs,
with cosine annealing scheduler [34] and stochastic gradient
descent [35] optimizer. We use a linear combination of the
binary cross entropy (BCE) and robust color constancy loss
(IL) function [36] for the segmentation and estimation out-
puts, respectively. This combined loss can be expressed as:

L(Ip0, Ip1, Ip2, Sp, Igt1, Igt2, Sgt)

= αIL(Ip0, Igt1)

+ βBCE(Sp, Sgt) + γ IL(Ip1, Igt1) + δIL(Ip2, Igt2) (5)

BCE(Sp, Sgt)

= −Sgt log(Sp) − (1 − Sgt) log(1 − Sp) (6)

IL(Ip, Igt)

=

∥∥∥∥ Ip − Igt
Igt

∥∥∥∥
2
, (7)

where Ip0 is the initial estimation of the dominant illuminant,
Ip1 and Ip2 are the final estimations of the dominant and
secondary illuminant, and Sp is the predicted segmentation
mask. Igt1, Igt2, and Sgt are the groundtruth information about
the illuminants and the segmentationmask, respectively. BCE
(Equation (6)) is the binary cross entropy function applied
at the pixel level. The IL (Equation (7)) loss function is
the robust color constancy loss function proposed in [36].
Coefficients α, β, γ , and δ were selected using random search

FIGURE 2. Scheme of the proposed framework. In general, the framework
consists of the initial estimator of the dominant illuminant, followed by a
segmentation model that is capable of localizing the presence of that
illuminant in the scene. Then that output is used to create two masked
images, which are then given to the estimation models. The estimation
models then produce two estimations that are combined to create the
final per-pixel estimation of the illumination. The estimation models in
the bottom purple box can either be independent or have shared weights.
The recurrent extension to our framework is shown in red. The dotted line
represents the recurrent connection that allows us to use the dominant
illuminant estimation as the input to the segmentation model in the
second pass.

of the hyperparameter space and their values were set to 0.7,
1.0, 0.9, and 0.9 respectively.

Joint training of the framework was done using the same
scheduler and optimizer for another 500 epochs. To provide
a fair comparison, models that were not trained jointly were
all trained for 1000 epochs to eliminate any problems with

2132 VOLUME 11, 2023



D. Vršnak et al.: Framework for Illumination Estimation and Segmentation in Multi-Illuminant Scenes

FIGURE 3. Example of the images used for training. The first and second
rows show an outdoor and indoor scene, with 4 and 3 SpyderCube
calibration objects, respectively. Multiple cubes marked by red squares
are placed in the region illuminated by the ambient illuminant, which can
vary throughout the scene more than the direct illumination (e.g., sunlight
or one light bulb). We used only images where the difference in the
ground truth between the measured ambient illumination was less than
1 degree to ensure that the manual annotation of the regions shown in
the second column is accurate. Our annotation procedure is similar to
that described in [24].

under fitting. The parameters of the model that scored the
best on the validation set were taken for testing to prevent
overfitting. For the training, we used a newly constructed
dataset [3] containing 2500 outdoor and indoor scenes with
two sources of illumination, taken by 5 different cameras.
All images were manually annotated to contain per-pixel
groundtruth illumination values. Few examples of images and
the groundtruth from this dataset are shown in Figure 3.

B. PERFORMANCE MEASURES
We compare the model performance on a hold-out set of the
two-illuminant dataset on both the segmentation and illumi-
nation tasks. For the single-illuminant datasets, we compare
only the performance of illuminant estimation. To quan-
titatively compare the results, we use two metrics, Dice
coefficient [37] for segmentation and angular distance for
illuminant estimation.

Dice coefficient [37] is computed as:

Dice =
2|TP|

2|TP| + |FP| + |FN|
, (8)

where TP, FP, FN are true positive, true negative and false
negative values when comparing the prediction to the
groundtruth. | · | represents the cardinality (number of ele-
ments) of the set.

For the estimation task, we use angular error, which can be
computed as:

errang = cos−1
(
er · ep
erep

)
, (9)

where · denotes vector dot product, er is the real illuminant
and ep the estimated illuminant. Since the groundtruth and
estimation are pixel-based, we report the average error over
the whole image. The classes in the segmentation masks
are relatively well-balanced, so the average value of the
error is not biased towards either illuminant. For single-
illuminant comparison, our model was only trained on the

multi-illuminant images, and then tested on the images from
the single-illuminant dataset. In this case, we obtain the
single-illuminant estimate by applying global average pool-
ing to the per-pixel illuminant estimations.

IV. RESULTS
The models were tested on a hold out set of our dataset [3],
and on single-illuminant images from the Cube+ [4] and Col-
orChecker [5] datasets. Thus, we test the performance of our
model in both single- and multi-illuminant scenarios. In the
case of the single-illuminant images, the models were trained
only on the images from our two-illuminant dataset, and then
tested as is on the single-illuminant images. The framework
was compared to othermethods for bothmulti-illuminant seg-
mentation and estimation tasks, and these results are shown
in Tables 1 and 2 respectively. The comparison of results on
single-illuminant images are shown in Tables 3 and 4.

Table 1 shows the results of the segmentation task. The first
block of models are the simple baseline models, the second
block is the segmentation models implemented from other
works. The third block presents the variations of the proposed
framework. They show that our framework outperform all
other implemented models, and by a solid margin, indepen-
dent of the number of parameters. The models that were
used for comparison include the illumination segmentation
models proposed in [32], [33], and [30], U-Net [38] models
with VGG-16 and VGG-19 [39] encoders (implemented such
that one illuminant was known, as described in [33]) and a
baseline Otsu threshold applied to the brightness histogram of
the image. It is important to note that the framework performs
better than the pure segmentation models (VGG-16). This
holds even when the number of parameters is comparable
(approx. 34 million parameters in the case of the VGG-19
based autoencoder andVGG-16 based framework). This indi-
cates that the joint training that was used to train our frame-
work increases both the segmentation and estimation parts of
our model. To further test this, we compare the jointly trained
framework to one whose components were trained only sep-
arately (i.e., no joint training was done). Again, we see the
improvement in performance, thus providing further evidence
of the benefit of joint training (seen in the last block in
Table 1). We denote the frameworks where the parameters
of the estimation models are shared by omitting the ‘‘x2’’
modifier in the name. RESE denotes the recurrent variant of
our framework with two steps.

Since our framework is primarily designed to produce a
per-pixel estimate of the illumination, the main focus will
be on those results. Table 2 shows the estimation results
on our dataset with two illuminants for many multi- and
single-illuminant methods that were implemented. In it, the
first block of models are the simple baseline models single-
and multi-illuminant estimation models. The second block
contains the estimation models implemented from other
works. The third block contains variations of the framework
that were not jointly trained. Finally, the fourth block contains
variations of the proposed framework with joint training.
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FIGURE 4. Example of the randomly selected images, corresponding groundtruths, estimations and corrections for multi-illuminant
estimation methods. The first row is the input image, the first set of images are the per pixel illumination estimations, while the second
set are the corrections. In each section, rows are marked with letters corresponding to different models and groundtruth. These are:
(a) Groundtruth, (b) Bianco-CNN [28], (c) Autoencoder-based [32] (VGG-16), (d) VGG-16 + FC4 × 2 (non jointly trained framework), and
(e) ESE(VGG-16 + FC4 × 2).

These results were obtained by computing the angular error
(Equation (9)) between each pixel in the estimated per-pixel

map and the groundtruth mask. It can be seen that all the
jointly trained models significantly outperform the other
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TABLE 1. Dice coefficient (Equation (8)) results of the models for the
illuminant segmentation task. The names in parentheses show the base
models used (in the case of our framework, the segmentation model is
named first, followed by the estimation model). The best results are
shown in bold. (Higher is better.)

TABLE 2. Angular error (Equation (9)) of the results of the models for the
multi-illuminant estimation task. The names in parentheses show the
base models used (in the case of our framework, the segmentation model
is named first, followed by the estimation model, ‘‘x2’’ indicates two
estimation models). The best results are shown in bold. (Lower is better.)

models, with the largest margin of almost 0.5 degrees (14.5%
improvement compared to the second best performing multi-
illuminant model). It is also important to note that the smallest
framework (composed of the small segmentation model [33]
and shared reduced FC4 model) still outperforms other mod-
els. Furthermore, the models with the independent estimation
estimators outperform their counterparts with shared estima-
tors, at the cost of more parameters. This shows that different
tradeoffs regarding accuracy, memory usage and speed can
be implemented. Figure 4 shows the qualitative comparison
of the segmentation and estimation results on imageswith two
sources of illumination from our dataset.

Finally, we tested the performance of our framework on
two commonly used single-illuminant datasets, the Cube+ [4]
and ColorChecker [5] and compared it to other state-of-the-
art methods. We show these results in Tables 3 and 4. The
results show that, while some specialized single-illuminant
learning-basedmodels outperform our framework, it achieves
by far the best results out of all tested multi-illuminant

FIGURE 5. Example of the randomly selected images from the
single-illuminant datasets, corresponding groundtruths, estimations and
corrections. The first row is the input image, the first set of images are the
per pixel illumination estimations, while the second set are the
corrections. The first three columns correspond to images from the
Cube+ [4] dataset, and the rest correspond to the ColorChecker [5]
dataset. In each section, rows are marked with letters corresponding to
different models and groundtruth. These are: (a) Groundtruth,
(b) Autoencoder-based [32] (VGG-16), and (c) ESE(VGG-16 + FC4 × 2).

TABLE 3. Angular error (Equation (9)) of the results of the models for the
single-illuminant estimation task on the Cube+ dataset [4]. The best
results are shown in bold. The best performing multi-illuminant model is
highlighted in yellow. Data for single-illuminant models was obtained
from [18] (Lower is better).

models. Furthermore, those results are still comparable with
the best single-illuminant models, and the difference even in
worst cases is less than the perceptual sensitivity of the human
eye described in [41]. It is also important to note that all
the single-illuminant models were trained on these datasets.
However, our framework was trained on our multi-illuminant
dataset and then only tested on these two single-illuminant
datasets. This shows that our framework generalizes well over
different images, as it is the only one of the multi-illuminant
models that was able to achieve comparable results with the
best single-illuminant models. Figure 5 provides a qualitative
evaluation of the performance of our framework on single-
illuminant datasets. It can be seen there that, even though
the datasets are supposedly single-illuminant, some scenes do
contain multiple illuminants, and that our model is capable of
detecting this (second and last column).
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TABLE 4. Angular error (Equation (9)) of the results of the models for the
single-illuminant estimation task on the ColorChecker dataset [5]. The
best results are shown in bold. The best performing multi-illuminant
model is highlighted in yellow. Data for single-illuminant models was
obtained from [15] and [16]. (Lower is better.)

V. CONCLUSION
In this work, we presented a novel framework that is capable
of segmenting and estimating illumination in scenes with one
or two primary sources of illumination. The proposed frame-
work is composed of specialized models for each task. First,
a global estimation model is used to estimate the dominant
illuminant in the scene. Then, a segmentation model is used
to localize the influence of the estimated global illuminant.
This produces regions of influence of illuminants, and the
input image is masked using this segmentation. The masked
images are then passed to estimation models that produce
the estimation for those unmasked regions of the scene. The
final estimation is done by linear combination of the esti-
mated illuminants using the segmentation mask. Moreover,
the proposed framework is modular as the estimation and seg-
mentation models can easily be replaced, offering different
tradeoffs in speed, memory, and accuracy.

The framework was tested on the novel dataset with
2500 images of varied indoor and outdoor scenes taken
by 5 different cameras [3]. Our framework achieved the
best results by a large margin, especially in the illumi-
nant estimation task, with a 14.5% improvement above the
second best scoring multi-illuminant model. We have also
tested our framework on images from the Cube+ [4] and
ColorChecker [5] single-illuminant datasets. For this task,
we did not retrain the framework, but have used the best
performing models from the multi-illuminant task. Here, our
framework achieves excellent results, only slightly worse
than specialized state-of-the-art single-illuminant estimation
models. This shows the excellent generalization properties of
our framework on cross dataset tasks.
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color constancy", 2021 12th International Symposium on Image and Signal Processing

and Analysis (ISPA), Zagreb, Croatia, 2021, pp. 270-275

99



Životopis

Donik Vršnak dobio je titulu prvostupnika inženjera računarske znanosti 2018. godine, te tit-
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