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Tomislav Šmuc, PhD

Zagreb, 2019



FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA
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Abstract

In the last decade we witnessed a rapid rise of the online social media services. Although
they were created in the early 2000’s, their rise began in earnest after 2010 when their
presence started to fundamentally alter the traditional media landscape. Today, their
influence on the way our society consumes, curates and disseminates information is in-
disputable. With their wider adoption came also the first criticism, as well as a need to
solve emerging legislative, ethical and societal issues. One line of research is to explain
and quantify the sources of influence in online social services and investigate to what
extent are these new social landscapes vulnerable to manipulation by third parties. This
manipulation is often performed by using user’s digital traces - a record of their activities
on the online social service. These digital footprints have a potential to characterize users
in more detail than what they themselves would be willing to share otherwise. For exam-
ple, user’s personality traits can be inferred indirectly from the content with which they
interact through online services, and even their writing style on the written content they
published could be used to infer their demographic characteristics. This opens opportu-
nities for micro-targeting of users for various dubious purposes, for example by increasing
their propensity to spread misinformation.

Research described in this thesis shows that much can be learned about user engage-
ment by using very little data - in our case only friendship connections between users and
a single activation cascade. A single activation cascade means we only have one registra-
tion event per user. This data alone is sufficient to estimate, under certain assumptions,
whether activation for each user was predominantly influenced by its peers with which
they are connected (endogenous influence), or the exogenous factors which are external to
the friendship network itself. Both endogenous and exogenous factors, for example mass
media, are known to have a significant impact on the activity of users of online social
media.

The methodology developed in this thesis requires postulating an explicit endoge-
nous influence model which governs interactions between pairs of users, while exogenous
influence is assumed to act equally towards all users in the network. Several suitable
endogenous influence models are proposed for the use with this methodology. First one
is Susceptible-Infected model, commonly used in epidemiological modeling. Second one
features a decay factor for the endogenous influence, which is a realistic assumption for in
social systems. Third one features a logistic threshold for activation. Exogenous influence
is modelled as an independent probability of activation which is, at any given time, equal
for all non-activated users, although it may change in time.

An inference method is developed where maximum likelihood estimation is used to
estimate relative magnitudes of endogenous and exogenous influence on users. These esti-



mates can then be used to characterize influence of individual users. The computational
scalability analysis is performed on simulated data to demonstrate that the inference
method is able to scale to large social networks.

Empirical data on over 20 thousand Facebook users is used for evaluation of the
proposed inference method. Data is collected using three unique Facebook political survey
applications which provided Facebook friendship relations between users and a single
activation cascade - a single registration event per user. Referral links, which identify
user’s origin, are used as a proxy for user’s activation type. Users whose referral links
originated from Facebook are considered as endogenously activated while those whose
referral links originated from an external website are considered as exogenously activated.

Inference method is used to estimate the most probable source of influence for each
user individually, as well as to asses the overall influence of different media channels (peer
communication, Facebook advertisements, or external news media) on user’s activations
cascade. Ethical, methodological and technical issues regarding data collection in the
context of online social media services is discussed. Guidelines on how to collect online
social media data in an ethically principled way are provided, especially in the context of
satisfying requirements for reproducible research.

Estimating endogenous and exogenous influence in networks with a statistical method-
ology that is conceptually simple, yet powerful and efficient, is widely applicable to scien-
tific domains where deciphering properties of spreading processes and external influences
on complex networks is crucial for an explanation of new phenomena.

Keywords: online social networks, social influence estimation, statistical learning,
maximum likelihood method, online social data collection
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Statističko zaključivanje o egzogenom i
endogenom širenju informacija u društvenim
mrežama

Zadnjih deset godina svjedoci smo naglog uzleta popularsnosti online društvenih mreža.
Iako postoje od ranih 2000-tih, njihov uspon je ozbiljno započeo tek nakon 2010. kada
njihova prisutnost počinje fundamentalno mijenjati tradicionalne medije. Utjecaj online
društvenih mreža na način na koji naše društvo konzumira, odabire i diseminira informa-
cije je danas neporeciv. S njihovom širom upotrebom pojavile su se i prve kritike, kao
i potreba za rješavanjem novonastalih legislativnih, etičkih i društvenih pitanja. Jedan
smjer istraživanja pokušava objasniti i kvantificirati izvore utjecaja u online društvenim
servisima i istražiti do koje mjere su oni podložni manipulaciji od treće strane. Ta ma-
nipulacija se često provodi korištenjem korisničkih digitalnih tragova - zapisa njihovih
aktivnosti na online društvenim servisima. Navedeni digitalni otisci imaju potencijal za
karakterizaciju korisnika s više detalja nego što su oni sami voljni otkriti. Primjerice,
korisničke crte osobnosti i demografske karakteristike se mogu procjeniti indirektno preko
sadržaja ili stila pisanja kojeg korisnici koriste na online servisu. Ovo otvara mogućnost
za mikro-ciljanje (eng. micro-targeting) korisnika u svrhu različitih sumnjivih radnji ili
propagande, primjerice povećavanjem njihove sklonosti da šire dezinformacije.

Istraživanje opisano u ovoj disertaciji pokazuje da se mnogo toga može saznati o
aktivnosti korisnika koristeći relativno malo podataka - u našem slučaju riječ je samo
o podacima o prijateljskim vezama između korisnika i jednoj kaskadi širenja informa-
cija, pri čemu informacija koja se širi odgovara činu registracije (aktivacije) korisnika
na online društvenom servisu. Koristeći samo ove podatke moguće je, pod određenim
pretpostavkama, zaključiti je li aktivacija svakog pojedinog korisnika pretežno uzroko-
vana zbog njegovih prijatelja s kojima su povezani (endogeni utjecaj) ili faktorima van
društvene mreže (egzogeni utjecaj). Poznato je da i endogeni i egzogeni faktori, primjerice
iz medija, imaju značajan utjecaj na aktivnost korisnika.

U Poglavlju 1 opisana je motivacija i pregled područja istraživanja iz širenja infor-
macija u online društvenim mrežama, kao i statističkih metoda koje se koriste prilikom
modeliranja širenja informacija iz empirijskih podataka. Opisani su ciljevi doktorskog is-
traživanja koji se sastoje od definiranja modela endogenog i egzogenog širenja informacija
u društvenim mrežama, razvoja metode za statističko zaključivanje parametara navedenih
modela iz podataka, i evaluacije navedene metode na empirijskim podacima prikupljenih
iz stvarnih online društvenih mreža.

U Poglavlju 2 opisani su modeli širenja informacija koji se koriste u metodi statističkog
zaključivanja razvijenoj u sklopu ovog doktorskog istraživanja. Metoda zahtjeva postuli-
ranje izričitog modela endogenog utjecaja koji definira interakcije između parova korisnika.



S druge strane, pretpostavka kod egzogenog utjecaja je da djeluje jednako prema svim
korisnicima u društvenoj mreži. Predloženo je nekoliko primjerenih modela endogenog ut-
jecaja koji se mogu koristiti u tu svrhu. Prvi je Susceptible-Infected model, često korišten
u epidemiološkom modeliranju, gdje svaki trenutno aktivni korisnik ima nezavisnu priliku
aktivirati bilo kojeg od svojih prijatelja u online društvenoj mreži, pri čemu se vjerojatnost
aktivacije ne mijenja u vremenu. Drugi model pretpostavlja eksponencijalno opadajući
utjecaj što znači da tijekom vremena korisnici imaju sve manju vjerojatnost aktivirati
nekog od svojih prijatelja, što je realistična pretpostavka u društvenim interakcijama. U
trećem modelu se vjerojatnost aktivacije mijenja s brojem prethodno aktiviranih prijatelja
prema logističkoj funkciji, što znači da postoji prag broja prethodno aktiviranih prijatelja
koji se mora dostići prije nego vjerojatnost aktivacije dostigne značajnu vrijednost. Egzo-
geni utjecaj je modeliran kao nezavisna vjerojatnost aktivacije koja je, u svakom danom
trenutku, jednaka za sve još neaktivne korisnike, iako se može mijenjati u vremenu.

Modeli endogenog i egzogenog utjecaja objedinjeni su unutar funkcije izglednosti
(eng. likelihood) koja daje vjerojatnost svake kombinacije parametara modela, uvjetno
s obzirom na promatrane podatke koji se u ovom slučaju sastoje od mreže prijateljstva
između korisnika i vremena njihove aktivacije. U Poglavlju 3 opisana je razvijena metoda
statističkog zaključivanja koja koristi maksimalnu izglednost (eng. maximum likelihood)
za pronalaženje parametara endogenog i egzogenog utjecaja. Ti parameteri se potom
koriste za procjenu relativne magnitude endogenog i egzogenog utjecaja na korisnika po-
moću mjere egzogene odgovornosti (eng. exogenous responsibility) koja na skali od 0 do
1 kvantificira koliko je na korisnikovu aktivaciju utjecao egzogeni utjecaj, pri čemu veća
vrijednost označava jači egzogeni utjecaj. Definiraju se i mjere individualnog i kolektivnog
utjecaja (eng. individual and collective influence) koje kvantificiraju utjecaj pojedinog
korisnika i grupe korisnika na aktivacije njihovih prijatelja u društvenoj mreži, pri čemu
se uzima u obzir samo endogena komponenta utjecaja.

Metoda statističkog zaključivanja koristi metodu maksimalne izglednosti za procjenu
fiksnog skupa parametera endogenog utjecaja koji su isti za sve korisnike i ne mijenju se u
vremenu. S druge strane, egzogeni utjecaj se procjenjuje u svakom vremenskom trenutku
zasebno pa broj parametara ovisi o broju diskretnih vremenskih trenutaka. U realnim
primjenama gdje se zahtjeva određena vremenska granulacija egzogenog utjecaja to uvi-
jek rezultira prevelikim brojem parametara za izravnu procjenu metodom maksimalne
izglednosti. Zbog toga je razvijena alternirajuća optimizacijska metoda gdje se parametri
endgenog i egzogenog utjecaja naizmjence fiksiraju kako bi se smanjio broj parametara
koji se optimiraju u svakoj iteraciji algoritma. Manji broj parametara omogućuje da se
optimizacija provede nekom od standardnih metoda numeričke optimizacije. Iako ne pos-
toji teorijska garancija konvergencije metode, praksa pokazuje da je za konvergenciju svih
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parametara potrebno svega nekoliko iteracija algoritma. Provedena je analiza računske
skalabilnosti kako bi se pokazalo da predložena alternirajuća metoda statističkog zaključi-
vanja skalira čak i na velike društvene mreže od preko 20 tisuća korisnika.

Evaluacija je prvo provedena na simuliranim podacima pri čemu su aktivacijske kaskade
korisnika simulirane prema jednom od tri predložena modela endogenog utjecaja. Egzo-
geni utjecaj dizajniran je tako da sadrži nekoliko distinktnih eksponencijalno-opadajućih
šiljaka u vremenu. Ovo je obrazac koji se često opaža u empirijskim podacima, primjerice
kad medijske objave uzrokuju porast interesa i pojačanu aktivaciju korisnika. Predložena
metoda statističkog zaključivanja sposobna je precizno odrediti stvarne parametre en-
dogenog i egzogenog utjecaja u simuliranom slučaju, kao i stvarni razlog aktivacije svakog
pojedinog korisnika, koristeći samo podatke o mreži prijateljstava između korisnika i vri-
jeme aktivacije svakog pojedinog korisnika. Provedeni su opsežni eksperimenti na simuli-
ranim podacima gdje je pokazano da metoda dobro radi i na proizvoljnim krivuljama
egzogenog utjecaja. Također, rezultati su uspoređeni s onima dobivenima jednostavnom
osnovnom (eng. baseline) metodom gdje su svi korisnici koji u trenutku aktivacije nisu
imali drugih aktiviranih prijatelja proglašeni egzogeno aktiviranima. Ova jednostavna
metoda podcjenjuje stvarni broj egzogeno aktiviranih korisnika, pogotovo pred kraj akti-
vacijske kaskade kada je većina korisnika u mreži već aktivirana. Zbog specifičnog načina
prikupljanja podataka o korisnicima - korisnici koji čine mrežu prijateljstava su svi oni
koji se u konačnici aktiviraju, mreža prijateljstava se pred kraj aktivacijske kaskade zasiti
s aktiviranim korisnicima što ne odražava stvarno stanje u društvenoj mreži. Ovaj efekt
nazivamo pristranost opažača (eng. observer bias) i on uzrokuje precjenjivanje egzogenog
utjecaja kako se približavamo kraju aktivacijske kaskade. Kako bi se on izbjegao u funkciju
izglednosti dodan je korekcijski faktor.

U Poglavlju 2 opisana je metodologija prikupljanja podataka korištenih u empiri-
jskoj evaluaciji. Za empirijsku evaluaciju su korišteni podaci o preko 20 tisuća korisnika
društvene mreže Facebook. Podaci su prikupljeni pomoću tri online političke ankete koje
koriste Facebook Graph programsko sučelje za registraciju korisnika. Ankete su prove-
dene na hrvatskom jeziku i vezane su za tri različita politička događaja u Hrvatskoj -
referendum o pitanju ustavne definicije braka iz 2013. i parlamentarne izbore 2015. i
2016. godine. Prikupljeni podaci sadrže informaciju o prijateljskim poveznicama između
korisnika i samo jednu aktivacijsku kaskadu - vrijeme registracije svakog pojedinog koris-
nika. Referencijske poveznice (eng. referral links), koje identificiraju porijeklo korisnika,
su korištene kao aproksimacija za korisnikov tip aktivacije. Korisnici čija je referencijska
poveznica potekla s Facebooka su smatrani endogeno aktiviranima, dok su oni čija je
referencijska poveznica potekla s vanjske web stranice smatrani egzogeno aktiviranima.
Anketne aplikacije su bile aktivne otprilike tjedan dana prije samog dana glasanja i ti-
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jekom tog vremena su privukle medijsku pozornost online novinskih portala koji su u
svojim objavama dijelili poveznicu na aplikacije. U trenucima takvih objava vidljiv je
skok u registraciji korisnika na anketne aplikacije što ukazuje na egzogeni utjecaj jer se
korisnici registriraju na aplikaciju potaknuti vanjskim izvorom. S druge strane, struk-
tura mreže prijatelja ukazuje na efekt homofilije - korisnici se pretežno povezuju s drugim
korisnicima koji dijele njihove političke stavove, ili su im slični po nekim drugim karak-
teristikama (primjerice starosti), što ukazuje na endogeni utjecaj. Eksploratorna analiza
prikupljenih podataka pokazuje da su strukturalne karakteristike mreže prijateljstava
i statističke karakteristike demografije korisnika reprezentativne za hrvatski Facebook
prostor. Raspravlja se i o etičkim, metodološkim i tehničkim aspektima prikupljanja po-
dataka u kontekstu online društvenih mreža. Predstavljene su i smjernice za prikupljanje
podataka s online društvenih mreža na etički prihvatljiv način, tako da se istovremeno
poštuju privatnost korisnika, uvjeti korištenja online društvenih servisa kao i zahtjevi za
reproducibilnost provedenog istraživanja.

Empirijska evaluacija predložene metode statističkog zaključivanja opisana je u Poglavlju
4. Pomoću prikupljenih empirijskih podataka procjenjuje se najvjerojatniji izvor utje-
caja za svakog korisnika zasebno, kao i ukupni utjecaj svakog komunikacijskog kanala
(komunikacija između korisnika, Facebook oglasi, vanjski medijski izvori) na korisničku
aktivacijsku kaskadu. Kao metrika evaluacije koristi se površina ispod krivulje (eng. area
under the curve - AUC) koja na empirijskim podacima postiže vrijednost od 0.7 do 0.8,
što ukazuje na dobru diskriminacijsku moć predložene metode statističkog zaključivanja
u kontekstu binarnog klasifikacijskog problema gdje se korisnici klasificiraju na endogeno
i egzogeno aktivirane prema njihovim referencijskim poveznicama. Od komunikacijskih
kanala kao najjutjecajnija se pokazala direktna komunikacija između korisnika, dok su
se vanjski medijski izvori pokazali dominantni samo na jednom skupu podataka gdje
udio egzogeno aktiviranih korisnici čine većinu (preko 90% od ukupnog broja korisnika).
Provedena je i usporedba predložene mjere individualnog utjecaja svakog pojedinog koris-
nika sa strukturalnim mjerama izračunatima iz mreže prijateljstava, pri čemu je najjača
korelacija s Pagerank centralnošću.

U sklopu ovog doktorskog istraživanja razvijena je metoda statističkog zaključivanja
za procjenu endogenog i egzogenog širenja informacija u društvenim mrežama, no po-
tencijalna primjena nadilazi primjenu u samo jednoj specifičnoj domeni. Identifikacija
egzogenih utjecaja ima potencijalnu primjenu i u analizi financijskih sustava gdje vanjski
utjecaji mogu imati ključnu ulogu u dinamici sustava. Također, paradigma identifikacije
endogenog i egzogenog utjecaja potencijalno ima širu primjenu u modeliranju općenitih
dinamičkih sustava gdje bi se pomoću takvih metoda identificirale ranjivosti sustava na
vanjske šokove, kao i podložnost manipulaciji od trećih strana. Procjena endogenog i
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egzogenog utjecaja u mrežama sa statističkom metodologijom koja je konceptualno jed-
nostavna, a opet snažna i učinkovita, široko je primjenjiva u znanstvenim područjima
gdje je dešifriranje svojstava procesa širenja i vanjskog utjecaja na kompleksnim mrežama
ključno za objašnjavanje novih pojava.

Ključne riječi: online društvene mreže, procjena društvenog utjecaja, statističko
zaključivanje, metoda maksimalne izglednosti, prikupljanje podataka s društvenih mreža
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Chapter 1

Introduction

1.1 Motivation and related work

Growing popularity of online social networking services means that a large amount of
human interaction is now recorded in digital form. An online social networking service
is an information system which gives its users an ability to efficiently communicate with
other users. However, unlike traditional online communication services like email, its
purpose is ultimately to build online social communities which are connected through
shared interests, and to ease and enhance interaction within them. This is done through
easy identification of shared interests, codifying modes of communication (for example,
through easy expression of approval or disapproval) and aggregating interaction in a way
to give each user a glimpse into the community’s consensus. Availability of this kind of
data in digital form provides an opportunity to investigate social interactions on a scale
that was previously unattainable [1, 2, 3, 4, 5, 6, 7, 8]. Most studied online social systems
are blogspace [9] and online social networks services such as Flickr [10], Twitter [11],
Facebook [12] and Instagram [13]. At the same time, the same availability of data on
something that was previously in the personal domain raises ethical concerns which were
previously not encountered [14, 15]. An interesting research question is to what extent is
human interaction facilitated by information systems, and whether and how their potential
can be misused.

The most general definition of influence between entities in complex systems is that it
is a conditional dependence between entity’s states [16]. If we have no other information
except sequences of state for each of the entities, the most straightforward way to measure
this conditional dependence statistically is with Hidden Markov Models (HMM’s) [17]. An
assumption of HMM’s is the Markovian property - therefore depends only on the current
state, regardless of the past.

In this work we are interested in social influence between users in online social net-
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works. Here, a social influence is defined as the degree to which the behavior of individuals
changes the behavior of their peers [18], and an online social network is mathematically
understood as a set of all possible pairs of users through which influence could arise due
to technological or social context. Mathematical modeling of social influence is an active
field of research in sociology for decades [19, 20, 21], especially actor models which model
conditions under which nodes in networks change their social connections [21]. These
sociological studies used mostly methods from graph theory and agent based modeling.
Recent surge of research into complex network structure and dynamics [22, 23] introduced
new set of methods as well as new research communities to the problem of social influ-
ence. These new methods were mostly from statistical physics and computer science and
were more suitable for addressing technical and methodological challenges inherent in the
analysis of large online social datasets.

Underlying any type of social influence is a some kind of social interaction between
persons in social network. For example, an act of transmitting a piece of information from
one person to another could be understood as a social interaction. For our purpose this is
particularly important as the digital communication technology facilitates the spread of
information and allows it to be stored more efficiently and in form which is more accessible
for subsequent analysis. A spread of information between multiple users of an information
system is an information cascade.

Research on information cascades usually focuses on the prediction of future evolution
of an information cascade given past diffusion traces [5]. These methods usually use
some variant of Linear threshold model (LT) [19], Independent cascade model (IC) [24],
Susceptible infected (SI) or Susceptible infected susceptible (SIS) models as the underlying
model of information propagation. The benefit of these models is that they do not contain
any hidden state, just the two observable states - active and inactive, which simplifies
inference from data. LT model can be inferred with gradient ascent method [25], while
asynchronous versions of LT and IC (AsLT and AsIC) can be inferred with maximum
likelihood estimation [26]. In theory, these models require that a structure of a social
network is known, although there are ways to use them even in cases where there is no
explicit information on the underlying social network. In these cases some assumptions
should be imposed in order to perform inference, for example that all persons have the
same probability to adopt the information [27], or that individual influence functions
follow a specific form [8]. Investigating information cascades can give us insights on social
influence between users of an online social network, and is already widely used in domains
such as viral marketing [27], behavior adoption [28] and epidemic spreading [29].

Social influence is often confounded with correlation effects such as homophily - a
tendency of similar persons to interact with each other due to factors other than a direct
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influence [30, 31]. One way to account for this is with randomization strategies [32], which
should diminish true influence and leave correlation intact. Exogenous factors that are
easy to measure and are suspected to mediate social influence could also be explicitly
accounted for in the modeling. Examples include news media [33] and real-life events
such as political unrest [1] and natural disasters [34]. In general, exogenous factors could
be modeled either indirectly as anonymous uniform influence that acts on all nodes in
the network [35] or directly in the form of “authorities” which exert their influence on the
nodes in the network [36]. Also, the type and characteristics of the information content
that is being transmitted could also be a significant mediator of the social influence [37].

A full probabilistic representation of the influence model could be achieved with a
likelihood function, which gives a probability of observing any combination of parameters
conditioned on the observed data. The combination of parameters for which likelihood is
maximized are called maximum likelihood parameters. They could be found with standard
optimization methods such as gradient ascent method [25] or Expectation-Maximization
(EM) algorithm [38]. In the context of information cascades, it is not necessary to ex-
plicitly condition on the structure of social network, as one could analyze interaction
dynamics with information-theoretic measures such as transfer entropy [39].

One of the most general versions of such likelihood-based approaches is an unified
model of social influence [40] which is able to explicitly accommodate many social in-
teraction mechanisms such as pairwise influence, local neighborhood effects, aggregate
social behavior and exogenous factors. Many commonly used information diffusion mod-
els could be represented as a special case of this unified model of social influence, including
Complex Contagion Model [41], Independent Cascade Model (IC) [24], The Generalized
Threshold Model [24] and The Linear Friendship Model (LT) [20]. There is currently no
proposed method to fit this unified model in its most general form to data, although there
are multiple proposed methods of fitting more specific likelihood-based models to data,
for example Independent Cascade Model [38] and asynchronous versions of Independent
Cascade and Linear Threshold models [42].

Likelihood-based approaches also allow one to choose which of the several proposed
social influence models has more support in data given the goodness of fit and expres-
siveness of the model itself. In theory, parsimonious models - the ones that give best
explanation for data while being relatively simple, should be preferred. Model selection
criteria used in more traditional statistical contexts are not always best suited for selecting
among social influence models [43]. For example, information-theoretic measures such as
Akaike Information Criteria (AIC) and Minimum Description Length (MDL) can usually
be used only in cases where there are few parameters which correspond directly to the
complexity of a model. This is satisfied if the social influence is parametrized with a small
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set of basis functions [44]. Resampling techniques such as k-fold crossvalidation [45] have
a limited application in the context of social influence due to the combinatorial complexity
of the social network structure. This is why the most pragmatic way to evaluate social
influence models is through their predictive and explanatory power [46], keeping in mind
the amount of data and the characteristics of the phenomena we are trying to model.

In general, trying to find a “true model” might be impossible in domains pertaining
to human behavior where processes underlying observables are complex and heteroge-
neous [47]. What is more, while investigating human behavior it is nearly impossible to
control sufficiently for all possible confounding conditions, and we often have to contend
with the observational data instead. So we should never fool ourselves that our model
selection outputs anything close to the “true model”, which could be arbitrarily complex
and whose complexity could inhibit its explanatory power derived from inference on fi-
nite data, and probably could be easily outmatched by a much simpler (although wrong)
model [48].

Another important aspect of social influence modeling is the existence of exogenous
factors which confound with endogenous factors. Similarly as with correlational effects,
this confounding could be hard to eliminate using observational data alone [30]. In ideal
conditions the exogenous influence is negligible [49] but usually has to be explicitly ac-
counted for [35, 50, 51]. Rather than being a nuisance, exogenous influence is often crucial
in understanding the way social influence acts. This happens due to two reasons. First,
there are usually multiple information channels though which information can propagate,
and many of these channels are exogenous to the social network itself. Examples include
news media, advertisements, and most forms of direct communication such as email, in-
stant messengers, and even offline word-of-mouth communication. Second, exogenous
factors can act as mediators of social influence, often by encouraging social engagement.
For example, exogenous events such as political unrest [1, 52] and natural disasters [34]
are often strong mediators of social influence. Exogenous factors themselves are often
not directly observable in the online social network, but usually can be inferred from the
available data. Research on exogenous factors in online social networks and its interplay
with endogenous influences gains more and more importance as it becomes increasingly
evident that these systems could be manipulated by various interest groups [53].

1.2 Objectives

The general aim of this research is a data-driven characterization of social influence in
online social networks and how human interaction is facilitated by online information
systems. This will be done by the development of methods for modeling and inference of
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social influence that are able to describe both the endogenous influence between users of
an online social network and the influence exogenous to the network itself. Additionally,
methodology for collecting online social network data will be described in order to validate
these methods on empirical data. The hypothesis is that the endogenous and exogenous
influence can be modeled directly conditioned on a particular form of endogenous influence
model, and that users in online social network could be characterized based on their
susceptibility to one or another type of influence. The basic components needed to conduct
this research are the following:

1. Context (Information system which facilitates interaction): Online social network.
2. Agents (Who is interacting through an information system): Users of an online

social network.
3. Interaction (How do entities interact): Users communicate within social network,

but there is also an exogenous influence acting on the users.
4. Measurement (What we actually measure and record): User registration at appli-

cation and friendships in social network.
5. Mode of influence (What makes entities interact in the way they do): Users are

influenced conditioned on a specific endogenous influence model while exogenous
influence acts uniformly on all users.

This thesis will present research on the estimation of endogenous and exogenous influ-
ence between users in online social networks. In our case we have an activation cascade
of user registrations which closely resembles information cascade where an actual infor-
mation content is being transmitted between users. The basic requirement for inference
is that we have data on a particular activation cascade in online social network and an
explicit social network between users through which endogenous influence could act. As it
will be demonstrated in the thesis, only a single activation cascade is needed for efficient
inference. Assuming a particular form of endogenous and exogenous influence we can infer
the parameters of influence and estimate their magnitudes on user and global level, as well
as characterize activation of each user or groups of users as being dominantly endogenous-
or exogenous-driven. Similar methods for estimating endogenous and exogenous influence
exist in literature, for example peer and authority model [36] which, however, requires
explicit modeling of authorities responsible for exogenous influence, while in our case this
is not necessary. The social network structure is used directly for the inference rather
than implicitly [8]. Also, there is no direct reliance on some sort of a network statistic
such as degree distribution [54].

Chapter 3 describes the models which are used for modeling influence. Two approaches
are presented, first where modeling is done indirectly by analyzing statistical properties of
the endogenous and exogenous influence, and second where explicit models of endogenous
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and exogenous influence are joined in the likelihood function.
Two methods are employed for estimation of endogenous and exogenous influence - 1)

modeling exogenous influence directly and 2) joint modeling of endogenous and exogenous
influence. For the second approach a likelihood function will be used which gives us a fully
probabilistic description of the inference problem, as well as allows the usage of standard
optimization methods for inference. Dimensionality of the likelihood function depends
on the forms for endogenous and exogenous influence. Endogenous influence models are
usually low-dimensional, and it makes sense to assume all users share equal parameters of
the endogenous influence. On the other hand, exogenous influence could be parametrized
by a suitable closed form, or evaluated non-parametrically at each time step. This makes
the number of exogenous influence parameters dependent on the number of time steps,
which could lead to high-dimensional model. However, there is a possibility to solve
this with a form of expectation-maximization method where parameters are estimated
by alternating expectation and maximization steps. A similar approach is to optimize
just a subset of parameters in turn while holding the others fixed. While this procedure
does not guarantee an optimal solution, in practice it yields near-optimal results to a
optimization problem which would otherwise fail to converge. Instead of a direct numerical
optimization we could also use a Markov Chain Monte Carlo (MCMC) sampling which
gives samples from the likelihood function, allowing us to estimate confidence intervals
on the parameters. Chapter 4 describes a maximum likelihood method for the inference
of endogenous and exogenous influence.

Data from an actual online social network is used for the evaluation of the inference
methodology. An online survey application is developed as a separate web page which
uses Facebook Graph application programming interface (API) [55] for the authentication
of users. In this case the series of user registrations could be viewed as the information
cascade ∗ because the information on the application is spreading between Facebook users.

Online survey applications were related to three distinct political events which hap-
pened in Croatia in the period from 2013 to 2016 (Figure 2.4): 1) referendum on the
definition of marriage in 2013, 2) parliamentary elections in Croatia in 2015 and 3) par-
liamentary elections in Croatia in 2016. Some form of authentication is crucial for the
application because we want to prevent multiple voting on the survey, and using official
Facebook Graph API will allow us to access user data that would be unavailable if the
custom authentication mechanism was used. Most importantly, it allows us to access
Facebook friendship relations between registered users. The application should satisfy
following methodological and ethical requirements:

∗Sometimes this is referred to as an activation cascade instead of information cascade, because users
are getting “activated” when they register on the application.
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• Data collection should be performed via encrypted secure connection provided by
the official Facebook Graph API and it should comply with its the privacy policy
and terms of use †.
• The users should be informed about the procedure of data collection, and they

should give informed consent in advance.
• All private data used in this research should be anonymized. Users should not be

in position to access other users data during the data collection process, although
they may have an access to aggregated data for all users.
• The users should be familiar with the fact that the information collected will be used

only for scientific purposes and that the anonymized as well as aggregated data will
be made available to the scientific community.

Online social network datasets where users have to give an explicit consent to collect
their data are usually small and sparse, and so researchers have to rely on simulated
datasets in order to validate their models. The media and public interest related to the
real-life political events helped to engage Facebook users and allowed the collection of
large amount of data. Chapter 2 explains in detail how data was collected on Facebook
users, along with the design of online political survey applications and the methodology
of data collection. It also discusses ethical challenges inherent in collection of user data
from online services and gives practical recommendations for future researchers.

The methodology for estimation of endogenous and exogenous influence is evaluated
on both simulated activation cascades and actual activation cascades collected from the
online survey application. In both cases the assumption is that we only have a friendship
network between users and a single activation cascade - registration time for each user.
Most other research relies on the availability of multiple activation cascades, which makes
the method described in this thesis applicable to cases where there is little available data
on user activations. For simulated activation cascades either an actual friendship network
or a configuration model of it are used. Configuration model of a network preserves the
degree sequence - number of Facebook friends each user has. The simulation follows and
Independent Cascade model where each user has certain probability of activating each of
its Facebook friends at each time step, conditioning on a particular endogenous influence
model. Exogenous influence is designed as a non-parametric curve which closely resembles
influence curves we observe in actual data. The output of the method is a single estimate
for each user of its propensity of being influenced by either endogenous or exogenous in-
fluence. This allows us to use area under the curve (AUC) as an evaluation measure which
tells us how well does the estimates classify users in these two categories. For sabor2015
and sabor2016 datasets there is an information on referral links from which users visited

†Facebook’s privacy policy is available at https://developers.facebook.com/policy/.
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the survey application, and so this is used as gold-standard labels in the calculation of the
AUC score. Chapter 5 presents the results of the evaluation on the empirical datasets of
over 20 thousand Facebook users which were collected though Facebook political survey
applications. Estimates are then used for estimation of individual and collective influence
of various groups of users.

The methodology gives an estimate to what extent was each user influenced due to
endogenous or exogenous factors. We can assign to each user its share of the endogenous
influence present in the social network, and calculate it recursively for each individual user
(individual influence) or for groups of user (collective influence). In this case influence
corresponds to the expected number of users that will be activated due to the endogenous
influence of an individual user or groups of users in the next time step. This quantity can
then be used to identify the most influential users, as well as a building block for influence
maximization methods - identifying which groups of users have the most influence in social
network or which individual users to target with incentivization strategies. Estimates that
are obtained agree with the baselines obtained from raw data of referral links from which
users visited the survey applications. Chapter 5.3 describes in detail the methodology for
estimating collective influence and presents results on the empirical datasets.

The main contributions of this thesis are the following:
1. Model of exogenous and endogenous information propagation in social

networks. A probabilistic model of influence in a social network is proposed that
assumes a particular functional form of endogenous influence between users while
the exogenous influence is non-parametric. The model can be easily extended to
include additional information on the users or the type or characteristics of the
influence.

2. Method for estimation of parameters of the proposed model of informa-
tion propagation in social networks. An inference method is developed which
uses only a single activation cascade and a social network of users to estimate relative
magnitudes of endogenous and exogenous influence for each user individually.

3. Evaluation of the proposed methodology on empirical data from social
networks. Inference methodology is applied on three empirical Facebook datasets
of over 20 thousand users that participated in one of three online political survey ap-
plications. Besides characterizing to what extent is each user’s activation driven due
to endogenous and exogenous influence, estimates of collective influence of various
groups of users are also provided.
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Data

We present challenges we encountered while designing several online political survey ap-
plications: 1) Referendum on the definition of marriage in Croatia in 2013 (10175 respon-
dents), 2) Parliamentary elections in Croatia in 2015 and 2016 (6909 and 3818 respon-
dents), 3) Local elections in Zagreb, Croatia’s capitol, in 2017 (1666 respondents). Online
surveys allowed us to reach many more respondents than it would be possible with tra-
ditional methods. We critically examine technical, methodological and ethical challenges
we encountered during the design and execution of these surveys.

We developed our online survey applications as separate web pages where users could
register with their Facebook accounts, cast their votes on the upcoming election and see
statistics for their Facebook friends and all users. Upon registration, users had to comply
with both Facebook’s and our own privacy policy to allow us to retrieve their personal
data. Also, they were able to share the link to application through Facebook which mim-
ics snowball sampling. Surveys were active one week prior to actual pooling day and the
attention of news media and general public helped us attract new users. However, each
subsequent online survey attracted less and less respondents due to loss of novelty. Never-
theless, we still managed to sample representative Facebook population - distributions of
the number of friends and other demographic characteristics are comparable to the whole
Facebook population [56].

Three main challenges we encountered while collecting social network data from Face-
book:

1. Methodological (Section 2.4). Can we get a representative sample of the popula-
tion of interest? If not, can we at least correct our sample as to be more representa-
tive. If still not, can we at least estimate error/uncertainty we are introducing into
our estimate?

2. Technical (Sections 2.2 and 2.3). How to design online survey application so that it
satisfies technical requirement of data collection. How to use APIs and technology
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to collect necessary data. And how to incentivize users to participate. This is
connected with the methodological challenge because methodological requirements
are limited, in part, by the available technology.

3. Ethical (Section 2.5). How to collect data so as to preserve privacy of the users
while following accepted experimental practices. How to share the data to allow
other researchers to reproduce build upon the results, while maintaining ethical
requirements. This is connected with both methodological and technical challenges
because ethical requirements have to be satisfied at all times.

We offer a partial answers to the challenges presented above, and present the solutions
employed in our previous research.

Instructions on how to acquire code and data needed to reproduce analysis from this
thesis are in Appendix A.

2.1 Related work on data collection on Facebook

Facebook is still the most popular online social network with over 2 billion users as of
2018, and provides a valuable resource for investigating social phenomena. Since its origin
in 2005, there were three main approaches for collecting Facebook data were. At first, a
complete retrieval of regional Facebook data:
• Lewis et al. [3] collected 1640 user profiles, almost all freshmen students of one

private college in the Northeast U.S.
• Wilson et al. [57] collected around 10 million users from 22 regional networks, in-

cluding London, Australia, Turkey, France, Sweden, New York . . .
• Viswanath et al. [58] collected 63731 user profiles from New Orleans regional network

Second approach is to access Facebook’s internal database, which is usually only available
to internal researchers:
• Eckles et al. [59] performed a three week experiment which involved around 48.9

million Facebook users
• Kramer et al. [2] performed a one week experiment involving 689003 Facebook users

as participants
• Ugander et al. [56] collected data on over 721 million Facebook users over the period

of 28 days
Third approach involves collecting data through an external application using Facebook
Graph API:
• McAuley and Leskovec [60] collected Facebook ego networks with the total of 4039

users
• Aral and Walker [61] collected data on over 1.3 million Facebook users through the
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Facebook application
• Kosinski et al. [62] collected data on 58466 users from the United States, obtained

through the myPersonality Facebook application
• Bohn et al. [63] had a potential to collect data on over 1.3 million users of their

Facebook application, but due to technical difficulties were only able to retrieve
data on 1712 users
• Jalali et al. [64] collected data on 4683 Facebook users that signed an online petition

over a period of 71 days
The first approach was only possible up until 2010, and the second is not available to

researchers external to Facebook. We advocate the third approach as the most appropriate
for the wider research community.

2.2 Collecting online social network data

Our online survey applications were hosted as a separate web pages which used Facebook
Graph API [55] for authenticating users. The survey application way hosted on a separate
server which run the survey web interface and a database which stored data on users.
Having some form of user authentication is crucial for an online survey application because
it prevents multiple voting by the same user, and allows to track users in order to enhance
their engagement with the application. Facebook Graph API is particularly convenient
for this because users can use their existing Facebook credentials in exchange for the data
that Facebook provides, most important being Facebook friendship relations between
users from which we constructed social network used in our inference methodology.

Prior to 2013 Facebook Graph API allowed access to all friendship relations from a
registered users, which meant also relations towards users that maybe never heard about
the application and had not given informed consent for the usage of their data by third
party applications. This was considered a privacy breach and the API was changed in
late 2013 to allow access of friendship relations only between registered users. However,
for our purposes the friendship relations between registered users was enough as these
are potential carriers of the endogenous influence. A year later Facebook also changed
its Graph API so that it assigns ID’s which are specific for each application, rather than
universal for all applications. This makes it much harder to associate users across different
Facebook applications, a practice that previously allowed application developers to easily
share data on users which is in violation of Facebooks privacy policy [65].

In addition to the friendship relations, the Facebook Graph API also allows retrieval
of the basic demographic information such as age and gender. It should be noted that it
is still required of users to give an explicit permission for their demographic data to be
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collected. The permission is given through Facebook’s own authorization dialog provided
by the API’s interface. However, applications leveraging Facebook Graph API should
nevertheless have their own privacy policy and terms of use which they show to their users
prior to their registration on the application. We did collect demographic data for our
first application referendum2013 but then decided to cease this practice due to potential
privacy concerns. Even though users are never identified with their full name in the
collected dataset, using only demographic data could lead to potential deanonymization
- identifying specific users in the dataset. Demographic data also potentially allows the
alignment of multiple datasets collected with different applications leveraging Facebook
API. This is a kind of indirect deanonymization because it identifies pairs of identical
users in otherwise unrelated datasets, although their exact identity is unknown. In theory,
existence any information which is shared between two or multiple datasets, demographics
being the most notable one, raises the possibility of partial or full deanonymization. This
is because it is then possible to cross-identify users in the two datasets based on this
shared information, and to gain more information on each user than what is contained
in each individual dataset alone. In the end, this could lead to a full deanonymization of
some users. In the cases of sabor2015 and sabor2016 applications when we do not collect
demographics data the only information shared by both our application and the Facebook
itself are the friendship relations between users. Registration times of users and referral
links which are logged on our web server are exclusive to our application and by itself
cannot aid much in deanonymization.

In the end, collecting demographic data through our first survey application - refer-
endum2013, did allow us to perform exploratory analysis of referendum2013 dataset and
asses whether or not our collected data is representative of Facebook population. More
details on this are available in Section 2.3. Section 2.5 explains in more detail how ethical
challenges for Facebook data collections changed in the past couple of years.

Once users register on the application, they can cast their votes on the survey, share
link to the application through Facebook, and see summary statistics for their Facebook
friends as well as for all other registered users. In order not to influence the vote of the user
the application’s interface displays summary statistics only after they actually voted. As
an incentive for users to share the link to the application through Facebook, in sabor2015
and sabor2016 applications we also displayed a number of their Facebook friends that
visited the application by following the link on their share. This number was compared to
other users and the application reported a rank among all users. As this rank as well as
summary statistics changed throughout the period during which application was active,
the users had to repeatedly return to the application which prolonged user’s engagement.
To preserve privacy of their Facebook friends the summary statistics for their friends
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Figure 2.1: News media coverage for our online survey application and a screenshot of a
survey web interface. An example of two online news media articles that reported on our
referendum2013 survey application - an article from news portal jutarnji.hr ∗ (Panel 2.1b) and
an article from news portal vecernji.hr † (Panel 2.1c). Panel 2.1a shows the number of users
registered on referendum2013 survey application in 30 minute intervals, annotated with major
online news media articles which reported on the application. The first two peaks (numbered 0
and 1) correspond to the articles in Panels 2.1b and 2.1c. The window of 30 minutes is also used
as a window size in the inference methodology. Some of the peaks in user registrations correspond
to the publication of news articles which indicate possible exogenous influence. Panel 2.1d shows
the screenshot of the web interface for the sabor2015.hr online survey application, which is similar
to the ones used in both referendum2013 and sabor2016 applications. All three applications
allowed registered users to cast a vote for the upcoming referendum or elections, share the
link to the application through Facebook, and see summary voting statistics for their Facebook
friends and all registered users.
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was not displayed unless more than certain number of their friends voted on the survey.
Survey applications were active a week or two before the actual pooling day (Table 2.1)
which aided us in attracting new users as the surveys provided a way for the news media
and general public to asses the possible election outcomes.

In order to more systematically track the media coverage for our referendum2013 ap-
plication we also manually collected data from Google Analytics which contained number
of users visiting our survey application through an external websites such as online news
portals (Figure 2.1a). For sabor2015 and sabor2016 applications we did not have to collect
data in this way because we collected referral links from users directly, which essentially
contains the same information as Google Analytics but on a much finer scale and for each
user individually instead of aggregate estimates. Knowing how many users visited our
survey application from a specific external website gives us an opportunity to estimate
exogenous influence these media sources had on the number of registrations.

2.3 Exploratory analysis of the collected social net-
work data

In the following section we show descriptive analysis of the three Facebook datasets that
we collected. Datasets consists of the Facebook friendship connections between users that
registered on our online survey applications, exact times of their registration, and for
some datasets - demographics data and referral links from which users visited our appli-
cation (Table 2.1). Of course, we also have survey responses for each user that responded
to the survey. We only collected demographics data during our first survey related to
referendum in 2013 - the referendum2013 survey. For the subsequent surveys related to
the parliamentary elections in Croatia in 2015 and 2016 - sabor2015 and sabor2016, we
decided to rather collect data on referral links. These were much more useful for us be-
cause they effectively give us origin of users - whether they visited our application by
visiting a link from Facebook or some other external website. We will later use this as a
gold standard data to evaluate our inference methodology. Demographic and survey re-
sponse data could be used to build more complex models of influence by correcting for the
potential confounder variables, for example gender, age, and similar political preferences
which could conflate influence with correlation effects in data. As our model of influence
(described in chapter 3) incorporates only registration times of users and their mutual
friendship connections, and due to the privacy concerns (Section 2.5) we decided not to
collect demographics data after our first survey.

As the first online survey that we did - the referendum2013 survey, is the only one for
which we collected demographics data, we decided to perform basic exploratory analysis
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Dataset Time period Users Collected data URL of application
referendum2013.hr 25.11. - 1.12.2013. 10175 friendships, demographics https://github.com/devArena/referendum2013.hr

sabor2015.hr 2.11. - 8.11.2015. 6909 friendships, referral links https://github.com/matijapiskorec/sabor2015.hr

https://bitbucket.org/marin/sabor2015.hr

sabor2016.hr 5.9. - 11.9.2016. 3818 friendships, referral links

Table 2.1: Summary statistics of the collected social network datasets. Surveys were ac-
tive typically one week prior to the actual pooling day, and the exact period is indicated in
the column “Time period”. Friendship connections and demographic data were collected using
Facebook Graph API, following user’s explicit permission after they authorized with their Face-
book credentials. Referral links were collected using our own web server that was hosting the
survey application. They indicate user’s origin, information which we use to evaluate our infer-
ence methodology. Source codes of the referendum2013 and sabor2015 applications are freely
available on Github open source code repository, and the corresponding links are indicated in
the “URL” column. Table reproduced from [66].

(Figure 2.3). By plotting the distribution of the number of friends that share user’s sur-
vey response we can estimate an amount of political homophily in the Facebook friendship
network (Figure 2.2a). We can see that majority of users have 80% or more Facebook
friends that voted the same as they did, which indicates that friendship networks are
very homogeneous with respect to the political orientation - we tend to associate with
users that share our political views. Whether this is a purely correlational effect arising
from chance is another question, but this fact indicates presence of potential contributing
factor for endogenous influence between users. Also, by observing the actual communities
of political orientation in friendship network (Figures 2.4 and 2.6) we can see a large po-
larizing effect - users are clustered in two distinct communities based on their political
orientation. Running a Louvain multilevel algorithm for community finding [67, 68] iden-
tifies 27 communities in the referendum2013 network. They are all highly homogeneous
with respect to votes - almost all users in each particular community have an identical
survey response. Also, their registration dynamics is very similar and resembles the global
registration pattern. Two of such communities are shown in Figure 2.6. The same Figure
also shows a community whose registration pattern is very different than the global regis-
tration pattern, with a distinct peak in user activity at one particular hour approximately
at the middle of survey period. This community is also highly heterogeneous with respect
to votes, having approximately equal number of users of both political orientations. This
peak of activity is not present in other communities and does not follow after a publication
of an online news article, which suggests it is probably driven purely by the endogenous
influence. The homophily with respect to age is also pronounced, with users being more
likely to friend other users that are close to them in age. Similar effect is also observed in
a much larger sample of Facebook users [56]. On the other hand, homophily with respect
to gender is almost nonexistent. Users are equally likely to friend other users of both
gender. An example of data from sabor2015 dataset which stores information on user
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Figure 2.2: Homophily of the Facebook friendship network in the referendum2013 dataset is
shown on Panel 2.2a, which shows the distributions of the percentage of user’s friends that voted
the same (left) or are of the same gender (right). Users are more likely to friend other uses that
voted the same as them (in this case we only have two possible votes “for” and “against”) - the
distribution (left) is shifted to values higher than 50%. On the other hand, users are equally
likely to friend users of both gender - the distribution (right) is centered around 50%. We
can bring similar conclusions by watching Facebook social network visualizations on Panel 2.2b
which are colored by vote (blue for “for” and red for “against”), age (pale blue for for voters
bellow 30 years of age, pale yellow for middle age voters and orange-red for voters above 50 years
of age), and gender (pink for female voters and blue for male voters). Homophily with respect
to age is shown on Figure 2.3 which plots the age distribution of friends separately for several
age groups of users. Size of the nodes correspond to the number of Facebook friends each user
has in these networks. For attributes where there is high homophily - votes and age, we observe
clustering of users into compact communities based on these attributes.

sessions is shown on Table 2.2.
User id Time login* Time share Referrer id** Referrer class** Friend count Election list id
0 4798 -1 -1 facebook 363 37
1 5684 5691 -1 facebook 88 8
2 2099 -1 3145 facebook 485 37
3 4073 -1 4816 facebook 861 4
4 5471 -1 -1 facebook 108 8
5 1106 -1 -1 facebook 53 4

* used in inference, ** used in evaluation

Table 2.2: An example data from sabor2015 dataset which shows information on user sessions.
Each user session corresponds to the first registration of a specific user, with information con-
taining the times of login and first share (columns “Time login” and “Time share”, in minutes
since reference time), origin of the user (column “Referrer class”, obtained from referral link),
whether or not it came through a Facebook share of another user and which user it was (column
“Referrer id”) and survey response (column “Response id”, in this case a vote for one of the
political parties). Friendship network dataset is available in GML format and as an edge list.
Table partially reproduced from [66]

2.4 Methodological challenges

Online surveys built on top of the popular online social networks give us an opportunity to
perform large scale polling with relatively low budget, in any case much larger than would
be possible with traditional survey methods. However, there are methodological challenges
which we summarize in three main points: 1) representativeness, 2) engagement, and 3)
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Figure 2.3: Exploratory analysis of the referendum2013 dataset reveals several characteristics.
Self-reported locality information (top left) shows that majority of users come from Zagreb,
Croatia. This is expected as we did not restrict participation on the survey based on user’s
location. This allowed us to also obtain responses from Croatian citizens living abroad. We
believe that the language of the survey (Croatian) itself served as the most effective filter for our
population of interest. Age distribution (top right) show that the majority of registered users
are between 20 and 30 years of age, which is much younger than what could be expected from
the general population. Panel on bottom left shows age distribution of friends separately for
several groups of users of different age. It shows how users are much more likely to friend other
users that are of similar age as them. This homophily with respect to age was already shown in
social network visualization in Figure 2.2b. The degree distribution of social networks from all
three datasets (bottom right) show a scale-free property - majority of users have a relatively low
number of friends while there are couple of highly connected users ‡. The fact that some of these
statistics deviate from the ones we would expect on the general population does not influence our
methodology much as we are more interested in obtaining a representative sample of Facebook
population rather than general population, and all of these statistics are in accordance with the
ones obtained from the whole Facebook network [56].
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Figure 2.4: Collected Facebook friendship networks of users who registered on three of our
Facebook online survey applications: referendum2013.hr (10175 registered users), sabor2015.hr
(6909 registered users) and sabor2016.hr (3818 registered users). Nodes are colored based on the
survey response and sizes correspond to the number of their Facebook friends that also registered
on the same application. Similar as in Figure 2.2, clustering of users into communities based on
votes shows a homophily effect - users that share political preferences (which are, to a degree,
reflected in their survey response) are more likely to form Facebook friendship connections.
Whether the act of forming a friendship connection came as a cause or a consequence of their
political preference or any other characteristic (for example, see Figure 2.2 for age and gender)
is another question altogether. Regardless, this might suggest a potential endogenous influence
which we try to elucidate with our inference methodology.

causation.
The first question is the one of representativeness - Are we collecting a representa-

tive sample of our population of interest? In polling literature, spreading the survey
organically through the personal (online or offline) connections of respondents is called
snowball sampling [69]. In Section 2.3 we showed that our collected network of users
has representative aggregate properties - degree distribution, gender distribution and age
distribution of friends are qualitatively similar to the ones obtained from the whole Face-
book network [56]. This suggests that we might have a representative sample of Facebook
users, although not necessarily a representative sample of a an underlying population.
Regardless, an issue of representativeness is not crucial for the estimation of influence.

The second question is the one of engagement - How to engage users to respond to a
survey? Again, sharing information with your peers over Facebook is closest analogue to
snowball sampling [69] in traditional poling, with the power and reach catalyzed by digital
technology. However, reaching large number of respondents is still not guarantied. Crucial
factors are novelty and engagement - how are you motivating your participants to share
the application to their peers? For example, myPersonality project [62] started with a seed
of around 150 users but over the course of four years it spread to engage over six million
other users. Subsequent applications, some of which featured better design and features,
failed to attract so many participants. The third question is the one of causation - Can we
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Figure 2.5: Collected registration times of users who registered on three of our Facebook online
survey applications: referendum2013.hr (10175 registered users), sabor2015.hr (6909 registered
users) and sabor2016.hr (3818 registered users). Registrations are binned into a 30 minute
time periods - the same what we use in our inference methodology to determine active and
inactive users. Histograms are annotated with coverage of our survey applications by major
online news providers. Some of the news coverage align closely with the sudden peaks in user
registration which indicates possible exogenous influence. For sabor2015 and sabor2016 we also
collected referral links from which users visited our survey application (from which we derive
“Referrer id” and “Referrer class” variables in Table 2.2). We separate these based on whether
they originated from Facebook or an external website. Those that originated from Facebook
could additionally be associated with a share from another user, which is a strong indication of
endogenous influence. Those that originate from an external website are a strong indication of
exogenous influence. We use this information as a form of gold standard labels in evaluation of
our inference methodology in Chapter 5.

measure causal effects on purely observational data? While Facebooks itself offers troves
of observational data to researchers able to access its internal database, to measure causal
effects it is needed to perform an experiment. And conducting an experiment in digital
domain faces the bottleneck of informed consent, a problem which we deal in more detail
in Section 2.5. Experiments could be performed using Facebook Graph API which allows
external researchers to obtain limited data with the consent of the user. Researchers have
full freedom to design their experiments an choose which variables to record and store.

The large volume of data we can collect from online social networks can help us reduce
variance, but it does not influence bias at all! If our sampling method is biased we will
just be more precise in our wrong measurement. In such complex social datasets it is very
unlikely that we will find strong, simple-to-explain, universal effects. It is more likely we
will want to concentrate on a specific group of users to maximize our predictive power,
which practically means lowering our sample size significantly until we are dealing with
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Figure 2.6: Three examples of friendship communities (out of 27 which we identified) between
users of our online survey application referendum2013, obtained with multilevel algorithm for
community finding [67]. Nodes are colored based on user’s responses - red for “against” and
blue for “for” votes, and the size of the nodes correspond to the number of friends each user has.
Panels on the right show number of registered users in each hour throughout the data collection
period. The middle and bottom communities feature high homogeneity of the survey responses
which is typical for the majority of communities that we identified. Each of them also has a
couple of highly connected users that might serve as the drivers of the endogenous influence.
Top community is an interesting exception because it features almost equal number of users of
both political orientations, and has no highly connected users. The registration pattern is also
atypical - most of the registrations happen during one distinct hour , Community in the top
panel is an interesting exception because it has almost equal number of votes for each side, and
has no highly connected users. This community also exhibits interesting voting dynamic because
majority of its users voted during one particular hour on the evening of 27th of November. Our
analysis shows that this peak in activity is characteristic only for this community, which makes
it highly likely that it originated because of the peer-driven influence inside this community.
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the average-size dataset.
A particular challenge which we faced while collecting user data through our Facebook

application is the issue of observer bias. Due to the restrictions of the Facebook Graph API
we were only allowed to collect friendship relations between users which both registered
on our application eventually, i.e. until the end of the collection period. This makes
our collected friendship network much smaller than the true underlying Facebook social
network. What is more, the set of inactive users actually shrinks as we approach the
end of observation period. As our assumption regarding exogenous influence is that it
acts uniformly on all yet inactivated users, because their number artificially shrinks in
our dataset, the magnitude of exogenous influence increases. This is because all of the
users in our observed subnetwork eventually register (otherwise we would not collect their
data) which does not happen in the real Facebook network. We correct for this observer
bias with an additional term in our inference method (Section 4.4).

2.5 Ethical challenges

Although ethical standards in digital social research are still not well defined, we tried to
follow recommended guidelines during design and execution of our Facebook survey [14,
15]. Developers of Facebook applications are required to follow Facebook’s Platform
Policy § which defines the conditions under which data could be collected, as well as
requirements and responsibilities with regard data’s usage and further dissemination to
the third parties. For example, selling user’s data to third parties is strictly forbidden,
even if users (knowingly or not) gave a permission for it. Developers are also required to
display terms of use and privacy policy to users before they register with their Facebook
accounts, as the collection of user data happens automatically upon the registration. In
addition, our application also displayed a short version of the terms of use and privacy
policy on the front page of the application which was visible to nonregistered users. Our
privacy policy stated that we will use data strictly for research purposes and that we
will provide anonymized version of the data to the research community. Original versions
of the terms of conditions and privacy policy, in Croatian, are available on the Github
open code repositories on which our first two survey applications - referendum2013 and
sabor2015, are stored. Links to the repositories are in Table 2.1, and the full texts of the
policies are also reproduced in Appendix B.

Since the time of our first data collection in December 2013, the general public and
research community is more aware of the potential for misuse of data collected from online
social networks. Probably the most contributing factors to this are major publicized

§https://developers.facebook.com/policy
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scandals related to U.S. government surveillance as exposed by Edward Snowden in mid
2013 [70], as well as Facebook privacy breach scandal related to the Cambridge Analytica
company in early 2018 [71, 72, 73, 74]. In the academic community, notable examples of
violating ethical guidelines during research conducted on Facebook data include “Tastes,
Ties, and Time” study [3] and the study of emotional contagion [2]. In the former study the
data was downloaded freely from Facebook and in the later data was accessed internally
from Facebook. In both cases participants did not give an informed consent and were not
given an option to opt out from the study. The reason for that was logistic rather than
purposeful misconduct - in the first study Facebook regional data was scrapped directly
from Facebook without participants knowledge, and in the second study the scale of the
study was so large (millions of participants) and an act of informed consent was likely
to compromise research goals. For more info on the reactions to these studies see [75]
(emotional contagion) and [76] (tastes, ties, and time).

Online book “Bit By Bit: Social Research in the Digital Age” [14] gives very specific
guidelines for conducting ethical digital social research, including:
• Respect for Persons is about treating people as autonomous and honoring their

wishes.
• Beneficence is about understanding and improving the risk/benefit profile of your

study, and then deciding if it strikes the right balance.
• Justice is about ensuring that the risks and benefits of research are distributed fairly.
In our case, the informed consent for the participants in our online survey application

was elicited on two levels. First, the front web page of our survey application, next to the
registration button, featured a disclaimer that informed users which data will be collected
by the survey and how it will be used. Second, once user chooses to register on our appli-
cation with his Facebook credentials he is redirected to Facebook’s own interface dialog
which informs him which Facebook data will our application collect, and presents him
with links to both Facebook’s Platform Policy and the privacy policy of our application.
Also, users are able to opt out from delivering their data. This second step is managed by
Facebook API interface and is a standard procedure for all third-party Facebook applica-
tions. In addition to these, there are also separate web pages, accessible to both registered
and unregistered users, with information on the Frequently Asked Questions (FAQ) and
the terms of use regarding our survey application. This two-step process is necessary be-
cause Facebook API interface manages explicitly only Facebook-derived data. In our case
these are Facebook friendship relations and, in the case of referendum2013.hr application,
demographic data such as age and gender. In addition to these, we also collect user reg-
istration times of users and referral links from which they visited our online application.
Collection of these is explained in the disclaimer and our privacy policy to which official
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Facebook API interface links. The full texts of the disclaimer and the privacy policy are
available in Appendix B.

We decided to collect only data which was absolutely needed for the research, and
when we planned to release our data we decided to provide all safeguards as to protect the
privacy of the users, even if this meant releasing less data than what we initially collected.
Even if we remove personally identifiable information [77] from our released dataset it
does not mean we have effectively anonymized the data, as partial deanonymization is
still possible, sometimes by aligning the data with some external source which is not
completely anonymous. Regarding the benefit to our users, they were given summary
information on their friends which they would otherwise not be able to obtain. The society
as a whole was given the results of the global survey. Regarding data dissemination, we
decided to follow established practice [78] and only share our data with individuals that
signed an explicit Data Access Agreement. The purpose of the agreement is to satisfy
requirement for reproducible research while, at the same time, protecting the privacy of
users and respecting the policies of the online social network service provider. The full
text of the agreement is available in Appendix B.

Although immensely powerful in terms of data collection potential, online social net-
works still provide a challenge for experimental design [15, 79]. The bottleneck is the
informed consent - requiring users to give an explicit consent for participating in the
study or, at least, giving them an opportunity to opt-out of it afterwards. This signifi-
cantly reduces amount of data researchers can collect, as users are increasingly aware of
threats to which they are in turn exposed. Even when researchers are in a position to
automatically present their study to the large fraction of Facebook users the number of
responses is usually just a fraction of an initial reach. For example, a study from Aral
and Walker [61] presented its study on a sample of 1.3 million Facebook users but still
managed to receive responses of only 7730 users. An alternative is doing an observational
study.

Part of the problem from the legislative side is that the online service providers are not
research institutions and as such are not obliged to follow standard experimental prac-
tices, for example the “Common Rule” which states that participants should always be
granted an opportunity to opt-out from the experiment. If such provisions are not pro-
vided, scientific publishing of such data might be problematic. Still, future promises some
interesting developments. Providers of the most popular online social network services
are trying to consolidate requirements of the industry with the established academic prac-
tices [80]. This is important because institutional review boards (IRBs) are tailored for
academic institutions and traditionally research oriented companies (for example, phar-
maceuticals), but not for the new data-oriented companies. The introduction of General
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Data Protection Regulation (GDPR) by the European Union, which aims to give users
more control over their own data and increase transparency in terms of data handling
by the data providers, forced major online social network providers to change their data
handling policies globally. Also, a recent Data Transfer Project ¶ initiative from leading
online social network providers - Facebook, Google, Twitter and Microsoft, should allow
seamless transfer of user data between their platforms.

¶https://datatransferproject.dev/
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Chapter 3

Models

In this chapter a brief overview of the related work regarding modeling influence in social
networks is given. Modeling influence is closely related to the modeling of contagion,
spreading or diffusion processes in networks which arise due to the interactions between
individuals. In the remainder of the chapter the two approaches are presented for modeling
endogenous and exogenous influence in online social networks in case when only available
information is the social network between users and a single activation cascade. First
approach is a direct one where endogenous influence is modeled with an exponential de-
caying function, exogenous influence is modeled indirectly and the inference of parameters
is done manually. Second approach is methodologically more principled - both endoge-
nous and exogenous influences are modeled with explicit microscopic influence models and
the inference is performed through maximum likelihood method. For this a log-likelihood
function is used which gives the probability of observing particular activation cascade
in the online social network as a function of model’s parameters. Maximum likelihood
inference method is explained in detail in chapter 4.

3.1 Related work on modeling influence

Some of the most commonly used models for information diffusion are inspired by epi-
demiological models which model how a disease spreads in a population [81, 82, 83].
These models of biological contagion are oftencompartmental models [84] where nodes can
take one of several states of compartments, and there are conditions under which nodes
change their state from one to another. Three most typical biological compartmental
models are: susceptible-infected (SI), susceptible-infected-susceptible (SIS) and susceptible-
infected-recovered (SIR). Each of these microscopic models defines corresponding compart-
ments and transition rules which are dependent on various factors - for example, number
of already infected peers. Such is the case with the transition from the susceptible to
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infection state which is more probable is more of the peers are themselves infected. Tran-
sition rule can also be independent on the neighborhood of a node, for example when the
transition is spontaneous because node transitions from infected to recovered state. In
this particular example the “recovered” state is also an absorbing state because there is
no transition rule from this state to any other. These three models are often used because
of their simplicity which makes them analytically tractable. However, in order to gain
insight into real epidemics one often has to use more complicated compartmental models
which are designed to be as realistic as possible and where parameters are estimated from
real data [85, 86].

Information diffusion and social contagion in general could, in some cases, be modeled
with biological contagions [83], although recent experimental evidence suggests that there
are several crucial differences [41]. Social contagions usually exhibit more complex func-
tional dependencies with regard to the current state of the neighborhood of a node [28, 87].
For example, in classic biological contagion it is common to assume that there is a simple
monotone dependency between the number of infected peers and a probability of infection,
while in social contagions there is usually a threshold of minimal number of peers needed
to transmit a social contagion. Also, the parameter that drives the contagion might be
related to the number of connected components in the person’s immediate neighborhood,
instead of the number of neighbors [87].

Another crucial difference is the treatment of exogenous effects and various forms of
social reinforcement. Epidemic spreading is possible to model with simpler contagion
models where endogenous factors play a dominant role - for example, susceptibility of an
individual to a certain disease and the pairwise transmission rate. This means that the
probability of contagion is independent of the neighborhood structure and the state of
users in it, as well as any other external factors. However, social contagions often include
more complex mechanisms of transmission due to the common presence of various forms
of social reinforcement such as reciprocity [88], social feedback [59], and homophily [31]
(a tendency of similar nodes to form connections between each other). Social contagion
also exhibit presence of exogenous factors [49] which could act as a significant drivers of
influence, for example political unrest [1, 52], natural disasters [34] and external media [33].
All of these have a potential for confounding with the true social influence [30, 31, 89]. One
strategy of decoupling these correlational effects from influence is by using randomization
strategies on networks [32], which should diminish true influence and leave correlation
intact.

Usage of latent states which are inherently unobservable in data is problematic for
inference. This is why it is often more appropriate to use models where all states are
observarble - for example, Independent Cascade (IC) model [90] and Linear Threshold
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(LT) model [19, 24]. They feature only two observable state - active and inactive which
simply determine whether spreading process already reached a user or not. The simplicity
of these two models allows them to be studied analytically [91], and aids in statistical
inference from data [91]. They can also be used as a building blocks for more complex
applications such as influence maximization [92].

However, over the course of several decades the study of social contagions yielded many
different social contagion models [93] and inference of dynamics in social networks [21, 94].
One of the first was Granovetter’s threshold model [19], also known as linear threshold
model, where a node is activated if the sum of influences from its peers exceed its own
influence threshold. In Watts threshold model [20] a node is activated if the fraction of
its activated peers exceeds its threshold, which is drawn from a distribution. Generalized
model of contagion [95] introduces the memory of past exposures which influences conta-
gion, and can be used for both biological and social contagion. This model was motivated
by the need to more finely distinguish between two extreme cases: (i) where successive
contacts result in independent probability of infection, for example like in compartmen-
tal models and (ii) where there is a fixed threshold of contacts after which probability
of infection immediately changes. Centola-Macy model [28] is similar to Watts model,
but uses absolute number of activated peers instead of their fraction. Ignorant-spreader-
stifler (ISS) model [96] is similar to SIR compartmental model with a difference that a
transmission to absorbing state (stifler) is not spontaneous but depends on the presence
of spreaders or stiflers in the neighborhood of the node. In multiparametric model [97]
an activation of a node depends on the weighted linear combination of three terms: (i)
personal preference, (ii) an average of its neighbors states and (iii) average of all nodes in
the network. In multi-stage complex contagions [98] a node can achieve and additional
hyperactive state where exerts bonus influence along with the regular influence. In syn-
ergistic model [99] infectivity and susceptibility of a node is dependent on the number of
active peers. Finally, in voter model [100] at each time step one node is chosen uniformly
at random from the network and it adopts uniformly at random a state from one of its
peers.

3.2 Modeling exogenous influence directly

First, a simple method of estimation of endogenous and exogenous influence is demon-
strated where a single endogenous influence model is defined and which then uses a thresh-
old rule to differentiate between these two types of influence [101]. In a way, this method
does rely on explicit inference method but rather estimates magnitude of influences di-
rectly from data. Influence between users is modeled through activation probability - each
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activated user has a potential to activate, in the next time step, each of its peers with
probability p0 which decays exponentially in time ∗. Because individual activations are
independent of others this makes it a form of IC model. The rate of the exponential decay
p0e−λt is determined by the decay parameter λ. For each user i at time t, the probability
of endogenous activation can be expressed as the probability of being activated from any
of its already activated peers N(i):

pi(t) = 1−
∏

k∈N(i):tk<t

(1−p0e−λ(t−tk)), (3.1)

Here, tk is the activation time of peer k that activated before time t. Later, in Sec-
tion 3.3, we will use the same exponential decay model (Equation 3.3) in the joint inference
method. The assumption is that user activations are due to superposition of endogenous
and exogenous influence, and that there is a statistical difference between these two in-
fluences which can be observed in data. In Section 4.2 it will be shown that on simulated
activation cascades a simple threshold rule could be used to differentiate between these
two influences, based on differences in values of pi(t).

Section 5.1 contains the results of evaluation on the empirical data obtained from
referendum2013 online survey. It also shows how to infer the influence decay parameter
λ. However, the limitation of this model is that the endogenous and exogenous influence
are indirectly coupled, and only the endogenous influence is modeled directly. So in the
next section a fully probabilistic model of influence is devised which jointly models both
the endogenous and exogenous influence.

3.3 Modeling exogenous and endogenous influence
jointly

In this section a joint model for endogenous and exogenous influence is presneted which
rests on two assumptions (Figure 4.3): (i) endogenous influence depends on the friendship
network structure and which users are already active or not, and (ii) exogenous influence is
independent on the friendship network structure and the state of users in it, and is constant
across all users. Additional assumption is that the parameters of endogenous influence
are constant throughout time, while the parameters of exogenous influence may vary. The
reason behind this that, although individual probabilities of endogenous activation change
for each user depending on the state of the friendship network and the progress of the

∗In this formulation the time is a discrete rather than continuous variable, which should define all
probabilities as masses rather than densities. Although the former are usually written with capital letters
here we choose to write probabilities and time as p and t rather than P and T .
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activation cascade, the underlying endogenous activation mechanism is still universal for
all users and constant in time. This also results in a single set of endogenous influence
parameters which eases interpretation of the model. Exogenous influence could have been
modeled with an appropriate time-varying parametric model, but here it is modeled non-
parametrically instead, which means that we have a separate parameter of exogenous
influence at each time step [35]. A very simple model for the exogenous influence is used -
a simple probability of exogenous activation p

(i)
ext(t) that acts on all inactive users equally

at each specific time step.
The endogenous influence could be modeled with any appropriately defined micro-

scopic influence model. Three models are chosen whose variations are commonly used
in information spreading research: (i) Susceptible-infected (SI) model, Exponential decay
(EXP) model and (iii) Logistic threshold (LOG) model. With these choices both simple
and complex contagion models are covered. In simple contagion models the contagion
happens due to a direct interaction of the two users without any additional factors. In
complex contagion models the contagion is a result of the conditions present in the net-
work as well as pairwise interaction between users. First two models - SI and EXP are
special cases of IC model where each user has a certain probability of activating its peers
in the next time step independently of the rest of the network, which makes them an
example of simple contagion models. The difference between the two models is that in SI
model this probability does not change in time while with EXP model the probability of
activation decays in time, which lowers the influence of your peers that activated farther
away in time. The assumption of decaying influence is commonly included in both en-
dogenous and exogenous influence models [102, 103]. On the other hand, the LOG model
is an example of complex contagion where the probability of activation depends on the
number of your peers which are already active. This requirement of multiple interaction
models the mechanism of social reinforcement which is a known driving force for product
adoption [49].

First, the SI model is presented where probability of endogenous activation p
(i)
SI(t) for

user i at time interval [t−∆t, t] † is defined as follows:

p
(i)
SI(t) = 1−

∏
j∈N (i)active at t

(1−p0) = 1− (1−p0)ai(t) (3.2)

The main parameter of SI model is p0 - a probability that a particular peer j from
the set of all i′s peers N (i) will activate user i in the next time step [t−∆t, t]. As each
activation from each of the peer is independent, we can simplify the expression for p

(i)
SI(t)

by using ai(t) - the number of activated peers of user i at time t. Assumption of the SI
†Again, the time variable t is discrete here although ∆t is used to designate a time increment.
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model is that the probability of activating one’s peers p0 does not change in time. This
assumption is more appropriate in epidemiological setting from where SI model originated
than in information propagation setting where we would expect that the influence between
users decays in time. We can achieve this by adding a parameter for influence decay λ,
which leads us to the EXP model:

p
(i)
EXP (t) = 1−

∏
j∈N (i)active at t

(1−p0e−λ(t−tj)) (3.3)

Here, the parameters of endogenous activation are p0 and λ. The p0 is equivalent
to the corresponding parameter from the SI model and determines the probability of
user j activating user i at the time of its own activation t = tj . The decay parameter λ

determines the how fast does the influence decays - a half-decay of influence will happen
after approximately log(2)/λ units of time, which in this case is the period over which
we aggregate the newly activated users [t−∆t, t]. For example, decay value of λ = 0.1
means that the influence decays to half of its value in approximately three units of time.
Both SI and EXP models are examples of IC models - each individual has an independent
probability of activating each of its peers. Similar as the assumption of non-decaying
influence in SI model, this assumption is also more appropriate in epidemiological rather
than social setting. In social contagion we expect that the influence increases with the
number of exposures to which user is exposed, possibly in a nonlinear way. One possibility
is to use a threshold - a number of exposures which have to be exceeded in order for the
influence to reach a nonzero status. The definition of an exposure is sometimes ambiguous
- it could relate to the number of peers through which one was exposed to an information
or to the number of exposures themselves, which could come even from a single peer. The
number of peers is chosen as a measure of exposure and so the LOG model is defined as
follows:

p
(i)
LOG(t) = 1

1+ e−k(ai(t)−a0) (3.4)

The parameters of endogenous influence here are a0 and k and they define the shape of
the logistic threshold function which determines the probability of endogenous activation
p

(i)
LOG(t) of user i depending on the number of active peers (exposures) ai(t) which is

calculated from data. The parameter a0 is the number of active friends you need for the
probability of endogenous activation to reach 0.5. The parameter k determines the slope
of the threshold. In the case of k = 0 the threshold is hard:

p
(i)
LOG(k = 0; t) =


1 if ai(t)≥ a0

0 otherwise
(3.5)
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This means that the probability of activation p
(i)
LOG(t) is 1 in case ai(t) ≥ a0 and 0

otherwise. Higher values of k soften the threshold so that the probability of activation is
nonzero even in cases when the number of active friends is below the threshold value a0.
A probability of activation of p

(i)
LOG for k > 0 at exposure of a0 active friends is exactly

0.5, and probability of 1 is reached only in a limiting case of large number of exposures.
Having microscopic influence models for both endogenous and exogenous influence

we can join them in one probabilistic expression by defining a likelihood function. The
likelihood function L gives us probability of observing data D, which in this case are a
friendship network and user’s activation times, at a particular time t conditioned on the
chosen models of influence ppeer and pext:

L(D; ppeer,pext, t) =
∏

i∈activated at [t−∆t,t]
(1− (1−p(i)

peer(t))(1−pext(t)))+

c(t)
∏

i∈inactive at t

(1−p(i)
peer(t))(1−pext(t))

(3.6)

The likelihood consists of two terms, first one which quantifies the agreement for
the users that did and second one for the users that did not activate in a given time
period [t−∆, t]. Assumption is that each activation had to be due to either endogenous
or exogenous influence and there are no other possible influences. Explicit dependence
on time t will be removed in the inference phase because likelihood will be estimated
non-parametrically - there will be a separate estimate L at each time increment ∆t.

In principle, nothing prevents us from using a more general form of exogenous influence
p

(i)
ext(t) which is user-dependent, or different endogenous influence parameters for different

groups of users, but this would increase the number of parameters and make our inference
harder. Maximum likelihood inference is described in detail in chapter 4, but here several
optimizations are shown which do not change the model specification or the solution of
the inference although they make inference more efficient and feasible. First, because
likelihood function in Equation 3.6 involves multiplication of many small probabilities,
which is likely to result in numerical overflow, we exchange multiplication for summation
by log-transforming the likelihood:

logL(D; ppeer,pext, t) =
∑

i∈activated at [t−∆t,t]
log(1− (1−p(i)

peer(t))(1−pext(t)))+

c(t)
∑

i∈inactive at t

log((1−p(i)
peer(t))(1−pext(t)))

(3.7)

This does not change the value of the maximum likelihood parameters due to the
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monotonicity of logarithm. Second, for additional numerical stability we do not actually
calculate expressions for endogenous activation probabilities in Equations 3.2 and 3.3, but
instead calculate equivalent expression using sum-log-exp trick [104]:

p
(i)
SI = 1− exp[ai log(1−pSI)] (3.8)

p
(i)
EXP = 1− exp

 ∑
j∈activated at t

log(1−pEXP )
 (3.9)

By substituting product for summation, the trick allows us to avoid numerical under-
flow while calculating the product in Equations 3.2 and 3.3, which can happen for users
that have a large number of peers. Because quantities under the logarithm are of the form
1−p, in practice we use a special log1p ‡ function in Numpy for calculation of log(1+x)
which provides more precision when x is small.

The role of factor c(t) in the second term of Equations 3.6 and 3.7 deserves an expla-
nation. The second term determines the agreement with users that did not activate in
the given time period [t−∆, t], neither through endogenous nor through exogenous influ-
ence. But the question is on which users does the exogenous influence acts exactly? We
know that our friendship network contains just a subset of users in the real online social
network. This makes it likely that the true number of inactive user on which exogenous
influence could act is actually much larger than what we observe. This underestimate of
the number of inactive users on which exogenous influence could act could lead to the
overestimate of the exogenous influence. We call this effect an observer bias because it is
a direct consequence of the data collection methodology - the friendship network contains
only the users that eventually registered (activated) on the online survey application. As
we approach the end of the observation period the number of inactive users we observe
drops to zero, although there are still many inactive users in the true social network which
we do not observe. We can correct for this observer bias with factor c(t) in Equations 3.6
and 3.7 that increases the contribution of the inactive users in the likelihood:

c(t) = 1+α
Nall

Ninactive(t)
(3.10)

Here, Nall is the number of all users in the social network, and Ninactive(t) is the
number of all yet users inactive users at time t. Correction for the observer bias is
explained in more detail in Section 4.4.

‡https://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html
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Chapter 4

Inference

This chapter presents an inference methodology used to infer parameters of the models for
endogenous and exogenous influence described in Chapter 3. Section 4.2 presents a simple
direct inference method that effectively infers only the endogenous influence while any
deviation from the expected endogenous influence is interpreted as exogenous, and where
parameters of influence are determined manually. Section 4.3 presents a more principled
inference method that uses a full likelihood function which includes both endogenous and
exogenous influence explicitly, and which can be optimized numerically in order to infer
maximum likelihood parameters. Sections 4.4 and 4.6 deal with two important technical
aspects of the inference methodology - correction for the observer bias which arises from
the way the data on activation cascades is collected, and the scalability analysis which
shows how the inference method scales to social networks with large number of users. In
Section 4.5 the results of extensive experiments where inference is performed on simulated
activation cascades are presented. Section 4.7 shows how the inference methodology can
be used to estimate a measure of individual and collective influence, and compare it with
structural measures of influence in Section 4.8.

4.1 Related work on inference in networks

Whether we are considering inference of network structure or processes on networks, we
are essentially dealing with models that cannot be easily analyzed with standard statistical
techniques. In order to perform statistical inference of networks directly there are several
problems which have to be accounted for [105, 106]:

First problem inherent in inference on networks is granularity of observations. A real-
ization of a network structure generated by a model is considered as a single observation
instead of a set of independent, identically distributed (iid) observations. In terms of
structure, the whole network is a single realization of our network generating model. This
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prevents us in using standard data partitioning techniques, for example for partitioning
our network into training and validation sets in order to validate our model. In terms of
processes on network such as information diffusion, in principle each individual informa-
tion transfer could be considered as an almost independent event. Here, dependence is
at best locally restrained to the immediate neighborhood of the person. However, exis-
tence of exogenous factors invalidates this assumption, as dependence then extends to the
arbitrary large percentage of network. Using a likelihood based approach helps because
likelihood measures the agreement of the model with the entire observed data, and it al-
lows the evaluation of model fitness and model complexity without the use of independent
test set.

The second problem relates to the node correspondence. Inference of network structure
should take into consideration that a particular labeling of nodes should not change the
likelihood of being generated by a particular network generating model. In other words,
it should treat isomorphic networks as being equivalent. This is not an easy problem, as
graph isomorphism is in NP-intermediate complexity class [107]. So in order to calculate
a likelihood we have to consider all N ! possible permutations of node labelings, which
is computationally infeasible. A pragmatic solution to this problem is to perform an
appropriate sampling strategy like Markov Chain Monte Carlo MCMC [105].

The third problem relates to likelihood estimation. Even without the node correspon-
dence problem, in order to calculate the likelihood that a particular model generated
the observed network structure we still need to evaluate the probability of each of the
N2 possible edges in the observed network. Again, using appropriate sampling strategies
like MCMC could help, although a much more common approach is to use aggregated
statistics as a proxy for evaluating different models. These include degree distribution or
clustering coefficient in case of structure [108], or response correlations in case of dynamics
[109]. Comparing only the aggregate features reduces the discriminative power of model
validation [110], but is often practiced because it requires less computational resources
and allows the usage of standard statistical methods for evaluation. In general, using
a likelihood-based approach allows comparing models in a probabilistically unified way,
rather than comparing them indirectly by using a subset of many possible aggregated
features [111].

Despite all of these issues, there are methods that successfully infer both network
structure and processes on networks. Some of these will be reviewed in the remainder
of the section. We have to distinguish models which implicitly or explicitly use network
dynamics for inference of network structure and models of processes on networks. Network
dynamics is a rather broad term and includes both dynamics of structure, for example like
link formation, and processes on networks such as information cascades. It is commonly
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used in inference of network structure, for example in network growth models, models
of community formation, and models of network structure inferred from dynamic data
such as information cascades in online social networks. Inference of processes on networks
includes, for example, epidemic and birth-death processes, biochemical and regulatory
dynamics, human trails on the Web such as Web navigation and sequences of reviews.

We first review some of the related research on the inference of network structure.
Historically, the sociological studies on human social networks pioneered this research
direction, several decades before the development of modern theory on complex networks
structure and dynamics [112]. These studies mostly used classical graph theory and
concentrated on investigating the role and influence of individual nodes in network rather
than global properties of social networks. The most significant of these early models
are actor models which are mostly used to model conditions under which nodes change
their outgoing connections [94]. Actor models are flexible enough to incorporate many
sociologically relevant features such as transitive triplets, reciprocated ties, indirect ties
and persistent reciprocity, and they can be inferred from empirical data with maximum
likelihood methods [21].

More recent research direction is the investigation of evolution and fundamental prop-
erties of empirical complex networks. This includes development and inference of network
growth models that are able to reproduce global and mesoscale structural properties com-
monly found in real world networks [105, 106, 111, 113]. From a probabilistic perspective,
a network growth model is actually a probability distribution on a space of all possible
networks. By using a maximum likelihood estimation one obtain most probable growth
model given the data on network growth [105]. Due to the large dimensionality of the like-
lihood one has to use MCMC or some other sampling procedure for estimation. Another
strategy for dealing with high dimensional likelihoods is to use less data, which is usually
discriminative enough for selecting among several predefined candidate models (as op-
posed to parameter estimation) [113]. We can also use supervised learning methods that
learn from aggregated network features in order to identify a growth model that might
generated a particular network structure [114]. Maximum likelihood can also be used to
design complex models of network growth that are composed out of simpler microscopic
principles [111].

Doing inference on networks is a matter of representation, sometimes it is not necessary
to perform inference on an explicit representation of all possible pairwise connections be-
tween nodes if more efficient representation exists that captures desired underlying struc-
tural characteristics. Two such representations of network structure for which efficient
inference methods were developed are Kronecker graphs [106] and block models [115].

Kronecker graphs [106] are recursive models of networks that are expressive enough to
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model real networks and to reproduce most of their properties. They rely on the kronecker
product of adjacency matrices which is successively applied to the initiator graphs in order
to generate self-similar network of arbitrary size. The large scale structure of the network
such as communities and other network properties are encoded in the initiator graph,
and these can be inferred from empirical networks [106]. The Kronecker graphs have a
multinomial distribution for in and out degrees of the nodes, which for some choices of
initiator graphs behaves like a power-law distribution, and they follow the densification
power law.

Another efficient representation of network structure are block models [115] which en-
code communities (blocks) in network and their mutual connections. Formally, a block
model that contains k blocks is a k×k matrix M where each element Mij gives a prob-
ability that a node from block ki is connected to a node from block kj . Erdös-Reny
networks are a special case of block models where there is only one block. Inferring a
block model from an empirical network implicitly performs community detection as the
blocks can be directly interpreted as communities on network. However, the inference
itself is usually conditioned on a specific number of blocks, and so one has to use various
complexity measures to either select number of blocks beforehand or somehow incorporate
block selection in the inference itself. For example, minimum description length (MDL)
can be used in block model inference as a complexity measure [116] which considers not
only the number of blocks but also their relative sizes. Also, there are efficient Monte
Carlo methods for inference of block models that from data which do not require a prede-
fined number of blocks [117]. What is optimized in these methods is entropy rather than
log-likelihood, and inference is performed in a hierarchical way where every level serves
as a prior information for the lower level [118].

In social networks, an underlying assumption is that interactions between persons
somehow reflect the underlying social relationships. This means we could use information
on network dynamics to infer social network structure. Examples of such methods are
CoNNIe [119], NetRate [120], NetInf [121] and InfoPath [122] which all use generative
probabilistic models for inferring pairwise transmission probabilities between persons in
a social network from information diffusion data. Pairwise transmission probabilities
could be interpreted as weights on social network connections, and can be used to infer
the most probable activation sequence between persons, as an exact information on who
transmitted information to whom is usually not available. All of these methods optimize
for a maximum likelihood information cascade, although using a different optimization
method. CoNNIe and NetRate use convex programming, NetInf uses submodular function
optimization and InfoPath uses stochastic gradients. Only InfoPath is able to provide an
online estimate in case when network structure is changing over time.
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While there are several possible representations of network structure which could be
used for inference, inference of processes on networks unfortunately still lacks a suitable
representation which would allow inference of a broad range of dynamical models using
an unified probabilistic framework [123]. In case of binary-state dynamics, where each
node can occupy one of two states, we can use infection rate Fk,m and recovery rate Rk,m

functions which depend only on the degree of node and the number of its neighbors,
and which can describe many binary-state processes like SI and SIS models, Bass and
Kirman models and voter models. These rate functions can be used to derive a master
equation for describing time evolutions of the fractions of nodes in each of the states [124].
Unfortunately, currently there are no proposed methods for inference of these functions
from data.

Another suitable representation for processes on networks is with a general network
dynamics equation [22] which is able to represent epidemic processes, biochemical dy-
namics, birth-death processes, and gene regulatory dynamics [123]. In all of these cases
the equation models the way a state of a node changes depending on the states of its
neighbors, where neighbors encode some kind of a relationship structure between entities.
For example, in epidemic process the state of a node is its probability of infection, in bio-
chemical dynamics a concentration of a reactant, in birth-death processes a population at
a specific site and in gene regulatory dynamics an expression level of a gene. Inference is
done by expanding the equation into Hahn series ∗ and then approximating the leading
term of the series by using transient response, which describes a response of a system
after perturbation, and the response matrix, both of which are aggregated features of
dynamics. This method infers only the functional form of the model, not its parameters,
which might be useful for model selection [109].

One particular kind of processes on networks are human trails - sequence of content like
Web pages, multimedia and reviews which users consume in succession. The transition
from one content to another for each individual user is governed by transition probabilities
which could be described by Markov chain, meaning that the transmission probability is
determined only by the most recent content in a trail [125]. Hypothesis pertaining the
human behavior could be expressed with such Markov chains - for example, a uniform
hypothesis states that a person is equally likely to interact with any given content at any
given time, while structural and similarity hypotheses give preference to content which
are better connected (for example, through hyperlinks) or more similar to the previous
one. Efficient Bayesian inference methods allow selection of the most probable Markov
chain hypotheses given empirical data [126, 127].

Probably the most potent research on processes on social networks relates to the pre-
∗Hahn series is a generalization of the Taylor’s expansion that includes both negative and real powers.
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diction of information cascades given past diffusion traces, with or without the explicit
social network structure available [5]. Of those that use an explicit social network struc-
ture, LT model [19] can be inferred from data using gradient ascent method [25], AsIC
and AsLT using a maximum likelihood estimation [26], and T-BaSIC model (Time-Based
Asynchronous Independent Cascades) using logistic regression [128]. However, repro-
ducing realistic temporal dynamics is still difficult [5]. Methods that do not use any
information on social network structure have to impose additional assumptions in order
to perform inference. For example, a SIS model can be fitted to data under assumptions
that all nodes have the same probabilities to adopt the information and to become sus-
ceptible at the next time step [27]. Linear Influence model relaxes these assumptions,
and it allows inference of individual influence functions for each node separately in a
non-parametric way by solving a non-negative least squares problem using the Reflective
Newton Method [8]. Partial Differential Equation based model can predict topological
and temporal dynamics of an information injected in the network by a given node, and
its parameters can be estimated using the Cubic Spline Interpolation method [92].

4.2 Statistical estimation of exogenous influence di-
rectly

This section provides a description of a method for inference of endogenous and exogenous
influence directly from data using an exponentially-decaying endogenous influence model
(Equation 3.1, Section 3.2). This model gives us a probability of endogenous activation
pi(t) for each inactive user i at each time step t. The inference is based on assumption
that there is a statistical difference between endogenous and exogenous influence in terms
of values of pi(t). Let us first define an expected probability of endogenous activation µ(t)
over all inactive users at time t as:

µ(t) = 1
N

∑
i:ti∈(t,+∞)

pi(t), (4.1)

where N is the number of inactive users at time t. Exogenous influence is estimated
indirectly, as every activation that cannot be explained as an endogenous activation. The
assumption is that the exogenous influence is independent of pi(t) and that it influences all
user in a network uniformly. If there is only exogenous influence acting in the network then
the set of newly activated users (those that activated in time window [t−∆, t]) should be
a unbiased uniform sub-sample among all inactive users. If there is endogenous influence
present in social network, the set of newly activated users should be biased towards users
with high endogenous activation probability pi(t). The number of users activated due
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to endogenous influence in time window [t−∆, t] is estimated as a discrepancy between
expected probability of endogenous activation µ(t) and actual activation probabilities
summed over all newly activated users:

peer(t) =
∑

i:ti∈[t−∆,t]
1(pi(t)−µ(t)), (4.2)

Equation 4.2 counts the number of endogenously activated users by classifying all
newly activated users as endogenous if their probability of endogenous activation pi(t) is
higher than expected probability of endogenous activation µ(t), and exogenous otherwise.
An actual threshold rule is implemented with the help of indicator function 1(x) which
is equal to 1 is argument is non-negative, otherwise it is zero.

This method is evaluated on simulated activation cascades using an actual social net-
work collected with referendum2013 application. For simulating an activation cascade
a variant of IC model is used where each active user has an independent probability of
activating any of its inactive peers at each discrete time step. This conforms with the
exponentially-decaying probability of endogenous activation in Equation 3.1 that assumes
independent activations from peers, each of which exerts influence of the form p0e−λp(t−t′)

towards the user. The simulation is initialized by activating a single user chosen at ran-
dom.

Along the endogenous influence, exogenous influence is also introduced which exerts
on all inactive users a certain probability of activation in the next time step which is
equal for all users, regardless on how many of their peers are already active. Although
exogenous influence is equal for all inactive users at a specific time step, it may change in
time. For this simulation a spiked exponentially-decaying influence of the form q0e−λe(t−t′)

is used. This form is qualitatively similar to what can be observed in empirical data (see,
for example, Figure 2.1a).

Figure 4.1 shows results on simulated activation cascade on referendum2013 social
network with endogenous influence parameters: p0 = 0.03, λp = 0.02 and exogenous influ-
ence parameters: q0 = 0.2, λe = 0.3 that fires at 5th and 15th step of the simulation. Using
a threshold rule implemented in Equation 4.2 it is possible to estimate the total number
of users activated due to the endogenous or the exogenous influence. A simple method
is used as a baseline that classifies as exogenously activated users all those that at the
time of activation had no active peers. This is a rather conservative measure that tends
to underestimate the number of exogenously activated users, especially near the end of
the simulation where the majority of users in social network are already active, and it
becomes increasingly rare to find any users without at least one active peer.

Figure 4.2 shows the distributions of endogenous activation probabilities pi(t) for all
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Figure 4.1: Direct statistical estimation of influence on a simulated activation cascade. The
underlying social network is a Facebook friendship network of users of referendum2013 online
survey application. Activation cascade is simulated using IC model with exponential decay of
endogenous influence between users. The shape of the exogenous influence is a single exponen-
tially decaying peak which acts on all inactive users in the network, fired at the 5th (top panels)
and 15th (bottom panels) step of the simulation. The method of direct statistical estimation
is able to estimate the magnitudes of exogenous (left panels) and endogenous influence (right
panels) in both cases.

inactive users at the 15th step of the simulation. It shows that the distribution of pi(t) for
all exogenously activated users is distributed as an uniform unbiased sub-sample of pi(t)
of all newly activated users. A baseline for exogenous influence a simple method [35, 120]
is used where users are classified as exogenously activated if, at the time of activation,
they had no previously activated peers. An issue with this baseline is that it underesti-
mates the number of exogenously activated users, especially near the end of the activation
cascade [35]. As more and more user get activated, it is increasingly unlikely that an user
will not have at least one active friend just by chance alone. The usage of µ(t) tries to
remedy this as it tracks the average number of active friends each user should have, and
raises the criterion for being classified as exogenously activated. Note that if we set λ = 0
in the endogenous influence model in Equation 3.1 - a case where the influence of our ac-
tive peers does not decay in time, we effectively obtain the baseline model for exogenous
influence.
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Figure 4.2: Distribution of endogenous activation probability pi(t) (Equation 3.1) for all newly
activated users in simulated activation cascade. The distribution is taken from the 15th step
of the simulation described in Section 4.2. We can see that the proportion of exogenously
activated users is independent of their endogenous activation probability pi(t). On the other
hand, the higher the pi(t) the higher the proportion of endogenously activated users among
all inactive ones. Vertical dashed line shows the average endogenous activation probability
(µ(t) from Equation 4.2) for all inactive users. The rule for distinguishing users that activated
due to endogenous or exogenous influence (Equation 4.2) classifies all newly activated users as
endogenous if their pi(t) is lower than the µ(t), and exogenous otherwise. We see that this rule
is sensible because majority of users with low pi(t) is indeed endogenously activated. Note that
the baseline measure classifies users as exogenous activated if and only if pi(t) = 0, which means
that an user has no active peers which could exert influence on him.

4.3 Maximum likelihood method for joint inference
of endogenous and exogenous influence

Maximum likelihood inference involves optimizing a log-likelihood function (Equation 3.7)
conditioned on a particular forms of endogenous and exogenous influence models and the
observed data - social networks structure and activation cascade. Figure 4.3b shows the
visualization of a log-likelihood function in the case of a simulated activation cascade.
Ideally, we would want to infer parameters of endogenous and exogenous influence for
each user separately and for each time step separately. There is no reason to assume
that all users have the same susceptibility to social or exogenous influence, or that this
susceptibility does not change in time. However, in order to perform inference in case
when only a single activation cascade is available we have to introduce some simplifying
assumptions. First, we assume that the parameters of both endogenous and exogenous
influence models are equal for all users at any given time. Second, parameters of endoge-
nous influence model do not change in time while the parameters of exogenous influence
may change in time. Formally, this means that our inference should result in a single
set of endogenous influence parameters ppeer and a set of exogenous influence parameters
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{pext}t for each time window [t + ∆t] which we use to define which users did or did not
activate in a given time period. This makes the dimensionality of the final influence model
(and with it the log-likelihood) proportional to the number of time windows we use for
the inference - t + 1-dimensional in the case of SI model, and t + 2-dimensional for the
EXP and LOG models.

Optimizing a model where number of parameters depends on the number of time
windows that are considered in inference is not a desirable property, as such a high
number of parameters makes a direct optimization unfeasible. Instead, we decided to use
an alternating method [35] where we alternatively fix either ppeer or {pext}t and optimize
for the other until both values converge.

Although this alternating method bears some similarity to the Expectation-Maximization
method, it is not, in the strictest sense, an EM method because it lacks both an explicit
expectation step and latent variables. In the traditional EM, one iterates between opti-
mizing a small number of parameters of interest and calculating expectations (conditioned
on the current optimized values) for the values of latent variables.

Algorithm 4.1 describes the exact alternating procedure for inference of ppeer and
{pext}t. In brief, it calculates first ppeer and pext for every time window, which then serve
as initial values for the alternating procedure. In the first step, we optimize for a single
set of endogenous parameters ppeer, conditioning on the exogenous parameters {pext}t we
obtained for each time window. In the second step, we optimize exogenous parameters
for each window separately {pext}t, conditioning on a single set of endogenous parameters
ppeer we obtained in the previous step. We then alternate between the first and the second
step until values for ppeer and {pext}t converge.

Algorithm 4.1 Alternating method for joint inference of influence
1: procedure AlternatingInference(T ,ε,ppeer(t),pext(t))
2: for t ∈ {1, ...,T} do
3: {ppeer}t,{pext}t← MAP(ppeer(t), pext(t)) . Optimize for every time window.
4: end for
5: while ∆(i−1)

peer ≥ ε & ∆(i−1)
ext ≥ ε do . Until ppeer and {pext}t converge.

6: p
(i)
peer← MAP({p(i−1)

ext }t) . Fix {p(i−1)
ext }t and optimize for single p

(i)
peer.

7: {pext}(i)← MAP(p(i)
peer) . Fix p

(i)
peer and optimize {p(i)

ext}t for every window.
8: ∆(i)

peer← p
(i)
peer−p

(i−1)
peer

9: ∆(i)
ext←

∑T
t=1(p(i)

ext(t)−p
(i−1)
ext (t))

10: i← i+1
11: end while
12: return p

(i)
peer,{p(i)

ext}t . The parameters of endogenous and exogenous influence.
13: end procedure

Procedure MAP (Maximum a Posteriori) in Algorithm 4.1 is an actual optimization
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method which searches for the maximum-likelihood parameters of interest with respect
to the given fixed parameters and observed data. The implementation used in these
experiments uses a truncated Newton algorithm [129] which is Hessian-free - it does
not require a gradient function in an explicit closed-form. It uses conjugate gradients for
parameter updates in iterative fashion. The inner solver runs for only a limited number of
iterations (it is truncated) so it is suitable for problems with large number of parameters. It
also works with constrained parameters which we exploit extensively because many of our
parameters are constrained in the interval [0,1] - all those that represent probabilities such
as p0 in the endogenous influence models (Equations 3.2 and 3.3), as well as all t exogenous
influence parameters pext(t) (Equations 3.6 and 3.7). The specific implementation of the
truncated Newton algorithm that we use is from the scikit-learn Python package †.

Convergence of this alternating method is not guarantied. The method sometimes fails
to converge, especially in cases when we use the two-parameter EXP model (Equation 3.3,
where parameters are p0 and λ), or LOG model (Equation 3.4, where parameters are k

and a0). With the one-parameter SI model (Equation 3.2 that has just a single parameter
p0) inference converges without a problem, so a common trick [35] is used to reduce the
two-parameter endogenous models into a single parameter model. One way to do this is by
choosing several reasonable values for the parameter we want to remove, and optimizing
log-likelihood multiple times by conditioning on each of these values separately. We can
then choose among these the parameter value which yielded the best log-likelihood.

The output of the alternating method in Algorithm 4.1 are parameters of endogenous
influence ppeer and exogenous influence {pext}t. We use these inferred parameters to cal-
culate two additional measures: 1) absolute number of activated users at each time period,
and 2) type of user activation. In order to do this we first have to calculate probabilities
of endogenous p

(i)
peer(t) and exogenous p

(i)
ext(t) activation for each individual user i at the

time of their activation t. Because exogenous influence acts on all users equally regardless
of the current state of their peers we can interpret exogenous influence {pext}t directly
as the probability of exogenous activation for each user that activated at some time t.
As for the probability of endogenous influence p

(i)
peer(t) for a specific user i at time t we

can use one of the appropriate Equations 3.2-3.4 from Section 3.3, depending on which
endogenous model of influence is used in the inference. These equations depend on the
activation states of all of the peers in the user’s immediate social network neighborhood,
at the time of his own activation.

Absolute number of activated users due to endogenous Apeer(t) and exogenous Aext(t)
influence are calculated by summing respective activation probabilities and normalizing
with the number of users activated in a given time period, which is an observed quantity:

†https://scikit-learn.org/stable/
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Figure 4.3: Maximum likelihood inference of endogenous and exogenous influence in simulated
activation cascade. Panel 4.3a shows a simple example of two newly activated users u1 and
u2 which, at the time of activation, had different number of already active peers - user u1 has
three while user u2 had only one. Intuitively, we would expect that user’s u1 activation is
easier explained by the endogenous influence while user’s u2 is easier explained with exogenous
influence. This illustrates different assumptions on the endogenous and exogenous influence used
in the inference - endogenous (peer) influence acts between the users of the social network while
exogenous influence is external to it. Panel 4.3b shows the simulated activation cascade using SI
endogenous influence model and a designed exogenous influence with several exponentially-
decaying spikes of activity (Panel 4.3b, left). The likelihood function in this case consists
of only two parameters at each time step - a parameter for endogenous influence pSI and a
parameter of exogenous influence pEXT. Estimation of these parameters separately for each time
step corresponds to the initialization step in the alternating inference method (Algorithm 4.1).
Visualization of the normalized likelihood function at two distinct time steps (Panel 4.3b, middle
and right) shows that the two parameters are correlated - each provides a partial explanation
for the observed data and if one is weaker the other must compensate. Also, when there is more
data available for inference (time step 21, Panel 4.3b, middle) the shape of the log-likelihood
is more concentrated around the maximum likelihood value than when there is less data (time
step 50), resulting in more confident estimates. Maximum likelihood solution is obtained by
optimizing a log-likelihood function with a truncated Newton algorithm [129].
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P =
∑

i∈inactive at t

p(i)
peer , E =

∑
i∈inactive at t

p
(i)
ext (4.3)

Apeer(t) = |A(t)| P

P +E
, Aext(t) = |A(t)| E

P +E
(4.4)

Where A(t) is the number of users that activated during a particular time period [t−
∆t, t], that is |A(t)|= |{i∈ activated at [t−∆t, t]}| in the continuous time case (Chapter 5)
and |A(t)|= |{i ∈ activated at t}| in the discrete case (Section 4.5).

Type of user activation is expressed through a single measure of exogenous responsi-
bility R(i) which quantifies to what degree is an activation of user i due to the exogenous
influence:

R(i)(t) = pext(t)
pext(t)+p

(i)
peer(t)

(4.5)

Here, t is the activation time of user i. Values of R(i)(t) are in range from 0 to 1,
with close to zero indicating dominating endogenous influence, and values close to one
indicating dominating exogenous influence. Users who activated during time when there
was no exogenous influence acting in the social network will have R(i)(t) = 0. On the
other hand, users who, at the time of their activation, did not have any already activate
peers will have R(i)(t) = 1. It is not possible for both pext(t) and p

(i)
peer(t) to be 0, and

consequently that the value of responsibility is undefined, because that would mean the
activation of this user is evaluated as impossible by the model in Equation 3.7. Later in
the chapter we show several alternative definitions of exogenous responsibility.

4.4 Correction for the observer bias in joint inference
of influence

The Facebook friendship networks which were collected through the survey application
contain only friendships between users that eventually registered on one of the survey
applications. Due to the Facebook’s privacy policy it is only possible to retrieve friendship
relation between users that both registered on the application eventually ‡. This causes
the overestimation of exogenous influence, especially near the end of the data collection
period where majority of users that will eventually register already did so. We call this
effect an observer bias and it arises because the number of inactive users in the observed

‡As we explained in Chapter 2, Facebook’s privacy policy and API for data collection changed several
times over the years, usually in the direction which restricted type and amount of data which could be
collected by third party application developers. This particular change was introduced in early 2014.
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social network is getting smaller and smaller, while in actual network (being much larger
than what we observe) their number does not change much. To correct for this bias we
artificially extended the social network with inactive users by a certain fraction α of the
total number of registered users. The α is introduced through a correction factor c(t):

c(t) = 1+α
Nall

Ninactive(t)
(4.6)

This correction factor can be included in the log-likelihood function to modify the part
responsible for the inactive users:

logL(D; ppeer,pext, t) =
∑

i∈activated at [t−∆t,t]
log(1− (1−p(i)

peer(t))(1−pext(t)))+

c(t)
∑

i∈inactive at t

log((1−p(i)
peer(t))(1−pext(t)))

(4.7)

In the case of α = 0 we are not making any correction for the observer bias at all, and
we can expect to overestimate exogenous influence near the end of the observation period.

4.5 Joint inference of endogenous and exogenous in-
fluence on simulated data

We test the method for joint inference on simulated activation cascades which are designed
to be as similar as possible to condition present in empirical data. As social network we use
a configuration model of a Facebook friendship network collected through referendum2013
survey application. Configuration model preserves the degree of each node - number of
Facebook friends each user has, but permutes their mutual connections. The degree
sequence, number of users and total number of connections are preserved, but mesoscale
network structures such as communities are not. However, this is still more preferable than
completely permuting the connections without preserving the degrees of nodes, because
this effectively changes the degree distribution to binomial [130]

The simulated activation cascade is initialized with a small number of activated user
and progresses in discrete time steps. Both endogenous and exogenous influence are active
at the same time. Endogenous influence is modeled with one of the endogenous influence
models which define influence that active users exert on inactive users (Section 3.3, Equa-
tions 3.2-3.4). In the simulation in Figure 4.4 we use EXP model, but the results for
other endogenous influence models are similar (Figure 4.5). Exogenous influence is mod-
eled with a designed non-parametric influence which acts equally on all inactive users. For
this simulation we had chosen a shape that features three exponentially-decaying peaks of
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exogenous influence, which resembles a typical situation when a distinct exogenous infor-
mation source activates some of the users [131], which is a pattern that we also observe in
the collected dataset (Figure 2.5). However, the proposed inference method works equally
well for various other shapes of exogenous influence (Figure 4.6).

The input to the inference method are the activation times of all users - a single activa-
tion cascade, and a Facebook friendship network between users - an online social network.
Using just these two information and by employing alternating inference method in Al-
gorithm 4.1 we can estimate the parameters of the assumed endogenous and exogenous
influence models as well as the absolute number of users activated due to one of these
influences.

A measure of external responsibility R(i)(t) (Equation 4.5) gives us an estimate to
what extent was user’s activation due to endogenous or exogenous influence. If we wanted
to classify users as being endogenously or exogenously activated we could use a specific
threshold for R(i)(t), and compare this with the ground truth data which is available in the
simulation. However, we decided to instead evaluate the estimate across the whole range
of possible thresholds, and so we calculated the whole receiver operating characteristic
(ROC) curve and the corresponding area under the curve (AUC) measure to evaluate
the performance (Figure 4.4b, Panel 4.4b). The achieved AUC is 0.93 which indicates
significant predictive performance. Similar as in simulated experiments in Section 4.2,
we again compare the proposed method to a simple baseline measure commonly used in
previous work [35, 120] where an activation is considered exogenous if activated user had
no other active peers at the time of activation. This baseline underestimates the number
of exogenously activated users, especially near the end of the data collection period when
it becomes increasingly likely that an user will be connected to at least one active peer
due to chance rather than to some kind of social influence between them.

The inference is fast and scales well to social networks of over ten thousand users
(Section 4.6).

Similar results are obtained for other endogenous influence models, namely the SI
(Figure 4.5a) and the LOG model (Figure 4.5b). Similarly as when using EXP as the
endogenous influence model, the alternating inference method correctly infers the pa-
rameters of both endogenous and exogenous influence models, absolute number of users
activated due to endogenous or exogenous influence, as well as characterize the activation
of each user as being driven dominantly by one or the other influence. The achieved AUC
is 0.92 for SI model 0.94 for LOG model, which is similar to the results obtained with the
EXP model. This shows that the alternating inference method in Algorithm 4.1 can be
used both for simple influence models such as SI and EXP where each user has an indepen-
dent probability of activating any of his peers, as well as for complex influence models [4]

47



Inference

20 30 40 50 60
0

100

200

300

400

ac
tiv

at
ed

 n
od

es

Simulation under EXP model
all
exogenous
endogenous

20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

p e
xt

ppeer true = 0.02
ppeer est. = 0.0198

 true = 0.1
 est. = 0.0993

Parameter inference
pext estimated
pext real

20 30 40 50 60
0

100

200

300

400

co
un

t

Inference of exogenously activated
estimate
real
baseline estimate

20 30 40 50 60
0

100

200

300

400

co
un

t

Inference of endogenously activated
estimate
real
baseline estimate

(a)

0.0 0.2 0.4 0.6 0.8 1.0
exogenous responsibility

0

500

1000

1500

co
un

t

AUC = 0.93

Simulation under EXP model
endogenously activated users
exogenously activated users

0 10 20 30 40
number of active friends

0

250

500

750

co
un

t

AUC = 0.86

Simulation under EXP model - baseline
endogenously activated users
exogenously activated users

(b)

Figure 4.4: Joint inference of endogenous and exogenous influence on a simulated activation
cascade using EXP endogenous influence model. Social network is a configuration model of a
Facebook friendship network collected through referendum2013 survey application. Assumed
endogenous influence model is EXP, and exogenous influence is designed manually to feature
three distinct peaks of exogenous activity. Input to the inference procedure are user activation
times (black line in Panel 4.4a) and a friendship network between users. The alternating inference
method (Algorithm 4.1) is able to estimate the absolute number of endogenously and exogenously
activated users throughout the whole simulation period and to correctly infer the parameters
of endogenous influence - ppeer and λ, and exogenous influence {pexternal}t which is defined for
every time period [t+∆t]. We also infer activation type for each user individually by using the
exogenous responsibility measure R(i)(t) (Equation 4.5) as shown on Panel 4.4b and achieve AUC
of 0.93. In comparison, the baseline method (gray line, Panel 4.4a), underestimates the number
of exogenously activated users, especially near the end of the simulation. Baseline method on
Panel 4.4a is a special case where users are defined as exogenously activated if they did not have
any active peers at the time of activation. We can loosen this criteria (similar to what we did
in Equations 4.1 and 4.2) and calculate AUC across all possible values of the number of active
peers to asses this measure’s utility for classification of users into endogenously and exogenously
activated. In this case we achieve AUC of 0.86, which is lower than what is achieved with the
alternating inference method. Even by just observing the histograms of the two measures on
Figure 4.4b we see that the R(i)(t) is much better in differentiating the two types of users.
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such as LOG the probability of activation depends on the aggregate property of the user’s
neighborhood in the social network. Instead of the before mentioned endogenous influ-
ence models we could, in theory, use any other microscopic model of endogenous influence
which can be efficiently computed given information on user’s friendship connections and
the activation state of his peers.

The previous experiments on simulated activation cascades (Figures 4.4 and 4.5) used
a spike-shaped exogenous influence. This type of shape mimics a common situation in
empirical data where we have a surge in user activity following an external event which
then decays gradually in time. In our case these external events are often related to
the publication of the online news media articles which provided a link to the survey
application (Figure 2.5). In general case they may correspond to any external real-life
event. For example, similar spikes of user activity are also observed in Google search
queries related to sudden catastrophic events [131]. The inference methodology handles
exogenous influence non-parametrically - at each time step individually, and so does not
impose any restrictions on its functional form. It can easily handle exogenous influence
with arbitrary time-varying shape, including constant, exponentially decaying, sinusoidal,
rectified or any combination of these (Figure 4.6). This is true even for exogenous influence
which has a functional dependency on some dynamical property of the social network or
the activation cascade, for example the number of currently active users. In theory, any
function could be used for modeling exogenous influence, given that it is possible to
calculate its value at each time step.

Along with the original formulation of exogenous responsibility in Equation 4.5 we
can also use several other formulations. These differ in the way that exogenous activa-
tion probability pext(t) and endogenous activation probability p

(i)
peer(t)) are aggregated to

achieve a single measure of exogenous influence R(i)(t) for each user i at the time of its
activation t. Figure 4.8a shows the original formulation as a function of endogenous and
exogenous activation probabilities across the whole range [0,1]. The second definition is
a softmax version of the original formulation (Figure 4.8b):

R
(i)
softmax(t) = exp(pext(t))

exp(pext(t))+exp(p(i)
peer(t))

(4.8)

The softmax formulation has the property that high values of exogenous responsibility
R(i)(t) cannot be achieved for low values of endogenous activation probability, which is
not true for the original formulation (Figure 4.8a). The third formulation of R(i)(t)
(Figure 4.8c) defines it as a probability that user i activated due to exogenous influence
but not due to endogenous influence at time t:
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Figure 4.5: Joint inference on simulated activation cascades using SI (Panel 4.5a) and LOG
(Panel 4.5b) models for endogenous influence, which are representative examples of simple (SI)
and complex (LOG) social influence models. For both simulations we used the same shape
of exogenous influence as the one in Figure 4.4, with three distinct exponentially decaying
spikes of influence which resemble typical situation encountered in empirical activation cascades
(Figure 2.5). The results demonstrate that the alternating inference method in Algorithm 4.1 is
able to infer parameters for both endogenous and exogenous influence models, as well as estimate
to what extent is the activation of each individual user due to the one or other influence. The
achieved AUC scores using the measure of exogenous responsibility R(i)(t) are 0.92 and 0.94 in
simulations using SI and LOG endogenous influence models respectively. In comparison, baseline
method, which uses the number of active peers as the classification criteria, achieves AUC score
of 0.86 and 0.75 for the SI and the LOG models respectively.
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Figure 4.6: Different time-varying shapes of exogenous influence that are used in simulations
(Figure 4.7). We used (from left to right) a typical exponentially-decaying shape with multiple
peaks and with a single peak, sinusoidal, decaying sinusoidal and a rectified shape. As the
exogenous influence is evaluated non-parametrically - at each time step, the only requirement
for its use in the alternating inference method (Algorithm 4.1) is that its value can be calculated
for each time step. The following shapes are independent of the current state of social network
or the activation cascade, although such functional dependency could easily be included.

R
(i)
multiply(t) = pext(t)(1−p(i)

peer(t)) (4.9)

Similar as in the softmax formulation (Equation 4.8), high values of exogenous re-
sponsibility R(i)(t) cannot be achieved for low values of endogenous activation probabil-
ity. Qualitatively, all three formulations in Equations 4.5-4.9 satisfy the requirement that
the larger the pext is, the larger the exogenous responsibility. The difference between the
original formulation in Equation 4.5 and formulations in Equations 4.8 and 4.9 is that
the former calculates R(i)(t) in relative terms - even small values of exogenous activation
probability pext can achieve high exogenous responsibility if endogenous activation prob-
ability is accordingly small. This is a desirable property because it captures a relative
rather than absolute difference between endogenous and exogenous activation probability.
Figures 4.8a-4.8c show this property visually. To confirm that the original formulation
in Equation4.5 is really the most sensible one we repeated the experiment with simu-
lated activation cascade using SI model of endogenous influence on Figure 4.5a. We then
compared AUC scores obtained by using each of the three exogenous responsibility formu-
lations. The original one, in Equation 4.5 and Figure 4.8a, achieved the best AUC score
of 0.92. The other two formulations achieved lower AUC scores - softmax formulation in
Equation 4.8 and Figure 4.8b achieved AUC of 0.88 and the formulation in Equation 4.9
and Figure 4.8c achieved AUC of 0.89.

As an alternative to measures of exogenous responsibility in Equations 4.5-4.9 we
can use normalized exogenous activation probability p

(i)
ext directly. It may seem that we

are disregarding the value of endogenous influence in this way completely - however,
it is already implicitly accounted for because the values of endogenous and exogenous
influences are jointly estimated from the alternating inference procedure in Algorithm 4.1.
This is visible form the shape of the likelihood function (Equation 3.6) in Figure 4.3 which
shows that the parameters for endogenous and exogenous influence are coupled - if one is
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Figure 4.7: Simulated activation cascades which use different shapes of exogenous influence
in Figure 4.6. Regardless of the specific shape of exogenous influence the alternating inference
method (Algorithm 4.1) is able to infer parameter values of both endogenous and exogenous
influence and absolute number of users activated due to the one or the other influence in all cases.
We again show a comparison with the baseline method which classifies users as exogenously-
activated only if they had no active peers at the time of their own activation. Similar as in
experiments in Figures 4.5 and 4.5, this baseline is too conservative and underestimates the
number of exogenously activated users, especially near the end of the observation period.

weaker the other one has to be stronger in order to compensate. We repeat the experiments
in Figures 4.4 and 4.5, but this time using exogenous activation probability p

(i)
ext instead of

exogenous responsibility R(i)(t) as a measure of exogenous influence. Figure 4.9 compares
the histograms and ROC curves obtained shows the comparison when using exogenous
activation probabilities as opposed to exogenous responsibility with each of the three
endogenous influence models in simulated activation cascades. First observation is that
using exogenous activation probability directly results in coarser estimates of the influence,
as the underlying exogenous influence curve we use assumes just a few distinct values
during short time before it dissipates due to exponential decay. Also, achieved AUC
scores are typically 2− 8% higher when using exogenous responsibility than when using
endogenous activation probability directly.
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Figure 4.8: Different formulations of exogenous responsibility R(i)(t). Qualitatively they all
satisfy the same requirement - the larger the exogenous activation probability pext the larger
the exogenous responsibility. But only the formulation in Panel 4.8a (Equation 4.5) satisfies
a property that the high values of exogenous responsibility can be achieved with a relatively
low values of pext. This makes sense in our case because we want the exogenous responsibility
to reflect a relative difference between pext and ppeer rather than an absolute difference. To
confirm this we repeat the experiment on Figure 4.5a where we simulate activation cascades
under SI endogenous influence model, and compare three different formulations of exogenous
responsibility. The best AUC of 0.92 is achieved using original formulation from Equation 4.5
(Panel 4.8a). The other two formulations achieve 0.88 (Equation 4.8, Panel 4.8b), and 0.89
(Equation 4.9, Panel 4.8c). This indicates that the original formulation is indeed the most
appropriate.

4.6 Scalability of inference

In order to test the scalability of the alternating method in Algorithm 4.1 we repeat the
inference experiments using SI endogenous influence model (Figure 4.5a) and EXP en-
dogenous influence model (Figure 4.4a), but using increasingly larger social networks. We
construct the artificial social networks by using Holme and Kim algorithm for generating
networks with powerlaw degree distribution and desired average clustering, implemented
in powerlaw_cluster_graph § function in NetworkX Python library. Algorithm itera-
tively adds nodes to network, one by one, each with three new edges (parameter m=3)
which are then preferentially attached to the already present nodes depending on their
degree. Preferential attachment produces social networks with power-law degree distribu-
tion, a property which is also observed in the collected Facebook social network dataset
(Figure 2.3). Algorithm also adjusts the clustering coefficient of the generated network,
which is also a property commonly found in empirical social networks. In these experi-
ments the clustering probability is set to 0.1 (parameter p=0.1). We explore network sizes
ranging from 10 to 1000 (Figure 4.10). Execution times are almost linear with respect to
the size of the networks on which inference is being done. The inference was run on a

§https://networkx.github.io/documentation/networkx-1.10/reference/generated/
networkx.generators.random_graphs.powerlaw_cluster_graph.html
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Figure 4.9: Inference on simulated activation cascades using exogenous activation probability
p

(i)
ext instead of exogenous responsibility R(i)(t) (Equations 4.5-4.9) for quantifying the magnitude

of exogenous influence for each user i at the time of his activation t. Experiments are equivalent
to those in Figures 4.4 and 4.5 and are using three different endogenous influence models - SI
(top panel), EXP (middle panel) and LOG (lower panel). Estimates obtained with exogenous
activation probability p

(i)
ext alone are coarser - they exhibit less diverse values than when using

exogenous responsibility R(i)(t) due to the fact that underlying exogenous influence curve weak-
ens sharply in time after each of the exponentially decaying peaks. This is more pronounced for
high values of exogenous activation probability. The AUC scores are typically 2% to 8% worse
than when using the exogenous responsibility measure from Equation 4.5.

64-bit Intel i5-2500 CPU 3.3 GHz and 8 GB of RAM, Python 3.6.1. as a part of Anaconda
distribution.

4.7 Individual and collective influence of users

Estimates of endogenous p
(i)
peer and exogenous {pexternal}t influence which we obtain by

alternating method in Algorithm 4.1 can be used to infer to what extent is each user
responsible for activation of all of his peers which activated after him. That is - ti < tj ,
where ti and tj are activation times of users i and j respectively. This is what we call
an individual influence. By aggregating this individual influences across a set of users we
can estimate their collective influence. An underlying assumption is that users can claim
only the endogenous part of their peer’s activation, as exogenous activation is beyond
each user’s control. However, our estimates of these two influences are not a substitute
for a deterministic activation path - we do not know exactly who shared information with
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Figure 4.10: Scalability analysis for the inference methodology is performed by running alter-
nating inference method in Algorithm 4.1 on simulated activation cascades using SI and EXP
endogenous influence models and the designed exogenous influence curves from experiment in
Figures 4.5a and 4.4a. We explore generated social network ranging from 10 to 1000 to users.
Execution times are almost linear with respect to the size of the networks.

whom. This is why we cannot compute individual influences in a transitive fashion by
counting all peers along the activation path [132]. What we do instead is to express the
influence I(i) of user i (Equation 4.10) as the extent to which user i might be responsible
for activation of each of his peers N (i):

I(i) =
∑

j∈N (i)

I(i→j)∑
m∈N (j) I(m→j) p(j)

peer (4.10)

Here, the quantity I(i→j) is the fraction of endogenous influence that user i can claim
for the activation of his peer j. In our case this is simply I(i→j) = 1, but in general
this expression could be arbitrarily complex. For example, we could make it dependent
on time t, where the rationale is that users can claim higher fraction of their peer’s
endogenous activation if they activated closer in time. If we make this time dependence
exponentially-decaying, that is I(i→j) = e−λ(tj−ti), the expression for individual influence
becomes:

I
(i)
EXP =

∑
j∈N (i)

e−λ(tj−ti)∑
m∈N (j) e−λ(tj−tm) p(j)

peer (4.11)

Another option is to make I(i→j) dependent on some intrinsic characteristic of user
itself. In this way we could encode a requirement that similar users (for example, those
that belong to the same community) are more probable of influencing each other. The
choice of which expression to use, whether that from Equation 4.10 or from Equation 4.11,
is independent on the particular type of endogenous influence model used. In experiments
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described in this thesis only the simplest definition in Equation 4.10 is used for all endoge-
nous influence models defined in Equations 3.2-3.4. As it is already mentioned, because
we do not have a deterministic activation path the I(i→j) really encodes just a potential
for endogenous influence. In practice any of j’s peers could equally be responsible for
his activation, not just the user i. This is why the denominator of Equation 4.10 has a
normalizing term for all other peers k of user j. In the case of SI model this assigns to
each user 1/k of the peer activation probability p

(j)
peer for each of his peers j that activated

after him (ti < tj), where k is the number of user’s j peers that activated before him.
The collective influence for a group of users G is just an average influence of all users

in the group 1/G∑
i∈G Ii.

Illustrative example of the calculation of individual influence is shown bellow. We
start with a social network consisting of five users {u1,u2,u3,u4,u5}. Their friendship
connections are encoded with an adjacency matrix A. We also have activation time {ti}
of each user and the type of activation - whether it was endogenous or exogenous. The
arrows on the schematic illustration bellow indicate a potential direction of endogenous
influence between users that have a friendship connection. If there are two users ui and
uj of which user ui activated before user uj , that is ti < tj , the arrow will point from user
uj towards user ui.

A =



0 1 0 1 0
1 0 1 0 1
0 1 0 0 0
1 0 0 0 1
0 1 0 1 0


activation times =

[
1 2 3 4 5

]
endogenous activation =

[
0 0 1 1 1

]
The type of activation is usually not directly observable in data, so we either have

to estimate it with an inference method like ours or use a proxy, for example, referral
links which encode user’s digital traces. Before we continue we need to calculate several
quantities for each user individually - i) number of peers active at each user’s activation,
and ii) number of peers which activated after each user’s activation:

number of active peers at activation =
[
0 1 1 1 2

]
number of active peers after activation =

[
2 2 0 1 0

]
Let us explain step-by-step how to calculate individual influences users u1 and u2. For
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user u1, two of his peers (u2 and u4) activated after him, but only u4 due to endogenous
influence. User u4 has no other peers that activated before him, so user u1 gets the full
credit for his endogenous activation, making his individual influence 1.0. User u2 has
two peers that activated after him (u3 and u5), and both activated due to endogenous
influence. User u3 has no other peers that activated before him, so user u2 gets full credit
for his endogenous activation, which is 1.0. User u5 has one additional peer that activated
before him (u4) and so the credit for his endogenous activation should be equally divided
by users u2 and u4. So user u2 is assigned 0.5 of influence for the activation of user u5,
making his total individual influence 1.5. Note that if we used expression for individual
influence from Equation 4.11, due to the term eλ(tj−ti) in the nominator, users u2 and
u4 would not be assigned equal credit for endogenous activation of user u5. In that case,
because user u4 activated closer in time (t4 = 4) to user u5 (t5 = 5) than user u2 (t2 = 2),
user u4 would be assigned larger credit for the endogenous activation of user u5. The final
influence I for all users is:

I =
[
1.0 1.5 0.0 0.5 0.0

]
Intuitively, we see that user u2 is estimated to be the most influential. This makes

sense because it has two peers that activated after him and both due to endogenous
influence. The least influential users are u3 and u5 that have no peers at all.

4.8 Comparison of influence with the structural mea-
sures on simulated data

In Figure 4.11 individual influences of users calculated with Equation 4.10 are compared
with several structural measures on simulated activation cascades, under similar simula-
tion conditions as experiments in Figure 4.5a. The structural measures are defined on a
user level and are: (i) number of peers which activated after the activation of a particular
user, (ii) number of peers, (iii) activation time, and (iv) number of peers active before
the activation of a particular user. The Spearman correlation coefficient is displayed for
each of the scatter plots on Figure 4.11. We can see that the measure of influence is more
correlated with the number of peers that activated after each particular user (R = 0.93)
than with the number of peers that activated before (R = 0.33). This is intuitively clear
as we expect that influence acts forwards, rather than backwards in time. Also, there is
a positive correlation with the number of peers (R = 0.74) and negative correlation with
the activation time (R = −0.72). This is also unsurprising as we expect that users with
more peers have more opportunity to exert their influence, while on the other hand late
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activation times means these opportunities are reduced.
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Figure 4.11: Comparison of user influence with structural measures on simulated activation
cascades. Conditions of the experiment are similar to those in Figure 4.5a, where user friendship
network is generated from a configuration model of the referendum2013 friendship network, and
SI model is used for endogenous influence with a spike-shaped exogenous influence. Scatter plots
show comparison of user’s ranks of their individual influence, calculated with Equation 4.10,
as compared to one of the four measures of structural influence: (i) number of peers which
activated after the activation of a particular user, (ii) number of peers, (iii) activation time, and
(iv) number of peers active before the activation of a particular user. Points are colored based on
the density in the surrounding plot region - points in denser regions are colored yellow instead
of blue. Spearman correlation coefficient R is calculated for each of the plots.
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Chapter 5

Evaluation

In Chapter 4 results on simulated activation cascades where presented. These simulations
tried to emulate, as close as possible, conditions which are expected to appear in empirical
datasets such as those described in Chapter 2. This includes the degree distribution of
simulated social networks and hypothesized shape of exogenous influence which was based
on those observed in empirical data. The results on simulated data were promising, but
in order to properly evaluate the inference methodology proposed in Chapter 4 we have
to apply it to the actual empirical data. Evaluation on simulated data is easier because
it is possible to compare the inferred parameters with the underlying influence models
directly. Also, the chosen evaluation measure AUC only makes sense if the underlying
types of activation - whether user was activated due to endogenous or exogenous influence,
are known. These are actually not known in empirical data so a proxy measure needs to
be used for evaluation of the proposed inference method.

In the remainder of this chapter two approaches to evaluation are described. A first
attempt for modeling exogenous and endogenous influence [101] (Section 5.1), where a
direct method for inference of endogenously and exogenously activated users is used (Sec-
tion 4.2), estimates of endogenously activated users are evaluated by comparing it with
the known number of users visiting the online survey application from a referral link
originating in Facebook. This first empirical evaluation is performed on referendum2013
dataset (10175 users) where no referral links were collected from users. Instead, aggre-
gated estimate from Google Analytics which tracked users visiting the survey application
were used.

Second attempt [66] (Section 5.2) uses a maximum likelihood method for joint infer-
ence of endogenous and exogenous influence (Section 4.3) and estimates are evaluated
on all three empirical datasets - referendum2013 (10175 users), sabor2015 (6909 users)
and sabor2016 (3818 users). Instead of choosing a single threshold for estimation like in
Section 5.1, the whole Receiver Operating Characteristic (ROC) curve [133] and the asso-
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ciated area under the curve (AUC) score are calculated. AUC score gives the probability
that the inference method gives a higher exogenous responsibility score to a randomly cho-
sen exogenously activated user as compared to a randomly chosen endogenously activated
user. The purpose of these evaluation measures is to provide an estimate of how well
does the proposed influence model fit the empirical data, provided that the underlying
assumptions of the modeling procedure are satisfied.

In order to calculate AUC score we need to know actual activation type for each
user, As a proxy for this an information obtained from referral links which were collected
for users of sabor2015 and sabor2016 online survey applications can be used. Based on
referral links users can be categorized into one of three categories:

1. Strong endogenous influence: Users whose referral link originates from a Facebook
share.

2. Potential endogenous influence: Users whose referral link originates from Facebook.
3. Strong exogenous influence: Users whose referral link originates from an external

web site.
Users that do not have a referral link are categorized as unknown and are not used in

evaluation. To actually calculate ROC and AUC score a binary decision problem needs
to be defined. In the experiments presented in this chapter users from first category are
considered as endogenously activated and users from third category are considered as
exogenously activated.

5.1 Inference exogenous influence directly on empir-
ical datasets

In this section the method of direct inference of endogenous and exogenous influence
outlined in Section 5.1 is used on referendum2013 dataset. This dataset contains Facebook
friendship relations between 10175 users and their registration times. Equation 4.1 is used
for calculation expected probability of endogenous activation µ(t) over all inactive users
at time t. Estimate of µ(t) can then be used in Equation 4.2 to calculate the absolute
number of endogenously activated users peer(t). A crucial missing component needed for
the calculation of µ(t) is the probability of endogenous activation pi(t) for each user i,
which is defined in Equation 3.1. For this the two endogenous influence parameters are
needed - λ and p0, which define an exponentially-decaying influence between users. These
parameters are inferred from data using information on the visitors to the online survey
application which were collected using Google Analytics API. Unfortunately, in this way
only a total number of visitors could be collected, so we do not have a finer time resolution
of their visits similar to what is collected with Facebook Graph API (Figure 2.5). Also,
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with information collected through Google Analytics it is only possible to tell whether
visitors came from Facebook or some specific external website, not whether they followed
a Facebook share from another user. This is why it is not possible to classify users
into the three categories outlined in the beginning of this chapter. Concretely, we cannot
distinguish between visitors with “strong” endogenous influence (that followed a Facebook
share) and “potential” endogenous influence (that came from Facebook in general).

Using information from Google Analytics, total of 25154 visitors visited the website
which hosted the online survey application. Out of these, 17587 came from a referral link
originating in Facebook, while the rest came from an external website, usually from online
news websites which reported on the survey application. This means that the approximate
ratio of endogenously activated users among all users is 70%. A fine-grained grid search
is performed consisting of all (λ,p0) parameter combinations so that the percentage of
endogenously activated users, as estimated by model in Equation 4.2, during the first day
of user registrations period is equal to 70%. The Figure 5.1 shows the results of parameter
optimization. We identify a curve in (λ,p0) parameter space where parameters satisfy the
given constraint. For illustration purposes values of p0 = 0.6 and λp = 0.001 are chosen
as parameters of endogenous influence and are used to estimate the absolute number of
endogenously and exogenously activated users on Figure 5.2. However, the estimates are
robust even if different (λ,p0) values are chosen from the given curve in the parameter
space (see again Figure 5.1).

For evaluation of the estimates of endogenous and exogenous influence several proxy
measures are used, as for the referendum2013 dataset there is no information on the refer-
ral links from which users visited the online survey application. So we cannot characterize
each user’s activation individually but have to characterize it collectively instead. As a
proxy for exogenous influence publication times of online news articles which reported on
the survey application during the collection period are used. Google Analytics addition-
ally gives us a total number of visitors visiting the online survey application by following
a referral link from these domains (Figure 5.2). Although this is a total visitor count -
there is no any time resolution of visits, it is still useful due to the fact that majority of
visits happens in a short time just after the publication of the online news article. This
gives us an approximate estimate for the magnitude of the exogenous influence, as more
visitors from an external website indicates a stronger exogenous influence. By observing
the time series of users registrations (Figure 2.5 shows this for all three datasets) we see
that after each news publication there is a sudden rise in user registrations that weakens
over time. This is captured with the direct method estimates on Figure 5.2, especially
during the first day of user’s registrations where the method estimates two peaks in exoge-
nous influence right after publication of news articles from two major online news portals
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Figure 5.1: Choosing optimal endogenous influence parameters (λ,p0) that determine expo-
nential decay of influence (Equation 3.1). A full grid search of the parameter space shows that
low values of λ and high values of p0 correspond to the strong endogenous influence that decays
slowly, resulting in a higher number of endogenously activated users (top left Figure). The val-
ues are chosen so that the fraction of endogenously activated users during the first day of data
collection equals 70% - a value which corresponds to the fraction of users visiting the online
survey application by following a link from Facebook as determined by Google Analytics. All
parameter combinations laying on the 70% curve are optimal by this criterion. For all of these
plot the influence curves (top right Figure) and the estimated number of endogenously activated
user for the first and the third day of data collection (bottom Figures). Values of p0 = 0.6
and λp = 0.001 are later used for estimating absolute number of endogenously and exogenously
activated users during the whole observation period (Figure 5.2).
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(vecernji.hr with 2027 total visits and jutarnji.hr with 1637 total visits).
As for the endogenous influence, again there is no information on referral links from

which users visited the survey application so it is not known which particular user followed
a referral link from Facebook. However, a total count of visitors is known due to the
information provided by Google Analytics service. This information is already used for
the choice of optimal parameters of endogenous influence (λ,p0) (Figure 5.1). In addition,
two proxy measures are used to evaluate the estimates of endogenous influence, both of
which rely on certain periods of data collection where there is an additional independent
information on the type of user’s registrations. First, it is known that before the first
online news article was published, which happened about 12 hours after referendum2013
went online, that the majority of user registrations had to be due to endogenous influence,
as information on the survey spread organically between users without any major external
information source. Figure 5.2 shows the estimate of exogenous influence using a direct
method during the first 12 hours - it is almost negligible, and it rises just after the first
news publication by vecernji.hr which brought many new users to the survey which were
otherwise poorly connected to the already registered users. In comparison, the baseline
method correctly identifies the first peak of exogenous registrations, but soon starts to
underestimate the number of exogenously activated users by completely ignoring them
after the first day, which is unrealistic. This happens because of the too conservative
criterion which baseline puts on exogenously activated users - it classifies as exogenous
only those users that did not have any registered peers at the time of their own activation.
This criterion becomes harder and harder to satisfy as the number of registered users rises,
and the probability that two Facebook users that registered on the survey application will
be connected just by pure chance becomes significant.

Second proxy measure used for endogenous influence is a small community of users
who all registered in a short time period, in a timespan of couple of hours in the night
of November 27th. For these users it is reasonable to assume that their activation is
driven primarily by the endogenous influence. The community itself and their registration
dynamics is shown on Figure 2.6. There is a possibility that this is a community of fake
Facebook user accounts, activated all from a single source for the purposes of influencing
the outcome of the survey. However, this is probably not the case because their actual
votes are very heterogeneous - the users in the community are almost equally split between
the two survey options presented. The method estimates a sharp rise in endogenously
activated users just at the right time while estimate for exogenous influence remains fairly
flat.

To further validate the inference method a randomization strategy is applied on the
referendum2013 social network to see which quantities of interest stay unchanged and
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Figure 5.2: Evaluating a direct method of exogenous influence detection on referendum2013
activation cascade. Top of the Figure shows the estimate the absolute number of endogenously
and exogenously activated users using Equation 4.2 which assumes exponentially decaying en-
dogenous influence from Equation 3.1. Parameters of endogenous influence which used here
(p0 = 0.6 and λp = 0.001) were chosen so that they satisfy an empirical observation of 70% of
endogenously activated users during the first day of data collection (Figure 5.1). The sliding
window length used for estimation is set to two hours. Bottom Figure shows the same estimates
but using a configuration model of social network where friendships connections between users
are permuted. This causes the endogenous influence to diminish in magnitude, an effect which
is particularly visible during the two periods where endogenous influence is otherwise stronger:
1) first 12 hours, before the publication of the first online news article reporting on the survey
application (on vecernji.hr new portal), and 2) few hours during the evening of November 27th

where a distinct community of users activated in a short time span.

which are diminished. A particular strategy used is a configuration model of a network
where the number of friendship connections each user has is kept unchanged but the
connections themselves are permuted across the whole network so that users are now
randomly connected. This strategy keeps the global properties such as degree of nodes
in the network intact but disrupts mesoscale properties such as communities of users, as
well as local properties such as local connectivity of users. These latter two are important
as they mediate endogenous influence. The rewiring of the friendship connections by the
configuration model decouples the activation cascade from the social network, and with
it the assumed causal structure underlying the endogenous influence between users. The
activation of each user should now be more easily explained by assuming exogenous, rather
than endogenous, influence actually took place, which should diminish the estimates of
endogenous influence. This is confirmed by repeating the estimation method after rewiring
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the friendship connections with the configuration model (Figure 5.2) and observing what
happens with the magnitude of endogenous and exogenous influence in the two time
periods which are used as a reference for endogenous influence. In the first period, which
spans the first 12 hours of user registrations and where the largest fraction of endogenously
activated users was originally observed, the magnitude of endogenous influence diminishes
and is comparable to the exogenous influence. In the second period, in the few hours on
the night of November 27th where strong endogenous influence originating from a single
well connected community of users was originally observed, the magnitude of endogenous
influence again diminishes.

5.2 Inference of endogenous and exogenous influence
on empirical datasets

This section describes the application of the maximum likelihood method for joint infer-
ence of endogenous and exogenous influence described in Section 4.3 on all three empirical
datasets introduced before - referendum2013 (10175 users), sabor2015 (6909 users) and
sabor2016 (3818 users). In addition to the Facebook social networks and users registration
cascades which are used for inference, for two of the datasets - sabor2015 and sabor2016,
there are also referral links from which users visited the online survey applications. The
referral links give us information whether each user followed a link from Facebook, which
indicates endogenous influence, or from an external website, which indicates exogenous
influence. This allows us to perform evaluation in a more straightforward way, by using
evaluation measures for binary classification such as ROC curves and AUC scores. More
information on the datasets themselves is available in Section 2.3.

Joint inference is performed by running the Algorithm 4.1 on the three activation
cascades. Compared to the inference on simulated activation cascades (Section 4.5) where
we operated in discrete time, we now have to perform inference in continuous time. For
this the discretization of activation times into 30 minute intervals (the same that are used
in user registration histograms in Figures 2.5 and 2.1) is performed. Users that activated
in the same 30 minute interval are considered, for all practical purposes, to be activated at
the same time. Figures 5.3 and 5.4 show the obtained estimates of the absolute number of
endogenously and exogenously activated users at each time interval (Equation 4.4) while
using EXP and SI as the endogenous influence models respectively.

By using the inferred parameters of endogenous and exogenous influence it is possible
to estimate to what extent was each user’s activation driven by the one or the other. This
is expressed with the measure of exogenous responsibility R(i)(t) (Equation 4.5), which is
compared with the gold standard labels obtained through referral links in order to cal-
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culate ROC curves and AUC scores. The joint inference method is compared with the
baseline measure where users that did not have any active peers at the time of their own
activation are classified as exogenously activated. Similar as in experiments on simulated
activation cascades (Section 4.5) this measure is too conservative and tends to underes-
timate the true number of exogenously activated peers, especially near the end of the
observation period when it becomes increasingly likely that the two users are connected
due to chance rather than some underlying endogenous influence between them. A more
general version of this baseline method, which is used to calculate the AUC scores, is to
use the number of active peers instead of the exogenous responsibility. Figures 5.3 and 5.4
show the results of the inference on empirical Facebook activation cascades. The proposed
inference method achieves AUC scores of 0.76 and 0.82 for the sabor2015 and sabor2016
datasets respectively while assuming EXP as the endogenous influence model (AUCour

on Figure 5.3). This is significantly better than the baseline method which achieves AUC
of 0.68 and 0.78 on the same datasets (AUCbase on Figure 5.3). The results are similar
if we assume SI as the endogenous influence model instead of EXP - the achieved AUC
scores are 0.75 and 0.83 for the proposed inference method (AUCour on Figure 5.4) and
0.68 and 0.78 for the baseline method (AUCbase on Figure 5.4) for the sabor2015 and
sabor2016 datasets respectively.

Figure 5.5 shows a more clear comparison with the baseline measure in the case where
EXP is used as the endogenous influence model. We see that the estimates produced
by the proposed inference method for the sabor2015 dataset most closely resemble the
number of users that visited the survey application by following other user’s Facebook
share - the strongest indication of endogenous influence that are obtained from user’s
referral links. It seems that during the second day of sabor2015 survey the method un-
derestimates the number of endogenously activated users. However, we have to remember
that the estimate of endogenously activated users that are obtained from referral links
is only an approximation, as users might be activated through other means of indirect
communication available in Facebook or even some other social media service - including
advertisements, direct messaging or by visiting a Facebook page of the survey application.

A direct benefit of using EXP endogenous influence model instead of SI is that it
provides an estimate of the half-decay of the endogenous influence which can be calculated
using estimated parameter λ̂. For the sabor2015 dataset a value of half-decay 10.1 hours
is obtained which is consistent with the expectation that the endogenous influence should
diminish in the order of a few days. Any endogenous influence beyond this period is more
probably sustained by newly activated users rather than users that activated much further
in time.

We can see that exogenous influence increases drastically near the end of the obser-
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Figure 5.3: Inference of endogenous and exogenous influence on Facebook activation cascades
with EXP as the assumed endogenous influence model. The inference is performed on referen-
dum2013 (left), sabor2015 (middle) and sabor2016 (right) datasets in order to estimate endoge-
nous (p̂0,λ̂) and exogenous p̂ext(t) influence parameters (bottom) as well as absolute number
of users activated due to the one or another influence (top). Bottom Figures show the esti-
mated value of exogenous activation probability p̂ext(t) with (α = 0.1) and without (α = 0.0)
correction for the observer bias. The effect of correction is to reduce the overestimate of the
exogenous influence near the end of the observation period. AUC scores are calculated to eval-
uate predictive power of the inference method which uses exogenous responsibility R(i)(t) as a
criterion for classifying users into endogenously and exogenously activated, as compared to the
proxy obtained using user’s referral links (which are only available for sabor2015 and sabor2016
datasets). Inference is performed twice in order to calculate AUC with (AUCcorr) and without
(AUCour) correction for the observer bias. Estimates are then compared it with the baseline
method (AUCbase) where, instead of exogenous responsibility, a number of active peers is used
as a classification criterion. The achieved AUC scores (AUCour) are 0.76 and 0.82 for sabor2015
and sabor2016 datasets respectivelly, which is higher that AUC scores achieved with the baseline
method (AUCbase) which are 0.68 and 0.78 for the same datasets. Correction for the observer
bias does not influence the predictive power, which is probably due to the fact that the major-
ity of activated users (and with it, the majority of predictive power) is in the first half of the
activation cascade where the effect of correction is negligible. Figure 5.5 shows a more detailed
comparison with the baseline method.

vation period, a phenomena which seems almost like an anomaly in data. The reason for
this the observer bias effect which is already mentioned in Section 2.4, and which arises
because Facebook Graph API allows to collect only friendship relations between pairs of
users which both registered on the survey application. The results is that, at the end of
the collection period, there is only a subset of friendship connections and so the number
of inactive users is underestimated which is crucial for the inference (Equation 3.7). A
correction factor is applied in the log-likelihood function to compensate for this bias (Sec-
tion 4.4), which allows the calculation of more precise estimates of exogenous influence,
especially near the end of the observation period where the bias is the most pronounced
(Section 5.2). However, because there is less and less users that register as we approach
the end of the observation period, the error that this bias introduces in the final estimates
is actually not too high. The difference in AUC scores in cases where correction is applied

67



Evaluation

26.11. 27.11. 28.11. 29.11. 30.11.
0

50

100

150

200

250
ac

tiv
at

ed
 u

se
rs

431

SI model, referendum2013, =0.0
endogenous
exogenous
exogenous baseline

26.11. 27.11. 28.11. 29.11. 30.11.
0.00

0.02

0.04

0.06

0.08

0.10

p e
xt

pSI = 0.0010

SI model, referendum2013
pext ( =0.0)
pext ( =0.1)

03.11. 04.11. 05.11. 06.11. 07.11.
0

25

50

75

100

125

ac
tiv

at
ed

 u
se

rs

228AUCour = 0.75
AUCcorr = 0.74
AUCbase = 0.68

SI model, sabor2015, =0.0
endogenous
exogenous
exogenous baseline

03.11. 04.11. 05.11. 06.11. 07.11.
0.00

0.02

0.04

0.06

0.08

0.10

p e
xt

pSI = 0.0008

SI model, sabor2015
pext ( =0.0)
pext ( =0.1)

06.09. 07.09. 08.09. 09.09. 10.09.
0

50

100

150

ac
tiv

at
ed

 u
se

rs

290

AUCour = 0.83
AUCcorr = 0.83
AUCbase = 0.78

SI model, sabor2016, =0.0
endogenous
exogenous
exogenous baseline

06.09. 07.09. 08.09. 09.09. 10.09.
0.00

0.02

0.04

0.06

0.08

0.10

p e
xt

pSI = 0.0006

SI model, sabor2016
pext ( =0.0)
pext ( =0.1)

Figure 5.4: Inference of endogenous and exogenous influence on Facebook activation cascades
with SI as the assumed endogenous influence model. Here, only one parameter of endogenous
influence is inferred - p̂SI , otherwise experimental the setup is equivalent to the one in Figure 5.3
where the same inference is performed but assuming EXP endogenous influence model. Again we
see a better predictive performance than the baseline method, with AUC scores for the method
proposed in this thesis (AUCour) of 0.75 and 0.83 for the sabor2015 and sabor2016 datasets
respectively, which is higher than for the baseline method (AUCbase) which achieves 0.68 and
0.78 for the same datasets. The effect of applying the correction for the observer bias is similar
as for the EXP model - the apparent overestimate of exogenous influence p̂ext near the end of the
observation period is corrected, although the contribution to the predictive power as measured
by the AUC score is negligible.

(α = 0.1) or not applied (α = 0.0) is in the order of 0.01 points.
Section 4.4 mentions the issue of observer bias. Because of the way the data is col-

lected - only available data is on Facebook users that eventually registered on the survey
application, there is a tendency to overestimate exogenous influence as we make estimates
closer to the end of the data collection (observation) period. This happens because the
set of the observed inactive users, which is used to estimate the second term of the log-
likelihood Equation 3.7, becomes smaller over time, although the true number of inactive
users which we did not observe is much larger. Correction for the observer bias is applied
through correction factor c(t) (Equation 4.6) in the log-likelihood function (Equation 4.7).
The strength of the correction is regulated with the parameter α in the expression for
c(t). The interpretation of the correction is that we artificially increase the number of
inactive users and in that way obtain a more representative value for the second term
in the Equation 4.7 for log-likelihood. Experiments in Figures 5.3 and 5.4 already show
the effect of correction for the observer bias by using α = 0.1, which is already enough
to significantly reduce the overestimation of the exogenous influence near the end of the
observation period. Although effect of correction is clearly visible on the inferred parame-
ters of exogenous influence p̂ext(t), its contribution to the estimates of absolute number of
activated users is not pronounced. This is because the early periods of activation cascade
carry the majority of activated users while their number tends to fall off as we approach
the end of the observation period, where the effect of correction is the strongest. To con-

68



Evaluation

03.11. 04.11. 05.11. 06.11. 07.11.
0

20

40

60

80

100

ac
tiv

at
ed

 u
se

rs

AUCour = 0.76
AUCbase = 0.68

Endogenous, EXP model, = 0.0, sabor2015
our
baseline
from referrals

07:10 15:10 23:10 07:10
0

50
100
150
200
250
300

AUCour = 0.82
AUCbase = 0.78

Exogenous, sabor2016
our
baseline
from referrals

12:10 22:10 08:10 18:10
0

20
40
60
80

100
120

Exogenous, sabor2016
our
baseline
from referrals

03.11. 04.11. 05.11. 06.11. 07.11.
0

20

40

60

80

100

ac
tiv

at
ed

 u
se

rs

AUCour = 0.76
AUCbase = 0.68

Endogenous, EXP model, = 0.1, sabor2015
our
baseline
from referrals

07:10 15:10 23:10 07:10
0

50
100
150
200
250
300

AUCour = 0.83
AUCbase = 0.78

Exogenous, sabor2016
our
baseline
from referrals

12:10 22:10 08:10 18:10
0

20
40
60
80

100
120

Exogenous, sabor2016
our
baseline
from referrals

Figure 5.5: Inference of endogenous and exogenous influence on Facebook activation cascades
with EXP as the assumed endogenous model - comparison with the baseline method. To aid
visual comparison the only endogenously activated users for the sabor2015 dataset and exoge-
nously activated users for the sabor2016 dataset are shown. The estimated number of activated
users (“our” for the inference method proposed in this thesis and “base” for the baseline) are
compared with the values obtained from user’s referral links (“from referrals”). The contribu-
tion of applying the correction for the observer bias (α = 0.1, bottom) to the predictive power of
the inference (AUC score) is negligible as compared to results without the correction (α = 0.0,
top). The graphs for sabor2015 dataset hint at a possible reason for this. Near the end of the
observation period, where the correction is strongest (see, for example, Figure 5.6), there are
very little users activated due to someone’s else share which is effectively the gold standard for
the endogenously activated users which is used to calculate the AUC score.

firm this a more extensive experiments are performed with the wider range of correction
factors α up to 0.3 in Figure 5.6. Only sabor2015 and sabor2016 datasets are used in
these experiments in order to calculate AUC scores. We see that the effect of correction
is the most pronounced near the end of the observation period although the overall pre-
dictive performance does not change much. Small corrections (α = 0.1) usually lead to
small increase in AUC score on the order of 0.01 points, the only exception in Figure 5.6
is the SI model on sabor2015 dataset. Large corrections (α = 0.3) usually lead to drop
in predictive performance, which is especially pronounced with the EXP model on the
sabor2015 dataset. A general conclusion is that the correction for the observer bias should
primarily be used as a measure to stabilize the estimates of the parameters of exogenous
influence p̂ext(t).

The output of the inference procedure are the parameters of endogenous and exogenous
influence from which are used to calculate the value of exogenous responsibility R(i)(t)
for each individual user i at the time t of his activation (Equation 4.5. This characterizes
each user’s activation on the scale from completely endogenous (R(i)(t) = 0) to completely
exogenous (R(i)(t) = 1). It is this measure that is used for calculation of the ROC curves
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Figure 5.6: Correction for the observer bias while inferring parameters of exogenous influence
p̂ext on sabor2015 (left) and sabor2016 (right) datasets. The assumed endogenous influence
models are SI (bottom) and EXP (top). The range of the correction factor α is from 0.0 (no
correction) to 0.3. The interpretation of the correction is that the set of inactive users is artifi-
cially increased as compared to the actually observed value (which we know is an underestimate
because of the way the user data is collected). The effect of the correction is the strongest
near the end of the observation period where the underestimate of inactive users is the most
pronounced. However, the contribution of correction to the overall predictive performance as
measured by AUC score is not pronounced - small values of α increase the AUC slightly while
large values decrease it below the level of no correction. This is probably because the majority
of predictive performance is carried by the activations at early stages of activation cascade. As
we approach the end of the activation cascade there is less and less activations (see, for example,
Figures 5.4 and 5.4) so the correction is unable to influence the predictive performance much.

and AUC score in all the experiments described in this thesis. Figure 5.7 shows the
full distribution of exogenous responsibility across all users in the three datasets. The
equivalent histograms on simulated activation cascades were presented in Figures 4.4 and
4.5. As compared to simulated experiments, in experiments on empirical datasets there is
no gold standard labels which can be used for evaluation, Instead, a proxy based on user’s
referral links is used instead. Histograms on Figure 5.7 are divided in three groups based
on the type of their referral links - i) unknown and Facebook users without a share, ii)
Facebook users with a share and iii) users with a referral link and Facebook users without
a share. For referendum2013 dataset there is no information on user’s referral links so
a distribution across all users is shown. An assumption is that the users that visited
the online survey application by following a referral link originating on some external
website (for example, an external news media article) should be characterized as being
more exogenously influenced. For these users the distribution of exogenous responsibility
values should be concentrated near the high values. On the contrary, users that visited
the online survey application by following a link originating from Facebook should be
characterized as being more endogenously influenced. For these users it is expected that
the values of their exogenous responsibility will be more concentrated near the low values,
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or at least to be more uniform across the range from 0 to 1. However, not all referral links
originating from Facebook should be treated equal, as some are are connected with another
user’s Facebook share (indicating a direct endogenous influence between the two users)
while others are connected with various other indirect forms of Facebook communication,
for example news feeds and Facebook pages. These latter ones are sometimes better
characterized as being more exogenously influenced, although this cannot be known for
sure.
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Figure 5.7: Histograms of exogenous responsibilities R(i)(t) for all users which registered in
the three online survey applications. The assumed endogenous influence model is EXP and
there was no correction for the observer bias (α = 0.0). Inference is otherwise equivalent to
the experiment in Figure 5.3. Histograms are arranged based on the survey (columns) and
the type of user’s referral links (rows) which are separated into all users (top), endogenously
registered users (middle) and exogenously registered users (bottom). Histograms of exogenously
activated users - those whose referral links originate from an external website or from Facebook
but that are not linked to a specific share, tend to be more concentrated near the high values
of exogenous responsibility. The difference as compared to endogenously activated users is
not large, but enough to achieve AUC score (AUCour) of 0.76 and 0.82 for the sabor2015
and sabor2016 datasets respectively. The corresponding AUC scores for the baseline method
(AUCbase) - where a number of active peers is used as a measure of exogenous influence instead
of exogenous responsibility R(i)(t), are lower with values of 0.68 and 0.78 for the sabor2015 and
sabor2016 datasets respectively.

5.3 Collective influence in empirical datasets

Section 4.7 describes how to calculate individual influence of a user (Equations 4.10 and
4.11). It also provides a definition of collective influence of a group of users G as the
average of individual influences Ii of all users in the group 1/G∑

i∈G Ii. Figure 5.8a shows
a simple example how to calculate individual influence of a user on a small social network.
An underlying requirement is that there is, for each user, an estimate of whether its
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activation was due to endogenous or exogenous influence. For this we can use an inference
procedure such as the one presented in this thesis or we can try to use a proxy available
directly in raw data, for example information on user’s referral links. Figure 5.8b shows
the collective influence of three groups of users in sabor2015 and sabor2016 Facebook
datasets, based on the type of their referral links: i) advertisements (users that followed
a link within Facebook advertisement), ii) external (users that followed a link originating
from an external website), and iii) peer (users that followed a link from Facebook, for
example from another user’s share). The collective influence of the three types of users
is calculated by using estimates obtained from the inference procedure for both SI and
EXP endogenous influence models and with (α = 0.1) and without (α = 0.0) correction
for the observer bias. These estimates of collective influence are compared with the
ones calculated using information on user’s referral links. Although the magnitude of
estimates differ, with the estimates provided by the inference method being typically
lower on average on sabor2015 datasets and higher than average on sabor2016 dataset,
qualitatively the estimates are proportional to one another. This is especially evident on
the sabor2015 dataset while using the EXP as the assumed endogenous influence model.
The proportionality of the estimates of collective influence with the ones obtained from the
referral links shows that the inference method can reconstruct the underlying information
in the referral links which was otherwise not used in the inference itself! This shows that
the characteristics of the user’s activation - whether their activation is more endogenously
or exogenously driven, can be inferred from the dynamics of user activation and their
mutual social network relationships alone!

Experiment on Figure 5.8b tries to provide an answer to the question which channel
of communication - advertisement, endogenous or exogenous, is the most effective in re-
cruiting users with higher collective influence? As there are only two datasets on disposal,
the results are not conclusive. In sabor2015 the most influential group are users activated
via Facebook itself, which might be due to to the fact that the majority of these users
activated fairly recently in the activation cascade (see Figure 2.5). In sabor2016 dataset
the most influential group are the users that activated by following a link from an exter-
nal website, which might be due to the fact that these users also consist a vast majority
among all users in the dataset (again, see Figure 2.5).

5.4 Selecting appropriate endogenous influence mod-
els

Section 3.3 introduces several endogenous influence models, as well as the model for
the exogenous influence. The question remains how to select among them the most
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Figure 5.8: Individual and collective influence of users. Figure 5.8a shows a simple example
with a small social network neighborhood of eight users i = {0,1,2,3,4,5,6,7}. An influence
I1 for the user i = 1 should somehow summarize the extent to which is he responsible for the
endogenous activation p

(j)
peer of his peers j = {3,4,5,6,7} that activated after him (ti < tj). He

can claim responsibility only for the peers j = {4,5,7} that activated due to the endogenous
influence, but he has to share a part of this claim with users k = {0,2} that are also peers of
users j and that activated before them (tk < tj). In this example an assumption is that the
partition of influence is equal among users (Equation 4.10) so the total influence of user i = 1
is I1 = 1/2p

(4)
peer + 1/3p

(5)
peer + p

(7)
peer. Figure 5.8b shows the collective influence of three groups

of Facebook users from the sabor2015 and sabor2016 datasets, based on their referral links -
i) advertisements (for users that followed Facebook advertisements that promoted the survey
applications), ii) external (for users that followed links from external websites), and iii) peer
(for users that followed links from within Facebook). Collective influence is calculated by using
estimates of endogenous and exogenous influence from the inference method (y-axis) and by
using raw data on referral links (x-axis). In the latter case the values of p

(j)
peer are from {0,1}.

Facebook advertisements are interesting because they target wide range of users irrespective of
their Facebook friendships, which produces similar effect as the exogenous influence.

appropriate influence model. Unlike parameter estimation, where the goal is to obtain
just a single hypothesis - a set of parameters which completely specifies the model, in
model selection the goal is to select a family of hypotheses which best describe the data.
Typically, model selection is more appropriate if one wants to select a model or a class of
models which generalizes best to unobserved data (has the best predictive performance)
under a variety of circumstances where particular parameters of a model may differ [134].
Also, as each model gives only a partial insight into the underlying phenomena, selecting
an appropriate model involves deciding which aspects of the phenomena one wishes to
study. In our case, for example, choosing between SI and EXP models is a choice of
considering an additional endogenous influence parameter λ which determines the rate of
influence decay.

In general, selecting a model with the best predictive performance is not an easy
task as the fitness of the model on the observed data can mislead us into overestimating
its predictive performance on the unobserved data. Fitness on the observed data can
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always be increased by increasing the capacity of the model, although by increasing it too
much results in fitting the noise in the data instead of the underlying signal of interest,
which reflects poorly on the predictive performance. This bias/variance trade off means
that overly simple, undetermined, high bias models perform poorly on both observed and
unobserved data, while overly complex, overdetermined, high variance models perform
excellent on observed data and poorly on unobserved data. So all model selection methods
have to explicitly or implicitly account for the capacity of the model in order to select the
models with the best predictive performance.

For example, in Bayesian model selection the model’s complexity is implicitly ac-
counted for by using the marginal likelihood or model evidence as the model selection
criteria. Marginalization of the likelihood function over the parameter space has an im-
plicit effect of restricting the complexity of the model beyond what can be supported by
the observed data [135]. Because Bayesian approach treats all aspects of modeling as
probabilities - models themselves can be interpreted as probability distributions over the
space of all possible datasets. Simple models concentrate their probability mass/density
to the smaller number of datasets than complex models, but give each of them larger
probability. This ensures that complex models will be penalized if data can indeed be
explained by a more simple model [136]. Performing a fully Bayesian model selection re-
quires integration of marginal likelihoods over the whole parameter space, which is often
infeasible. For this reason there are many other more efficient model selection methods
which attempt to approximate capacity of a model in an indirect way.

Maximum likelihood based criteria involves using the maximum value of a likelihood
function along with different complexity terms to approximate model evidence. The most
commonly used model selection criteria from this category are Bayesian Information Cri-
terion (BIC) [137], Akaike Information Criterion (AIC) [138] and Rissanen’s Stochastic
Complexity (SC) [139]. All of these measures in general contain two terms - first which
is the actual maximum likelihood value and determines goodness-of-fit, and second which
approximates model’s complexity by a simple expression involving the number of param-
eters and the number of observations. If the functional forms of the models are the same
and they have the same number of parameters their comparison reduces to the gener-
alized likelihood ratio testing [134]. In general the maximum likelihood value is a good
approximation to model evidence if the likelihood function itself is sharply peaked over
the maximum likelihood parameters, which ensures that the maximum likelihood value
and the integral of the likelihood are approximately the same. In the case when this is
not satisfied, and the likelihood functions themselves differ significantly in their functional
form, the complexity of the model might be better determined by the functional form of
the model rather than the number of parameters it contains, which is not captured by
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the methods relying on maximum likelihood values.
Out of methods that explicitly account for the complexity of models, the two are

most prominent - Minimum Description Length (MDL) and Structural risk minimization
(SRM). MDL [45, 134, 140] measures the length in bits of the shortest possible code which
describes the data generated by the model. MDL model selection is essentially the same
as performing Bayes factor analysis with Jeffrey’s prior [134] - a non-informative prior
distribution for the parameter space. SRM [141] uses Vapnik-Chervonenkis dimension
(VC-dimension) as a measure of model complexity, which is not in the same units as the
term for fitness (or “risk”) and so their combination is not straightforward [134]. The
bounds that VC-dimension provides are very conservative, and can be considered as the
worst-case estimate of the model’s complexity [135].

Two methods that implicitly account for the complexity of models are False Discovery
Rate (FDR) and Cross-validation (CV). FDR [142] is often used when one wants to select
one particular point-hypothesis out of a finite set of hypotheses. It controls the expected
proportion of rejected null-hypotheses which were in fact correct (“false discoveries”). In
a CV [143] procedure the train and test steps are repeated with a same type of model
on multiple disjoint subsets of the observed data in order to select a model that will
have good predictive accuracy on unobserved data. In this way model’s complexity is
incorporated implicitly because models that overfit on the training subset will be penalized
by evaluation on the test subset.

In order to justify the choice of exogenous responsibility R(i)(t) (Equation 4.5) as the
measure of exogenous influence a comparison of its performance with several other possible
measures of influence on empirical datasets is provided. Section 4.5 and Figure 4.8 show
a comparison of several different versions of exogenous responsibility (Equations 4.8 and
4.9). Here, a comparison of exogenous responsibility with exogenous activation probabil-
ity p

(i)
ext and endogenous activation probability p

(i)
peer is provided. Endogenous activation

probabilities are available directly as an output of the inference procedure (Algorithm 4.1).
Figure 5.9 shows the ROC curves and the corresponding AUC scores for all the experi-
ments. In order to use ROC curves and AUC score as an evaluation measure the inference
is performed only on the two datasets for which there is information on user’s referral links
- sabor2015 and sabor2016. Experiments also include different combinations of assumed
endogenous influence models (SI and EXP) and different corrections for the observer bias
- α = 0.0 which corresponds to no correction and α = 0.1 which corresponds to a slight
corrections. These are the same α values that are used in the main experiments shown
in Figures 5.3, 5.4 and 5.5. Although neither of the measures performs best under all
experimental conditions and datasets, the exogenous responsibility has the most con-
sistent performance across different endogenous influence models and different values of
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Figure 5.9: Comparison of several possible measures of exogenous influence: (i) exogenous
responsibility (left column), (ii) peer probability (middle column), and (iii) exogenous probability
(right column). Experiments are performed on two empirical datasets for which the information
on user’s referral links is available - sabor2015 (top row) and sabor2016 (bottom row), with
various combinations of assumed endogenous influence models (SI and EXP) and the correction
for observer bias (α = 0.1 and α = 0.0). Not a single measure performs best in all cases, although
exogenous responsibility performs consistently well across different experimental conditions.

correction for the observer bias - being outperformed only by the exogenous activation
probability on the sabor2015 dataset.

5.5 Comparison of influence with the structural mea-
sures on empirical data

Similarly as in Section 4.8, estimates of individual influence calculated with Equation 4.10,
and assuming SI as the endogenous activation model, are compared with several struc-
tural measures of influence on all three empirical datasets. Figure 5.10 shows comparison
of user’s ranks obtained with the influence measure with the four structural influence
measures: (i) number of peers which activated after a particular user, (ii) number of
peers, (iii) activation time, and (iv) number of peers which activated before a particular
user. Associated Spearman correlation coefficients are calculated to asses the association
between these structural measures and the measure of influence proposed in this thesis.
Across all datasets, the highest correlation is with the number of peers activated after
a particular user - with correlations of 0.94, 0.94 and 0.97 for the referendum2013, sa-
bor2015 and sabor 2016 datasets respectively. Somewhat lower are the correlations with
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the number of peers - a quantity that does not change over time in the empirical datasets,
which are 0.67, 0.75 and 0.78 for the referendum2013, sabor2015 and sabor2016 datasets
respectively. These results align with our intuition, as it is expected that users with
more peers have more opportunities to spread their influence, and for the influence to act
forwards in time rather than backwards. This is supported by the correlations with the
number of peers activated before a particular user which are much lower - 0.17, 0.42 and
0.50 for the referendum2013, sabor2015 and sabor2016 datasets respectively, and correla-
tions with the activation time of a particular user which are negative - −0.57, −0.64 and
−0.32 for the same datasets respectively! These results are qualitatively equivalent to the
ones obtained on simulated data (Figure 4.11).

Figure 5.11 shows the comparison on the same type of scatter plots but instead of the
before mentioned simple structural measures five baseline structural measures commonly
used in literature are used: (i) degree centrality (which is identical to the number of peers),
(ii) Pagerank centrality [144], (iii) eigenvector centrality [145], (iv) hubs centrality [146,
147], and (v) authorities centrality [146, 147]. Again, Spearman correlation coefficient is
taken as the measure of correspondence with the influence calculated with Equation 4.10.
Overall, the strongest correlation is with the Pagerank centrality - 0.86, 0.90 and 0.92 for
the referendum2013, sabor2015 and sabor2016 datasets respectively, while the weakest is
with the hubs centrality - 0.32, 0.50 and 0.55 for the same datasets respectively. Relatively
high correlation with all above mentioned structural measures indicates that there is at
least some consensus on which users are overall more or less influential.
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Figure 5.10: Comparison of user influence with four simple structural measures on empirical
datasets. Scatter plots show comparisons of ranks of all users obtained by user influence calcu-
lated with equation 4.10, with SI as the assumed endogenous influence model, and four simple
structural measures of influence. Spearman correlation coefficient is calculated as the measure
of association, and points on the scatter plots are colored based on local density so that areas of
higher density are colored yellow while areas of lower density are colored blue. The highest cor-
relation across all datasets is with the number of peers activated after a particular user, followed
by the correlation with the number of peers, which is intuitive as it is expected that more peers
and early activation provides more opportunities to spread the influence. On the other hand,
influence is less correlated with the number of peers that activated before a particular user, and
negatively correlated with the activation time, which is unsurprising because it is expected that
the influence between users propagates forwards rather than backwards in time.
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Figure 5.11: Comparison of user influence with five baseline structural measures on empirical
datasets. Similar as in Figures 4.11 and 5.10, scatter plots show ranks obtained by the measure of
influence calculated with Equation 4.10, with SI as the assumed endogenous influence model, and
ranks obtained by five baseline structural measures. The Spearman coefficient of correlation is
used as the measure of correspondence between the ranks. The strongest correlation is achieved
with the Pagerank and the lowest with the hubs centrality.
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Chapter 6

Conclusion

Web-based news media, online social networks and online information services have an
immense influence on the way how people interact with the world around them and
between themselves. Online social networks are less than 15 years old and already made
tectonic changes in the information and marketing industry. Out of the 10 most valuable
world companies by market capitalization∗, five of them - Microsoft, Apple, Amazon,
Alphabet (parent company of Google) and Facebook, are primarily information companies
and create most of their value, directly or indirectly, by monitoring activity of the people
using their services and understanding patterns of influence between them.

However, user’s increased awareness of the importance of data privacy and the poten-
tial for manipulation by third parties calls for an increased research effort into quantifying
to what extent digital footprints reveal about individuals. For example, it was shown that
personality traits of users could be estimated indirectly from the content with which they
interact [62] and that users could unknowingly take part in misinformation (fake news)
spreading [53]. The research presented in this thesis shows that much can be learned
about users engagement even by just observing a friendship network between registered
users and their registration times - effectively just a single activation cascade. This data
alone is sufficient to estimate whether users were predominantly influenced by their peers,
which corresponds to endogenous influence, or by the external factors such as mass me-
dia, which corresponds to exogenous influence. Both exogenous [18] and endogenous [59]
factors are known to have a significant impact on user’s activity.

Method developed as a part of this doctoral research can be used for inferring en-
dogenous and exogenous influence between users of an online social network. The only
information needed for inference are the social connections between users and a single
activation cascade between them. The hypothesis is that these two influences differ in
their statistical properties and that this can be exploited to disentangle their relative

∗Data on market capitalization retrieved from https://ycharts.com.
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Conclusion

magnitude in empirical data. An underlying assumption behind the method is that the
endogenous influence propagates between users and so is somehow dependant on the un-
derlying social network structure, while exogenous influence, being external to the social
network itself, is independent of its structure. The first approach was to devise a simple
method which uses a statistical threshold to estimate the number of exogenously acti-
vated users [101]. The second approach was to devise a fully probabilistic method which
incorporates both influences jointly and uses a maximum likelihood method to infer the
parameters of influence. Using these we can characterize the activation of each user as
being more endogenously or exogenously driven, which allows us to estimate individual
influence of each user towards all of his peers while correcting for the confounding exoge-
nous influence, even without knowing exactly who influenced whom. This information
could, in principle, be used for reconstructing the most probable deterministic influence
path, even though some parts of the pathway are inherently unobservable and might be
attributed to factors outside of the social network itself.

The proposed method is flexible enough to incorporate additional information regard-
ing the activation cascade and any characteristics of the users or the social network itself.
A starting point could be features which are included in the unified model of social influ-
ence [148], which is also a likelihood-based model. The assessment of the computational
scalability of the method is also performed, concentrating on the scalability of inference
rather than scalability of modeling as is more commonly done [149]. Inference is per-
formed through a maximum likelihood method that utilizes efficient numerical solvers,
allowing the method to scale on social networks of over 10000 users.

Question remains as to the applicability of our inference method outside of the use
cases described in this thesis. The method can be viewed as a part of a larger framework
which aims to efficiently characterize the types of influence in information spreading.
This framework could be used, for example, to elucidate the role of external factors in
misinformation spreading over online social networks [150]. Outside of the domain of
social network, the inference of endogenous and exogenous influence could be used in a
wider context of dynamical systems modeling [50].

The empirical analysis is performed on data of over 20 thousand Facebook users ob-
tained through three unique Facebook political survey applications. The methodology
allows us to estimate, for the first time, the most probable source of influence for each
active individual in the survey, and assess the overall influence of different media chan-
nels for spreading of the information (peer communication, Facebook advertisements, or
external news media) using only a single activation cascade. Besides inference method-
ology the thesis also discusses valuable guidelines for researchers interested in collecting
their own online social network data in an ethically principled way, while at the same
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time satisfying requirements for reproducible research. The source codes of the survey
applications are freely available on a public open source code repository †.

The most challenging part of any future work in modeling and inference of influence
in online social networks is the data collection and management part, along with the
technical, methodological and ethical issues which came along with it. Unlike traditional
survey methods, where data is manually entered and the researcher usually has a complete
oversight of the data collection process [151], online social networks provide an opportunity
to collect much larger amount of data on user activity. However, many of the standard
practices for social science research have to be adjusted. Most notable example is a
requirement informed consent - a requirement that users are adequately informed on
the data collection process and gave an explicit permission for their data to be used in
research. Considering that user’s data is often collected automatically by the online service
provider, usually under a very broad terms of use agreement aimed primarily for marketing
research, question remains to what extent can this data be used in academic research.
This is why most academic studies using online social networks data are observational
in nature and seldom satisfy a requirement of informed consent for all of the users [59],
which often raises ethical concerns [2, 75]. Performing a study where explicit informed
consent is mandatory heavily restricts the number of users willing to participate, even
when researchers are working internally within the online service provider and are in
position to seek informed consent from large number of users automatically. A notable
example is a study [61] on Facebook where survey was presented to around 1.3 million
users, which in the end managed to collect only 7730 responses.

For external researchers data collection on a social network service entails using an
using official API or a third-party application. Without an easy automatic access to all
users of a service recruitment usually proceeds organically from user to user, mimicking
a form of snowball sampling. In this way it is the most eager users that are recruited
first, which is in fact crucial for mobilizing the less motivated and weakly connected
users although it biases our sample of users. The effect that highly influential users
have on mobilization might easily dominate the one from mass media [152]. However,
major publicized events such as elections and referendums serve as potent catalyzers for
mobilizing users - a fact that we exploited by using online political survey applications for
collecting user data. Survey applications were hosted on a separate web pages and used
Facebook Graph API for authorization of users, which allowed us to collect activation
cascades and friendship connections of over 20 thousand users in total. Considering
that collecting data through online social networks is only possible for a decade or so,

†https://github.com/devArena/referendum2013.hr
https://bitbucket.org/marin/sabor2015.hr
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Conclusion

standards and practices are still forming under the constant pressure of technological
changes. Regardless, we tried to follow current recommended ethical practices [14, 15].

There are several limitations to the methodology which indicate potential directions for
future research. First, the way endogenous influence is modeled can be greatly improved.
The methodology currently requires a predefined closed form of endogenous influence
whose choice implies a particular microscopic influence interaction between users. In this
thesis it is showed how one can choose between several competing models of endoge-
nous influence by evaluating their predictive power on the empirical activation cascades.
More sophisticated forms of model selection are possible, some of which are mentioned
in Section 5.4. Ideally, we would want to have a non-parametric model of endogenous
influence whose capacity is automatically adjusted with the observed data so as to pre-
vent overfitting. Second, although the model of influence allows this, the possibility of
assigning different propensities for endogenous and exogenous influence to the users is
not explored. This could be done, for example, by dividing users into groups and in-
ferring separate models of endogenous and exogenous influence for each group of users,
or by including additional user covariates into the influence model. Covariates could be
derived from demographic variables which are usually available in online social network
datasets, or from information on the activity of users such as their interaction with dif-
ferent content. However, inferring a more expressive influence models will introduce more
uncertainty into the estimates, or could even prove to be unfeasible without imposing
additional constraints in the inference method, considering that there is only a single
activation cascade [153, 154]. This should not be a problem for use cases where multiple
activation cascades are available. Adding covariates for the users should also have an ad-
ditional benefit, as there is a chance to correct for the potential confounding effects arising
from the observed characteristics of users, allowing us to disentangle effects of homophily
from the true social influence. For example, it is expected that users that share political
orientation respond differently to each others influences, as compared to the users that
do not.

The main contributions of this thesis are the definition of the model of exogenous
and endogenous influence in social networks, an inference method which uses a single
activation cascade to infer parameters of this model from empirical data, and an extensive
evaluation of this inference method on both simulated and empirical data consisting of
over 20 thousand Facebook users which participated on several online political survey
applications.
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Appendix A

Code and data availability

Due to the Facebook’s Platform Policy ∗ we are not allowed to publicly release any
Facebook-derived data, including personal information and friendship relations between
our users. Friendship networks and registration times needed to reproduce the results of
this paper are available upon a reasonable request and only after signing the following
Data Access Agreement †:

Upon receiving this dataset you agree to following terms: (i) You will only use the dataset
for the purpose of reproducing and validating the results of our study; (ii) You will not
attempt to deanonymize the dataset or in any other way compromise the identity or privacy
of users contained in it; and (iii) You will not further share, distribute, publish, or otherwise
disseminate the dataset.

Source code of the Facebook online survey applications through which we collected
referendum2013 and sabor2015 datasets are available on public Github repositories ‡ §.

∗https://developers.facebook.com/policy
†https://goo.gl/forms/IxINFkeBSJpDuzRv2
‡https://github.com/devArena/referendum2013.hr
§https://bitbucket.org/marin/sabor2015.hr
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Appendix B

Terms of use and privacy policy of
the Facebook applications

Disclaimer that we used on front web pages of referendum2013.hr and sabor2015.hr online
survey applications was placed next to the registration button and stated which Facebook
data we are collecting from users, how will the data be used and how will it be visible to
other users of the survey. A full text (in Croatian) of the disclaimer ∗ is the following:

“U svrhu ovoga istraživanja prikupljamo podatke o vašem stavu o referendumskom pi-
tanju, kao i određene podatke s Facebooka (Facebook identifikacijski broj, godinu rođenja,
lokaciju, spol i popis vaših prijatelja), čime želimo dobiti uvid u načine kako međusobna
poznanstva utječu na stavove korisnika Facebooka. Vaš individualni odgovor na referen-
dumsko pitanje i podaci o vašem profilu neće biti vidljivi drugim korisnicima, već će samo
biti vidljiv anonimni prosjek odgovora. Jedino ćete vi vidjeti prosjek odgovora vaših pri-
jatelja. Istraživači garantiraju da prikupljeni podaci neće biti korišteni ni u koje druge svrhe
osim znanstveno-istraživačke. Prijavom na ovaj upitnik potvrđujete da ste suglasni s ovim
pravilima korištenja.”

In addition to this, the web pages of our online survey application also provided
separate web pages with the Frequently Asked Questions (FAQ) †, terms of use ‡ and
privacy policy. The link to the privacy policy was provided to the users upon authorization
with their Facebook credentials through official Facebook API interface. The full text (in

∗https://github.com/devArena/referendum2013.hr/blob/master/referendum/templates/
logged_out.html
https://bitbucket.org/marin/sabor2015.hr/src/master/sabor2015/sabor2015/templates/
disclaimer.j2

†https://github.com/devArena/referendum2013.hr/blob/master/static/pitanja.
html//https://bitbucket.org/marin/sabor2015.hr/src/master/sabor2015/sabor2015/
templates/faq.j2

‡https://bitbucket.org/marin/sabor2015.hr/src/master/sabor2015/sabor2015/templates/
uvjeti_koristenja.j2
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Terms of use and privacy policy of the Facebook applications

Croatian) of the privacy policy § for the sabor2015.hr online survey application is the
following:

Pravila privatnosti

1. Web servis sabor2015.hr (u daljnjem tekstu Servis) koristi kolačiće za pružanje boljeg
korisničkog iskustva. Nastavkom korištenja Servisa slažete se s korištenjem kolačića.

2. Servis će za svakog korisnika uz prethodno dopuštenje pohraniti:

2.1. Odgovori korisnika na anketu o izborima

izborna jedinica izborna lista stranaka za koju će korisnik glasati na izborima lista stranaka
koje korisnik simpatizira postotak za koji korisnik očekuje da će stranka koju podržava
osvojiti na izbora vrijeme glasovanja

2.2. Facebook podaci

Facebook identifikacijski broj, godina rođenja, lokacija, spol, popis anonimiziranih identi-
fikatora prijatelja koji već koriste naš Servis, preusmjeravajući link – link s koje stranice je
došao korisnik pri registraciji

Prikupljanje Facebook podataka ide isključivo preko službenih Facebook sučelja i u skladu je
sa svim pravilima za zaštitu privatnosti korisnika: https://developers.facebook.com/policy/.

Anonimizirani Facebook identifikacijski broj jedinstven je za pojedinog korisnika i ovaj
Servis te se na osnovu njega ne može doći do stvarnog Facebook računa korisnika. Ne
pohranjujemo podatke vezane uz račun korisnika poput email adrese ili imena i prezimena.

3. Vidljivost i korištenje podataka

3.1. Vaši pojedinačni odgovori na anketu o izborima (2.1.) i podaci s vašeg Facebook profila
(2.2) neće biti vidljivi drugim korisnicima Servisa. 3.2. Vaši prijatelji koji koriste Servis
mogu vidjeti samo sumarne glasove svojih Facebook prijatelja (2.1), i to samo onih koji
su također korisnici Servisa. Nijedan korisnik Servisa nemaju informaciju kako je i tko od
njegovih prijatelja glasovao. 3.3. Sumarna statistika glasova (2.1.) preko svih korisnika
Servisa može postati javno dostupna. 3.4. Istraživači će koristiti anonimizirane i sumarne
podatke (2.1.) i (2.2.) za znanstvene istraživanja, te će kao takvi biti dostupni znanstvenoj
zajednici.

4. Sva komunikacija s našim Servisom, bazom podataka i Facebook serverom ide preko
kriptirane sigurne veze.

§https://bitbucket.org/marin/sabor2015.hr/src/master/sabor2015/sabor2015/templates/
pravila_privatnosti.j2
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Appendix C

Implementation details of inference
methodology

In order to make our statistical inference as efficient as possible we vectorize all numeri-
cal operations using array and matrix primitives within Numpy and Scipy libraries. We
store the adjacency matrix of our Facebook friendship network as Scipy’s compressed
sparse column (CSC) matrix∗ which allows us to use efficient vectorized implementations
of matrix addition and multiplication as well as fast matrix-vector products. A common
operation is a selection of all friendship connections towards peers that activated either
before or after a particular user or group of users. This is needed in many places, for
example in calculating the endogenous influence in Equation 3.1, expressions for SI model
in Equation 3.2 and EXP model in Equation 3.3, expression for the likelihood in Equa-
tion 3.6 and log-likelihood with (Equation 4.7) and without (Equation 3.7) the correction
for the observer bias, expression for the individual influence in Equations 4.10 and 4.11,
and expression for the absolute number of users activated due to endogenous or exogenous
influence in Equation 4.4. Here we exploit the fact that these selections can be efficiently
performed by sorting the adjacency matrix by the activation time of users and selecting
users that activated within a particular time period using range operator. This gives per-
formance benefits as slicing a predefined range of a matrix is more efficient than random
indexing. This is illustrated in Figure C.1.

∗https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html
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Implementation details of inference methodology
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Figure C.1: Reordering of friendship matrix so that users are arranged by their activation
times. This allows us to select all peers that activated before or after the users with efficient
range operator instead of logical indexing.
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