
Programming model for heterogeneous computing
systems with customizable accelerators

Pervan, Branimir

Doctoral thesis / Disertacija

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:513967

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-05

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:513967
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:7477
https://dabar.srce.hr/islandora/object/fer:7477

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Branimir Pervan

PROGRAMMING MODEL FOR
HETEROGENEOUS COMPUTING SYSTEMS WITH

CUSTOMIZABLE ACCELERATORS

DOCTORAL THESIS

Zagreb, 2022

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Branimir Pervan

PROGRAMMING MODEL FOR
HETEROGENEOUS COMPUTING SYSTEMS WITH

CUSTOMIZABLE ACCELERATORS

DOCTORAL THESIS

Supervisor: Associate Professor Josip Knezović, PhD

Zagreb, 2022

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Branimir Pervan

PROGRAMSKI MODEL ZA RAZNORODNE
RAČUNALNE SUSTAVE S PRILAGODLJIVIM

UBRZIVAČIMA

DOKTORSKI RAD

Mentor: izv. prof. dr. sc. Josip Knezović

Zagreb, 2022.

Doctoral thesis was made at the University of Zagreb, Faculty of Electrical Engineering

and Computing, Department of Control and Computer Engineering

Supervisor: Associate Professor Josip Knezović, PhD

Doctoral thesis contains: 140 pages

Doctoral thesis number:

About the Supervisor

Josip Knezović, PhD is an associate professor at the Department of Control and Computer En-

gineering, Faculty of Electrical Engineering and Computing, University of Zagreb. He obtained

his master’s degree in 2005 and in 2009 he gained PhD degree with the thesis on the Streaming

model of computation for image and video processing.

He is the member of the HPC Architecture and Application Research Center at FER. His re-

search interests include energy efficient, embedded, heterogeneous and parallel computing sys-

tems and programming models, parallel programming, and computer architectures and appli-

cations of high-performance computing systems. He teaches several courses in undergraduate,

graduate, and doctoral studies in computer science. From 2020 he serves as the Head of the De-

partment of Control and Computer Engineering. He is a member of the IEEE, IEEE Computer

Society, and ACM.

Personal page: https://www.fer.unizg.hr/rasip/jknezovic

https://www.fer.unizg.hr/rasip/jknezovic

O mentoru

Izv. prof. dr. sc. Josip Knezović je izvanredni profesor u Zavodu za automatiku i računalno

inženjerstvo Fakulteta elektrotehnike i računarstva Sveučilišta u Zagrebu. Stupanj magistra

znanosti postigao je 2005. g., a 2009. g. obranio je doktorsku disertaciju na temu tokovnog

računalnog modela za obradu slikovnih i video podataka.

Član je Centra za istraživanje arhitektura i aplikacija računarstva visokih performanci na FER-u.

Njegovi istraživački interesi su energetski učinkoviti ugradbeni, heterogeni i paralelni računalni

sustavi, paralelno programiranje i programski modeli, te računalne arhitekture i aplikacije u

računarstvu visokih performanci. Nositelj je ili predavač na više predmeta na preddiplomskom,

diplomskom i doktorskom studiju računarstva FER-a. Od 2020. g. obnaša dužnost predsto-

jnika Zavoda za automatiku i računalno inženjerstvo. Član je strukovnih udruženja IEEE, IEEE

Computer Society i ACM.

Osobna stranica: http://www.fer.unizg.hr/rasip/jknezovic

http://www.fer.unizg.hr/rasip/jknezovic

Zahvaljujem prvo Bogu svemogućemu, onome koji bje, koji jest i koji će doći, iz kojega sve

izvire i u kojega sve uvire.

Hvala mojoj supruzi Petri, kćeri Marti i sinu Boni. Vaša žrtva i odricanje protkani su ovim

stranicama. Bez vaše pomoći ne bih uspio, moj uspjeh je i vaš uspjeh. Hvala i mojoj široj

obitelji.

Hvala mom mentoru Josipu za neizostavnu podršku koju mi je pružio tijekom rada na

doktorskom studiju, te za sve trenutke u kojima smo se med̄usobno podučavali.

Special thanks goes to Michel Steuwer at the University of Edinburgh and to his team from

Edinburgh, Glasgow, and Münster. I cannot thank you enough for your help, support, and the

ability to be a part of the team. Thank you for your expertise and patience.

Hvala svim mojim prijateljima, a ponajprije Barbari i Šili. Posebnu zahvalnost želim iskazati

doktoru Turčinoviću, za svaki savjet, kavu, pelin, ručak, raspravu i druženje. Hvala i

Emanuelu, Luki, Ivani, Igoru i Ani na podršci.

A ja, Bože sačuvaj da bih se ičim ponosio osim križem Gospodina našega Isusa Krista po

kojem je meni svijet raspet i ja svijetu.

(Gal 6, 14)

I’d rather have questions that can’t be answered than answers that can’t be questioned.

-R. Feynman

Those who would give up essential Liberty, to purchase a little temporary Safety, deserve

neither Liberty nor Safety.

-B. Franklin

Abstract

The constant growth of human development in general can be easily perceived at the current

point in time. Followed by that development, there is a significant growth in the need for

processing power. The amount of aggregated data requiring processing, followed by big data

paradigm and brain-inspired computing drive the need to enter the so-called exascale domain,

which is additionally confirmed by the existence of multiple scientific projects with the ultimate

goal to develop an exascale machine in near future. In reaching the exascale domain, one of the

key development points will be heterogeneity, implying systems containing a general-purpose

processing core, coupled with at least one non-general purpose accelerator. Accelerators for

specific applications usually achieve the best results regarding performance and energy effi-

ciency, but with a cost of being unusable in other domains. Theoretically, there exists a large gap

for customizable accelerators which could balance between performance and energy efficiency

gains and the lack of customizability in conventional accelerators, by allowing customization

of themselves to some extent.

High-performance systems of the future not only have to be heterogeneous but exploit par-

allelism on every level as well. However, efficiently exploiting heterogeneity and parallelism

is inherently hard. Current programming models usually rely on imperative programming

paradigms which decompose algorithms and problems with respect to how computations are

executed, requiring deep knowledge of the underlying hardware and other aspects of the sys-

tem, that domain scientists usually lack. It is, therefore, necessary to provide adequate models

which would efficiently exploit given resources while keeping a relatively simple approach.

This thesis proposes a different approach to programming complex heterogeneous systems,

by expressing what is being computed, rather than how computations are executed. To deliver

such a model, the use of RISE language is proposed, which was appropriately extended to

deliver the outcomes of this thesis. Additionally, ELEVATE, a domain-specific language for

describing optimization strategies was used to demonstrate and enable optimizations targeting

the specific parts of the system. As a testing platform, GAP8, a System-on-Chip containing

a general-purpose fabric controller loosely coupled with a customizable accelerator containing

eight RISC-V cores and a Hardware Convolution Engine was used. The proposed model was

evaluated by executing typical parallel benchmarks and comparing the RISE-generated code

with hand-tuned code. The results show that it is possible to provide an arguably simpler and

more concise programming model while keeping performance and energy efficiency at least on

par compared to the conventional programming model for the target platform.

Keywords: domain-specific languages, heterogeneous systems, parallel processing, multi-

core systems, RISC-V

Prošireni sažetak

Programski model za heterogene računalne sustave s prilagodljivim ubrzivačima

1. Uvod
Paralelno s rastom i razvojem znanosti te čovječanstva općenito, svakodnevno svjedočimo

i povećanoj potrebi za računalnim resursima. Vršna performansa ponajboljih svjetskih super-

računala trenutno je reda veličine 1015, dok se ulazak u exaFLOPS domenu anticipira za skoriju

budućnost. Tomu svjedoče i projekti koji postoje na razini Europske Unije, u Japanu i SAD-

u. Postizanje exaFLOPS domene otvara mnoga pitanja, primarno u područjima arhitekture

računala, heterogenosti te energetske učinkovitosti. Pojedini izvori navode da je ključna točka

razvoja za postizanje exaFLOPS domene upravo heterogenost. Heterogenost sustava obično im-

plicira postojanje više od jedne vrste procesne jezgre na relativno izoliranom čvoru, a praktične

implementacije svode se na uparivanje generičkog procesora (CPU) s grafičkim procesorom

opće namjene (GPGPU) ili s ubrzivačem specifičnim za pojedinu aplikaciju. Grafički proce-

sori opće namjene koriste se za intenzivne podatkovno paralelne zadatke dok, s druge strane,

specijalizirani ubrzivači postižu maksimalnu performansu i energetsku učinkovitost, ali uz ci-

jenu i iskoristivosti samo u jednoj aplikaciji, uz razvoj na razini dizajna hardvera. Uzevši u

obzir prednosti i mane grafičkih procesora opće namjene te specijaliziranih ubrzivača, prim-

jećuje se golem potencijal za uporabu prilagodljivih ubrzivača. Takvi ubrzivači kombinirali bi

prednosti te minimizirali nedostatke oba pristupa tako da izlože parametre za prilagodbu čime bi

se izbjegla zaključanost na samo jednu vrstu aplikacije, uz postizanje sumjerljive performanse

i energetske učinkovitosti potpuno specijaliziranim ubrzivačima.

I dok je većina računala s kojima smo okruženi višejezgrena, promatrajući paralelizam i

heterogenost u edukacijskim sustavima, većina obrazovnih programa podrazumijeva poduča-

vanje sekvencijalnom programiranju. Na taj način stvara se procjep izmed̄u teorije i prakse, s

obzirom na to da se paralelno razmišljanje ne stvara ondje gdje bi se trebalo formirati. Jedan od

razloga jest i inherentno teži način programiranja, te kompliciraniji programski modeli potrebni

za razvoj paralelnih aplikacija.

Cilj ove disertacije, koji se nalazi na tromed̄i heterogenosti, paralelizma, te prilagodbe pro-

gramskih modela, jest izlaganje programskog modela visoke razine apstrakcije, oblikovanog

kao domenski specifičan jezik za efikasno programiranje heterogenih sustava s prilagodljivim

vi

ubrzivačima. Temeljna hipoteza istraživanja je ta da će programski kôd napisan u izloženom

programskom modelu biti barem jednako performantan i jednako energetski efikasan kao i pro-

gramski kôd napisan u nativnom modelu za ciljnu platformu, a sve uz povećan stupanj pro-

gramirljivosti koji nudi programski model obrad̄en u disertaciji. Kao ciljna platforma koristit će

se heterogeni sustav GAP8, koji se sastoji od generičkog procesora te prilagodljivog ubrzivača

s osam jednostavnih jezgri te hardverskim ubrzivačem operacije konvolucije.

Konačno, izvorni znanstveni doprinos disertacije jest sljedeći:

1.Programski model za raznorodne sustave s prilagodljivim ubrziva čima temeljen na domen-

ski specifičnom jeziku

2.Adaptivni mehanizam prilagodbe izraza za iskorištavanje sklopovskog ubrziva ča prim-

jenom domenskih transformacija na višim razinama neovisnim o detaljima sklopovske

platforme s ciljem optimizacije performanci i energetske učinkovitosti.

Prvi dio doprinosa ostvaren je kroz prilagodbu programskog jezika visoke razine apstrakcije

RISE, dodavanje potrebnih primitiva te integraciju s ciljnom heterogenom platformom. Drugi

dio doprinosa razvijen je dodatno umjesto razvoja algoritama za prilagodbu ubrzivača. Naime,

prilagodljivi ubrzivači čije je skoro postojanje bilo anticipirano na javnom razgovoru nisu još

dostupni u formi prototipa ili komercijalnog proizvoda, što je razvoj drugog dijela doprinosa ne

samo učinilo izlišnim, nego ga i u potpunosti onemogućilo. Adaptivni mehanizam prilagodbe

kao drugi dio doprinosa demonstrira mogućnosti apstrahiranja arhitekture sustava te ultimativno

povećanje efikasnosti sustava te procesa programiranja.

2. Teorijska pozadina
Mooreov zakon koji se može tumačiti kao de facto standard za projekciju broja tranzistora

na silikonu, prema riječima njegovog autora prestat će vrijediti u bližoj budućnosti. Nadalje,

percipirani eksponencijalni rast efektivne računalne snage opada radi dostizanja tri fizikalne

barijere ili zida, a to su zid snage, zid paralelizma na razini instrukcije, te zid memorije. Iz svega

navedenoga izravno slijedi da hardver budućnosti mora biti višejezgren, a radi postizanja veće

performanse, te da se programi za takav hardver moraju pisati tako da iskorištavaju dostupne

mogućnosti. Temelj svake klasifikacije arhitektura računala jest Flynnova klasifikacija koja

dijeli računala s obzirom na pristup tokovima instrukcija i podataka. Podjela paralelizma kao

koncepta obično se temelji na podatkovnom paralelizmu koji se bavi načinom na koji se podaci

distribuiraju računalnim čvorovima, dok s druge strane stoji paralelizam zadataka čiji je fokus

na razdvajanju i raspored̄ivanju zadataka, takod̄er na različitim računalnim čvorovima.

Iskorištavanje ovih dvaju navedenih tipova paralelizma moguće je na više razina. Par-

alelizam na razini instrukcije podrazumijeva preklapanje instrukcija tijekom njihovog izvod̄enja

radi povećanja performansi. Tehnike za iskorištavanje ove vrste paralelizma su cjevovodi,

odmotavanje petlji, predvid̄anje grananja te dinamičko raspored̄ivanje. Vektorske arhitekture

predstavljaju drugi način iskorištavanja paralelizma, u kojem vektorski procesori kao prototipovi

vii

SIMD arhitekture implementiraju ideju primjene jedne instrukcije paralelno nad više podataka.

Paralelizam na razini dretve iskorištava se na razini operacijskog sustava, dok se paralelizam

na razini zahtjeva obično iskorištava na visokim razinama gdje su zadaci koje računalo izvršava

potpuno disjunktni. Programski modeli za paralelne sustave apstrahiraju paralelne arhitekture,

a mogu se promatrati s obzirom na način na koji pristupaju dekompoziciji problema, te na

način na koji procesi stupaju med̄usobno u interakciju. Dekompozicija problema svodi se na

prethodno navedene podatkovni paralelizam i paralelizam zadataka, dok se modeli s obzirom

na interakciju dijele na prosljed̄ivanje poruka, dijeljenu memoriju te implicitnu komunikaciju.

Implementacije tih modela su obično Pthreads, OpenMP te MPI.

Heterogenost u kontekstu računalnih sustava implicira računalni sustav ili procesni čvor

koji se sastoji od više jezgara različitih arhitektura. Implementacija takvih sustava najčešće

znači korištenje procesora opće namjene uparenog s grafičkim procesorom opće namjene ili

specijaliziranim ubrzivačem. Specijalizirani ubrzivači trenutno postižu najbolje performanse

i energetsku učinkovitost, a trenutno se najčešće manifestiraju kao ubrzivači u domeni neu-

ronskih mreža, kriptografskog procesiranja ili pojedinih matematičkih operacija. Prilagodljivi

ubrzivači koji balansiraju izmed̄u mogućnosti iskoristivosti u više domena, te performanse i

energetske učinkovitosti trenutno su u razvoju. Takod̄er, ubrzivači te rekonfigurabilni hardver

već je neko vrijeme dostupan u oblaku. Nasuprot ubrzivačima, grafički procesori opće namjene

koriste se u podatkovno paralelnim aplikacijama te su već neko vrijeme razmjerno popularno

rješenje u odgovarajućim problemskim domenama. Općenito, heterogenost se može postići i

kombiniranjem različitih arhitektura konceptualno sličnih procesora.

3. Općeniti koncepti
Programiranje i izvod̄enje aplikacija zaseban su problem u domeni heterogenog računarstva.

Više različitih vrsta procesnih jedinica, kao i potencijalno dijametralno suprotne aplikacije koje

bi se mogle izvoditi u sustavu predstavljaju značajan problem za programere. Jedan od mogućih

rješenja jest podizanje razine apstrakcije razvojem programskog modela koji apstrahira arhitek-

turalne detalje sustava, često kao domenski specifičan jezik. Domenski specifični jezici su

programski jezici koji korištenjem prikladnih oznaka i apstrakcija nude mogućnost izražavanja

u jednoj problemskoj domeni. Interni domenski specifični jezici ugrad̄eni su unutar posto-

jećeg programskog jezika, dok oni eksterni zahtijevaju razvoj vlastite prevoditeljske ili izved-

bene infrastrukture. Jedan od programskih jezika opće namjene koji nude konstrukte kojima se

olakšava razvoj domenskih specifičnih jezika jest Scala, a programsko rješenje koje se koristilo

za razvoj doprinosa ove disertacije upravo je jezik duboko ugrad̄en u programskom jeziku Scala.

Samo područje domenski specifičnih jezika trenutno uživa značajnu pozornost istraživačke i in-

dustrijske zajednice te se prirodno nameće kao rješenje za problem opisan disertacijom.

Kada se govori o heterogenom hardveru, ali i o otvorenom hardveru općenito, kao po-

lazna osnova odabrana je arhitektura skupa instrukcija RISC-V. Arhitekture skupa instrukcija

viii

općenito apstrahiraju računalo na razini skupa asemblerskih instrukcija te predstavljaju sučelje

izmed̄u hardvera i softvera. RISC-V je jedan takav skup koji je trenutno uhvatio velik zamah

u akademiji i industriji. Kako su argumentirali inicijalni autori koncepta, skup instrukcija pro-

cesora predstavlja najznačajnije sučelje u računalu općenito, te je logično da, s obzirom na to

da ne postoji značajna tehnička zaprjeka, takvo sučelje bude otvoreno. Sam RISC-V procesor

je zamišljen da bude jednostavan, ali da anticipira različite primjene, od ugradbenih računala,

do poslužitelja. Iz perspektive arhitekture, procesor je vrste load-store s little-endian poretkom

bajtova te operacijama kojima su operandi registri. RISC-V arhitektura je takod̄er modularna

i tipično se sastoji od baznog i minimalnog skupa instrukcija te proširenjima koje odgovaraju

potrebama računala koje se dizajnira. Bazni instrukcijski skupi podržavaju cjelobrojne skupove

ili ugradbene skupove sa širinama adresa od 32, 64 ili 128 bita. Ekstenzije instrukcijskom skupu

dodaju različite funkcionalnosti, od hardverskog množila, podrške za floating-point operacije

različitih preciznosti, kompresirane instrukcije, vektorske operacije i sl. Za validnost službenog

dijela instrukcijskog skupa brine se neprofitna udruga, a korisnici mogu samostalno proširivati

instrukcijski skup korištenjem ekstenzije X. Heterogeni sustav GAP8 korišten kao hardverska

platforma u ovoj disertaciji koristi procesorske jezgre RISC-V tipa RV32IMC.

Jedan od većih projekata proizašao iz RISC-V ekosustava jest PULP. PULP je krovni pro-

jekt dvaju europskih sveučilišta čiji je cilj razvoj otvorenih i slobodnih hardverskih platformi za

potrebe istraživanja i industrije. Projekt za cilj ima optimiranje potrošnje energije na skali mili-

vata kako bi zadovoljio računalne potrebe aplikacija u internetu stvari. Hardver koji proizlazi iz

projekta je relativno modularan što omogućava razvoj i optimiranje hardvera za specifične ap-

likacije uz postizanje značajnih stupnjeva optimizacije i energetske učinkovitosti. Projekt obuh-

vaća procesore, jednojezgrene sustave, višejezgrene sustave, višeklasterske sustave, te akceler-

atore. Iz projekta je proizašla i platforma GAP8, korištena kao ciljni hardver u disertaciji.

Konkretno, korišten je koncept višejezgrenog sustava (projekt Mia Wallace), višeklasterskog

sustava (projekt HERO) te ubrzivač (projekt HWCE).

GAP8 je heterogena računalna platforma proizvod̄ača GreenWaves Technologies, a pri-

maran joj je cilj pružiti mogućnost relativno visokih performansi na rubnim ured̄ajima koji radi

svojih specifičnih zahtjeva, npr. baterijskog napajanja, moraju ostati u domeni niske potrošnje.

GAP8 primarno se sastoji od dva disjunktna dijela, od fabric kontrolera koji gravitira oko

procesora opće namjene, te oko prilagodljivog ubrzivača. Fabric kontroleru sadrži procesor

opće namjene arhitekture RV32IMC, a primarna zadaća mu je pokretanje sustava, aplikacija te

orkestriranje vanjskih jedinica. S druge strane, klaster se sastoji od osam RISC-V jezgri iden-

tične arhitekture kao i procesor opće namjene u fabric kontroleru, te dodatno sadrži i specijal-

izirani hardverski ubrzivač operacije konvolucije. Memorijski podsustav GAP8 ugrubo se može

podijeliti na memoriju dostupnu isključivo fabric kontroleru, memoriju dostupnu isključivo jez-

grama u klasteru, podijeljenu po segmentima za svaku procesorsku jezgru, te memoriju kojoj

ix

mogu pristupiti oba podsustava. Upravo je potonja korištena za izvedbu doprinosa disertacije.

Iako najsporija, ta je memorija najveća te za prednost ima mogućnost pristupa iz oba podsus-

tava čime se omogućava jednostavan pristup bez sinkronizacijskih mehanizama. Hardverski

ubrzivač operacije konvolucije sklopovski izvodi operaciju konvolucije nad dvodimenzional-

nim ulaznim signalom, te filtrima dimenzija 3× 3, 5× 5, 7× 7 te 7× 4. Ubrzivač je izložen

kroz zaseban API koji se pokazao relativno nestabilnim, pogotovo u kontekstu disjunktnog ko-

rištenja u odnosu na komponente SDK-a namijenjene procesiranju inferencije na neuronskim

mrežama u klasteru.

4. Programski okvir RISE
RISE je podatkovno paralelan programski jezik temeljen na uzorcima, visoke razine ap-

strakcije te izveden kao domenski specifičan jezik, duboko ugrad̄en unutar programskog jezika

Scala. Glavni naglasak programskog jezika RISE jest izlaganje sučelja koje će omogućiti pro-

gramerima te znanstvenicima unutar specifičnih domena da izračune opišu odgovarajući na

pitanje što treba izračunati, umjesto da nizom imperativnih naredbi opisuju kako se pojedina

operacija treba izvesti. RISE je uparen s programskim jezikom ELEVATE, takod̄er izvedenim

u obliku domenski specifičnog jezika unutar programskog jezika Scala, a čija je glavna uloga

izražavanje optimizacijskih strategija. Oba jezika ulaz su u prevoditelj Shine koji primjen-

juje transformacije te generira optimirani kôd niske razine. Cjeloviti RISE okvir razvija se

na Sveučilištima u Edinburghu, Glasgowu i Münsteru, te je korišten za ostvarivanje dopri-

nosa ove disertacije. Ulaz u prevoditelj jest izračun izražen u programskom jeziku RISE, te

optimizacijska strategija u programskom jeziku ELEVATE. Prevoditelj u procesu prepisivanja

primjenjuje transformacije te generira RISE izraz niske razine u kojemu su direktno enkodi-

rane optimizacijske odluke. Nadalje, u procesu prepisivanja koristi se hibridni funkcijsko-

imperativan med̄ureprezentacijski jezik DPIA (Data Parallel Idealised Algol). RISE izraz niske

razine prepisuje se u funkcijsku DPIA med̄ureprezentaciju, a nakon toga u imperativnu DPIA

med̄ureprezentaciju. Ta se imperativna med̄ureprezentacija na kraju prevodi u čvorove apstrak-

tnog sintaksnog stabla za ciljni programski jezik ili platformu, te u konačnici u sam programski

kôd niske razine, nativan za ciljnu platformu.

Programski jezik RISE sadrži standardne konstrukte tipične za (funkcijske) programske

jezike općenito, primjerice identifikatore, lambda izraze ili literale. Posebna vrsta izraza su

primitivi koji enkapsuliraju modularne operacije više ili niže razine. Primitivi mogu biti gener-

ički, odnosno primjenjivi na sve ciljne platforme, ili mogu biti specijalizirani za pojedinu

platformu. Generički primitivi obuhvaćaju funkcije koje se mogu pronaći u drugim (funkci-

jskim) programskim jezicima, uključivo funkcije višeg reda, primjerice map i reduce, ali i zip,

join, slide ili pad. S druge strane, optimizacijske strategije u programskom jeziku ELEVATE

izražavaju se pravilima koja se onda ulančavaju odgovarajućim operatorima. Pravila prepi-

sivanja mogu biti algoritamska, pa na taj način matematički dokazivim pravilima optimirati

x

izračun kombinacijom primitiva, npr. pravilo mapFusion. Takod̄er, pravila mogu biti i jed-

nostavnija (eng. lowering) te se mogu koristiti za zamjenu generičkih primitiva konkretnim

implementacijama. Jednostavan primjer jest zamjena generičkog primitiva map konkretnom

paralelnom implementacijom mapPar. Pravila se primjenjuju ondje gdje je odred̄eno kombina-

torima koji rekurzivnim prolaskom kroz izraz u programskom jeziku RISE traže odgovarajuće

uzorke te ih prepisuju kako pravilo nalaže. Konkretni kombinatori mogu tražiti uzorke izvana,

iznutra ili unutar cijelog izraza.

5. Implementacija modela
Prvi dio očekivanog znanstvenog doprinosa ostvaren je korištenjem i odgovarajućim proširen-

jima programskog jezika RISE, te pripadajućeg radnog okvira. S obzirom na to da ciljna hetero-

gena platforma GAP8 dijeli neke koncepte s platformama podržanima od strane jezika OpenCL,

a primarno koncept domaćina (eng. host) i ured̄aja (eng. device) u sustavu koji idejno odgo-

varaju fabric kontroleru i klasteru na platformi GAP8, implementacija se u većim dijelovima

oslanja upravo na komponente inicijalno predvid̄ene za platformu OpenCL. Doprinos je u većoj

mjeri ostvaren kroz komponente modula, generatora modula te generatora kôda. Prva razvi-

jena komponenta je GAP8 Module koja enkapsulira validan dio kôda koji se može pokrenuti na

ciljnoj platformi, na način da sadržava podmodul za domaćina te sekvencu podmodula za ured̄aj

tj. klaster. Jedna aplikacija enkapsulirana na ovaj način može podržavati više funkcija koje će

se izvršiti na klasteru. Oba podmodula su vrste modula za programski jezik C. Modul dodatno

sadržava metodu koja ga prevodi u ciljni programski jezik te je zadužen za injektiranje odsječka

kôda za raspakiravanje parametara unutar funkcije koja se izvodi na klasteru. S obzirom na to

da API za GAP8 ne podržava slanje više od jednog parametra u trenutku pokretanja izvod̄enja

na klasteru, injektiraju se odsječci kôda koji u strukturu pakiraju parametre prije slanja, cas-

taju strukturu u pokazivač tipa void, te nakon zaprimanja takvog parametra na strani klastera,

ponovno ga otpakiravaju u zasebne parametre. Modul je zadužen za otpakiravanje parametara

dok se pakiranje parametara dogad̄a prilikom generiranja kôda za stranu domaćina.

Odgovornost generiranja kôda podijeljena je med̄u komponentama zaduženima za stranu

akceleratora, tj. klastera, te domaćina. Dodatno, strana domaćina sadržava i generator modula

za domaćina. Strana klastera ponovno iskorištava ranije ugrad̄ene mogućnosti radnog okvira

te se na njih oslanja prilikom generiranja modula za klaster. Generiranje kôda za klaster izve-

deno je proširenjem postojećeg generatora za model OpenMP te se na ovoj razini dodaje po-

drška za hardverski ubrzivač operacije konvolucije. U slučaju nailaska na odgovarajući imper-

ativni DPIA primitiv, generator kôda generirat će seriju poziva koji na niskoj razini omogućuju

izvedbu operacije konvolucije na hardverskom ubrzivaču. Ti koraci su: instanciranje i pokre-

tanje ubrzivača operacije konvolucije, odgovarajuća konfiguracija, izvršavanje operacije te u

konačnici isključivanje ubrzivača. S druge strane, s obzirom na to da paralelizam nije izvediv

na strani domaćina, generator kôda za procesor domaćina oslanja se na generator za programski

xi

jezik C. Primarna zadaća ovog generatora jest generiranje poziva za niske razine za izvršavanje

izračuna na klasteru, pakiranje parametara koji se prosljed̄uju klasteru te generiranje memo-

rijskih sinkronizacijskih poziva. Iako se trenutno sinkronizacija memorije ne provodi nego se

aplikacije oslanjaju na mogućnost izravnog pristupa podacima koji se nalaze u memoriji dostup-

noj s obje strane sustava, preuzimanjem koncepta iz podrške za OpenCL platforme prevoditelj

anticipira buduću mogućnost za takvom sinkronizacijom. Na taj način stvara se preduvjet za

buduće optimiranje generiranog kôda s obzirom na prijenos podataka s domaćina na klaster i

obrnuto. Generator modula domaćinskog kôda ulančava tok koji zadaje sučelje generatora mod-

ula na način da ponovno iskorištava dijelove generatora za platformu OpenCL te ih povezuje

s direktivama za generiranje kôda i generiranje modula domaćinskog kôda. Produkt genera-

tora modula domaćinskog kôda jest modul za programski jezik C koji enkapsulira strukturu s

varijablom tipa Kernel za svaku funkciju koja se izvodi na klasteru, typedef deklaraciju za nave-

denu strukturu, direktivu uključivanja za odgovarajuću header datoteku s podrškom za izved-

benu okolinu, seriju funkcija za inicijaliziranje, pokretanje i uništavanje kernela, te u konačnici

funkciju main kao ulaznu točku za izvršavanje aplikacije.

Ključna funkcionalnost sustava jest mehanizam za pokretanje izvod̄enja na klasteru, a ona

je ostvarena kroz dodavanje odgovarajućih primitiva na svim razinama jezika, odnosno radnog

okvira. Na razini programskog jezika RISE, dodan je primitiv gap8run koji kao parametar

prima broj jezgri na kojem se izračun želi izvršiti, dok kao drugi parametar prima izraz u pro-

gramskom jeziku RISE kojim je opisan izračun. Na razini funkcijske DPIA med̄ureprezentacije,

dodana su dva primitiva, Run te KernelCall. Primitiv Run je primitiv u koji se gap8run inicijalno

prevodi, a koji se u procesu odvajanja razdvajanja inicijalnog izraza na dio koji će se izvršiti

na domaćinu te na dio koji će se izvršiti na klasteru prevodi u primitiv KernelCall. Razdva-

janje izraza na ta dva dijela odvija se u komponenti SeparateHostAndAcceleratorCode a svodi

se na obilaženje izraza te konstrukciju funkcijske definicije kada se naid̄e na dio izraza koji

je za izvod̄enje na klasteru označen prethodno navedenim gap8run primitivom. Naposljetku,

funkcijski DPIA primitiv KernelCall prevodi se u imperativni DPIA primitiv KernelCallCmd

koji direktno uzrokuje generiranje konstrukata za pokretanje zadanog izraza u klasteru. Za

podršku hardverskog ubrzivača operacije konvolucije dodana su po četiri primitiva na svakoj

razini, tj. na razini programskog jezika RISE te na razinama imperativne odnosno funkcijske

DPIA med̄ureprezentacije. Svaki od dodanih primitiva odgovara jednoj od hardverski podržanih

operacija konvolucije s filtrima različitih dimenzija.

Jedan od inicijalnih ciljeva ove disertacije bio je podići razinu apstrakcije za kompleksne

heterogene sustave. Jedan od razloga takvog pristupa jest i taj što takve sustave često ko-

riste znanstvenici u pojedinim domenama bez iskustva u području programiranja. Dodatno,

kompleksni heterogeni sustavi za puno iskorištavanje njihovih mogućnosti često zahtijevaju

poznavanje arhitekturalnih detalja na niskoj razini, te na taj način čine cjelokupni proces pro-

xii

gramiranja takvog sustava inherentno teškim. Podizanje razine apstrakcije de facto zahtjeva

prebacivanje odgovornosti za poznavanje tih detalja na prevoditelj. Uzevši sve u obzir, a u svrhu

ostvarenja cilja disertacije, implementiran je mehanizam detekcije odgovarajućih uzoraka koji

se mogu izvesti u hardverski implementiranim specijaliziranim ubrzivačima. Konkretno, za

platformu GAP8, u programskom jeziku ELEVATE implementirano je pravilo koje prepoznaje

slijed uzoraka operacije konvolucije te ga prevodi u jedan od prethodno opisanih odgovara-

jućih konvolucijskih primitiva u programskom jeziku RISE. Na taj način se omogućuje da se

ispravno izražena operacija konvolucije izvrši u hardverskom ubrzivaču operacije konvolucije,

a bez eksplicitnog navod̄enja poziva te bez potrebe za poznavanjem arhitekturalnih detalja ciljne

platforme. Konkretni primitiv u koji se izraz prevodi ovisi o veličini susjedstva koji je zadan

kao parametar primitivu slide2D.

Na niskoj razini, kao dio potporne infrastrukture za generiranje kôda, implementirana je i

knjižnica za izvedbenu okolinu (eng. runtime library). Ta knjižnica izlaže sučelje koje je unifici-

rano za ciljne platforme koje podržavaju koncept domaćina i ured̄aja, a cilj jest smanjiti količinu

repetitivnog kôda koju generator kôda unutar RISE okvira mora generirati. Generator kôda

generirat će pozive izložene ovom knjižnicom, a pojedine platforme implementiraju pozive na

niskoj razini, uvažavajući vlastite specifičnosti. Knjižnica je izvorno nastala za OpenCL plat-

forme, a na odgovarajući način je proširena te implementirana za platformu GAP8. Glavni

koncepti koje knjižnica uvodi su kontekst, jezgra (eng. kernel) te buffer. Kontekst enkapsulira

sve potrebne informacije za izvod̄enje akceleratorske funkcije na klasteru, dok jezgra (kernel)

enkapsulira samu akceleratorsku funkciju koja će se izvesti na klasteru. Buffer predstavlja dio

memorije u kojem se nalaze podaci nad kojima se izvršavaju operacije. Uvod̄enjem koncepta

buffera anticipira se mehanizam transfera podataka s domaćina na ured̄aj i obrnuto, ali se ti

transferi u ovom trenutku ne dogad̄aju, što je indicirano implementacijom u datoteci nosync.c.

Implementacija modela zaokružena je komponentom izvod̄ača koja omogućava izvod̄enje

programa u prirodnom okruženju okvira RISE, ali na ciljnoj hardverskoj platformi ili unutar

simulatora. Izvod̄ač enkapsulira generiranje kôda, prevod̄enje na niskoj razini nativnim pre-

voditeljem za ciljnu platformu, te izvršavanje na ciljnoj platformi. Kao parametre moguće je

specificirati ciljnu platformu u vidu testne pločice ili simulatora, operacijski sustav, te kanal za

komunikaciju s programerom. S obzirom na to da se na niskoj razini programi za GAP8 prevode

korištenjem programa make, izvod̄ač popunjava varijable u predefiniranoj datoteci Makefile.

6. Evaluacija modela
Kao dodatni doprinos, prethodno izloženi model ekstenzivno je evaluiran s obzirom na per-

formanse, energetsku učinkovitost te programirljivost. Evaluacija je provedena na način us-

pored̄ivanja prethodno navedenih parametara za ručno optimiran kôd te kôd generiran proširenim

programskim okvirom RISE. Metodologija mjerenja uvijek je bila identična, a sastojala se od

pet uzastopnih mjerenja, od kojih je prvo odbačeno kako bi se eliminirali potencijalni negativni

xiii

efekti utitravanja ispitne okoline. Performansa i energetska učinkovitost mjerila se samo za

izračun od interesa, dok podizanje sustava, učitavanje podataka te ispis rezultata nisu bile uzi-

mane u obzir. U konačnici, dobiveni rezultati prikazani su kao prosjek i standardna devijacija

uzorka. Za provod̄enje mjerenja pratile su se službene upute proizvod̄ača ispitne okoline.

Mjerenje performanse mjerilo se dvama parametrima: praćenjem broja aktivnih ciklusa te

stvarno proteklog vremena potrebnog za izvršavanje s obzirom na "zidni sat". Za oba parame-

tra korišten je GAP8 API, a na odgovarajuća mjesta u kôdu ubačeni su odsječci koji pokreću

mjerenje prije pokretanja ispitnog izračuna, te zaustavljaju mjerenje nakon izračuna. Energet-

ska učinkovitost mjerena je kroz potrošnju energije za vrijeme trajanja izračuna od interesa.

Prva diferencijalna sonda osciloskopa spojena je na izvode internog DC/DC regulatora GAP8

čipa. Izmed̄u izvoda smješten je otpornik vrijednosti 1 Ohm čime je izravno omogućeno

mjerenje struje kroz otpor te posljedično snage u diskretnim trenutcima izvod̄enja. Uzorko-

vanjem sonde, mjerene su vrijednosti napona te je izračunata snaga, a numeričkom integraci-

jom snage s obzirom na vrijeme izvod̄enja, izračunata je potrošnja energije. Za verifikaciju,

energija je izračunata i korištenjem prosječne snage za vrijeme izvod̄enja izračuna od interesa.

Za označavanje izračuna od interesa korištena je druga diferencijalna sonda osciloskopa koja

je bila spojena na GPIO priključnice sustava. Ta je priključnica na odgovarajućim mjestima u

programskom kôdu bila postavljana u logičku jedinicu te spuštana u logičku nulu. Označavanje

izračuna od interesa pokazalo se potrebnim iz razloga fluktuiranja napona na izvodima internog

DC/DC regulatora čime je onemogućeno da se vršne vrijednosti tog napona smatraju početkom

i krajem izračuna od interesa. Osciloskop je obje sonde uzorkovao frekvencijom od 1 kHz.

Za ispitne scenarije uzete su aplikacije iz stvarne primjene. Prvi ispitni scenarij je množenje

matrica, a korištene su matrice dimenzija 250× 250 elemenata. Drugi ispitni scenarij je So-

belov filter kojime se u slikama naglašavaju oštriji kontrastni prijelazi. Iako se ovaj filter svodi

na operaciju konvolucije s dva različita filtra te geometrijsku sredinu kao konačan rezultat, pri-

likom izračuna radi nestabilnosti nije korišten hardverski ubrzivač operacije konvolucije. Testni

podatak je monokromatska slika dimenzija 320×240 piksela. Treći i posljednji ispitni scenarij

je klasteriranje k-sredinama, algoritam koji ima izravne primjene u strojnom učenju, a koristi

se za klasteriranje m točaka s n dimenzija u k klastera. Za testiranje korišten je skup podataka

o 250 točaka s dvije dimenzije u tri klastera, a postupak je provod̄en u 1000 iteracija algoritma.

Barnes-Hut simulator n tijela izbačen je kao ispitni scenarij radi poteškoća u prilagodbi ručno

optimiranog kôda za ispitnu platformu. Jedan ispitni scenarij korišten je u svrhu verifikacije, te

za njega nisu provedena mjerenja. Taj scenarij jest verifikacija prevod̄enja operacije konvolu-

cije izražene u programskom jeziku RISE za izvod̄enje na hardverskom ubrzivaču operacije

konvolucije. Za ovaj slučaj prikazana je primjena jednostavne optimizacijske strategije koja

izraženu konvoluciju prilagod̄ava za izvod̄enje na hardverskom ubrzivaču.

Postignuti rezultati za performanse su zadovoljavajući. S obzirom na mjerenje protek-

xiv

log vremena ispitnog izračuna, generirani kôd postiže rezultate koji su marginalno bolji od

ručno optimiranog kôda. Kada se promatraju rezultati s obzirom na broj aktivnih ciklusa,

rezultati su takod̄er marginalno bolji od ručno optimiranog kôda, s izuzetkom klasteriranja k-

sredinama gdje je performansa generiranog kôda značajnije veća od ručno optimiranog kôda.

Potonji slučaj može se zanemariti jer je očekivano da rezultat ostvaren brojem aktivnih ciklusa

odražava rezultat ostvaren proteklim vremenom. Moguće odstupanje, iako pozitivno za dopri-

nos disertacije, vjerojatno je uzrokovano internim brojačima performansi unutar GAP8 API, a

koji u ovom trenutku radi nedostatka resursa nije podrobnije analiziran. Evaluacija energetske

učinkovitosti takod̄er je dala zadovoljavajuće rezultate. Za sva tri ispitna scenarija, te za obje

metode mjerenja, rezultati generiranog kôda sumjerljivi su ručno optimiranom kôdu. Scenar-

iji klasteriranja k-sredinama i Sobelovog filtra marginalno su bolji za generirani kôd, dok je

rezultat množenja matrica marginalno lošiji, ali svejedno sumjerljiv ručno optimiranom kôdu.

Mjerenje programirljivosti izvršeno je implicitno, a s obzirom na to da su se metrike za oc-

jenu programirljivosti pojedinih programskih modela pokazale nepouzdanima ili subjektivnima,

za ovu svrhu prebrojane su linije programskog kôda za ručno optimirani kôd, generirani kôd, te

kôd u programskom jeziku RISE. Za sve slučajeve kôd u programskom jeziku RISE značajno

je kraći od ručno optimiranog kôda. Generirani kôd je duži od ručno optimiranog kôda, ali se

taj slučaj može zanemariti s obzirom na to da se generiranje kôda može percipirati kao jedan od

koraka u prevoditeljskom lancu. Kôd u programskom jeziku RISE je kraći, čistiji i koncizniji te

se može tvrditi da je uz postignute sumjerljive rezultate za postignute performanse i energetsku

učinkovitost prikladan za korištenje u heterogenim sustavima.

7. Zaključak
Vršne performanse superračunala današnjice mjerene jedinicom FLOPS, trenutno su reda

veličine petaFLOPS (1015). Radi napretka čovječanstva, a posljedično i znanosti, anticipira se

skorija potreba za ulaskom tzv. exascale domenu u kojoj će vršne performanse biti u razini

exaFLOPS (1018). Za dostizanje exascale domene, ključni faktori su efikasno iskorištavanje

paralelizma te heterogenost. Jedan od problema s kojima se programeri i znanstvenici susreću u

radu s takvim, visoko paralelnim i heterogenim, sustavima jest programiranje. Efikasno iskoriš-

tavanje dostupnih resursa često zahtjeva poznavanje arhitekturalnih detalja niske razine. Cilj ove

disertacije bio je podići razinu apstrakcije, te izložiti jezik visoke razine za efikasnije programi-

ranje kompleksnih heterogenih sustava. Taj cilj je i dostignut proširenjima programskog jezika

RISE te pripadajućeg okvira. Usporedba performansi te energetske učinkovitosti postignutih

generiranim kôdom u odnosu na ručno optimirani kôd pokazuje da je moguće barem zadržati,

a često i postići bolje performanse i energetsku učinkovitost.

Buduće optimizacije na praktičnom dijelu doktorskog rada moguće su u više pravaca. Prvi

mogući pravac jest optimizacija i bolje iskorištavanje memorijskog podsustava. Trenutno se

svi podaci nad kojima se vrši obrada pohranjuju u memoriji koja je dostupna cijelom sustavu,

xv

ali je ujedno i najsporija. Paralelizacijom obrade i transfera podataka u bržu memoriju rez-

erviranu isključivo za klaster, nedvojbeno bi se postigle više razine performansi i energetske

učinkovitosti, uz zadržavanje iste razine programirljivosti. Optimizacijska strategija za detek-

ciju uzoraka koji predstavljaju operaciju konvolucije je prespecifična te ne anticipira mogućnost

da se konvolucija izrazi na moguće drugačiji način, te je strategiju u tom kontekstu moguće do-

datno optimirati. S druge strane, strategiju se može generalizirati i na način da se implementira

mogućnost operacija konvolucije za signale i filtre različitih dimenzionalnosti. Zadnji pravac u

kojem je moguće dati doprinos jest dodatno pojednostavljenje modela. Trenutni model pred-

stavlja napredak u odnosu na nativan programski model za ciljnu platformu, ponajprije radi

izlaganja konciznijeg sučelja, ali i sakrivanja arhitekturalnih detalja niske razine. Ipak, funkci-

jska programska paradigma, još uvijek je relativno nepoznata te se model može prilagoditi

dodatno kako bi se programiranje kompleksnih heterogenih sustava dodatno pojednostavnilo.

Ključne riječi: domenski specifični jezici, heterogeni sustavi, paralelno procesiranje, više-

jezgreni sustavi, RISC-V

xvi

Contents

1. Introduction . 1

1.1. Research goals .4

1.2. Thesis outline .6

2. Theoretical Background . 8

2.1. General motivation .8

2.2. Parallelism .9

2.2.1. Levels of parallelism .10

2.2.2. Programming models .13

2.3. Heterogeneous systems .14

2.3.1. Heterogeneity as a concept .14

2.3.2. Accelerators .15

2.3.3. GPGPUs .17

2.3.4. Other .18

3. General Concepts . 19

3.1. Domain-specific languages .19

3.1.1. General .19

3.1.2. Overview of the field .20

3.2. RISC-V .25

3.2.1. General .25

3.2.2. Extensions .25

3.2.3. Notable projects .28

3.3. PULP .29

3.3.1. Processors .30

3.3.2. Single core platforms .30

3.3.3. Multi-core platforms .31

3.3.4. Multi-cluster systems .32

3.3.5. Accelerators .33

3.4. GAP8 .33

3.4.1. Architecture of the platform .34

3.4.2. API .35

4. RISE Stack . 43

4.1. General concepts .43

4.2. RISE & Shine .46

4.2.1. General .46

4.2.2. Important constructs .47

4.3. ELEVATE .52

4.4. Notable research .53

5. Model Implementation . 54

5.1. General .54

5.2. GAP8 Module .55

5.3. Code generation .56

5.3.1. Accelerator code generation .56

5.3.2. Host side .58

5.4. Expression running mechanism .61

5.4.1. Host and accelerator code separation62

5.5. Hardware convolution engine support .63

5.5.1. Optimization strategy .65

5.6. Runtime environment .67

5.7. Executor .71

6. Model Evaluation . 73

6.1. Methodology .73

6.1.1. Performance measuring .75

6.1.2. Measuring energy consumption .76

6.2. Benchmarks .80

6.2.1. Matrix multiplication .80

6.2.2. Sobel filter .81

6.2.3. k-means clustering .84

6.2.4. Convolution .86

6.3. Evaluation .89

6.3.1. Performance evaluation .89

6.3.2. Energy efficiency evaluation .92

6.3.3. Programability evaluation .95

7. Conclusion . 98

A. Hand-tuned code . 101

B. Generated code . 107

B.1. Sobel filter benchmark .107

B.2. HWCE utilization .114

Bibliography . 116

Biography . 138

Životopis . 140

Chapter 1

Introduction

Nowadays as we observe stable and constant growth in science and the general advancement of

humanity, the increased need for computational resources is observed as well. Raw computing

performance measured in FLOPS (Floating Point Operations Per Second), a de facto standard in

measuring computational performance, especially in the high-performance computing domain,

according to the Top500 list [1], is currently in Peta (1015) order of magnitude. Although

currently achieved peak performance levels satisfy today’s needs for computing power, the need

to enter the ExaFLOPS (1018) domain with affordable energy consumption is anticipated and is

currently one of the goals for computer engineers and scientists. In his opening keynote at the

international high-performance computing conference SC20, Bjorn Stevens, a professor at the

Max Planck Institute for Meteorology in Hamburg, Germany said that a real need for exascale

computing power exists. As an example, he pointed out the massive data sets created by climate

science, while stressing out that the computing power has to be accessible to a wide range of

people [2].

The importance of achieving the Exascale domain is confirmed by the existence of the re-

search projects in different parts of the World, e. g. "Exascale Computing Project" in USA [3],

Japan [4] with allegations that China has already reached exascale on two separate systems [5].

Japan’s Fugoku supercomputer built on ARM processor architecture and Tofu interconnect D

already reached exascale domain in single or further-reduced precision [1]. European Union

also heavily invests in High-performance computing, with aims towards Exascale as well [6],

with a couple of notable projects like EuroHPC initiative [7], European Open Science Cloud

(EOSC) [8], and ExaNode project [9].

The latter is heavily influenced by the current geopolitical perspective, due to the fact that

most of the processing cores manufacturers are non-European. Intel, AMD, and NVIDIA are

located in the USA, while ARM resides in the UK which can’t be considered to be politi-

cally tied to the European Union any longer. Furthermore, NVIDIA is in process of acquiring

ARM which will even more derogate the European intelligence on processing cores design.

1

Introduction

Everything mentioned renders Europe and the European Union vulnerable, which is addition-

ally amplified by the rise of tensions on the current geopolitical map of the world. In light of

that, it is necessary to mention Europe Processor Initiative (EPI) [10] which aims to deliver a

new family of low-power European processors for extreme-scale computing, high-performance

Big-Data and a range of emerging applications [11], together with the processing cores design

know-how, guaranteeing its processing sovereignty. EPI is a project currently implemented un-

der the special sponsorship of the European Commission which further stresses the importance

of the project in the context of European computing sovereignty, both in High-Performance and

general computing domains.

The so-called Exascale domain opens up many challenges, mainly in the areas of computer

architecture, heterogeneity, and energy efficiency, and it is exactly the heterogeneity that is one

of the key development points with respect to reaching the Exascale domain [12]. Heterogene-

ity, in the most general case, purports the usage of multiple processing cores with different

purposes and architectures inside one relatively isolated computational node.

Usually, considering a computational node, besides a general-purpose processor, hetero-

geneity implies the existence of the general-purpose graphics processing unit (GPGPU) or

accelerator for specific applications or tasks. The concept of heterogeneity gained popular-

ity exactly when graphic processing units’ manufacturers exposed their cores to general com-

puting by the appropriate APIs, CUDA [13] for NVIDIA chips and OpenCL [14] for AMD

chips. General-purpose graphic processing units introduced a significant increase in perfor-

mance in the intensive data-parallel applications. In these domains, they are significantly more

energy-efficient than general-purpose processors. Also, they can be simply horizontally scaled

by switching to newer models, which represents a perk being reasoned by the fact that Moore’s

law is still applicable to them. A major advantage is a considerably simpler programming model

for the average programmer, exposed through the aforementioned CUDA and OpenCL, with the

addition of OpenMP, when compared to programming and synthesizing custom accelerators.

The other important type of processing unit in the context of heterogeneity are customized

accelerators which are implemented as locked, custom components, or customizable programmable

logic implemented in FPGA chips. Such accelerators achieve higher performance and energy

efficiency compared to conventional processing engines and graphic processing units, but that

comes with a price: complicated programming model at the level of hardware design, lack of

scalability, lack of portability, and usability only in application domain they were designed for.

Tools that ease the implementation of customized accelerators exist, i.e. Chisel [15] or High-

level synthesis techniques, but they haven’t, due to multiple reasons, been caught on in general

usage.

The combination of types of processing units in a heterogeneous environment is generally

context-dependent. In embedded devices where energy efficiency and spatial conservativeness

2

Introduction

prevail, heterogeneous devices usually combine a general-purpose processor with an application

accelerator. On the other hand, High-performance computing usage scenarios utilize general-

purpose graphic processing units and application-specific accelerators as well.

Intel’s acquisition of Altera (today known under the name Intel FPGA), one of the two major

FPGA suppliers, clearly indicates that future computing platforms will add more heterogeneity

in the form of reconfigurable fabric, while in the high-performance computing domain, several

initiatives already employ heterogeneous systems with CPUs, GPGPUs and large arrays of

FPGA fabric, such as Amazon’s EC2 F1 [16] and Microsoft’s Catapult [17], with the latter

being now deployed in nearly every new server across the more than a million machines that

the Microsoft’s hyperscale cloud consists of [18]. The trend is also visible in the Top500 list

where nearly 30% of the systems use the accelerator or co-processor technology [19]. The

main reason accelerators are not (yet) more widely employed in high-performance systems is

the difficulty encountered in writing software that exploits accelerators’ capabilities efficiently

[20], a problem which persisted up until today.

Given the multiple advantages and drawbacks of both the general-purpose graphic process-

ing units and customized acceleration engines, there exists a large gap for customizable accel-

erators which would combine advantages while minimizing flaws of both approaches. Such

accelerators are flexible enough to avoid applicability-lock on just one type of application, and

in every application domain they would achieve performance and energy efficiency commensu-

rate with completely customized accelerators. Packed with the programming interface exposed

through a domain-specific language, a complicated programming model could be avoided as

well. In addition, their adjustability enables co-design and high-level architectural explorations

for performance or energy efficiency optimization of the system running target application from

one of the selected disruptive domains, such as machine learning, crypto processing, or multi-

media processing.

When discussing parallelism and heterogeneity in education, most of the curricula that are

being thought at the universities worldwide consist of teaching students sequential program-

ming in the introductory courses. The problem arises because sequential programming heavily

influences the sequential way of thinking. As stated before, virtually all of the computers that

are surrounding us are multicores, and while we are surrounded by multicores, we still tend

to teach students sequential programming and thinking [21]. Arguably, teaching the parallel

way of thinking since the inception of one’s education in computer science could be better than

teaching imperative and sequential paradigms to only then teach how to parallelize algorithms

or code in general. Furthermore, the latest guidelines published jointly by the ACM and the

IEEE in 2013. recommended integration of the parallelism throughout the curriculum [22].

Parallel programming, together with the exploitation of heterogeneous hardware is inherently

hard, starting from exploiting general-purpose graphic processing units to specific accelerators.

3

Introduction

To ease programming and increase the exploitation of computational power of such systems we

have to develop new methods and models.

Finally, following everything discussed so far, this thesis aims to cope with the emerging

heterogeneity and the inherent need to increase level of parallelism, together with the need of

easing parallel programming models by providing a novel programming model. The provided

model is formed as a domain-specific language which with the provided compiler infrastructure

compiles to the native model for the target in question.

1.1 Research goals

The main goal of this research is to provide an adequate programming model for complex

heterogeneous systems with scalable and customizable acceleration engines based on the com-

putational patterns that constitute the most compute-intensive kernels in selected application do-

mains, as well as support computations that heavily rely on integer or fixed-point bit-manipulation

with extreme producer-consumer parallelism. From the theoretical point of view, the research

will provide a comprehensive review of the programming models used for heterogeneous sys-

tems with an emphasis on compilers and infrastructure which implicitly encourages and sup-

ports parallelization. The practical implication will be a programming language for heteroge-

neous systems with customizable accelerators. One of the outcomes is to evaluate the complete

solution, namely the implemented programming model, to test it and compare it with the hand-

tuned code both in domains of performance and energy efficiency.

The hypotheses of the research are:

1.It is possible to express complex problems stemming from various domains in a domain-

specific language which can target heterogeneous systems

2.Performance of the code generated by the provided infrastructure is better or at least on

par with the hand-tuned code

3.Energy efficiency of the hardware which executes code generated by the provided infras-

tructure is better or at least on par with the hand-tuned code

4.Programmability of the complex heterogeneous systems is higher when using the pro-

posed programming model compared to the conventional programming model for the

same platform

The starting point of this research is the efficient programming abstraction for programming

complex heterogeneous systems with customizable accelerators. Given the context, the ground

case for the research is a domain-specific language layer that will be modeled or adjusted to

conform to the needs of such systems. The proposed language will be implemented together

with the rest of the components defined by the expected scientific contribution.

Regarding the planned testing equipment, an adequate system has been detected in GAP8

4

Introduction

[23] chip by GreenWaves Technologies. GAP8 is a heterogeneous system on chip which is

consisted of a general-purpose processing core based on RISC-V ISA named Fabric Controller

and an accelerator featuring 8 cores and a custom hardware convolution engine. Both fabric

controller and cores available in the cluster implement the same RISC-V instruction set, that

is RV32IMC. GAP8 stems from the PULP project [24], more specifically from Mia Wallace

[25] and Open Heterogeneous Research Platform - HERO [26]. Concepts presented in both

platforms can be found in GAP8. One such example is the bigPULP accelerator available in

HERO being exactly the cluster in the GAP8 platform, with differences in the general-purpose

processor which is ARM in HERO, and RISC-V based core in GAP8.

This thesis aimed to fulfill the expected scientific contribution proposed at the public thesis

topic defense which is constituted through 2 parts:

1.Programming model for heterogeneous systems with customizable accelerators based on

a domain-specific language

2.Algorithms for accelerator customization based on program features for performance and

energy efficiency optimization

The first part of the expected scientific contribution is fulfilled through the extension of

the RISE language and integration of the target platform in the Shine compiler infrastructure.

Support for the target platform was carried out by the addition of the primitives necessary to

support target-specific operations, together with primitives necessary to run expressions written

in RISE on the target platform.

The development of the second part of the expected scientific contribution was heavily in-

fluenced by the eventual inexistence of the desired type of customizable accelerators that were

anticipated by the project and the research described through this thesis. The idea proposed

through public thesis topic defense anticipated the future existence of the accelerators that would

expose tunable parameters, such as integer or floating-point precision, making them usable in

more than one application domain. However, the concept of such accelerators, though promis-

ing, never ended with a usable prototype, let alone with a concrete and usable implementation.

Some of the parameters can be set up, like clock frequency of the fabric controller and cluster,

together with the voltage of the chip, but tuning those parameters can’t be considered cus-

tomizing the accelerator itself. However, given the final type of customizable accelerators that

were used in this thesis, optimization techniques available in the Shine compiler were utilized.

Furthermore, as an addition to the scientific contribution, support for the customized piece of

hardware embodied through available Hardware Convolution Engine was added, together with

optimization strategy which transforms one of the series of patterns that express convolution

in RISE. The latter serves as a showcase of supporting customized hardware through pattern

rewriting when a series of patterns that constitute a computation supported by the aforemen-

tioned customized hardware is detected. Also, additional optimizations are possible in the fu-

5

Introduction

ture, regarding the detection of additional series of patterns that could constitute convolution

operation, and thus be supported by the hardware convolution engine. Finally, this thesis also

provides a number of benchmarks and example applications of the proposed model, which were

not initially proposed by the expected scientific contribution.

1.2 Thesis outline

Besides the introduction which introduces a reader to the thesis topic, explains scientific contri-

bution and hypotheses, this thesis is divided into seven chapters and two appendices which are

organized as follows:

Chapter 2 Theoretical Background

This chapter additionally widens the motivation for research in this field by providing the neces-

sary temporal context regarding the current state of the computing systems. Additionally, some

fundamental concepts regarding heterogeneity, parallelism, and techniques to efficiently exploit

parallelism on multiple levels are provided.

Chapter 3 General Concepts

This chapter covers a wide aspect of topics needed for the complete understanding of the thesis.

Topics that are covered include domain-specific languages, RISC-V, PULP, and GAP8, with

some of them packed together with the state-of-the-art in the respective topic.

Chapter 4 RISE Stack

Chapter RISE Stack gives a brief introduction to the data-parallel pattern-based RISE pro-

gramming language and to ELEVATE, a language used to express optimization strategies. A

brief overview of the programming framework used to utilize these two languages is provided,

together with a description of the Shine compiler used to compile programs from expressions

written in RISE to low-level code.

Chapter 5 Model Implementation

In Model Implementation chapter, every aspect of the extensions to the RISE framework is

described, including code generation, module generation, code separation, expression transfor-

mation, and code execution.

Chapter 6 Model Evaluation

Chapter Model Evaluation evaluates the proposed solution on different benchmarks, including

a benchmark that verifies code correctness for utilization of the HWCE, in terms of perfor-

mance, energy efficiency, and programmability. The evaluation methodology is described, and

the results are discussed.

Chapter 7 Conclusion

Finally, chapter Conclusion concludes this thesis with an overview of everything provided in it

and some perspective proposals for future work.

6

Introduction

Appendix A
This appendix provides an example of hand-tuned code, which was used in performance and

energy efficiency comparisons. The hand-tuned code for the Sobel filter benchmark is provided.

Appendix B This appendix provides a couple of examples of the generated code used in

comparisons. For consistency, generated code for the Sobel filter benchmark is provided. Ad-

ditionally, an example of the generated code that utilizes HWCE is provided.

7

Chapter 2

Theoretical Background

This chapter provides the necessary background, in terms of concepts and literature overview

necessary for the understanding of the thesis outcomes. The main concepts that are introduced

are parallelism and heterogeneity with their description, techniques, and a brief overview of the

concept’s field.

2.1 General motivation

Moore’s law, a de facto standard for approximation of transistor on integrated circuits stated

that the aforementioned number doubles approximately every two years. The author of the

law himself not so recently stated that he sees the "Law dying here in the next decade or so"

[27, 28]. A similar conclusion came from the acting CEO of NVIDIA at the prestigious CES

2019 conference [29]. Although part of the chipmakers still does not perceive the law dead, it

is indeed a fact that the on-chip transistor growth slowed down, mostly because the technology

reached its physical limits.

Furthermore, the perceived exponential growth of the effective computing power faded away

by hitting three types of "wall" [30], namely [31]:

• Power wall - As a result of the significant increase in frequency, the ability to dissipate

heat has reached the physical limit. Furthermore, the ratio between energy consumption

and increase in performance is not linear.

• Instruction-Level parallelism (ILP) wall - ILP causes a super-linear increase in com-

plexity and power consumption of the processing unit without linear speed up in the

application performance. To put it simply, one has to add complex pipelines that are not

mirrored in an equal performance increase

• Memory wall - The mismatch between memory speed and computation speed

From the latter follows that augmented with the fact that Moore’s law definitely sees its end

at some point in the relatively near future, new hardware has to be designed and developed in

8

Theoretical Background

multicore or multichip fashion to deliver expected higher performance. Consequently, programs

need to be developed in such a manner to exploit underlying multicore systems. Drive for the

ever-lasting higher performance has to imply parallelism.

To achieve the desired increase in performance in multicore and heterogeneous environ-

ments, one has to exploit potential parallelism on every layer. Although most of today’s lan-

guages offer explicit programming at the level of threads and locks [32], without modern pro-

gramming constructs, such models are developer unfriendly unreasonably difficult to use on

a wider scale. Parallel programming models offer additional abstraction over lower layers of

parallelism with varying success.

Heterogeneous parallel programming which emerged with the popularization of GPGPUs

and programming frameworks such as CUDA [13] backed up the increase in performances on

various systems. Such frameworks, though serving their purpose, usually have steep learning

curves. Minding Huang’s law which states that the performance of GPUs will more than double

in performance every two years [33], there exists a clear purpose for investigating into pro-

gramming models which would target GPGPUs. On the other hand, heterogeneity can imply

the usage of customized accelerators as well, for which programming models and frameworks

for easy and efficient development are yet to be explored [34].

2.2 Parallelism

The ground for any classification of computer architectures, which implies parallel architec-

tures as well, starts with Flynn’s classification [35]. Flynn proposed four main ways in which

computer approaches instruction and memory streams:

• SISD - Single Instruction stream, Single Data stream

• SIMD - Single Instruction stream, Multiple Data streams

• MISD - Multiple instruction streams, Single Data stream

• MIMD - Multiple instruction streams, Multiple Data streams

Various other sources extended the original Flynn’s classification with models such as SIMT
(Single instruction stream, Multiple Threads), an execution model in which SIMD model is

combined with multithreading techniques, and with SPMD (Single Program, Multiple Data

streams) [36].

On the other hand, Hennessy and Patterson in their notable book Computer Architecture:

a quantitative approach classify parallelism with respect to applications on two different levels

[37]:

• Data-Level parallelism copes with parallelization problems by focusing on ways of dis-

tributing data across different computation nodes or devices which then operate on that

data in parallel. The scale on which it can be applied varies greatly, from multicores to

9

Theoretical Background

heterogeneous clusters. Data containers for data that is operated on can be in form of

specialized data structures or any regular data structures like arrays or matrices that are

being divided and distributed

• Task-Level parallelism focuses on separating and scheduling different tasks for execu-

tion on different processing units. Those tasks can operate on shared or distributed data.

When it comes to means of exploiting those two types of parallelism, there are four major

modes, namely Instruction level, Vector architectures and GPUs, Thread level, and Request

level [37].

2.2.1 Levels of parallelism

Instruction-Level parallelism

Instruction-Level parallelism (ILP) in its most common case implies overlapping of instructions

during their execution on a processing device to achieve an increase in performance. ILP can be

exploited either dynamically on the hardware side, or statically on the software side. Dynamic

exploitation relies on the capability of processing units to detect a possibility of instructions

being executed in parallel, while static exploitation relies on compilers to detect parallelizable

instructions at compile time.

Pipelining
The most common technique used to exploit ILP is pipelining. Given a processing unit with

n-stage pipeline where every stage represents one phase in the execution of an instruction, one

could theoretically execute different phases of n instructions in parallel, since they could par-

tially overlap. A school example of a pipeline can be seen in figure 2.1, with different stages

being coloured differently. Keeping a pipeline full requires finding sequences of unrelated in-

structions either during runtime or compile time.

Loop Unrolling
Loop Unrolling, used later in some parts of this thesis as a compiler quasi optimization, as a

technique to exploit ILP is a loop transformation technique which exploits space-time tradeoff

eliminating instructions that control the loop, such as pointer arithmetic, tests at the loop end-

ing on each iteration [38] together with the respective jumps. This effectively reduces branch

penalties and delays in memory data fetches. Unrolling itself is performed in such a way that

the loop is rewritten as a repeated sequence of independent statements [39].

Branch Prediction
The aforementioned branching necessarily leads to branch penalties which can, in turn, be re-

duced by using Branch Prediction techniques. Branch prediction aims to predict which branch

1CC BY-SA 3.0 Cburnett, Licence at: https://creativecommons.org/licenses/by-sa/3.0/deed.en,
File available at: https://commons.wikimedia.org/wiki/File:Pipeline,_4_stage.svg

10

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Pipeline,_4_stage.svg

Theoretical Background

Figure 2.1: 4 stage pipeline1

the processing unit has to take after the execution of a conditional jump. Static branch predic-

tion uses information collected from earlier runs, key observation being that individual branch

is often highly biased towards being taken or untaken [37]. Dynamic branch prediction uses

information collected on the fly. Such techniques include branch prediction buffers, such as

two-level adaptive predictor [40] as an example, or branch history tables.

Dynamic Scheduling
A major limitation of pipelining is a potential data dependency between instructions in various

phases of execution. If currently executing instruction requires the result of an instruction that is

also in pipeline, data hazard will happen and execution will be stalled. By utilizing the dynamic

scheduling technique, the processing unit rearranges the order of instruction execution while

maintaining data flow and consistency [37].

Vector architectures

Vector processing units and vector architectures are prototypes of SIMD architecture, as they

are based on the idea of applying a single instruction to multiple data in parallel, thus exploiting

data-level parallelism. One of the data structures that the vector processors can naturally be

applied to are one-dimensional arrays (vectors), which does not exclude an option of collecting

a set of in-memory scattered data, organizing that data in a relatively large vector registers,

11

Theoretical Background

and processing it from there. Mass production of vectorized architectures can be found in

GPUs which lately emerged as purely computational devices through interfaces (e.g. CUDA

[13]) that enabled easier development of programs treating them partially as general-purpose

processing units. CUDA uses a modified version of the C programming language to enable the

programmer to utilize the full potential of GPUs and GPU-like architectures with many parallel

floating-point units.

Figure 2.2: SIMD CPU2

SIMD extensions for multimedia, such as SSEx or AVX [41], can be considered as other

types of vector architectures as they exploit the fact that multimedia data is usually narrower

than internal processor buses, registers, and computational units, which enables them to utilize

the aforementioned components more efficiently by filling them with more data that is being

processed. This concept is depicted on figure 2.2

Thread-Level parallelism

Thread-Level parallelism is being exploited from higher levels of abstractions relative to ILP

and Vector architectures. Threads, being the smallest sequence of instructions that can be man-

aged independently [42], imply the existence of multiple program counters and hence are being

exploited primarily through MIMD computers [37]. Thread-Level parallelism is being exploited

on computers of various scales, from embedded computers to servers. By running many threads

at once, one can decouple various parts of the program of which some could be prone to high

latencies, and thus better exploit assigned processing time. On the server scale, exploitation of

Thread-Level parallelism leads to an increase in performance and availability when it comes to

high amounts of Input/Output operations and memory latencies.

2CC BY-SA 3.0 Decora, Licence at: https://creativecommons.org/licenses/by-sa/3.0/deed.en,
File available at https://commons.wikimedia.org/wiki/File:SIMD_cpu_diagram1.svg

12

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:SIMD_cpu_diagram1.svg

Theoretical Background

Request-Level parallelism

Being implemented mostly on larger scales, Request-level parallelism exploits parallelism among

largely decoupled tasks specified by the programmer or the operating system [37]. Such tasks

are e. g., user requests to a web service hosted on a server, or multiple queries to a database

on a server that nowadays handle millions of requests on the scale of hours. In general, those

requests are largely independent and mostly involve read-only data operations. Computations

among those requests are also easily partitioned within a request and across different requests.

2.2.2 Programming models

Programming model is an abstraction of architecture used to express programs for the abstracted

platform which exposes interfaces of some subset of its functionalities. Parallel programming

model abstract parallel architecture and can be approached with respect to process interaction

and with respect to problem decomposition [43]. Problem decomposition approach is analogous

to aforementioned classification of parallelism with respect to applications, namely Data-Level

and Task-Level parallelism) with the addition of implicit parallelism which resembles every-

thing that the compiler, the runtime, or the hardware are responsible for. On the other hand,

the process interaction approach takes into consideration ways of unavoidable communication

between parallel processes. These are:

• Message passing - processes exchange data through messages. Communication can be

either synchronous or asynchronous

• Shared memory - processes communicate through part of memory which can be ac-

cessed by all participants. To avoid race conditions, one has to use means of explicit

synchronization

• Implicit communication - Covers every aspect of communication hidden from the pro-

grammer

With the addition of the basic threading model, the aforementioned classification partially fits

the classification of pure parallel programming proposed by [44]. As it is widely known, as

implementations of those models, Pthreads, OpenMP, and MPI are proposed. For the sake of

completeness, a brief review follows.

Pthreads

POSIX threads [45] (Pthreads) is a standardized programming interface, a parallel programming

model for exploiting threading mechanisms implemented by various processor architectures,

and de-facto reference implementation of the threading model. Although Pthreads originated

as a UNIX standard, it eventually settled down as an overall and official standard. Pthreads have

access to their private and shared process memory, and a rich set of API calls with the purpose

13

Theoretical Background

of thread management, synchronization, operation on mutexes, and condition variables. Unlike

processes, threads are more lightweight when it comes to creation and memory requirements.

On the other hand, they require manual synchronization through mutexes and can’t be easily

ported to non-POSIX compliant systems. The threading model could be generalized to a par-

allelized model which requires manual synchronization, and in that context partially resembles

one of the multiprocessing APIs available for the GAP8 platform, which will be covered later

in the text.

OpenMP

Open Multi-Processing [46], is an API and compiler extension, a prototype of shared mem-
ory model, that supports multiprocessing and parallelization on multiple platforms through the

utilization of shared memory concept. The standard is managed by the "OpenMP Architecture

Review Board" consortium. It is implemented as an extension in C, C++, and Fortran program-

ming languages and thus requires a compiler for the respective languages with OpenMP support.

Generated code is generally portable, with support for GPUs and accelerators as of version 4.0.,

with the currently active version being 5.2. Since it relies on the shared memory model, the

communication model is simple without the need for messaging incorporation. Throughout this

thesis, OpenMP was widely used as a programming model targeted by the compiler extended

for the purposes of this thesis.

MPI

Message passing interface [47] is an prototypical interface to the shared memory model. The

standard is managed by the "Message Passing Interface Forum", and as the name suggests,

implementations of the interface rely purely on a message exchange to enable programming of

parallel computers. The absence of shared memory (with limited distributed shared memory

in MPI-2) makes it global memory independent and more scalable than OpenMP. To date, one

of MPI implementations, namely Open MPI [48] is used by many supercomputers from the

Top500 list [49].

2.3 Heterogeneous systems

2.3.1 Heterogeneity as a concept

One of the core aspects this thesis tackles is heterogeneity, and it is thus described in this

subsection. Heterogeneous as a word, stemming both from latin and greek, by definition means

consisting of dissimilar or diverse ingredients or constituents3. When considered in the context

of computing systems, it implies a computing system or processing node consisting of dissimilar

14

Theoretical Background

or diverse compoents. Diverse or dissimilar components usually imply processing units of

different purposes. When it comes to the concrete realization of heterogeneous systems, in

practice the most common combinations are that consisting of one general-purpose processor

paired with a general-purpose graphics processing unit or a customized accelerator for a specific

application. Systems containing all three types of processing units are not excluded. Other types

of accelerators, although not prevalent in academic projects or industry, are also possible. in the

following subsection, there will be provided a brief overview of each type of accelerator that is

objectively often used in practice.

2.3.2 Accelerators

Accelerators are either integrated or disjunct parts of the system which are programmed at the

hardware level for one specific operation. Such accelerators, when observed independently,

excel in processing the operation they are specified for, and additionally achieve higher scores

in energy efficiency measured in the number of individual calculations per second per watt

of power. However, the price of high performance and technically best energy efficiency is

double-natured. Highly-specified hardware cannot perform any computation but the one they

are designed for. Furthermore, designing a customized piece of hardware is an expensive pro-

cess regarding engineer-hours, as it requires specific skills at the level of hardware and digital

design.

Customizable accelerators posed a promising solution to compromise between gain in per-

formance and energy efficiency, and reusability in multiple application domains. Such acceler-

ators ideally would expose parameters that could allow customization of the underlying hard-

ware, such as integer operation precision, floating-point operation precision, size of the vectors

being processed, etc. However, customizability to such an extent has not yet, up to date, been

achieved. From the other point of view, another type of customizability emerged, through ac-

celerators containing multiple simple processing cores, usually of RISC type, and supporting

only relatively simple operations, like integer operations including hardware multiplication, but

excluding floating point operations. That type of customizability enabled achieving increases

in performance and energy efficiency but due to the nature of general-programmability of the

aforementioned simple accelerator cores, retained a wide spectrum of applications supported.

Examples of such accelerators are Epiphany which features arrays of simple RISC cores [50],

and accelerators used by the PULP platform, described as a part of the following section (3.3)

The current state-of-the-art in the field of hardware acceleration mostly leans towards accel-

erators for deep learning, inference in deep or convolution neural networks, machine learning,

and brain-inspired computing in general. That FPGA-Based neural network accelerators are

3https://www.merriam-webster.com/dictionary/heterogeneous

15

https://www.merriam-webster.com/dictionary/heterogeneous

Theoretical Background

a prominent area of study is witnessed by a survey available in [51]. There are other notable

examples in this area. DLAU is a deep learning accelerator unit that employs three pipelined

processing units to improve throughput and utilize tile techniques to explore locality for deep

learning applications [52]. Regarding convolution neural networks, authors in [53] propose a

scalable high performance depthwise separable convolution optimized convolution neural net-

works accelerator. A solution proposed by authors in [54] demonstrates that FPGA acceleration

can be a superior solution compared to GPUs in terms of throughput and energy efficiency when

a convolution neural network is trained with binary constraints on weights and activations. Re-

garding deep convolution neural networks, work in [55] proposed a scalable parallel framework

that exploits four levels of parallelism in hardware acceleration. Systematic design space ex-

ploratio nmethodology is then exploited to maximaze accelerator throughput under FPGA con-

straints. Similar to the latter work, authors in [56] propose an analytical design scheme using

roofline model, by quantitatively analyzing solution’s computing throughput and required mem-

ory bandwidth using various optimization techniques, such as loop tiling and transformation.

Regarding the research which includes the PULP platform, there is an example of an integration

of binarized neural network accelerator into PULPissimo SoC [57]. More detailed description

of the PULPissimo platform is available further in text (subsection 3.3.2).

Accelerators and reconfigurable hardware in cloud

In the field of domain-specific acceleration, accelerators and reconfigurable hardware in the

cloud gained some traction. A most prominent example is the availability of reconfigurable

hardware exposed as cloud service at Amazon web services [16]. The same cloud is used as a

driver for FireSim, a simulation platform that enables cycle-exact microarhitectural simulation

of large scale-out clusters by combining FPGA-accelerated simulation of silicon-proven RTL

designs with a scalable, distributed network simulation [58]. Another prominent example of

the programmable hardware in the cloud is the Catapult project [18], with a notable example of

accelerating deep convolution neural networks using servers augmented with FPGAs [59].

As reconfigurable hardware’s resources are limited, [60] proposes a flow to provision FP-

GAs from a pool of cloud resources by enabling FPGA development and simulation in virtual

machines. Programmability of FPGA fabric available in the cloud poses another issue, as re-

configurable hardware is inherently hard to utilize, regardless of its location. To increase the

exploitation of such resources, various frameworks exist, with many of them listed in a survey

available in [61]. The survey also provides a list of hardware accelerators that have been im-

plemented for many cloud computing-based applications and a qualitative comparison of the

proposed schemes. Regarding physicality of data centers that implement cloud infrastructure,

[62] proposed a platform that decouples the FPGA from the processing units of servers by con-

necting FPGA directly to the datacenter’s network. That way, an FPGA can be turned into a

16

Theoretical Background

disjunct computing resource that can be deployed at a large scale into emerging hyperscale data

centers.

2.3.3 GPGPUs

General-purpose graphics processing units are technically the first accelerators that emerged

in the era of specialized hardware. Initially used as accelerators for graphics operations, by

the exposition of the interfaces for their general-purpose programming, they again emerged as

highly performant processing units for data-parallel and vector operations. Architecture of a

generalized GPU is available on figure 2.3. As can be seen in the upper part of the figure,

GPU features a series of Streaming Multiprocessors (SM), mutual L2 cache, memory (DRAM),

and adequate interfaces. Each streaming multiprocessor further contains multiple processing

cores with shared memory and L1 cache. What is visible to the programmer is a device with

a series of threads divided into blocks and warps. Such architectures are usually encapsulated

by the programming models, which are currently CUDA [13] for NVIDIA-based devices and

OpenCL [14] for AMD-based devices, at least for two of the most represented manufacturers

of the GPUs. Bindings exist for widely popular Python programming language for CUDA-

based GPUs. What can be intuitivelly concluded from the depicted architecture is that GPU

architectures provide high throughput when applying operations on the same data. The cost of

the high throughput regarding computation is paid with costly transfers of the data to and from

GPU.

GPUs are nowadays widely used for various artificial intelligence paradigms. Models of

deep neural networks are trained on GPUs before running inference on other devices [64]. An-

other popular application of GPUs is cryptocurrency mining, which is one of the reasons for

shortages and price increases on the market, at least during the making of this thesis (early

2022.). Since their inception as general-purpose accelerators, they have been widely applied

in cryptography. Paper [65] presents an efficient impelmentation of the Advanced Encryption

Standard (AES), while [66] presents a GPU implementatino of a 1024-bit RSA decrypt primi-

tive. Other usages of GPUs include, but are not limited to, pysical simulations, e. g. paper [67]

describes an efficient CUDA implementation of the Barnes-Hut n-body interaction simulator.

There are other types of devices built around GPUs with different purposes, such as NVIDIA’s

Jetson [68] which is advertised as a platform for autonomus machines and other embedded ap-

plications. Jetsons feature CPU, GPU, memory, power management, and high-speed interfaces.

4CC BY Hernández et al.

17

Theoretical Background

Figure 2.3: Architecture of a GPU4[63]

2.3.4 Other

Outside of the so-far conventional heterogeneity which implied a general-purpose processing

unit coupled with an accelerator, there are other examples of the utilization of the concept. Au-

thors in [69] utilized two different processing units of the same type, i. e. general-purpose

processing units. One of the processing units is relatively weak regarding processing capa-

bilities but is extremely energy-saving, while the other is more performant, but more power

hungry as well. Combining two of them, with mutual sleep and wake strategies, enabled op-

timization of energy consumption while retaining processing capabilities. Another example of

heterogeneity driving energy efficiency is available in [70], which presents a fast heterogeneous

and distributed cluster for efficient calculation of bcrypt password hashes. The cluster contains

computational nodes featuring a general-purpose processing unit coupled with FPGA fabric im-

plementing a custom accelerator for the most costly parts of the bcrypt loop calculation. The

improved version of the cluster is presented in [71] containing an improved version of the bcrypt

accelerator, heterogeneity on a higher level where nodes have different processing capabilities,

and an implementation of the password candidate distribution scheme based on the passwords’

probability distribution.

18

Chapter 3

General Concepts

This chapter provides some fundamental concepts used throughout this thesis, such as domain-

specific languages, together with a brief review of state of the art in each respective field. Fur-

thermore, this chapter provides an introduction to RISC-V instruction set architecture, the PULP

project, and finally to the GAP8 platform, the platform used as hardware support for delivering

outcomes of this thesis.

3.1 Domain-specific languages

3.1.1 General

The programming and application execution presents a special issue in the domain of heteroge-

neous computing. Multiple types of processing units, as well as potentially diametrically oppo-

site applications which can be executed under the system present a significant challenge for the

programmers. One of the possible means of coping with the aforementioned challenges is the

development of the programming models which abstract away the implementation details of the

system from the programmer. The solution comes up often in a form of the Domain-Specific

language which is defined as a programming language or executable specification language that

offers, through appropriate notations and abstractions, expressive power focused on, and usually

restricted to, a particular problem domain [72].

The main differences between general-purpose programming languages and Domain-Specific

languages are embodied in the fact that DSLs target a specific problem area and that DSLs con-

tain syntax and semantics that model concepts at the same level of abstraction as the problem

domain does [73]. Domain-specific languages have always been around as means of solving

complex, domain-bound problems. Deursen, Lint and Visser in 2000. published a survey on

DSLs, citing 75 key publications in the area [72].

When it comes to development of DSLs, they are mostly clasiffied as internal and external

19

General Concepts

[73, 74]. Internal DSLs are embedded inside of the host programming-language and reuse its

syntax, toolchains, and compilers. External DSLs are developed independently, and have their

own infrastructure in terms of parsing, interpretation, compilation and code generation [73].

One of the general-purpose programming languages that have native support for embedding

DSLs is Scala. Since the framework used to deliver contributions of this thesis utilizes Scala,

DSLs developed with Scala, are of special interest. In this overview [74], authors present five

approaches for implementing Domain-Specific languages in Scala as external which can use

either a parser generator or a parser library, and internal, which can use annotations of existing

language, deep embedding, or shallow embedding. Besides providing examples for every case

in sense of an example of each type of DSL development even emulating external DSLs, authors

grade each approach with regards to traits of the programmer who will use language, which can

be seen in table 3.1.

Table 3.1: Pros and cons of DSLs with Scala[74]

External Internal

tool library annotations deep shallow

Ease of development -1 0 2 1 2

Flexibility of syntax 2 2 -1 0 -1

Quality of syntax error messages 1 1 2 -1 0

Ease of use 2 2 1 0 -1

Those traits stemming from the features of the particular approash, namely Ease of develop-

ment, Flexibility of syntax, Quality of syntax error messages, and Ease of use, are graded with

scores between -1 and 2. It can freely be concluded that each approach has its own pros and

cons, and that selection of a particular approach heavily depends on requirements regarding the

DSL being developed.

3.1.2 Overview of the field

There are other notable examples in the world of DSLs. Halide, for example, is a DSL for

expression of the high-performance image processing pipelines [75]. The language itself is em-

bedded in C++ and targets many modern CPU architectures and GPU compute APIs. Although

Halide was designed and implemented as a DSL primarily for image processing, it eventually

evolved into supporting heterogeneus computing. Work available in [76] demonstrates the ex-

tensions to the language which enable users to specify portions of their applications that should

be hardware accelerated. The provided compiler then automatically generates the accelerator,

20

General Concepts

together with the glue logic necessary for the programmer to utilize it. Halide is of special inter-

est because it is de facto standard for expressing image processing pipelines, and yet one of the

benchmarks later in the text (section 6.2.2) is exactly a part of the image processing pipeline,

meaning that Halide and outcomes of this thesis could be compared as a part of future work.

Furthermore, the RISE team recently published a paper comparing RISE-generated code with

Halide on mobile CPUs [77].

In light of the ever-lasting run for better performances, it was previously mentioned that one

of the key aspects for achieving them is heterogeneity. Since the programming of heteroge-

neous systems is inherently hard, DSLs and custom infrastructures that often come packed with

them could present a solution. However, developing a DSL, be it internal or external is again a

process that cannot be easily perceived as mainstream or easy. Delite is a framework that eases

the creation of DSLs by providing common components like parallel patterns, optimizations,

and code generators that can be reused in DSL implementations [78, 79, 80]. The framework

includes lifting of embedded DSLs into an internal representation, optimizations, and code gen-

erators that compile DSLs to C++, CUDA, or OpenCL. Programs are automatically parallelized,

and different parts of the program can be run simultaneously on CPU and GPUs.

Figure 3.1: High-level overview of Delite framework1[79]

Figure 3.1 depicts a high-level overview of Delite framework. As can be seen in the figure,

DSL infrastructure consists of a domain embedding language embedded in Scala, compiler

framework which incorporates static optimizations and heterogeneous code generation, and

runtime part incorporating task and data parallelism together with locality aware scheduling.

Delite development team so far proposed four DSLs built on top of the framework, and those

are:

• OptiML [80, 81] - a DSL for machine learning
1©2011 IEEE

21

General Concepts

• OptiQL [80] - a DSL for data querying

• OptiGraph [80] - a DSL for graph analysis

• OptiMesh [80] - a DSL for scientific computing

Although Delite can be perceived as an outdated project, it is important to mention it, as it

is one of the first modern and complete frameworks for DSL development. Furthermore, the

RISE framework includes similar concepts, such as compilation of a DSL to relatively lower

programming language, use of internal representation, employing transformations and opti-

mization, down to the sole fact that it is embedded in Scala.

A team of researchers that worked on Delite, later proposed a novel intermediate language,

named Distributed Multiloop Language (DMLL) [82]. DMLL utilizes data-parallel patterns,

a concept that RISE utilizes as well, that capture necessary semantic knowledge that restructures

computations for heterogeneous devices. DMLL is wrapped with a compiler and runtime envi-

ronment that can execute parallel applications across a heterogeneous cluster with non-uniform

memory and accelerators.

RISE is a data-parallel and pattern-based language embedded in Scala for high-level com-

putation expression. The main idea behind the project is to express what is being computed,

instead of how is something computed. Expressing computation using patterns enables transfor-

mations using rewrite rules that encode implementation and optimization choices2. As authors

put it, RISE is a spiritual successor to LIFT [83] project. Unlike in LIFT which explores a

large space of possibilities in optimizing the provided high-level program, the RISE-centered

framework features another language named ELEVATE [84, 85] for expressing optimization

strategies. Since the contributions of this thesis completely rely on the RISE framework, further

description of these two languages and their compiler named Shine is provided in chapter 4.

When considering novelty, newer solutions, and wider acceptance, one has to mention

AnyDSL. AnyDSL is a domain-specific libraries stack and compiler framework whose main

forte is achieving high-performance code using partial evaluation. It extends the continuation-

passing style intermediate representation named Thorin with a simple online partial evaluator

[86]. DSLs supported by the framework are implemented in a front-end language named Im-

pala, while the optimizations are performed on the aforementioned framework’s intermediate

representation. AnyDSL somewhat resembles the previously describe Delite framework, which

can be seen in the figure depicting the architecture of the framework (figure 3.2).

At the end of the compilation chain, the framework supports code generation with par-

allelization and vectorization for contemporary CPU and GPU architectures. Examples of

DSLs implemented using AnyDSL framework are Stincilla4, a DSL for stencil codes, and Ra-

2https://rise-lang.org/
3©AnyDSL project under Apache 2.0, available at: https://anydsl.github.io/
4https://github.com/anydsl/stincilla

22

https://rise-lang.org/
https://anydsl.github.io/
https://github.com/anydsl/stincilla

General Concepts

Figure 3.2: Architecture of the AnyDSL framework3

Trace5which is a DSL for ray traversal.

One of the most prominent and relatively recent examples when it comes to interleaving con-

cepts of domain-specific languages and hardware accelerators is Spatial. Spatial is a domain-

specific language with compiler infrastructure for the higher-level description of applications

accelerators. Spatial provides hardware-centric abstractions which increase programmability

and performance by providing compiler passes that support these abstractions, namely pipeline

scheduling, automatic memory banking, and automated design tuning driven by active machine

learning [87]. Authors claim that Spatial can target a wide range of architectures, achieving

significant speedups with less code.

Regarding additional DSL examples that utilize code generation or various transformations,

there are more notable examples that are either historically meaningful or interesting in the

context of this thesis. Lime [88] is a programming language executed on the Java virtual ma-

chine targeting heterogeneous systems. Language features an optimizing compiler that gener-

ates high-quality GPU code by generating OpenCL [14] programming constructs. The authors

of the paper explicitly stated that the main motivation was rising the level of abstraction regard-

ing general-purpose GPU programming which to some extent matches this thesis confirming

that the easiness and learning curve of a programming model can be cumbersome for engineers

not familiar with low-level architectural details. Unlike the rest of the DSLs that are rather im-

plicitly executed on Java virtual machine, mostly due to the fact that some of them are embedded

in Scala, Lime is executed on the JVM but as an independent language.

GraphIt is a high-performance DSL for graph computations that generates fast implemen-

tations for algorithms with different performance characteristics running on graphs with dif-

ferent sizes and structures [89]. GraphIt separates the algorithm from execution by providing

a separate scheduling language. It also features an autotuner that automatically finds high-

performance schedules. A similar separation of concerns is present in ANTAREX project

5https://github.com/anydsl/traversal

23

https://github.com/anydsl/traversal

General Concepts

which enables expressing functionalities in C++ but makes it possible to express the adaptiv-

ity, energy, and performance strategies at compile-time [90], together with runtime autotuning

and resource and power management. Strategies are written in an aspect-oriented programming

language LARA, which allows the specification of compilation strategies to enable efficient

generation of software code and hardware cores for alternative target architectures [91].

Although not strictly tied to DSLs, regarding runtime environments mentioned so far in the

context of Delite and ANTAREX, there are some additional notable projects which demonstrate

the existence of the concept for a relatively long period of time. Harmony is a runtime sup-

ported programming and execution model that provides semantics for simplifying parallelism

management, and dynamic scheduling of compute intensive kernels to heterogeneous resources

[92]. Dandelion is another system designed to address the problem of programming heteroge-

neous systems. It provides a unified programming model for underlying processing elements of

heterogeneous systems, integrating data-parallel operators into general purpose programming

languages. Additionally, it is packed with a scheduler that distributes data-parallel portions to

available resources [93]. Execution on GPUs is supported by compiling the code written for it

to CUDA kernels.

Hardware-Description Languages (HDL) like (System)Verilog or VHDL belong to a com-

pletely different cluster of programming languages. They provide constructs that engineers use

to describe hardware that will eventually be implemented in appropriate circuitry. Chisel is a

Hardware-Description Language (HDL) implemented as a DSL in Scala [15], aims to ease the

process of digital design. Chisel can generate Verilog aimed for synthesis on FPGAs or ASICs,

or high-speed C++-based software simulator. By compiling to another programming language,

Chisel falls in the category of code generators. Being implemented as a DSL in scala, it could

ease the generation of hardware-implemented custom accelerators if well-integrated in one of

the aforementioned stacks.

At the level of libraries, a notable example is TACO, being implemented as a library in C++.

TACO, which stands for The Tensor Algebra Compiler, introduces a compiler technique that au-

tomatically generates kernels for any compound tensor algebra operation on dense and sparse

tensors [94]. HPX as a parallel runtime system also extends C++ to facilitate distributed oper-

ations, enable fine-grained constraint-based parallelism, and support runtime adaptive resource

management [95]. Spiral is a library generator for linear transformations. Authors in [96]

implemented it as a DSL in Scala by using Lightweight modular staging (LMS), a generative

programming approach that lowers the effort needed to write a high-quality program generator

[97]. Based on LMS with additional features, an experimental framework for creating staged

DSLs named Argon was developed [98].

In this section, a plethora of DSLs was displayed, of which many rely on compilation chains

with optimizations at the level of intermediate representation which eventually end with gen-

24

General Concepts

erating code for a widely accepted general-purpose programming language used by a target

platform, be that target platform a CPU, GPU, accelerator of any kind, or any combination

of the previously listed targets. This leads to the conclusion that code generation for native

platforms indeed is a plausible way of raising the level of abstraction for any kind of system.

3.2 RISC-V

3.2.1 General

Instruction-Set Architecture (ISA) is an abstract definition of a computer at the level of, as the

name suggests, an assembly instruction set. Fundamentally, ISA presents an interface, a con-

tract between hardware and software, abstracting hardware implementation details for software

developers, and allowing hardware desingers to design new hardware which will be supported

by the preexisting software. In that context, RISC-V is an open, royalty-free ISA initially

developed at the University of California at Berkeley.

In their case for RISC-V, main collaborators (or creators) of the standard stated that proces-

sors are just a small fraction of the design which justifiably raises the question of why the most

important interface is usually proprietary. They further argue that there is no good technical

reason not to have free and open instruction sets and that among the existing RISC free open

instruction sets, RISC-V is the best and safest choice [99]. Started as an academic project as

RISC-V Foundation with 29 members, RISC-V is now a non-profit based in Switzerland, gov-

erned by a board of directors elected from all classes of members, and with more than 2,000

members from more than 70 countries (as of January 2022) [100].

The processor itself was meant to be kept simple, yet anticipated everything, from embedded

devices to vector processors and high-performance computing. From the architectural point of

view, RISC-V is of type Load-Store with little-endian byte ordering and register-register oper-

ations. The standard is specified through Instruction Set Manuals, namely Volume I specifying

Unpriviledged (user-mode) ISA [101], and Volume II specifying Priviledged (supervisor mode)

ISA [102].

3.2.2 Extensions

RIS-V ISA is modular, and typically consists of a minimal base instruction set and extensions

appended to base set with compliance to the needs of the computer that is being designed.

Every part of the ISA exists in one of three statuses: draft, frozen, ratified, and is versioned

appropriately. Only ratified set are fully operational and safe to use. On the other hand, frozen

sets are expected to undergo minor changes before ratification, while draft sets could undergo

further major changes. There exists five base instruction sets, all of them being displayed in

25

General Concepts

upper part of table 3.2. Base instruction set can support either fully-sized integer sets (I) or

embedded sets (E) with address sizes of 32, 64, and 128 bits. Base instruction set specifies

number of registers. For I set, architecture features 32 registers, while E set features 16 registers.

On the other hand, the lower part of table 3.2 displays extensions to the base instruction sets.

Those extensions imply the existence of the additions to the architecture necessary to execute

them. M extension adds hardware support for integer multiplication and division, while F, D,

and Q extensions add hardware support for singe, double, and quad precision floating-point op-

erations respectively. Out of the rest of the available extensions, it is especially worth to mention

Compressed instructions with shrunk instruction operational code, which are somewhat similar

to ARM Thumb instruction set, particularly useful in embedded systems. Furthermore C ex-

tension is used in RISC-V cores featured by GAP8 platform (section 3.4) used in this thesis.

Extensions can be used with any base and without conflict regardless of the combination used.

Z prefixed extensions were a pragmatic solution to the anticipated growth of extension sets.

Those extensions are added to the end of the architecture abbreviation, sorted alphabetically,

and most important of all, prefixed with the small letter of the closest set of preexisting exten-

sions. For example Zam which is extension for misaligned atomics, is closest to A extension

for atomic instructions, while Ztso for total store ordering is closest to T extensions for trans-

actional memory.

Versions of utilized extensions in instruction sets are stated explicitly, by adding numbers

that represent major and minor version parts of the version. The first number after the letter

abbreviating the extension indicates the major version. The minor version is stated right after

the major version followed by a small letter p. If ommited, assumed major version is 1, while

ommited minor version assumes 0. For example, M2p0 indicates usage of M extension of

version 2.0

As an example of an actively-used instruction set, the GAP8 platform uses RISC-V cores

with RV32IMC, which indicates an instruction set consisting of 32-bit integer core with hard-

ware multiplication and division and with the compressed instruction set.

There is additional extension G not mentioned in table 3.2. G is abbreviation given to a in-

struction set consisting of: integer base, RV32I or RV64I, with six standard extensions, namely

M, A, F, D, Zicsr, Zifencei, which ultimately sums to IMAFDZicsr_Zifencei instruction set.

That set resembles a General-purpose scalar instruction set [101]. RV32G and RV64G are

currently default target of compiler chains. RISC-V is currently supported by major compiler

stacks, namely GCC and LLVM.

Custom or non-standard extension addition is enabled through X extension prefix. For ex-

ample Xpulp is a non-standard extension set which incorporates increasing computational den-

sity and minimizing pressure toward the shared memory hierarchy [103] (according to [104]).

26

General Concepts

Table 3.2: RISC-V extension sets as of December 2021 (unpriviledged ISA) [101]

Base Description Version Status

RVWMO Memory Consistency Model 2.0 Ratified

RV32I Base 32-bit Integer Instruction Set 2.1 Ratified

RV64I Base 64-bit Integer Instruction Set 2.1 Ratified

RV32E Base 32-bit Integer Instruction Set, Embedded 1.9 Draft

RV128I Base 128-bit Integer Instruction Set 1.7 Draft

Extension Description Version Status

M Integer Multiplication and Division 2.0 Ratified

A Atomic Instructions 2.1 Ratified

F Single-Precision Floating-Point 2.2 Ratified

D Double-Precision Floating-Point 2.2 Ratified

Q Quad-Precision Floating-Point 2.2 Ratified

C Compressed Instructions 2.0 Ratified

Counters Performance counters and timers 2.0 Draft

L Decimal Floating-Point 0.0 Draft

B Bit Manipulation 0.0 Draft

J Dynamically Translated Languages 0.0 Draft

T Transactional Memory 0.0 Draft

P Packed-SIMD Instructions 0.2 Draft

V Vector Operations 0.7 Draft

Zicsr Control and Status Register (CSR) Instructions 2.0 Ratified

Zifencei Instruction-Ferch Fence 2.0 Ratified

Zam Misaligned Atomics 0.1 Draft

Ztso Total Store Ordering 0.1 Frozen

27

General Concepts

3.2.3 Notable projects

So far, RISC-V ISA attracted a large number of users, both from academia and industry. One of

the biggest engagements of the RISC-V ISA is the European Processor Initiative (EPI) which

adopted it as a base for the development of a fully European developed processor [10]. First

power-efficient and high-throughput accelerator chips were taped out in late 2021. under the

name EPAC (European Processor Accelerators) [105]. Another notable industrial-grade ex-

ample is SiFive, a fabless semiconductor company founded by collaborators working on the

RISC-V specification. SiFive develops essential, machine learning, and performance-aiming

cores, appropriate software, and hardware support for development and prototyping [106].

A couple of notable projects come straight from the laboratory that initiated the RISC-V

standard. Berkeley Out-of-Order Machine is, as authors describe it, a synthesizable, parametrized,

superscalar, out-of-order RISC-V core designed to serve as the prototypical baseline processor

for muture micro-architectural studies of processors of such type [107]. It aims to be com-

petitive in fields of performance and area for energy-efficient, out-of-order cores. The core is

comparable to other similar proprietary designs. More recent updates include BOOM v2 which

include an updated 3-stage front-end design with a bigger set-associative Branch Target Buffer,

a pipelined register rename stage, split floating point and register files, a dedicated floating point

pipeline, a separate issue windows for floating point, integer, and memory micro-operations, and

separate stages for issue-select and register read [108].

From the same team comes an open-source SoC design generator that emits synthesizable

RTL by leveraging the Chisel hardware construction language to compose a library of sophis-

ticated generators for cores, caches, and interconnects into an integrated SoC [109]. Rocket

chip generator can provide both an in-order core generator (Rocket) and an out-of-order core

generator (BOOM).

An interesting community project is SERV - The SErial RISC-V CPU [110]. From the

same author comes an interesting benchmark for FPGAs and parts of their toolchains, namely

synthesis and place and route, called CoreScore which tests how many SERV cores can be put

into a particular FPGA [111]. The current leader (as of January 2022.) is Xilinx VCU128 which

can fit 6000 SERV cores6.

RISC-V is also used as ISA for many cores developed by the PULP platform, as well in

GAP8. Both platforms will be described in their respective and independent sections (section

3.3 for PULP, section 3.4 for GAP8), as both of them are either directly or indirectly used as

hardware-support for delivering the contributions of this thesis.

6https://corescore.store/

28

https://corescore.store/

General Concepts

3.3 PULP

The Parallel Ultra Low Power (PULP) Platform is a research project jointly led by ETH Zürich

and the University of Bologna which aims to deliver open and free hardware platforms both

for research and industry-grade purposes. As the name suggests, the scale on which projects

aims to deliver its outcomes is of ultra-low power, breaking the energy efficiency barrier within

a power envelope of a few milliwatts to satisfy computational demands of IoT applications

requiring flexible processing of data streams generated by various sensors [112], from relatively

primitive sensors such to cameras and other complex sensors. To develop its open hardware, the

PULP platform heavily utilizes and builds on RISC-V ISA previously described in section 3.2.

In the context of this thesis, the PULP platform is of particular importance as heterogeneous

systems that are targeted by the programming model being developed are embodied in some

of the projects that stem from it. Furthermore, it is anticipated that the growth for the need for

such devices being developed by the platform will need a modern programming model with

increased expressibility, and utilizing the PULP platform as a target for the model proposed

by this thesis makes a perfect use-case for exploring the potential positive outcomes of such

approach. Modularity of the design of systems developed under the project enables a top-down

approach where system and hardware are developed and tailored for specific applications which

allow for heavy optimizations mirrored on increased energy efficiency.

As a high-level representation of the platform suggests available in figure 3.3, projects de-

veloped under the umbrella of the PULP platform can generally be separated into five fields:

processors, single-core platforms, multi-core platforms, multi-cluster systems, and accelerators.

For the sake of clarity, a brief overview of every field is provided further in the text.

Figure 3.3: High-level overview of the PULP platform7

7©PULP platform, 2022, Permission granted to reuse, available at: https://pulp-platform.org/

29

https://pulp-platform.org/

General Concepts

3.3.1 Processors

RI5CY [103], according to [113] is an in-order RISC-V core with four pipeline stages, imple-

menting an RV32IMC subset of the RISC-V ISA. RI5CY includes extensions which include

hardware loops handling up to two finite loops, auto-increment load/store instructions, and bit-

manipulation instructions to handle bit fields in registers. It also includes DSP extensions in-

cluding MAC instructions, basic fixed-point arithmetic instructions, packed-SIMD instructions

on vectors of 8-bit elements packed into registers of bigger size, and a dot product unit [113].

Ibex [114], previously known as Zero-riscy, is a core now contributed to lowRISC, a non-

profit organization. It is an area-optimized RISC-V core, implementing an RV32IMC subset

of the RISC-V ISA. The pipeline is consisted of two stages, namely instruction fetch, and

instruction decode and execute. The ALU is minimal, while the core’s multiplier unit contains

one MAC unit capable of sequentially multiplying two 16-bit operands and accumulating the

result in a 32-bit register. The core implements a minimum set of control and status registers

defined by the privileged ISA [113].

Snitch is a general-purpose, single-stage, single-issue core tuned for high energy efficiency

which, paired with a double-precision floating-point unit, aims at the maximization of the com-

pute and control ratio by enhancing the ISA with two minimally intrusive extensions: stream

semantic registers and a floating-point repetition instruction [115]. Ariane [116], now listed as

OpenHW’s CVA6 CPU is a 64-bit, single, in-order issue and out-of-order execute RISC-V core,

implementing RV64GC instruction set. By implementing both the unprivileged and privileged

instruction set, Ariane is a fully-fledged processor capable of running Linux OS and targeting a

baseline application running environment.

3.3.2 Single core platforms

Regarding single-core platforms, the PULP platform currently provides two of them: PULPino

and PULPissimo. PULPino is a single-core SoC built around RI5CY or Zero-riscy cores [117]

mentioned in the previous subsection. It is a minimal system, focused on simplicity without

caches, memory hierarchy or DMA circuitry [118].

PULPissimo with code name Quentin regarding its implementation, a more powerful vari-

ant of a single core platform features a 32-bit in-order RISC-V processor with four stages

pipeline. The processor implements an RV32IMFC RISC-V ISA subset, with extensions target-

ing energy-efficient DSP such as hardware-loops, automatic increment of addresses during load

and store operations, bit manipulation instructions, fixed-point, and packed SIMD operations.

The SoC includes a full set of peripherals, namely a Quad SPI, I2C, UART, GPIOs, JTAG, and

a HyperBus interface [119]. All of the peripherals’ data transfers are managed by µDMA to

minimize the amount of heavy-lifting needed by the processor.

30

General Concepts

3.3.3 Multi-core platforms

Multi-core platforms or cluster-based systems are the core of interest for this thesis, as they

introduce a concept of a system consisting of two relatively loosely coupled parts: a general-

purpose processor, and a cluster of simple RISC-V cores packed with memory utilized by those

cores.

Mr. Wolf is an SoC featuring a relatively small microcontroller based on a RISC-V core,

coupled with an IO subsystem with a wide range of peripherals. The microcontroller can offload

compute-intensive kernels to an eight-core floating-point capable processing engine available

on-demand [120]. The cluster resides on a dedicated voltage and frequency domain and con-

tains eight RISC-V cores implementing RV32IMC instruction set with extensions for DSP. The

cluster also features two floating-point units shared among the cores in the cluster which imple-

ment common floating-point operations, including FMAC. The cluster can access a banked L1

memory which enables usage of shared memory programming models. Event management, par-

allel thread dispatch, and synchronization are supported by a dedicated hardware block [121].

A more advanced SoC architecture can be found in Fulmine, an SoC based on a multi-core

cluster coupled with specialized hardware for compute-intensive data processing. Fulmine’s ar-

chitecture again distincts between two voltage and frequency domains, namely between the mi-

crocontroller and cluster. The cluster contains four processing general-purpose in-order, single-

issue, four-stage pipeline, OpenRISC [122] ISA implementing processing cores called OR10N.

Additionally, the cluster contains Hardware Cryptography Engine (HWCRYPT) and Hardware

Convolution Engine (HWCE). Every core in the cluster can access a banked L1 Tightly-Coupled

Data Memory [123].

Mia Wallace is an SoC aimed at energy-efficient brain-inspired computing, by tightly in-

tegrating convolution engine used to accelerate convolution neural networks inference in edge

IoT nodes [25]. Regarding its architecture, it is similar to that of the aforementioned Fulmine

SoC, but due to the nature of the applications that are meant to be run on it, lacks hardware

cryptography support. The cluster contains four OpenRISC ISA OR10N cores with extensions

for energy-efficient DSP operations, explicitly managed and banked TCDM.

The most powerful multi-core single-cluster SoC is Vega which is consisted of a single core

that manages SoC and IO, and nine core cluster supporting multi-precision SIMD computation

for both integers and floating-point data. Vega SoC aims towards highly energy-efficient always-

on IoT edge nodes which support the acceleration of deep neural network inference packed with

cognitive wake-up from MRAM-based state-retentive sleep mode [124].

31

General Concepts

3.3.4 Multi-cluster systems

Unlike SoCs described in the previous section (3.3.3) whose high-level architectural overview

generally consisted out of a general-purpose controller and a cluster with multiple general-

purpose processing cores and potentially accelerators for specific applications, multi-cluster

systems described in this section anticipate existence of multiple clusters attached via inter-

connect to a single general-purpose controller. A core exemplar of such a system is HERO -

Open Heterogeneous Reseach Platform [26] which combines a hard-IP ARM Cortex-A host

CPU with a scalable, configurable, and extensible FPGA implementation of a cluster-based

programmable manycore accelerator, colloquially cluster. While HERO’s goals were that of

primarily research type, authors claim that implementing up to 64 of RISC-V cores running at

30 MHz can yield around 1.9 GIPS of raw performance. The platform introduced OpenMP

programming model with support to offload computation to the cluster directly from the source

executed on a general-purpose controller. Multiple hardware platforms are supported, such as

Juno ARM Development Platform and Xilinx Zynq ZC706 Evaluation Kit. The latter was tried

in practice as a potential hardware platform for the development of outcomes of this thesis but

was discarded as tryout tests could not guarantee stability to successfully support outcomes on

a hardware layer.

More recently, the second iteration of the HERO platform was released which, unlike the

initial version, offered support for both ARM (ARMv8) and RISC-V (RV64) as a general-

purpose controller, both of them being 64-bit application-class processors. HEROv2 offers

seamless sharing of data between 64-bit controller and 32-bit accelerator cores, a fully open-

source on-chip network, unified heterogeneous programming interface, and a mixed-data-model

mixed-ISA heterogeneous compiler based on LLVM. The aforementioned compiler allows for

single-source single-binary development of heterogeneous applications, utilizing OpenMP with

support for offloading code to accelerator directly from the source [125].

There are other projects aiming to provide academic and research-level platforms for the

exploration of heterogeneous and manycore architectures. One of them not stemming from the

PULP project is OpenPiton. OpenPiton is a general-purpose, multithreaded manycore proces-

sor and framework which leverages OpenSPARC T1 core and creates upon it a flexible, modern

manycore design. OpenPiton’s many-core design consists of 64-bit cores implementing SPARC

v9 ISA with a distributed, directory-based cache coherence protocol. Furthermore, it contains a

pipelined dual-precision floating-point unit per core and supports native multithreading [126].

In a recent collaboration, previously described Ariane core [116] was integrated into the Open-

Piton framework. The resulting platform is an open-source, RISC-V-based, Linux-booting,

symmetric multiprocessing framework designed to enable scalable architecture research proto-

types [127].

32

General Concepts

3.3.5 Accelerators

Accelerators for specific applications are non-standalone components, usually depending on an

SoC which will utilize their processing power to deliver a result within a larger computing sys-

tem. It is thus relatively hard to observe them independently of the platforms they are integrated

to. Bearing that context, this subsection will present a couple of accelerators implemented under

the umbrella of the PULP platform.

HWCRYPT is a cryptographic hardware accelerator capable of supporting multiple encryp-

tion and decryption modes for AES and Keccak cryptographic algorithms [128]. The acceler-

ator balances between the need to provide computing power in the respective domain, while

running in a heavily energy-constrained IoT domain. HWCRYPT is integrated into previously

mentioned Fulmine SoC [123].

Regarding one of the most disruptive domains of the current temporal moment, that is deep

learning and brain-inspired computing, authors in [129] proposed NeuroStream coprocessors

as an alternative to vector-processing, providing a flexible form of parallel execution without

the need for fine-grained synchronization. NeuroStream coprocessors are packed with energy-

efficient RISC-V processing elements in a cluster named NeuroCluster, where each cluster con-

tains four processing elements and eight NeuroStream coprocessors.

Lastly, HWCE - Hardware Convolution Engine will be described in a dedicated section

(3.4), as it is heavily used to deliver some of the outcomes of this thesis.

3.4 GAP8

Global growth of the concept of the Internet of Things implies the increase of data acquired by

the nodes that the IoT consists of, which again implies the increase of the need to process at least

parts of the acquired data. In most of the current cases, data is transferred to a remote server,

which processes the data and returns it back to a node which in that case, according to a use-case

can act as an actuator. With the increase of the data acquired, a need to process some of that

data on the end node emerged. In some scenarios, servers became overwhelmed by the amount

of data that they need to process, and in some cases the result has to be instantaneous because

the actuator decision depends on a result that cannot pay the latency implied. The concept of

federated learning emerged as well, further driving the need for edge-node data processing. The

main issue of edge-node data processing is the fact that edge-nodes are by design of ultra-low-

power as they need to provide a small energy footprint, due to the fact that they are mostly

battery powered.

To compromise between the need to stay in the domain of ultra-low-power but provide

necessary computational power on demand, based on the previously described platforms such as

single-cluster (section 3.3.3) or multi-cluster HERO platform (section 3.3.4), a GAP8 chip was

33

General Concepts

designed. GAP’s main forte is high-performance on edge devices that are heavily constrained

by energy availability. GAP8 is a heterogeneous system featuring a total of nine RISC-V-

based processing cores. As their authors describe it, it is a fully programmable RISC-V IoT-

edge computing engine, featuring an 8-core cluster with hardware convolution engine and ultra-

low power memory control unit [23]. GAP8 is designed and manufactured by GreenWaves

Technologies8, which further explains the fact that GAP is an abbreviation for GreenWaves

Application Processor.

3.4.1 Architecture of the platform

GAP8 can roughly be separated into two loosely coupled parts: Fabric controler and PULP
cluster. Fabric controller is a RISC-V general-purpose processing core with its own instruction

cache and fast L1 memory which is of 16 kB in size and solely accessible by the fabric con-

troller. The platform features a rich set of peripherals, such as RTC, UART, SPI, I2C, Hyper-

Bus, GPIO, and JTAG. Data transfers to and from peripherals are managed by a multi-channel

Input/Output µDMA to minimize the number of interactions and the workload of the fabric

controller when performing Input/Output operations [23].

The second part is of the platform is PULP cluster, colloquially called the cluster. The

cluster features a total of eight RISC-V processing cores with custom hardware convolution

engine (HWCE) designed for convolution neural network inference, a DMA unit for data trans-

fers between disjunct memories in the system, instruction cache shared by all of the cores in

the cluster, and shared L1 memory of the size of 64 kB. L1 memory of the cluster is banked

so that each processing core has its own part. High-level block diagram of GA8 architecture is

provided on figure 3.4. Note that HWCE, though featured by the platform is not depicted on

the figure. Furthermore, HWCE though powerful lacks serious support and its design is some-

what flawed which will be covered in the API section (3.4.2), as most of those limitations are

mirrored through API.

GAP8 SoC features additional L2 Memory of size of 512 kB which is directly accessible by

both the fabric controller and all cores, including HWCE, in the cluster.

GAPuino prototyping board

The concrete implementation of the GAP8 platform used in this thesis came in form of the

GAPuino development board. GAPuino, which can be observed on figure 3.5 is a board made

in the form factor of Arduino Uno that includes GAP8 and peripherals needed to prototype

applications for GAP8 [131]. It is stated that the board is compatible with most of the Arduino

8https://greenwaves-technologies.com/
9©2019 IEEE

34

https://greenwaves-technologies.com/

General Concepts

Figure 3.4: Block diagram of the GAP8 architecture9[130]

shields. Among all peripherals, it is worth mentioning that the board features an additional

portion of L3 flash memory as large as 512Mbits connected to the GAP8 SoC through the

HyperBus interface.

3.4.2 API

Native GAP8 programming API is exposed through programming language C with an option of

utilizing OpenMP extension for parallelization of computations on the cluster. GAP8 natively

supports two operating systems, PulpOS developed for the purposes of the PULP platform

(section 3.3), and FreeRTOS11, a popular and free real-time operating system for which the

GAP8 API has been implemented. Furthermore, GAP8 API exposes parts of the functionalities

through PMSIS API which can be implemented technically by any operating system to provide

a common layer for the application programming [132]. PMSIS API in the context of GAP8

acts as a wrapper for FreeRTOS and PulpOS native API calls. This thesis for code generation

that is described further in the text mostly utilizes PMSIS API calls with bits of PulpOS API

calls. While it would be impossible and counterproductive to provide a complete overview of

the API, for the sake of better understanding both the hand-tuned code and code that is being

generated, utilized parts of the APIs will be described in this subsection. Most of the API

is well described in official documentation, which although being generally good, sometimes

lacks clarity and coherency [133].

10©GreenWaves Technologies, 2022, Permission granted to reuse, available at: https://

greenwaves-technologies.com/product/gapuino/
11https://www.freertos.org/

35

https://greenwaves-technologies.com/product/gapuino/
https://greenwaves-technologies.com/product/gapuino/
https://www.freertos.org/

General Concepts

Figure 3.5: GAPuino development board10

Listing 3.1 displays interfaces of initialization and deinitialization functions. Kickoff func-

tion (line 1) as a parameter accepts a function which will be the entry point for program on the

fabric controller and is invoked right after the start of the program, while the exit function (line

2) exits platform with exit code as a parameter.

1 s t a t i ci n l i n ei n tp m s i s _ k i c k o f f (vo id * a r g) ;

2 s t a t i ci n l i n evo idp m s i s _ e x i t (i n te r r) ;

Listing 3.1: Kickoff and exit functions12

Cluster execution API

Listing 3.2 provides an overview of the function used to instantiate the cluster, run computation

on it, and then close the cluster. Initialization function on line 1 accepts cluster configuration

structure, available in listing 3.5 on line 1 as a parameter and initializes it with default val-

ues. In the API, the cluster is treated like a generic device which implies fetching it with a

generic device-fetching function, listed in listing 3.3. Device-opening function using the afore-

mentioned cluster configuration, initializes device descriptor embodied as pi_device structure

available in listing 3.4. After device descriptor instantiation and initialization, one can use

cluster-opening function (listing 3.2, line 2) to open the cluster. Analogous function with pre-

viously mentioned device descriptor can be used to close the cluster (line 3).

1 vo idp i _ c l u s t e r _ c o n f _ i n i t (s t r u c tp i _ c l u s t e r _ c o n f * con f) ;

2 i n tp i _ c l u s t e r _ o p e n (s t r u c tp i _ d e v i c e * d e v i c e) ;

3 i n tp i _ c l u s t e r _ c l o s e (s t r u c tp i _ d e v i c e * d e v i c e) ;

12https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/rtos/os_frontend_api/os.h

36

https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/rtos/os_frontend_api/os.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/rtos/os_frontend_api/os.h

General Concepts

4 i n tp i _ c l u s t e r _ s e n d _ t a s k _ t o _ c l (

5 s t r u c tp i _ d e v i c e * dev i ce ,

6 s t r u c tp i _ c l u s t e r _ t a s k * t a s k

7) ;

Listing 3.2: Cluster handling functions13

1 vo idp i _o pen _ f rom _c on f (s t r u c tp i _ d e v i c e * dev i ce ,vo id * con f) ;

Listing 3.3: Device handling functions14

1 t y p e d e fs t r u c tp i _ d e v i c e {

2 s t r u c tp i _ d e v i c e _ a p i * a p i ;

3 vo id * c o n f i g ;

4 vo id * d a t a ;

5 } p i _ d e v i c e _ t ;

Listing 3.4: Device encapsulating structure15

To send task for execution on cluster, a cluster configuration descriptor has to be instantiated

and initialized. Unlike cluster configuration descriptor and device desriptor, memory allocation

for cluster task descriptor is done manually through malloc. Task descriptor, listed in listing 3.5

on line 10 wraps configuration settings needed for a task to be executed on cluster, including

pointer to a function which acts as an entry point upon inception of cluster execution (line 11)

and arguments that will be passed to that function (line 12).

1 s t r u c tp i _ c l u s t e r _ c o n f {

2 p i _ d e v i c e _ e d e v i c e _ t y p e ;

3 i n ti d ;

4 vo id * h e a p _ s t a r t ;

5 u i n t 3 2 _ t h e a p _ s i z e ;

6 s t r u c tp m s i s _ e v e n t _ k e r n e l _ w r a p * e v e n t _ k e r n e l ;

7 p i _ c l u s t e r _ f l a g s _ e f l a g s ;

8 } ;

9

10 s t r u c tp i _ c l u s t e r _ t a s k {

11 vo id(* e n t r y) (vo id *) ;

12 vo id * a r g ;

13 vo id * s t a c k s ;

14 u i n t 3 2 _ t s t a c k _ s i z e ;

15 u i n t 3 2 _ t s l a v e _ s t a c k _ s i z e ;

13https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/cluster/cluster_sync/fc_to_cl_delegate.h
14https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/device.h
15https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/pmsis_types.h

37

https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/cluster/cluster_sync/fc_to_cl_delegate.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/cluster/cluster_sync/fc_to_cl_delegate.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/device.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/device.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/pmsis_types.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/pmsis_types.h

General Concepts

16 i n tn b _ c o r e s ;

17 p i _ t a s k _ t * c o m p l e t i o n _ c a l l b a c k ;

18 i n ts t a c k _ a l l o c a t e d ;

19 s t r u c tp i _ c l u s t e r _ t a s k * n e x t ;

20 CLUSTER_TASK_IMPLEM ;

21 } ;

Listing 3.5: Cluster encapsulating structures16

Finally, pi_cluster_send_task_to_cl back from listing 3.2, line 4, with cluster device de-

scriptor and task descriptor as parameters can be used to start the computation on cluster. While

the aforementioned function blocks the execution on the fabric controller until the computation

finishes on the cluster, it has its own asynchronous analogon which upon calling does not block

the execution on the fabric controller.

Benchmarking API

For benchmarking purposes of the contributions of this thesis, parts of API used for measure-

ments are introduced in this subsection. First, a function which returns time elapsed since the

startup of the system in milliseconds is available in listing 3.6.

1 u n s i g n e di n tr t _ t i m e _ g e t _ u s () ;

Listing 3.6: Wall-time fetch17

Next, here in listing 3.7 five functions for accessing and manipulating performance counters

are given. GAP8 has many performance counters which can be configured to count one or

more events [133]. Particularly interesting for benchmarking and evaluation will be counter

of active cycles which, according to a comment in source file18, counts cycles the core was

active, i. e. not sleeping. Counter of active cycles is configured by shifting 1 to the left for

PI_PERF_ACTIVE_CYCLES18 and passing the result integer as a parameter to configuration

function (line 1). The rest of the functions are self-descriptive. Reset function on line 2 resets

the counter, start function on line 3 starts the counter and should be called prior to starting

the computation whose performance is being measured, while stop function on line 4 stops the

counter if called after the measured computation finishes with execution. State of the counter

is then read with the reading function on line 5, again by passing a parameter which denotes

which counter is being read. In the case of measuring active cycles, 1 shifted to the left for

PI_PERF_ACTIVE_CYCLES should be passed.

16https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/cluster/cl_pmsis_types.h
17File cannot be referenced as it eventually does not exist in the official repository
18https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/chips/gap8/perf.h

38

https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/cluster/cl_pmsis_types.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/cluster/cl_pmsis_types.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/chips/gap8/perf.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/chips/gap8/perf.h

General Concepts

1 i n tp i _ g p i o _ p i n _ c o n f i g u r e (
2 s t r u c tp i _ d e v i c e * dev i ce ,
3 p i _ g p i o _ e gpio ,
4 p i _ g p i o _ f l a g s _ e f l a g s
5) ;
6 i n tp i _ g p i o _ p i n _ w r i t e (
7 s t r u c tp i _ d e v i c e * dev i ce ,
8 u i n t 3 2 _ t pin ,
9 u i n t 3 2 _ t v a l u e

10) ;

Listing 3.9: GPIO functions21

1 s t a t i ci n l i n evo idp i _ p e r f _ c o n f (u n s i g n e de v e n t s) ;

2 s t a t i ci n l i n evo idp i _ p e r f _ r e s e t () ;

3 s t a t i ci n l i n evo idp i _ p e r f _ s t a r t () ;

4 s t a t i ci n l i n evo idp i _ p e r f _ s t o p () ;

5 s t a t i ci n l i n eu n s i g n e di n tp i _ p e r f _ r e a d (i n te v e n t) ;

Listing 3.7: Performance calls19

GPIO API

GPIO API exposes a function for controlling the GPIO circuit which is in the context of this

thesis used for benchmarking purposes. When setting up GPIO on GAP8, the first thing that

has to be done is to configure the function of the specific pad in case it supports more than one

function [133]. That can be achieved by invoking the pad set function provided in listing 3.8.

The function accepts two parameters, an identifier of the pad, and an identifier of the desired

pad function.

1 vo idp i _ p a d _ s e t _ f u n c t i o n (p i _ p a d _ e pad , p i _ p a d _ f u n c _ e f u n c t i o n) ;

Listing 3.8: Pad function20

Similar to the API part related to the cluster, described in section 3.4.2, GPIO is from the

API perspective treated as a device, and thus requires appropriate initialization of a device

descriptor. According to the documentation, this is done by invoking a configuration function

available in listing 3.9 on line 1 with parameters being a device descriptor structure, an identifier

of a concrete pin within GPIO port, and configuration flags which in most cases just configure

the pin as an input or output. Driving the pin to logical 1 or logical 0 is then done by invoking

the write function on line 6 with device descriptor, GPIO pin, and desired value as parameters.

19https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/drivers/perf.h
20https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/drivers/pad.h

39

https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/drivers/perf.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/drivers/perf.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/drivers/pad.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/drivers/pad.h

General Concepts

Hardware convolution engine API

The special part of the API overview is dedicated to the API of the Hardware convolution

engine. HWCE API is part of the autotiler library [134] and thus requires its compilation during

the SDK build process. Although this part of the GAP8 SoC was normally advertised, up to date

remains unclear if it was meant to be used independently of the autotiler library and regardless

of the use-case of convolution neural networks inference. The API exists in specific header

files which expose the interface to the HWCE, but it lacks any kind of documentation for its

utilization. Furthermore, developers of the GAP8 SDK admitted that this part of the independent

usage of this part of SoC might be unreasonably cumbersome22. However, regarding the

outcomes of this thesis and despite all limitations, HWCE was successfully set up. Specifics

of utilizing HWCE will be described accordingly and with respect to a particular function that

limitation is referred to.

Listing 3.10 provides two of the most basic functions which enable (line 1) or disable (line

2) the HWCE.

1 vo idHWCE_Enable () ;

2 vo idHWCE_Disable () ;

Listing 3.10: Enable and disable functions

Listing 3.11 provides generic functions which set up or in other ways influence the be-

haviour of HWCE. Software reset function on line 1 performs a software reset of the HWCE.

Generic initialization function on line 3 initializes HWCE with respect to provided parameters:

• ConvType - 0 in case of convolution with filter of size 5× 5, 1 in case of convolution

with filter of size 3×3, 2 in cases of convolutions with filters of sizes 7×4 or 7×7

• WStride - Width of the input matrix

• Norm - Qnorm of the fixed-point aritmetic

By executing experimental tryouts of the HWCE, it was concluded that the WStride parameter

has to be set to 0, regardless of the dimensions of the input matrix, and that Norm parameter

should also be set to 0. Up to today, it remains unclear why is it so.

Function for setting input bias on line 9 sets the global bias for the convolution result. As

in the case of parameters for the initialization function, to date remains unclear what are the

actual repercussions of invoking this function. Function for setting Y in mode on line 11 should

accumulate convolution results with the previous result in case of the input parameter set to 1,

or use the input bias set by the aforementioned bias setting function (line 9) in case of the input

parameter set to 0. Again, to date, the alleged behaviour cannot be experimentally confirmed to

work in the use-cases this thesis works with.
21https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_

api/include/pmsis/drivers/gpio.h
22https://github.com/GreenWaves-Technologies/gap_sdk/issues/246

40

https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/drivers/gpio.h
https://github.com/GreenWaves-Technologies/gap_sdk/blob/master/rtos/pmsis/pmsis_api/include/pmsis/drivers/gpio.h
https://github.com/GreenWaves-Technologies/gap_sdk/issues/246

General Concepts

1 vo idHwCE_SoftReset () ;

2

3 vo idHWCE_GenericInit (

4 u n s i g n e di n tConvType ,

5 u n s i g n e di n tWStride ,

6 u n s i g n e di n tNorm

7) ;

8

9 vo idHwCE_SetInputBias (i n tB ia s) ;

10

11 vo idHwCE_SetYinMode (u n s i g n e di n tD i s a b l e) ;

Listing 3.11: Setup functions

Listing 3.12 provides functions which ultimately execute a convolution operation on HWCE.

Since HWCE supports four different convolution modes, there are four different functions mir-

roring those four modes. All of the input arrays to the HWCE have to be one-dimensional. Each

function takes a pointer to an input array, a pointer to an output array, a pointer to convolution

filter, convolution bias, and dimensions of the input matrix. The exception is convolution with a

filter of size 3×3 which is something that will be tackled further in text. The first constraint set

by the HWCE is mutual for every convolution mode, and that is that width of the input matrix

has to be a multiple of 2.

1 vo idHWCE_ProcessOneTile3x3_Mult iOut (

2 s h o r ti n t * In ,s h o r ti n t *Out0 ,s h o r ti n t *Out1 ,s h o r ti n t *Out2 ,

3 s h o r ti n t * F i l t e r ,

4 s h o r ti n tBias ,

5 u n s i g n e di n tW,u n s i g n e di n tH,

6 u n s i g n e di n tOutMask

7) ;

8

9 vo idHWCE_ProcessOneTile5x5 (

10 s h o r ti n t * In ,s h o r ti n t *Out ,s h o r ti n t * F i l t e r ,

11 s h o r ti n tBias ,

12 u n s i g n e di n tW,u n s i g n e di n tH

13) ;

14

15 vo idHWCE_ProcessOneTile7x7 (

16 s h o r ti n t * In ,s h o r ti n t *Out ,s h o r ti n t * F i l t e r ,

17 s h o r ti n tBias ,

18 u n s i g n e di n tW,u n s i g n e di n tH

19) ;

20

21

41

General Concepts

22 vo idHWCE_ProcessOneTile7x4 (

23 s h o r ti n t * In ,s h o r ti n t *Out ,s h o r ti n t * F i l t e r ,

24 s h o r ti n tBias ,

25 u n s i g n e di n tW,u n s i g n e di n tH

26) ;

Listing 3.12: Convolution kickoff functions

Function for executing convolution with filter of size 3×3 (line 1) is of different signature,

because HWCE supports multicycle output for that type of convolution. In the case of a single

output cycle, each filter group has to be padded with one zero, effectively meaning that the

convolution filter is a one-dimensional array with 10 elements. In the case of two outputs per

cycle, there are no constraints on the sizes of input data, but in the case of three outputs per

cycle, input data has to be padded with one zero after every 27 coefficients. Besides parameters

that are the same for every function handling different convolution modes, 3× 3 convolution

function takes two additional pointers to two output arrays, one for each additional output cycle.

Furthermore, the function takes a parameter OutMask which specifies the number of outputs per

cycle that is going to be used. If that parameter is set to 0x7, one output per cycle is produced,

if set to 0x3, two outputs per cycle are produced, and if set to 0x1, three outputs per cycle are

produced. It is worth mentioning that experimental tryouts of the HWCE yielded no result in

cases of more than one output per cycle.

Function for convolution with filter of size 5× 5 (line 9) has a constraint on filter group

being padded with one zero, while filter for convolution with filter of size 7× 7 (line 15) has

to be padded with seven zeros, reason for that being HWCE’s utilization of 7× 4 convolution

mode, by performing the latter convolution operation two times in a row. Convolution with a

filter of size 7×4 does not have any constraints on the input matrix or filter. It is important to

mention that the convolution does not pad input matrices, which implies that the output arrays

are smaller, depending on the filter size. Given an input matrix of size W ×H, the output array

will be of size:

•3 ×3 — (W −2)× (W −2)

•5 ×5 — (W −4)× (W −4)

•7 ×7 — (W −6)× (W −6)

•7 ×4 — (W −6)× (W −3)

42

Chapter 4

RISE Stack

This chapter describes the programming language RISE, together with its framework which was

used to deliver the research contributions proposed by the thesis. The framework consists of the

aforementioned programming language RISE used to express computations on a high-level,

programming language ELEVATE used to express optimization strategies, and Shine compiler

which implements compilation chain. The framework is currently under active development by

researchers at the Universities of Edinburgh, Glasgow, and Münster. This chapter also provides

a brief introduction to the main concepts of functional programming, that are both applicable to

RISE language as well to generic functional programming languages.

4.1 General concepts

As stated before in the text, RISE is a functional programming language, which implicitly

means that it inherits concepts from general functional programming languages. In such lan-

guages, functions as building blocks are first-class citizens which allows their almost-to equal

treatment compared to other building blocks, such as data structures. One of these concepts of

functional programming is higher-order functions which take functions as parameters or return

them as return values. This section partially provides an overview of such functions which exist

as patterns in RISE but are applicable to functional programming in general. Mind, not all of

the listed functions are strictly higher-order, but they certainly were popularized by functional

programming concepts.

Map
Map is a higher-order function, typically available in functional programming languages, as

well in some that cannot strictly be defined as functional, like Javascript. Map function takes

two parameters, the first one is a collection of elements of type T , and the second one is a

function of type T → U . As shown in relation 4.1, map transforms the input collection by

applying the function provided as a parameter to every element of the input collection. The

43

RISE Stack

result is a transformed collection of equal size as the input collection.

map([i1, i2, . . . , in] , f : T →U) = [f (i1), f (i2), . . . , f (in)] (4.1)

The alternative notation available in relation 4.2 suggests that the map function is applied

on the collection, instead of the collection being a parameter of the map. Both notations are

semantically equivalent, with the second one being somewhat more concise.

[i1, i2, . . . , in] .map(f : T →U) = [f (i1), f (i2), . . . , f (in)] (4.2)

Reduce
Reduce is a higher-order function that, in general, accepts 3 parameters: a collection of elements

of type T , a function of type (U,T)→U , and an initial element of type U . Reduce reduces given

collection by repeatedly applying the given function to the accumulator which is initially set to

the provided initial element, and to one of the elements of the collection, as depicted in relation

4.3

[i1, i2, . . . , in] .reduce(f : (U,T)→U,accu : U) = f (f (f (f (accu, i1), i2), ...), in) (4.3)

To preserve result correctness, the reduction operator has to be associative. Similar to the

second notation of map function demonstrated in relation 4.2, a collection of elements can in the

context of the reduce function be observed as if the reduce is executed on in, rather than taking

it as a parameter. In some programming languages, a higher-order function with semantics as

described here is available under the name fold.

The two previously mentioned patterns, Map and Reduce are as described used in a once-

popular programming paradigm MapReduce used for the analysis of large data sets.

Zip
Zip is a function that takes two collections of the same sizes and produces a collection of pairs

of respective elements from the input collections, as demonstrated in relation 4.4.

zip([i1, i2, . . . , in] , [j1, j2, . . . , jn]) = [(i1, j1) ,(i2, j2) , . . . ,(in, jn)] (4.4)

Join
Join is a function that takes a collection and reduces its dimensionality by 1, effectively joining

the outermost layer of collections in the provided collection. In some functional programming

languages like Scala, function flatten can be considered join’s counterpart. A common use-case

44

RISE Stack

for join function is flattening matrix as an array of arrays to a 1-dimensional array, as given in

relation 4.5.

join([[i1, i2, . . . , ln] , . . . , [im, im+1, . . . , ln+m]]) = [i1, i2, . . . , ln, . . . , im, im+1, . . . , ln+m] (4.5)

Fst and Snd
Fst is a function which returns the first element of a pair or tuple (relation 4.6). Analogously,

Snd returns the second element of a pair or tuple (relation 4.7).

f st (x1,x2) = x1 (4.6)

snd (x1,x2) = x2 (4.7)

Various programming languages that support simple and instant encapsulation of data in

tuples, provide analogous constructs for accessing the underlying elements. For example, Scala

provides functions _1 and _2 which can be invoked on tuple structures.

Slide
Slide is a function or primitive which virtually slides a window over a collection, returning

a collection of collections created by the sliding window passing over an input collection. It

usually takes two parameters, step which indicates how many elements will be skipped passing

the collection, and size indicating how large the sliding window will be. An example for slide

primitive applied to an array of size n with parameters 3 for size and 1 for step can be seen in

relation 4.8.

[i1, i2, i3, i4, . . . , ln] .slide(size = 3,step = 1) = [[i1, i2, i3] , [i2, i3, i4] , . . . [ln−2, ln−1, ln]] (4.8)

Generally, in the context of RISE, simple primitives like slide can be composed to create

complex primitives. Two-dimensional slide (slide2D) is exactly an example of such composi-

tion, as described in [135].

Pad
Pad is a primitive which pads an input collection with a provided element, or according to a

provided function, adding a number of elements usually also provided as a parameter. In context

of RISE, there are two implementations of pad primitive which are of special interest, namely

padCst which pads the collection with a constant provided as an parameter, and padClamp

which repeats the margin element necessary number of times. An example of padCst, padding

45

RISE Stack

an array with constant 0, 3 times from both left and right size is avilable in relation 4.9, wile an

example of padClamp with the same number of repeats from both sides is avilable in relation

4.10.

[i1, i2, . . . , ln] .padCst(constant = 0,number = 3) = [0,0,0, i1, i2, . . . , ln,0,0,0] (4.9)

[i1, i2, . . . , ln] .padClamp(number = 3) = [i1, i1, i1, i1, i2, . . . , ln, ln, ln, ln] (4.10)

Both of the aforementioned primitives exist in higher-dimensional variations (padCst2D and

padClamp2D), build up from their one dimensional counterparts. In RISE, primitive construc-

tors are available which allow for more detailed specification of the behaviour of pad primitives,

e. g. specifying the number of repeats on the left and right side of a one-dimensional array sep-

arately etc.

4.2 RISE & Shine

4.2.1 General

RISE is a functional data-parallel and pattern-based programming language implemented as

a deeply embedded domain-specific language in Scala. Its main idea is the paradigm shift

towards expressing computations with respect to what is being computed, instead of explaining

how is something computed, as is the usual case of the imperative programming languages.

RISE is packed with a compiler named Shine which handles the compilation of the expressions

written in RISE to the supported low-level languages and applies transformations expressed in

ELEVATE. ELEVATE is a domain-specific language for expressing optimization strategies, and

is a part of the RISE stack. The language itself is further described in subsection 4.3. RISE &

Shine stack is the successor to the LIFT project [83], and as such cherishes the same ideas,

though they are somewhat differently expressed and internally implemented.

An example of a RISE expression representing a dot product of two arrays is provided in

listing 4.1. Function is declared on line 1 by the provided lambda. Lambda variables x and

y represent elements of the arrays being multiplied. Elements are first zipped, creating a new

array of element pairs (line 3), then mutually multiplied (line 4). Finally, the resulting collection

is reduced (line 5) with add as reduction operator and 0 as the initial element. It is important

to note that this function is size-independent with respect to arrays it works with, but is not

datatype-agnostic due to the initial element of the reduction operator (line 5) being declared 0

46

RISE Stack

as a signed integer. This effectively and unfortunately ties function and arrays it works with

as containers of data of the same type. Additionally, the given expression is agnostic with

respect to concrete implementations of patterns carrying out parts of the computation. For

example reduce on line 5 can be either carried out sequentially (reduceSeq) or sequentially but

with controlling loop unrolled (reduceSeqUnroll). In both cases, the abstract pattern should be

replaced with the concrete implementation in later stages of compilation.

Listing 4.1: Dot product in RISE

1 valexpr: ToBeTyped[Rise]=fun(x=>

2 fun(y=>

3 zip(x)(y) |>

4 map(fun(f=>fst(f) * snd(f))) |>

5 reduce(add)(li32(0))

6))

The RISE compilation flow is depicted on figure 4.1. Shine compiler takes a computation

as an expression written in RISE, and an optimization strategy written in ELEVATE. The com-

piler then applies an optimization strategy to the input expression, transforming it accordingly,

and encoding any low-level optimizations directly into it, yielding a Low-Level RISE Expres-

sion. Expression is from RISE translated into lower, imperative-functional hybrid language

DPIA [136], first into its functional counterpart and then into its imperative counterpart. The

imperative DPIA constructs are then passed to code generation which generates nodes for the

abstract syntax tree (AST) of the targeted backend language. Ultimately, AST is printed to code

represented as an ordinary string.

4.2.2 Important constructs

RISE itself is a complex domain-specific language with a wide range of constructs for the

expression of the data-parallel computations. Providing a complete manual for the language

would not be appropriate in the context of this thesis, as it is not the main but auxiliary topic of

it. Instead, this subsection provides a subset of the RISE language constructs needed for under-

standing the rest of the text. The synopsis was made by the existing experience of working with

RISE and by observing the RISE codebase. The rest of the statements will be cited accordingly.

A complete overview of the language and the framework is available in a recently published

paper [137].

47

RISE Stack

Figure 4.1: RISE stack

Expressions

Expression is the core construct of the RISE language, which represent other values or repre-

sentations of computations of the system. Expressions contain their type and according to the

codebase and [137] can be concretized to:

• Identifier - represents identifiers across the language, e. g. in functions and lambdas

• Literal - represents data-level literals

• Lambda - models lambda expressions, containing an identifier and an expression

• Apply - models function applications

• DepLambda - models dependable lambdas

• DepApply - models dependable function applications

• Primitive - serves as a superclass for every primitive available in the language.

Types

As a standard programming language, RISE has its own typing system. According to [137], core

type can be conretized to TypeIdentifier, FunType, DepFunType, and DataType. DataType rep-

resents the typing subsystem for data values, which can further be dissassembled to ScalarType,

ArrayType, and PairType. ArrayType and PairType are complex data types build as collections

of values of ScalarType. RISE supports following scalar types:

• Integers - i8, i16, i32, i64

48

RISE Stack

• Unsigned integers - u8, u16, u32, u64

• Floating-point numbers - f16, f32, f64

• Standard types - bool, int

Operators

RISE offers a variety of operators which are used to construct simple and complex data types.

Array construction
Arrays are constructed by using dot operator with type of the underlying data and size of the

array (listing 4.2).

Listing 4.2: Array construction

1 p‘.‘u32 ↔ ArrayType(p, u32)

2 10‘.‘i32 ↔ ArrayType(10, u32)

3 c‘.‘f‘.‘u32 ↔ ArrayType(c, ArrayType(u32, f))

Examples of the one dimensional array declaration are on line 1 which declares an array of p

elements of type u32, and on line 2 which declares an array of 10 elements of type i32. Dot

operator can be chained to declare multidimensional arrays, as provided in example on line 3

which declares a matrix of dimensions c× f

Tuple construction
Tuples as pair types can be constructed by invoking the x helper (listing 4.3). The first example

creates a tuple of two elements of type u32 (line 1), while the second example (line 2) creates a

tuple of an element of type i32 and an element of type i16.

Listing 4.3: Tuple construction

1 u32 x u32 ↔ PairType(u32, u32)

2 i32 x i16 ↔ PairType(i32, i16)

Literal declaration and casting
Data literals are constructed by invoking the appropriate helper methods. Listing 4.4 depicts 0

literal creation.

Listing 4.4: Literals

1 l(0)//Createsliteralofintegertype

2 lf32(0.0)//Createsliteraloffloattype

3 lf64(0.0)//Createsliteralofdoubletype

Literals of other types can generally be constructed to another type by invoking the cast

helper paired with :: operator. Casting examples are provided in the following listing (4.5):

49

RISE Stack

Listing 4.5: Literal cast

1 cast(l(0)) :: f16//Createsliteralofintegertypeandcastsittof16

2 cast(l(1)) :: u64//Createsliteralofintegertypeandcastsittou64

3 cast(l(2)) :: i32//Createsliteralofintegertypeandcastsittoi32

4 cast(l(3)) :: u32//Createsliteralofintegertypeandcastsittou32

For example, the last case on line 4 creates a literal with value 3 of type IntData and then

immediately casts it to u32 representing unsigned 32-bit integers, often translated to uint32_t.

Some constructs exist for direct creation of literals of frequently used types. Language could be

easily extended to support direct creation of literals of every data type supported. The existing

direct literal constructors are:

Listing 4.6: Frequent constructors

1 li16(value: Int)//Createsliteralofi16type

2 li32(value: Int)//Createsliteralofi32type

3 lu8(value: Int)//Createsliteralofu8type

Type declaration
Type construction is achieved by utilizing ->: operator, and is later used in function construc-

tion. The operator can be chained to construct complex types. Examples are available in listing

4.7.

Listing 4.7: Type construction

1 //Denotesatypewhichacceptsau32andreturnsu8

2 u32 ->:u8 ↔ FunType(u32, u32)

3

4 //Denotesatypewhichacceptstwovaluesoftypeu32and

5 //returnsasinglevalueoftypei64

6 u32 ->:u32 ->:i64 ↔ FunType(u32, FunType(u32, i64))

7

8 //Denotesatypethatacceptsamatrixofsizes6x6ofu8,twomatricesof

sizes3x3ofint,andreturnsamatrixofsize4x4ofu8

9 (6‘.‘6‘.‘u8) ->:

10 (3‘.‘3‘.‘int) ->:

11 (3‘.‘3‘.‘int) ->:

12 (4‘.‘4‘.‘u8) ↔ FunType(u8, FunType(int, FunType(int, u8)))

Function declaration
Functions can be declared both by providing the function type explicitly and by ommitting it.

In both cases, a lambda expression of type ToBeTyped[Identifier] => ToBeTyped[Expr] has to

50

RISE Stack

be applied to fun object.

Listing 4.8: Function declaration

1 valfunction=fun(tuple=>tuple._2)

2

3 valfunctionWithType=fun((10‘.‘u32) ->:(10‘.‘u32))(elems=>

4 mapSeq(fun(elem=>elem * cast(l(2)) :: u32))

5)

Function on line 1 will return a second element of the tuple, while the function on line 3 will

multiply every element of the array with 2.

Dependable function declaration
Dependable functions introduce size variables that can be used for size-dependant data contain-

ers, e. g. arrays. A list of size variables with types is provided in the lambda parameters list,

which can then be used in lambda body.

Listing 4.9: Dependable function declaration

1 valsizeFun=depFun((n: Nat)=>fun((n‘.‘int) ->:(n‘.‘int))(elems=>

2 mapSeq(fun(elem=>elem * l(2)))

3))

4

5 valmatrixSize=depFun((n: Nat, m: Nat)=>

6 fun((n‘.‘m‘.‘int) ->:((n * m)‘.‘int)(matrix=>

7 matrix > join > map(fun(elem=>elem * l(2)))

8)

9)

An example provided in listing 4.9 on line 1 is analogous to function on line 3 in listing 4.8

with difference in size of the array being processed. In this case, size of the array is given by

the size variable n and will be translated to size parameter of the low-level generated function.

Example on line 5 declares a function which accepts a matrix of size n×m, and returns it as an

one dimensional array of size n∗m after multiplying each element with 2.

Pipe operator
Pipe operator is a language-level helper for expressing function application in a reverse-fashion

way, giving a notion of parameter passing through a function. Given a function f (x), one can

apply x to the body of the function f by writing:

Listing 4.10: Pipe operator in RISE

1 f(x) ↔ x |> f

51

RISE Stack

Pipe operator increases code readability, as it enables reading of expressions from top to

down, and from left to right.

4.3 ELEVATE

ELEVATE is a domain-specific language for expressing optimization strategies [84, 85]. An

example from the official website of the project offers a simple demonstrative strategy, available

in listing 4.11. By applying a top-down traversal, when applied the strategy exchanges the most

outermost map primitive with mapPar primitive, and the next following map primitive with

mapSeq primitive. On the other hand, reduce primitive is everywhere in expression exchanged

with its sequential counterpart reduceSeq.

Listing 4.11: Example of a strategy in ELEVATE1

1 defoptimizationStrategy: Strategy[Rise]=

2 (‘map |-> mapPar‘ ‘@‘ outermost(isMap)) ‘;‘

3 (‘map |-> mapSeq‘ ‘@‘ outermost(isMap)) ‘;‘

4 (‘reduce |-> reduceSeq‘ ‘@‘ everywhere)

Optimization strategies in ELEVATE are built up of rules which can, together with other

strategies, be chained with ; operator. Types of rules range widely, from algorithmic rules

like map fusion which fuses composition of two map patterns to one map pattern, to simple

lowering rules which interchange abstract patterns with their concrete coutnerparts, like map

|-> mapSeq, map |-> mapPar, reduce |-> reduceSeq, or reduce |-> reduceSeqUnroll. Examples

of more complex strategies and their expressions are available in the codebase and in research

related to the RISE stack, e. g. [77].

Custom rules can be defined by pattern-matching against RISE expression types like App

for function application, Lambda for lambda expressions, DepApp for dependable function ap-

plication etc. Example of custom optimization strategy is given further in text (subsection 5.5.1)

Since the simple application of the optimization strategy would be applied only to imme-

diate expression, ELEVATE defines recursive strategies which enable traversing entire expres-

sions, namely topDown, bottomUp, allTopDown, allBottomUp, and tryAll [84]. Strategies are

applied to expressions with respect to provided combinator which concretizes traversals, after

the @ operator, e. g. outermost, innermost, or everywhere, which apply strategies to outermost

matching pattern, innermost matching pattern, or simply everywhere where pattern is matched

respectively.

1Available at: https://rise-lang.org/

52

https://rise-lang.org/

RISE Stack

4.4 Notable research

So far, RISE has become a solid foundation for wide research and has spawned a number of

projects in domains of high-performance computing, signal processing, modeling in general,

etc. In this subsection, a brief overview of the research state is presented.

In [77], authors demonstrated the increase of performance regarding expressing image pro-

cessing pipelines, namely Harris corner detection, in comparison to OpenCV library and Halide

compiler, by extending the compiler with appropriate domain and hardware-specific optimiza-

tions. Paper [138] demonstrates performance-portable modeling of complex room acoustic

simulations with complex boundaries, while the [139] presents expressing FFT in Lift, which

generates high-performance GPU code. Regarding accelerators, authors in[140] demonstrate

potential for targeting FPGA-based platforms, describing the implementation of Lift VHDL

backend. Usage of the RISE / LIFT stack in the context of accelerators is present in [141]

which demonstrates work regarding applying Lift to Deep neural network accelerators by map-

ping expressions to coarse-grained ISA primitives. An example of an integration with other

intermediate representations, namely MLIR is available in [142].

53

Chapter 5

Model Implementation

This chapter provides an in-depth overview of the features implemented in the RISE framework

as contributions of this thesis. Everything covered in this chapter is accepted or proposed for

acceptance in the official repository of the RISE framework available at [143].

5.1 General

Thesis outcomes were satisfied with the extension and adjustment of the RISE framework.

RISE framework, which already supported compilation to C, OpenMP, CUDA, and OpenCL,

was extended with the backend for the GAP8 platform. Due to some similarities between

OpenCL-supported platforms and the GAP8 platform itself, primarily regarding the separation

of concerns between a host and a device, some parts of the GAP8 backend reused components

from the OpenCL backend, while some parts heavily relied on, or adapted OpenCL components.

When considering backend support for a platform or target in Shine compiler, one has to

introduce a few concepts:

Module is a wrapper that encapsulates all of the constructs necessary to run a meaningful

piece of code. In the case of the C module, it encapsulates include directives, declarations,

and functions, while in the case of the GAP8 module, it encapsulates more than one of the

aforementioned C modules.

ModuleGenerator is a component which through a chain of method calls set by Module-

Generator trait generates a viable module of a certain type. Module type is set by overriding

type Module in the respective ModuleGenerator.

CodeGenerator is a component that maps imperative DPIA primitives to AST for a low-

level language.

54

Model Implementation

5.2 GAP8 Module

GAP8 module, which represents and encapsulates a viable and runnable piece of code on the

GAP8 platform, is represented by a case class in Module1 file. As can be seen in listing 5.1,

a module contains a C submodule that represents host code and a sequence of C submodules

which represent potentially multiple accelerator functions, which are going to be executed on

the cluster. Module provides a method compose (line 2) which enables composition with other

GAP8 modules.

Listing 5.1: GAP8 Module

1 caseclassModule(hostCode: C.Module, acceleratorFunctions: Seq[C.Module]) {

2 defcompose(other: Module): Module=

3 Module(

4 hostCode.compose(other.hostCode),

5 acceleratorFunctions ++ other.acceleratorFunctions

6)

7 }

Besides fundamental encapsulation of the host and accelerator codes, GAP8 Module’s com-

panion object exposes a method for translating the module to code in plain string representation,

available in listing 5.2.

Listing 5.2: GAP8 Module

1 deftranslateToString(m: Module): String={

2 valaccFunctions=m.acceleratorFunctions

3 .map(injectUnpacking)

4 .map(C.Module.translateToString)

5

6 valhostCode=C.Module.translateToString(m.hostCode)

7

8 s"""

9 |\${accFunctions.mkString("\n\n")}

10 |\$hostCode

11 |""".stripMargin

12 }

Translating a GAP8 module to string is performed by disjunctly mapping translateToString

method of the C module to underlying modules encapsulating host code and accelerator func-

tions. Prior to mapping that method to accelerator functions, the function which injects un-

1https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Module.scala

55

https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Module.scala

Model Implementation

packing code is mapped to them. This is done because the sole parameter to the low-level

C function that acts as an entry point executed on the cluster is of type void *. To conform

with the low-level interface, parameters passed from the host to the device, i. e. cluster, are

packed in a structure, one for each accelerator function, and stored in a sequence of declarations

held by the respective C Module for that accelerator function. Function injectUnpacking injects

appropriate directives as C AST nodes which unpack the structure passed to the cluster as a

parameter that encapsulates multiple parameters. Those directives include casting argument of

type void * to type struct cluster_params, and generating local variable for each member of the

structure. Names of those local variables correspond to the names within the structure to keep

the consistency with variables of the same names being used within computation constructs in

the function that performs computations on the cluster.

5.3 Code generation

Code generation is the last step in the Shine compiler’s compilation pipeline. It maps imperative

DPIA primitives to C AST nodes, which ultimately get printed to code represented as a string.

Shine compiler already features code generators for C, OpenMP, CUDA, and OpenCL. GAP8’s

code generator reused C and OpenMP generators for host code generation and accelerator code

generation respectively, which is described in detail in separate subsections.

5.3.1 Accelerator code generation

Since the OpenMP extension is used natively by the GAP8 SDK to parallelize computations on

the cluster, accelerator code generation is built by extending the previously existing OpenMP

code generator. Accelerator code generator is constituted of one class, AcceleratorCodeGen-

erator2, and its companion object. The code generator overrides cmd method, adding support

for mapping HWCE imperative DPIA primitives to the C language abstract syntax tree while

passing other primitives to the OpenMP.CodeGenerator object.

Each GAP8 HWCE native API call has its own counterpart in the accelerator code generator

that returns C AST nodes that can be easily composed. The counterpart pairs are displayed in

table 5.1.

The C AST nodes for HWCE support are generated by invoking generateCalls method after

matching the appropriate imperative DPIA pattern. Method generateCalls, which accepts the

following parameters:

• fs - an instance of a ConvolutionFilterSize object, available in listing 5.3

• w - width of the input matrix

2https://github.com/rise-lang/shine/blob/gap8-hwce/src/main/scala/shine/GAP8/

Compilation/AcceleratorCodeGenerator.scala

56

https://github.com/rise-lang/shine/blob/gap8-hwce/src/main/scala/shine/GAP8/Compilation/AcceleratorCodeGenerator.scala
https://github.com/rise-lang/shine/blob/gap8-hwce/src/main/scala/shine/GAP8/Compilation/AcceleratorCodeGenerator.scala

Model Implementation

Table 5.1: Shine vs. GAP8 native API HWCE calls2

Shine’s GAP8 code generator GAP8 native API

hwceEnableCall HWCE_Enable

hwceDisableCall HWCE_Disable

hwceSetYinModeCall HwCE_SetYinMode

hwceGenericInitCall HWCE_GenericInit

generateHwceCallFunction

HWCE_ProcessOneTile3x3_MultiOut

HWCE_ProcessOneTile5x5

HWCE_ProcessOneTile7x7

HWCE_ProcessOneTile7x4

hwceSetInputBiasCall HwCE_SetInputBias

hwceSoftResetCall HwCE_SoftReset

Listing 5.3: ConvolutionFilterSize3trait

1 sealedtraitConvolutionFilterSize {

2 deftoBackendConst: String

3 deffunctionName: String

4 }

• h - height of the input Matrix

• bias - a value added to the resulting element of the convolution operation

• in - C AST expression representing the input matrix

• filter - C AST expression representing the filter Matrix

• output - C AST expression representing the output matrix

generates a sequence of statements, or to put it straight, a block of C code represented

by node C.AST.Block. The complete method is available in listing 5.4. The aforementioned

ConvolutionFilterSize trait encapsulates different low-level API constants, namely a constant

passed to generic initialization function which can be:

•HWCE_CONV3x3 in case of a convolution with filter of size 3 ×3

•HWCE_CONV5x5 in case of a convolution with filter of size 5 ×5

•HWCE_CONV7x7 in case of convolutions with filters of sizes 7 × 7 and 7 × 4 since

convolution with filter of size 7×7 relies on the 7×4 mechanisms internally

specifying the convolution operation mode, and name of the low-level API call which corre-

sponds to one of the functions which invoke convolution processing already mentioned in table

5.1.

57

Model Implementation

Listing 5.4: HWCE call sequence

1 privatedefgenerateCalls(fs: ConvolutionFilterSize, w: Nat, h: Nat,

2 bias: Nat, in: Expr, filter: Expr, output: Expr): Stmt={

3 C.AST.Block(Seq(

4 hwceEnableCall,

5 hwceGenericInitCall(fs),

6 hwceSetYinModeCall(),

7 generateHwceCallFunction(fs, w, h, bias, in, filter, output),

8 hwceDisableCall

9))

10 }

Available and supported, yet unused API calls are hwceSoftResetCall and hwceSetInputBi-

asCall.

Function generateHwceCallFunction which generates a low-level call to a function which

starts the convolution takes same parameters as the previously described generateCalls func-

tions. It is important to mention that generateHwceCallFunction distinguishes between the

convolution with a filter of size 3×3 and the other convolution modes, because that particular

type uses different low-level API call, with a different argument list. Furthermore, although

convolution with a filter of size 3×3 supports multi-out mode in sense of the ability to produce

one, two, or three outputs per cycle, for simplicity, only one output per cycle is currently sup-

ported, meaning that the low-level API call generated currently fixes OutMask to 0x7 (0x3 in

case of 2 outputs per cycle, or 0x1 in case of 3 outputs per cycle). A detailed description of the

low-level API is available in one of the previous subsections (3.4).

5.3.2 Host side

Host code generation

Code generator for the host side of the backend is placed in HostCodeGenerator4 source file.

It extends the C code generator, as current parallelization with the OpenMP extension is sup-

ported only on the cluster side of the platform. The main purpose of the specific host code

generation is to map KernelCallCmd imperative DPIA platform to low-level code which han-

dles running computations on the cluster, which is achieved by overriding the cmd function and

adding appropriate match clause.

Generate buffer syncronization calls
Since the GAP8 was built upon or reused some components of the OpenCL backend, it, there-

3https://github.com/rise-lang/shine/blob/gap8-hwce/src/main/scala/shine/GAP8/

ConvolutionFilterSize.scala
4https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/

HostCodeGenerator.scala

58

https://github.com/rise-lang/shine/blob/gap8-hwce/src/main/scala/shine/GAP8/ConvolutionFilterSize.scala
https://github.com/rise-lang/shine/blob/gap8-hwce/src/main/scala/shine/GAP8/ConvolutionFilterSize.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/HostCodeGenerator.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/HostCodeGenerator.scala

Model Implementation

Table 5.2: Parameters of the low-level counterparts

Method Parameter name Parameter description

hwceSetYinModeCall mode: Int = 1

When set to 1, convolution result

will be accumulated with the

input bias previously set by

hwceSetInputBiasCall.

If set to 0, convolution result is

accumulated with the previous result

hwceSetInputBiasCall bias: Int = 0 Sets the default input bias

hwceGenericInitCall

fs: ConvolutionFilterSize
Instance of the ConvolutionFilterSize

object specifying convolution size

wstride: Int = 0

Since input matrix is internally

represented as a 1-dimensional

array, this parameter specifies

width of the input data

qnorm: Int = 0 Sets the fixed-point arithmetic format

59

Model Implementation

fore, inherited concepts introduced by that package. One of those concepts is a concept of a

buffer, which is defined as a chunk of data being transferred between the host and device. Data

transfers in heterogeneous systems usually involve non-trivial approaches, often employing ad-

ditional circuitry like DMAs. That transfers are in RISE modeled by buffer synchronizations.

The first task that the GAP8 host code generator does is generating C AST nodes that syn-

chronize the output parameter and every input parameter to the cluster prior to beginning the

computation.

Allocate wrapper structure and pack parameters
As stated in the text prior to this subsection, low-level API mandates that the function which

acts as the entry point for the computation on the cluster accept only one parameter of type void

*. Since one parameter usually is not enough to satisfy modern programming needs, multiple

parameters are packed inside a structure, and that single structure is passed to the function acting

as the entry point. That is why the next steps are:

1.allocating memory for the appropriate cluster_params structure by invoking the low-level

PMSIS API call,

2.generating assignments which map elements within the previously created structure and

synchronized buffers.

Generate launch kernel call
Finally, a call to the runtime function launchKernel gets generated. The call is generated with

the number of cores parameter passed to it, previously extracted from the KernelCallCmd prim-

itive.

Host code module generation

HostCodeModuleGenerator5 acts as a module generator, stitching together flow set by the Mod-

uleGenerator trait, reusing imperativePasses from the OpenCL instance of the module genera-

tor, and chaining it with generateCode and makeHostCodeModule. Since the host code module

for the GAP8 platofrm is of type C Module, this module generator generates modules of the

same type.

Generated module is returned from the aforementioned makeHostCodeModule function

which wraps together multiple constructs:

•structure containing variable of type Kernel for each accelerator function or module that

is going to be executed on the cluster within the respective GAP8 module

•typedef declaration for the aforementioned structure

•include directive which includes gap8.h include header, needed by the GAP8 native run-

time
5https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/

HostCodeModuleGenerator.scala

60

https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/HostCodeModuleGenerator.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/HostCodeModuleGenerator.scala

Model Implementation

•a series of the functions for initializing, running, and destroying the kernel

•function which serially invokes the previous 3 functions

•function which generates main, i. e. program entry point executed on the fabric controller

of the GAP8

Besides everything mentioned, HostCodeModuleGenerator provides methods for generat-

ing constructs listed previously under points 1, 2, 4, and 5.

5.4 Expression running mechanism

The main idea behind this thesis was to deliver a programming model for heterogeneous systems

with capabilities of expressing computations that can relatively easily be run on the accelerator

part of the system. To satisfy that condition, a series of primitives were added, adding support

for running expressions on the cluster. On the RISE side, gap8run primitive is added, as shown

in listing 5.5. The primitive accepts two parameters, the first one being a natural number rep-

resenting the number of cores in the customizable accelerator calculation will be executed on,

and the second one being the expression describing computation in question.

Listing 5.5: GAP8 cluster running primitive in RISE

1 gap8run(numCores: Nat)(expression: Rise)

After type inference and first part of translation, gap8run primitive is translated to Run, a func-

tional DPIA primitive which again encodes a number of cores that the computation will be

executed on, together with type dt of the phrase input acquired by translating the expression to

phrase Run primitive is translated to KernelCall primitive in process of separation of host code

and accelerator code, which will be showed in subsection 5.4.1. KernelCall primitive encodes

a series of parameters:

• funName - name of the main function that is going to be executed on the cluster

• cores - number of cores in the customizable accelerator that the computation specified by

the input expression is going to be run on

• numArgs - number of arguments to the main function executed on the cluster

• inTs - a sequence of types of the input parameters to the main accelerator function

• outT - output type of the main accelerator function

• args - a sequence of arguments of the main accelerator function

Finally, KernelCall functional DPIA primitive is translated to KernelCallCmd imperative

DPIA primitive available in listing 5.7, which is later in code generation process directly mapped

to directives and API calls which run the computation on cluster. KernelCallCmd primitive en-

codes one additional parameter, out of type Phrase[AccType] which represents a data container,

an accumulator which contains the result of the computation.

61

Model Implementation

Listing 5.6: GAP8 cluster running DPIA functional primitive

1 Run(cores: Nat)(valdt: DataType,valinput: Phrase[ExpType])

2 KernelCall(funName: String, cores: Int, numArgs: Int)

3 (valinTs: Seq[DataType],valoutT: DataType,

4 valargs: Seq[Phrase[ExpType]])

Listing 5.7: GAP8 cluster running DPIA imperative primitive

1 KernelCallCmd(funName: String, cores: Int, numArgs: Int)(

2 inTypes: Seq[DataType], outType: DataType,

3 args: Seq[Phrase[ExpType]], out: Phrase[AccType]

4)

5.4.1 Host and accelerator code separation

One of the problems that arise regarding compiling code for complex heterogeneous systems

from relatively simple expressions is the separation of the code regarding the execution envi-

ronment. For example, part of the expression can be run on the general-purpose processing

unit, i.e. the host, while the other part can be run on the accelerator. Previously described

expression running mechanism in section 5.4 explained how to mark parts of the expression

that are meant to be run on the cluster, i.e. accelerator, while this subsection describes the pro-

cess of separation of respective parts of the code with its implementation carried out in object

SeparateHostAndAcceleratorCode6.

The compilation and thus separation process starts in the utility file gen.scala7, in the ob-

ject gap8, where a compiler is composed from partial host compiler (see [144], according to 8)

and module generators for both the accelerator module and host module. Partial host compiler

employs the aforementioned host and accelerator code separator which traverses a Phrase trans-

formed from the initial Expression, and matches the functional Run primitive (listing 5.6, line

1). Part of the expression that is wrapped by the Run primitive is extracted and a function defini-

tion is created from it, adding it to a sequence of the accelerator function definitions. Traversal

returns the KernelCall (listing 5.6, line 2) functional DPIA primitive which wraps data extracted

from the Run primitive. KernelCall primitive further through compilation process gets mapped

to imperative primitive KernelCallCmd which in code generator triggers generation of the calls

needed to launch a computation on the cluster.

This concept theoretically enables multiple disjunct computations to be run on the cluster

6https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/

SeparateHostAndAcceleratorCode.scala
7https://github.com/rise-lang/shine/blob/main/src/main/scala/util/gen.scala

62

https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/SeparateHostAndAcceleratorCode.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/shine/GAP8/Compilation/SeparateHostAndAcceleratorCode.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/util/gen.scala

Model Implementation

within the same program execution. However, in this thesis and experiments, only one compu-

tation has been tested and proved to work.

5.5 Hardware convolution engine support

As stated previously in the text, GAP8 features a hardware convolution engine that supports 4

different operation modes, exposed through 4 different API calls. For each of those operation

modes, an analogous pattern was added in RISE, which is displayed in listing 5.8. Each of

the patterns accepts a bias, input, and filter. Bias is a parameter that specifies how much will

the coefficients in the output matrix be biased, by adding bias to the result of the convolution

operation for the respective element. Input is a matrix of size w× h, while filter is a matrix

dimensioned with respect to the convolution operation mode. The output matrix is defined by

the parameters of the input matrix and the filter size:

• gap8hwConv3x3 - Filter is a matrix of size 3×3, output matrix is of size (w−2)× (h−
2)(line 1)

• gap8hwConv5x5 - Filter is a matrix of size 5×5, output matrix is of size (w−4)× (h−
4)(line 4)

• gap8hwConv7x7 - Filter is a matrix of size 7×7, output matrix is of size (w−6)× (h−
6)(line 7)

• gap8hwConv7x4 - Filter is a matrix of size 7×4, output matrix is of size (w−6)× (h−
3)(line 10)

The type system ensures that dimensions of the output matrices are correct with respect to

input and filter matrices.

Listing 5.8: RISE primitives for HWCE

1 gap8hwConv3x3(bias: Nat)

2 (input: ToBeTyped[Identifier], filter: ToBeTyped[Identifier])

3

4 gap8hwConv5x5(bias: Nat)

5 (input: ToBeTyped[Identifier], filter: ToBeTyped[Identifier])

6

7 gap8hwConv7x7(bias: Nat)

8 (input: ToBeTyped[Identifier], filter: ToBeTyped[Identifier])

9

10 gap8hwConv7x4(bias: Nat)

11 (input: ToBeTyped[Identifier], filter: ToBeTyped[Identifier])

8https://github.com/rise-lang/shine/blob/main/src/main/scala/util/compiler/package.

scala

63

https://github.com/rise-lang/shine/blob/main/src/main/scala/util/compiler/package.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/util/compiler/package.scala

Model Implementation

As a part of the standard compilation flow in Shine, RISE primitives are after type inference

translated to respective functional DPIA primitives available in listing 5.9.

Listing 5.9: Functional DPIA primitives for HWCE

1 FunConv3x3(w: Nat, h: Nat, bias: Nat,

2 inType: DataType, input: Phrase[ExpType], filter: Phrase[ExpType]

3)

4 FunConv5x5(w: Nat, h: Nat, bias: Nat,

5 inType: DataType, input: Phrase[ExpType], filter: Phrase[ExpType]

6)

7 FunConv7x7(w: Nat, h: Nat, bias: Nat,

8 inType: DataType, input: Phrase[ExpType], filter: Phrase[ExpType]

9)

10 FunConv7x4(w: Nat, h: Nat, bias: Nat,

11 inType: DataType, input: Phrase[ExpType], filter: Phrase[ExpType]

12)

Further down the compilation flow, functional DPIA primitives are translated to imperative

DPIA primitives available in listing 5.10. During this compilation step, filter matrices are seri-

alized to one-dimensional arrays with respect to rows. This is done because such structure fits

better low-level GAP8 HWCE API which accepts filter matrices as 1-dimensional arrays. Fur-

thermore, during this compilation step, the filter array is padded if necessary, as it is a constraint

set by the low-level API.

Listing 5.10: Imperative DPIA primitives for HWCE

1 Conv3x3(w: Nat, h: Nat, bias: Nat, inType: DataType,

2 input: Phrase[ExpType], filter: Phrase[ExpType],

3 output: Phrase[AccType]

4)

5

6 Conv5x5(w: Nat, h: Nat, bias: Nat, inType: DataType,

7 input: Phrase[ExpType], filter: Phrase[ExpType],

8 output: Phrase[AccType]

9)

10

11 Conv7x7(w: Nat, h: Nat, bias: Nat, inType: DataType,

12 input: Phrase[ExpType], filter: Phrase[ExpType],

13 output: Phrase[AccType]

14)

15

64

Model Implementation

16 Conv7x4(w: Nat, h: Nat, bias: Nat, inType: DataType,

17 input: Phrase[ExpType], filter: Phrase[ExpType],

18 output: Phrase[AccType]

19)

From this point, imperative DPIA primitives are directly mapped to low-level API calls in

the process of code generation.

5.5.1 Optimization strategy

Heterogeneous systems own their performance and energy efficiency to specialized pieces of

hardware within them which are able to carry out heavy parts of computations they were meant

for efficiently. However, as stated previously in the text, the existence of such hardware, not

to mention its utilization, often implies and requires knowledge on specific implementation

details, communication protocols, and low-level API exposed to the programmer. One of the

main ideas of this thesis is not only to encapsulate and make APIs of such hardware easier but to

provide a language that would expose high-level primitives and a compiler that would through

compilation steps detect patterns constituting computations that are executable on the available

specialized hardware, making it somewhat opaque.

From the programmer’s point of view, such hardware and accelerators are often used by

domain scientists who are not and cannot be experts in each and every accelerator which accel-

erates computations they want to make. Simply put, one could easily argue that accelerators in

heterogeneous systems cannot be exploited efficiently by the ones that they are aimed for. As

stated before, the GAP8 platform features a limited but working hardware convolution engine.

Convolution itself is an operation that is widely used in the domain of signal processing.

Listing 5.11 displays an optimization rule written in ELEVATE (subsection 4.3) which trans-

forms a series of primitives, roughly displayed in relation 5.1, which constitute a convolution

operation in RISE, into a single primitive which denotes concrete convolution with existing im-

plementation on GAP8 platform. The rule is basically tailored for example in subsection 6.2.4,

listing 6.11.

Input → slide → map → map → zip → map → reduce (5.1)

The optimization rule matches appropriate function applications (App pattern), dependable

function applications (DepApp pattern), and lambda expressions (Lambda pattern). The rule

transforms the aforementioned series of patterns into an appropriate convolution based on the

size of the neighbourhood created by the slide pattern:

65

Model Implementation

Listing 5.11: Convolution optimization rule in ELEVATE

1 @ruledefgap8hwConvMerge: Strategy[Rise]={

2 casee@

3 App(

4 App(mapSeq(),

5 App(mapSeq(), Lambda(_,

6 App(

7 App(

8 App(reduceSeq(), add()),

9 App(cast(), _)),

10 App(

11 App(map(), Lambda(_,

12 App(App(mul(), App(fst(), _)), App(snd(), _))

13)

14),

15 App(App(zip(), App(join(), _)), App(join(), filter))

16)

17)

18)

19)

20),

21 App(Lambda(_,

22 App(_,

23 App(Lambda(_,

24 App(

25 DepApp(NatKind, DepApp(NatKind, slide(), size), step), _

26)

27), _)

28)

29), in)

30)=>

31 (size, step)match{

32 case(Cst(iSize), Cst(iStep))=>

33 if(1==iStep && 3==iSize) Success(gap8hwConv3x3(0)(in)(filter) !:

e.t)

34 elseif(1==iStep && 5==iSize) Success(gap8hwConv5x5(0)(in)(filter)

!: e.t)

35 elseif(1==iStep && 7==iSize) Success(gap8hwConv7x7(0)(in)(filter)

!: e.t)

36 elseFailure(gap8hwConvMerge)

37 case_=>Failure(gap8hwConvMerge)

38 }

39 }

66

Model Implementation

•if size = 3, gap8hwConv3x3 pattern is yielded

•if size = 5, gap8hwConv5x5 pattern is yielded

•if size = 7, gap8hwConv7x7 pattern is yielded

All of the cases assume that step = 1 when creating a matrix of neighbourhoods. If none

of the cases was matched, the strategy fails. It is important to mention that this rule, out of

simplicity, does not detect a convolution operation with a filter of size 7× 4 supported by the

hardware convolution engine.

While the aforementioned strategy yields correct results, as presented later in text in eval-

uation (subsection 6.2.4), there are a few objections. One could easily argue that the provided

optimization rule is too specific, and that is true. First step towards abstracting this rule is ac-

cepting generic maps and reduces instead of matching their counterparts which imply concrete

implementations, like mapSeq and reduceSeq. Also, cast pattern should be generalized as its

necessity depends on the expression type. Second, higher-level convolutions should be decom-

posed into simpler, one-dimensional convolutions, with an optimization strategy taking such an

approach into account when matching an input expression.

Also, a platform-agnostic convolution primitive could be easily added to RISE, which would

with an appropriate optimization strategy transform the platform-agnostic primitive into one

that indicates a concrete implementation. Furthermore, this rule fails to detect or will result in

failure if applied, in the case of chained convolutions, which is a use-case for the convolution

operation in the domain of signal processing, in which it’s heavily exploited. However, the way

the rule detects convolution is completely legal in the sense that it is the right way to express it

in RISE, thus making it relatively plausible.

5.6 Runtime environment

The runtime environment was initially developed by the RISE team for the purposes of the

OpenCL code generator. It encapsulates concepts that are characteristic for heterogeneous sys-

tems on the low level, i.e. at the level of the system’s native programming model, thus liberating

Shine’s code generator of generating repetitive boilerplate code. Shine’s code generator gen-

erates code that utilizes the runtime environment exposed through a set of C language header

files. Since the good practice of software engineering dictates that the wheel should not be

reinvented, parts of the OpenCL code generator were reused to develop the GAP8 code gener-

ator, which implied the necessity to implement the interface of the runtime environment for the

GAP8 platform on a low-level. The initial version was thus adapted to fit the needs of both the

OpenCL and GAP8 backends.

Main component and the starting point of the runtime environment is runtime.h C header

file, available in listing 5.12. The header defines 3 types: Context, Kernel, and Buffer.

67

Model Implementation

The first concept runtime environment re-introduces are:

• Host - part of the heterogeneous system which acts as the controller exposed directly to

a programmer. It can usually be identified as a general-purpose processor on which the

program initially runs, bootstrapping the rest of the system

• Device - part of the system which is not general-purpose, an accelerator, or analogous

device. Conceptually, one host can have multiple devices.

Furthermore, the environment introduces concepts of context, kernel, and buffer. Descrip-

tion of the aforementioned concepts are:

• Context - based on dichotomy of having a host and a device in a system with their

respective roles, it is clear that API has to hold setting needed to run the computations,

primarily on the device. Context wraps native configuration directives and function calls

needed to instantiate devices and run computations on them.

• Kernel - a part of the program, series of instructions, or programming code that eventually

will be executed on a device.

• Buffer - a chunk of data being moved between a host and a device.

The runtime.h part of the API provides functions for creating context, creating buffer,

destroying context, destroying buffer, and destroying kernel. Kernel creation, even at the

level of the interface is platform-dependant without a common denominator, hence it is not

exposed in the main runtime header file, but in platform-specific header.

Though the idea of a uniform interface for the heterogeneous backend platforms holds,

there are some minor differences that yielded implementations that could be interpreted as

workarounds. For example, waitFinished function on line 22 in listing 5.12 in case of OpenCL

backend blocks the execution of the program until all of the scheduled computations are fin-

ished. However, GAP8 backend simply returns NULL because a single kernel execution is

currently assumed. GAP8 code generation currently will not emit waitFinished function call,

at least for now. Additionally, AccessFlags defined by the structure on line 18 is currently not

used in the context of the GAP8 backend.

1 #i f n d e fSHINE_RUNTIME_H

2 #d e f i n eSHINE_RUNTIME_H

3

4 #i n c l u d e< s t d l i b . h>

5 #i n c l u d e< s t d i n t . h>

6 #i n c l u d e< s t d b o o l . h>

7 #i n c l u d e< s t d i o . h>

8

9 t y p e d e fs t r u c tC o n t e x t I m p l * C o n t e x t ;

10 t y p e d e fs t r u c tK e r n e l I m p l * K er ne l ;

11 t y p e d e fs t r u c tB u f f e r I m p l * B u f f e r ;

12

68

Model Implementation

13 t y p e d e fenum{

14 HOST_READ = 1 << 0 ,

15 HOST_WRITE = 1 << 1 ,

16 DEVICE_READ = 1 << 2 ,

17 DEVICE_WRITE = 1 << 3 ,

18 } A c c e s s F l a g s ;

19

20 C o n t e x t c r e a t e D e f a u l t C o n t e x t () ;

21 vo idd e s t r o y C o n t e x t (C o n t e x t c t x) ;

22 vo idw a i t F i n i s h e d (C o n t e x t c t x) ;

23

24 B u f f e r c r e a t e B u f f e r (C o n t e x t c tx , s i z e _ t b y t e _ s i z e , A c c e s s F l a g s a c c e s s) ;

25 vo idd e s t r o y B u f f e r (C o n t e x t c tx , B u f f e r b) ;

26 vo id * h o s t B u f f e r S y n c (C o n t e x t c tx , B u f f e r b , s i z e _ t b y t e _ s i z e ,

27 A c c e s s F l a g s a c c e s s) ;

28 D e v i c e B u f f e r d e v i c e B u f f e r S y n c (C o n t e x t c tx , B u f f e r b , s i z e _ t b y t e _ s i z e ,

29 A c c e s s F l a g s a c c e s s) ;

30

31 vo idd e s t r o y K e r n e l (C o n t e x t c tx , K e rn e l k) ;

32

33 #e n d i f

Listing 5.12: runtime.h9

Syncing functions, namely hostBufferSync (line 27) and deviceBufferSync (line 29) func-

tion introduced in runtime.h in context of the GAP8 platform are actually not performing any

concrete syncing, which leads to a display of an additional advantage of the separation of the

code generation and runtime environment, which is the ability to change the implementation of

disjunct parts of the both, without the impacting the significant other. For example, the code

generation process should be agnostic regarding the data transfers between host and device,

and that is exactly what is provided in this case. Currently, code being generated for the GAP8

platform persists data in L2 memory (see section 3.4) which is directly accessible both by fabric

controller (host) and cluster (device). This enabled simple returning of the inner pointer to the

block of memory wrapped by the Buffer type, which can be seen on lines 17 and 22 in listing

5.13. Future optimization regarding transfers of chunks of data currently being processed from

mutually accessible L2 memory to faster shared L1 memory which will employ DMA circuitry

are going to be encapsulated by the aforementioned functions.

1 #i n c l u d e"gap8.h"

2

3 B u f f e r c r e a t e B u f f e r (C o n t e x t c tx , s i z e _ t b y t e _ s i z e , A c c e s s F l a g s a c c e s s) {

4 B u f f e r b u f f e r = (B u f f e r) p i _ l 2 _ m a l l o c (s i z e o f(s t r u c tB u f f e r I m p l)) ;

9https://github.com/rise-lang/shine/blob/main/runtime/runtime.h

69

https://github.com/rise-lang/shine/blob/main/runtime/runtime.h

Model Implementation

5 b u f f e r −> i n n e r = (vo id *) p i _ l 2 _ m a l l o c (b y t e _ s i z e) ;

6 b u f f e r −> b y t e _ s i z e = b y t e _ s i z e ;

7 r e t u r nb u f f e r ;

8 }

9

10 vo idd e s t r o y B u f f e r (C o n t e x t c tx , B u f f e r b) {

11 p m s i s _ l 2 _ m a l l o c _ f r e e (b−> i n n e r , b−> b y t e _ s i z e) ;

12 p m s i s _ l 2 _ m a l l o c _ f r e e (b ,s i z e o f(s t r u c tB u f f e r I m p l)) ;

13 }

14

15 vo id * h o s t B u f f e r S y n c (C o n t e x t c tx , B u f f e r b , s i z e _ t b y t e _ s i z e ,

16 A c c e s s F l a g s a c c e s s) {

17 r e t u r nb−> i n n e r ;

18 }

19

20 D e v i c e B u f f e r d e v i c e B u f f e r S y n c (C o n t e x t c tx , B u f f e r b , s i z e _ t b y t e _ s i z e ,

21 A c c e s s F l a g s a c c e s s) {

22 r e t u r nb−> i n n e r ;

23 }

Listing 5.13: nosync.c

Listing 5.14 provides part of the environment implementation for GAP8 platform. De-

viceBuffer is implemented as void pointer, while implementations of context and kernel wrap

PMSIS API structures that hold cluster instance data and cluster configuration, or structure that

holds data about the task that is about to be executed on cluster respectively. This part of the

interface exposes functions for context creation with specific device identificator (line 26), and

function for loading (line 27) and launching (line 28) kernels. Function for loading kernel ac-

cepts a pointer to a function that will be entry point upon cluster execution. It is important to

notice that current GAP8 platform instances are equipped with only one cluster or device, while

the API theoretically supports multiple clusters attached to one fabric controller. The main part

of the runtime environment implementation for the GAP8 platform is available in the appendix.

1 #i f n d e fSHINE_GAP8_H

2 #d e f i n eSHINE_GAP8_H

3

4 #i n c l u d e"pmsis.h"

5 #i n c l u d e"g a p l i b/ImgIO.h"

6

7 t y p e d e fvo id * D e v i c e B u f f e r ;

8

9 #i n c l u d e". . /r u n t i m e.h"

10

11

70

Model Implementation

12 s t r u c tC o n t e x t I m p l {

13 s t r u c tp i _ d e v i c e c l _ d e v i c e ;

14 s t r u c tp i _ c l u s t e r _ c o n f c l _ c o n f i g u r a t i o n ;

15 } ;

16

17 s t r u c tK e r n e l I m p l {

18 s t r u c tp i _ c l u s t e r _ t a s k * c l _ t a s k ;

19 } ;

20

21 s t r u c tB u f f e r I m p l {

22 vo id * i n n e r ;

23 s i z e _ t b y t e _ s i z e ;

24 } ;

25

26 C o n t e x t c r e a t e C o n t e x t (i n td e v i c e _ i d) ;

27 K er ne l l o a d K e r n e l (vo id(* h a n d l e r) (vo id *) , u i n t 3 2 _ t s t a c k _ s i z e) ;

28 vo idl a u n c h K e r n e l (C o n t e x t c tx , K e rn e l k ,i n tnum_threads ,vo id * a r g s) ;

29

30 #e n d i f

Listing 5.14: gap8.h

5.7 Executor

Executor is a component of the framework that takes care of the program execution in its native

environment but within the context of the framework. The goal of the executor component is

to provide a convenient way of running the RISE expression on a testing platform without the

explicit need to copy the generated code printed to the console to a C source file, followed by

building and running code using appropriate makefile.

Executor encapsulates the aforementioned steps and provides convenient interface, mitigat-

ing the drawbacks. Executor is instantiated by providing the following parameters:

•Local filesystem path to the GAP SDK

•Execution target: GVSoC simulator [145] or development board
•Target operating system: FreeRTOS or PulpOS
•Input and output channel: Selects wheter the user communicates with program in execu-

tion through UART or trough host computer.

Upon instantiation, the client explicitly invokes execute method with code in the native

GAP8 programming model, which launches the following chain of events:

1.A new temporary directory and file are created

2.Generated code is stored in the newly created temporary file

71

Model Implementation

3.Files from the prototype directory within the framework are copied to the temporary

folder. These include the runtime library described in subsection 5.6 and a prototype

of Makefile used to build and run the program. An excerpt from the Makefile in question

is available in listing 5.15

4.Placeholders for the application name (line 1) and name of the main source file (line 3)

are replaced with actual corresponding data

5.Shell command is created. The command sources the appropriate configuration script

depending on the underlying hardware, enters the created temporary directory, and then

executes clean, build and finally run jobs from the Makefile

6.Previously described shell command gets executed as an independent process which re-

turns to the process Executor is executed in.

Listing 5.15: Makefile excerpt

APP = #APP_NAME_PLACEHOLDER

APP_SRCS = #APP_MAIN_SRC_PLACEHOLDER

APP_SRCS += gap8 / gap8 . c

APP_SRCS += gap8 / nosync . c

APP_INC = $ (GAP_LIB_PATH) / i n c l u d e

APP_INC += gap8

CONFIG_OPENMP = 1

APP_CFLAGS += −O3 −DFROM_FILE

i n c l u d e $ (GAP_SDK_HOME) / t o o l s / r u l e s / p m s i s _ r u l e s . mk

72

Chapter 6

Model Evaluation

This chapter covers every aspect of the evaluation of the proposed solution. To test the solu-

tion in simulated real-world scenarios a physical implementation of the GAP8 SoC was used

on GAPuino board [131]. Keeping good scientific practices required ensuring a controlled en-

vironment with strictly and clearly defined criteria. Raw system performance, consumption of

electrical energy, and programmability were measured.

Examples of the produced testing codes, are available in the appendix, both the hand-tuned

code (appendix A) and the generated code appendix(B).

6.1 Methodology

The ground case testing idea is constituted around comparing performance, energy efficiency,

and programmability of the hand-tuned code with code generated by Shine compiler from a

RISE expression. Multiple benchmarks which demonstrate various aspects of parallelism and

heterogeneity were used, every one of them described in section 6.2.

Testing was conducted in a controlled environment with strictly and clearly defined crite-

ria minding the elimination of possible instability effects which can’t be easily managed (i.e.

cold-start effect). Every measurement was conducted five times: first time to eliminate every

potential temporal effect, and every other time to implicitly filter out potential artifacts, both for

generated code and hand-tuned code. Collected data were processed by the standard statistic

models and tools. The previously described procedure applied both to the hand-tuned code and

generated code. Attributes that were measured are raw system performance in the means of

active processor cycles, wall clock time of the execution, and consumption of electrical energy.

Implicitly, the programmability of the system was measured as well. Collecting five consecutive

measurements can be seen on a screenshot of the oscilloscope used to measure the voltage of

the GAP8 chip on figure 6.1. Each pulse of the yellow or blue line represents one measurement.

A deeper explanation of the measurement collecting procedures will be given further in the text.

73

Model Evaluation

Figure 6.1: Five consecutive measurements

Regarding generated code, it is important to mention that even in that case, a small amount

of code had to be written manually to stitch the generated code with input and output parameters.

That part of code contained by the function __main() took care of loading testing data, kicking

the computation off on the cluster, and writing results to check the correctness of the solution.

Example of such a function is available in appendix B, line 211.

Every measurement was run in the same way, cleaning, building, and finally running the

code with the same set of parameters:

• PMSIS_OS - Allows selecting a concrete OS that implements PMSIS API, that the solu-

tion will be run on. For measurements, PulpOS was used;

• CONFIG_OPENMP - Enables OpenMP extension in the compiler;

• platform - Selects whether the program will be run on the board or in the simulator

(GVSoC);

• io - Selects input and output interface of the board, which can be host, meaning the

communication with the board will be done through the host computer, or uart which

utilizes UART controller and lines to channel the communication through it.

The complete shell command used is available in listing 6.1.

Listing 6.1: Run command

! / b i n / bash

make c l e a n && \

make \

PMSIS_OS= p u l p o s \

CONFIG_OPENMP=1 \

p l a t f o r m = board \

74

Model Evaluation

i o = h o s t \

a l l && \

make run

6.1.1 Performance measuring

As suggested by the online GAP8 SDK manual [133], performance was primarily measured by

counting active processing cycles, which provided insight into the clock-wise performance of

the code. Additionally, the wall clock duration of the code execution was measured as well.

Both types of measurements were conducted by using performance and clock function APIs

implemented by the GAP SDK. Measurements were conducted by wrapping the code that was

being observed with functions that started the counters just before the computation began, and

stopped them as soon as the computation finished. Code snippet depicting performance mea-

suring is provided in listing 6.2 with line 3 starting the active cycle counter, and 8 stopping the

counter.

1 p i _ p e r f _ c o n f (1 << PI_PERF_ACTIVE_CYCLES) ;

2 p i _ p e r f _ r e s e t () ;

3 p i _ p e r f _ s t a r t () ;

4 i n tt i m e _ c y c l e s 1 = p i _ p e r f _ r e a d (PI_PERF_ACTIVE_CYCLES) ;

5

6 / ** Coder u n n i n gonc l u s t e rh e r e * /

7

8 p i _ p e r f _ s t o p () ;

9 i n tt i m e _ c y c l e s 2 = p i _ p e r f _ r e a d (PI_PERF_ACTIVE_CYCLES) ;

Listing 6.2: Code snippet which does active cycle counting

Measuring wall clock time was conducted by recording a timestamp prior to starting a com-

putation and just after the computation finished. A function was used that returns the total

amount of time that has elapsed since the start of the runtime in microseconds. Invoking of

the appropriate function can be seen in listings 6.3 (lines 2 and 2) and 6.4 (lines 2 and 8), for

hand-tuned code and generated code respectively, which differ only by the function invoking

the computation.

1 / * Getc u r r e n tsys temt ime * /

2 l ongt i m e _ u s e c 1 = r t _ t i m e _ g e t _ u s () ;

3

4 / * Sendt a s kt oc l u s t e r,b l o c ku n t i lc o m p l e t i o n * /

5 p i _ c l u s t e r _ s e n d _ t a s k _ t o _ c l (& c l _ d e v i c e , c l _ t a s k) ;

6

7 l ongt i m e _ u s e c 2 = r t _ t i m e _ g e t _ u s () ;

Listing 6.3: Wall clock time measurment – Hand-tuned code

75

Model Evaluation

1 / * Getc u r r e n tsys temt ime * /

2 l ongt i m e _ u s e c 1 = r t _ t i m e _ g e t _ u s () ;

3

4 / * Sendt a s kt oc l u s t e rbyc a l l i n gwrapperf u n c t i o n

5 whichf u r t h e ri n v o k e sr u n t i m el i b r a r y * /

6 f o o _ i n i t _ r u n (c tx , out , ROWS, COLS, ROWS, in , i n) ;

7

8 l ongt i m e _ u s e c 2 = r t _ t i m e _ g e t _ u s () ;

Listing 6.4: Wall clock time measurment – Generated code

6.1.2 Measuring energy consumption

Energy consumption was measured using Digilent Analog Discovery 2, a digital oscilloscope

and logic analyzer. There are a couple of reasons for using oscilloscope instead of wattmeter

or other similar tools. The first reason is that the energy consumption for the observed compu-

tation portions executed on the cluster would not necessarily be uniform, i. e. different parts

of the observed computation could consume different amounts of electrical energy, making en-

ergy consumption relatively unstable. The second reason for using oscilloscope lies in the fact

that the observed computations on the cluster are relatively short, which would make readings

fetched from the ordinary voltmeters or wattmeters hard to get, thus making them unstable and

unreliable.

An example depicting reasoning for using an oscilloscope is provided in figure 6.2. The blue

line in the state of logical 1 represents the ongoing execution of the observed computation, while

the yellow line represents the voltage on the differential probes. It is clear that the voltage level

and thus energy consumption is not constant during the observed computation, which effectively

disables the opportunity to measure a single power surge which could in some cases represent a

calculation of interest kicking in. Furthermore, the observed computation is as short as half of

a second, making the use of a simple voltmeter of wattmeter impractical and error-prone.

The oscilloscope was connected to the GAPuino testing board with two differential probes,

and one line connecting the ground of the oscilloscope and the ground of the board. The first

differential probe was connected to connector J11 on the board which exposes the electrical

interface to the internal DC/DC regulator solely of the GAP8 chip featured by the board. A

1 Ohm resistor is placed between the testing points which allows for easy measurement of the

current flowing in the regulator. Block diagram of the connected testing equipment can be found

in figure 6.3.

By utilizing Ohm’s law:

76

Model Evaluation

Figure 6.2: Single zoomed measurement

U = R× I (6.1)

it is easy to calculate the power consumed by the chip:

P =U × I → P =U2 [W] (6.2)

Given average power of the system with respect to time, or given that the power consumption

is constant, consumed energy is then defined by the relation:

Etotal = Paverage ×∆t [J] (6.3)

where ∆t denotes the duration of the chip working, with average power denoted by Paverage

throughout the aforementioned time span. While by using this method one can obtain relatively

accurate results, depending on the application itself, it would be even more precise to plot the

observed voltage as a function and calculate total energy consumption by calculating the area

beneath the power curve with respect to time:

E =
∫ t+τ

t
Pdt (6.4)

The oscilloscope used to measure the voltage on the internal DC/DC regulator was set up

77

Model Evaluation

to record measurements with a sampling frequency of 1 kHz, thus producing 1,000 sampled

voltages from both probes for each second of each measurement. A subset of voltage samples

from the internal DC/DC regulator was then extracted, indicated by samples of voltage recorded

on the GPIO pin used to signal the ongoing computation of interest, which will be explained

further in the text. The extracted samples were then used to calculate energy consumption

in discrete points of time during the calculation, effectively numerically integrating the power

function with respect to time:

E =
t+τ

∑
t
(U [t])2 ×0.001 (6.5)

Figure 6.3: Block diagram of the measurement equipment

Pr obe 1: I nt er nal DC/ DC
Regul at or

GND

Pr obe 2: GPI O pi n

To indicate starting and ending point of the calculation for which the energy consumption is

measured, the second differential probe of the oscilloscope was connected to one of the GPIO

ports of the GAPuino board, namely GPIO12, exposed through connector A3. The observed

calculation was then manually wrapped by code snippets which programmatically drove the

aforementioned GPIO port to states of logical 1 and logical 0. The setup code for the port is

available in listing 6.5.

1 / * S e tf u n c t i o no ft h eboa rdp i nt oGPIO * /

2 p i _ p a d _ s e t _ f u n c t i o n (PI_PAD_12_A3_RF_PACTRL0 , PI_PAD_12_A3_GPIO_A0_FUNC1) ;

3 p i _ g p i o _ e g p i o _ o u t _ a 1 = PI_GPIO_A0_PAD_12_A3 ;

4

5 / * S e tp i nd i r e c t i o n * /

6 p i _ g p i o _ f l a g s _ e c f g _ f l a g s = PI_GPIO_OUTPUT ;

7

8 / * Wr i t ec o n f i g u r a t i o n * /

78

Model Evaluation

9 p i _ g p i o _ p i n _ c o n f i g u r e (& gpio_a1 , gp io_ou t_a1 , c f g _ f l a g s) ;

10

11 / * I n i t i a l l yd e a s s e r tp i nt o0 * /

12 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

Listing 6.5: GPIO pin setup

Listings 6.6 and 6.7 depict code snippets which wrap the observed computations run on

cluster. Snippets are fairly similar and differ only by the function which executes computation

on cluster. Setting the GPIO port to logical 1 can be observed on lines 2 and 2, while setting the

GPIO port to logical 0 can be observed on lines 8 and 9. Computation is executed by invoking

respective functions on lines 5 and 6.

1 / * A s s e r tGPIOp i n * /

2 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 1) ;

3

4 / * Sendt a s kt oc l u s t e r,b l o c ku n t i lc o m p l e t i o n * /

5 p i _ c l u s t e r _ s e n d _ t a s k _ t o _ c l (& c l _ d e v i c e , c l _ t a s k) ;

6

7 / * D e a s s e r tGPIOp i n * /

8 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

Listing 6.6: Computation marking – Hand-tuned code

1 / * A s s e r tGPIOp i n * /

2 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 1) ;

3

4 / * Sendt a s kt oc l u s t e rbyc a l l i n gwrapperf u n c t i o n

5 whichf u r t h e ri n v o k e sr u n t i m el i b r a r y * /

6 f o o _ i n i t _ r u n (c tx , out , ROWS, COLS, ROWS, in , i n) ;

7

8 / * D e a s s e r tGPIOp i n * /

9 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

Listing 6.7: Computation marking – Generated code

Both of the probes were connected and the measurements were conducted as it was sug-

gested by the official GAPuino User’s manual [146].

Figure 6.4 focuses on a single measurement and depicts the voltage on the internal DC/DC

regulator of the GAP8 chip in various stages of the program execution lifecycle. First, the

testing board is disconnected from the power source (1.), then, we observe an obvious surge

when the board is connected to the power source (2.). A jitter of voltage (3.) denotes that the

program execution started, in this case on fabric controller. Pulse (4.) on the GPIO pin visible

on both the blue and yellow line marks the observed computation, and finally, the board is again

disconnected from the power source (5.).

79

Model Evaluation

Figure 6.4: Single measurement

In real testing scenarios, code snippets that measured wall-clock were interleaved with snip-

pets taking care of rising specified GPIO port to logical 1 and logical 0, as can be seen in

appendices A and B. Listings 6.3, 6.4, 6.6, and 6.7 depicting those snippets separately in this

section were given for clarity.

6.2 Benchmarks

6.2.1 Matrix multiplication

The first benchmark the proposed setup is tested against is standard matrix-matrix multiplica-

tion. Expression given in listing 6.8 introduces 3 size variables, n, m, and o, which represent

dimensions of the input matrices and the output matrix. First matrix is of size n× o, second

matrix is of size o×m, while the result matrix is of size n×m. Matrix multiplication is de-

fined by lambda expression passed to f un (second pair of parentheses), along with function

type (first pair of parentheses). Lambda parameters, which turn out to be matrices that are being

multiplied are denoted with a and b. Lambda body is wrapped with gap8run primitive with

parameter 8 which denotes that the expression will be run on the cluster on the GAP8 board.

The first matrix (a) is first piped through mapPar primitive which applies provided function to

every row of the first matrix. Analogously, the second matrix is first piped through transpose

primitive which is then piped through mapPar primitive, applying function body to every col-

umn of the second matrix. A row of the first matrix and column of the second matrix are then

zipped [RefSlikaZip] through zip primitive, yielding a sequence of pairs of corresponding ele-

ments. Every pair is then multiplied and piped through reduceSeq primitive which reduces the

sequence with operator add as reduction function and 0 of type u32 as the initial element of the

80

Model Evaluation

reduction.

Listing 6.8: Matrix multiplication expression in RISE

1 valexpr: ToBeTyped[Expr]=depFun((n: Nat, m: Nat, o: Nat)=>

2 fun((n‘.‘o‘.‘u32) ->:(o‘.‘m‘.‘u32) ->:(n‘.‘m‘.‘u32))(

3 (a, b)=>

4 gap8Run(8)(

5 a |> mapPar(fun(rowa=>

6 b |> transpose |> mapPar(fun(colb=>

7 zip(rowa)(colb) |>

8 map(fun(x=>fst(x) * snd(x))) |>

9 reduceSeq(add)(cast(l(0)) :: u32)

10))

11))

12)

13)

14)

Benchmark was executed by multiplying 2 square matrices of size 250×250 elements.

6.2.2 Sobel filter

The second selected benchmark selected for benchmarking purposes is Sobel filter [147]. Sobel

filter, named after its creator Irwin Sobel with the unfair omission of its second creator Gary

Feldman, is an image filtering algorithm used in edge detection which, by separably convolving

two small matrices of sizes 3× 3 over the input image in the horizontal and vertical direction,

resulting in an output image with emphasized edges of the objects on picture. Edges are parts

of the picture which relatively differ in intensity one from another. The algorithm is easily

parallelizable and cost-effective which makes it widely popular in image processing pipelines,

especially in computer vision, object detection, and object recognition applications.

Gx =

1 0 −1

2 0 −2

1 0 −1

Gy =

1 2 1

0 0 0

−1 −2 −1

Listing 6.9 contains the Sobel filtering expression written in RISE. Expression introduces 2

size variables n, and m which represent dimensions of the input picture. Type of the expression

denotes that it accepts one matrix of size n×m and two matrices of size 3× 3. The resulting

81

Model Evaluation

matrix representing the output image from the algorithm is of size n×m as well. Input ma-

trices map to lambda parameters pic, hw, and, vw, representing input image, horizontal filter,

and vertical filter respectively. Expression is first wrapped in gap8Run pattern indicating that

it will be run on the cluster. The input image is first piped through padCst2D primitive which,

as specified by the input parameters to the primitive, pads the image on every edge with zeros.

Next, padded image is piped through slide2D primitive which creates a matrix of neighbour-

hoods of each element of the input image. The neighbourhood of an element is a submatrix of

the input matrix and is defined as all of the elements that surround the element currently being

processed. The neighbourhood matrix is thus a 3× 3 matrix with the element that is currently

being processed in the center. The matrix of neighbourhoods is then mapped twice, one time

for each dimension. First, the input matrix which is at this point a neighbourhood of a single

element, represented by lambda parameter submat and filter represented by hw and vw are piped

through pattern join, which joins a two-dimensional array and turns it into a one-dimensional

array. Joined arrays are then effectively multiplied using dot product, by being zipped with zip

pattern, elementwise multiplied and then reduced with add operator and 0 as the initial accumu-

lator. Finally, the geometric average is calculated from corresponding elements both from the

horizontal and vertical components. Since GAP8 doesn’t implement a standard math library,

a custom embedded-appropriate implementation is provided in form of a f oreignFun pattern

which is then integrated into expression.

a1 b1

a2 b2

→

0 0 0 0

0 a1 b1 0

0 a2 b2 0

0 0 0 0

→

0 0 0

0 a1 b1

0 a2 b2

0 0 0

a1 b1 0

a2 b2 0

0 a1 b1

0 a2 b2

0 0 0

a1 b1 0

a2 b2 0

0 0 0

→ (6.6)

[

0 0 0 0 a1 b1 0 a2 b2

]
,

[
0 0 0 a1 b1 0 a2 b2 0

]
[

0 a1 b1 0 a2 b2 0 0 0

]
,

[
a1 b1 0 a2 b2 0 0 0 0

]
 (6.7)

82

Model Evaluation

Listing 6.9: Sobel filter expression in RISE

1 valgapSqrt=foreignFun("gap_sqrt",

2 Seq("a_nInput"),

3 """

4 |{

5 |uint32_top=a_nInput;

6 |uint32_tres=0;

7 |

8 |uint32_tone=1uL<<30;

9 |while(one>op){

10 |one>>=2;

11 |}

12 |while(one!=0){

13 |if(op>=res+one){

14 |op=op-(res+one);

15 |res=res+2*one;

16 |}

17 |res>>=1;

18 |one>>=2;

19 |}

20 |returnres;

21 |}

22 |""".stripMargin,

23 u32 ->:u32

24)

25

26 valexpr: ToBeTyped[Rise]=depFun((n: Nat, m: Nat)=>

27 fun((n‘.‘m‘.‘u8) ->:(3‘.‘3‘.‘int) ->:(3‘.‘3‘.‘int) ->:(n‘.‘m‘.‘u8))(

28 (pic, h_w, v_w)=>

29 gap8Run(8)(

30 pic |>

31 padCst2D(1, 1)(cast(l(0)) :: u8) |>

32 slide2D(sz=3, st=1) |>

33 mapPar(mapPar(fun(submat=>{

34 zip(submat |> join)(h_w |> join) |>

35 map(fun(x=>(cast(fst(x)) :: u32) * cast(snd(x)) :: u32)) |>

36 reduceSeqUnroll(add)(cast(l(0)) :: u32) |>

37 letf(h=>

38 zip(submat |> join)(v_w |> join) |>

39 map(fun(x=>

40 (cast(fst(x)) :: u32) * cast(snd(x)) :: u32)) |>

41 reduceSeqUnroll(add)(cast(l(0)) :: u32) |>

42 letf(v=>

43 cast(gapSqrt(h * h + v * v)) :: u8

44)

45)

46 })))

47)

48)

49)

83

Model Evaluation

6.2.3 k-means clustering

k-means clustering is an algorithm first described by John A. Hartigan [148]. Given m points

in generalized n-dimensional space, the algorithm aims to partition given points into k clusters

so that the within-cluster sum of squares is minimized [149]. The algorithm initially selects

k centroids, one for every cluster, which can be done randomly within boundaries of the data

being partitioned, or by using different strategies, e. g. average or mean of points in the initial

set. Each of m points is then associated with a cluster defined by the centroid the point is closest

to. After the association of every point with one of the clusters, centroids are recalculated so

that the square distance to each of the points in the cluster is minimized. The process repeats

for a predefined number of iterations until the algorithm eventually converges.

An expression of the algorithm in RISE, adapted from the RISE’s GitHub repository, is pro-

vided in listing 6.10. Since the expression itself is relatively complex it defines a few auxiliary

functions. Function update accepts an integer of type u32, a pair of integers of the same type,

and produces again an integer of the same type. The semantics of the function within the algo-

rithm is to update the distance between a point in 2-dimensional space and a centroid. Function

select accepts a tuple whose second element is again a tuple and returns the second individual

element of that tuple. Function testF is defined as a foreignFun, meaning that the body of the

function is given in a programming model that is native for the target platform. The function

tests how the distance to a centroid provided by the first parameter to it compares to the minimal

distance to any centroids so far found. Minimal distance is provided as the first element of a

tuple passed as a second parameter to the function. The second element of that tuple is again

a tuple consisting of an index of the centroid currently being tested and an index of a centroid

for which the distance is currently at the minimum. It is important to mention that record con-

struction on returning from the function on lines 8 and 12 directly mimics type of the function,

i. e. uint32_t relates to u32 in the expression defining the type of the function. This de facto

ties function to a concrete implementation regarding type and should probably be avoided.

The core expression starting on line 26 defines three size variables, p as number of points, c

as number of clusters, and f as number of features or dimensions of each point. The expression

generates a function accepting a matrix of size f × p, a matrix of size c× f , and returns an array

of p elements containing element-wise index of the centroid for every point in the array. The

underlying lambda defines two lambda variables, features, and clusters. The body of the lambda

is wrapped with gap8run pattern, indicating that the computation should be run on cluster.

First, features is piped through a mapPar pattern which maps a function on each oelement of

the collection represented by features. Second, clusters is piped through reduceSeq pattern,

reducing a collection with the underyling function and a pair provided as an initial element for

reduction operation (line 35). The reduction function further decomposes clusters collection,

zips each feature with a cluster and reduces the resulting collection with update as a reduction

84

Model Evaluation

function and 0 as an initial element effectively calculating distance (line 32). Distance structure

is then passed to the testF function with the tuple consisting of up to point in time calculated

minimal distance, indexe of the centroid currently closest to the point for which the distance is

being calculated, and index of the centroid for which the distance is currently being calculated.

The reduction operation is finally piped through previously described select auxiliary function.

Listing 6.10: k-means clustering expression in RISE1

1 valtestF=foreignFun("test",

2 Seq("dist","tuple"),

3 """{

4 |uint32_tmin_dist=tuple._fst;

5 |uint32_ti=tuple._snd._fst;

6 |uint32_tindex=tuple._snd._snd;

7 |if(dist<min_dist){

8 |return(structRecord_uint32_t__uint32_t_uint32_t_){

9 |dist,{i+1,i}

10 |};

11 |}else{

12 |return(structRecord_uint32_t__uint32_t_uint32_t_){

13 |min_dist,{i+1,index}

14 |};

15 |}

16 }""".stripMargin,

17 u32 ->:(u32 x (u32 x u32)) ->:(u32 x (u32 x u32))

18)

19

20 valupdate=fun(u32 ->:(u32 x u32) ->:u32)((dist, pair)=>

21 dist + (pair._1 - pair._2) * (pair._1 - pair._2)

22)

23

24 valselect=fun(tuple=>tuple._2._2)

25

26 valexpr: ToBeTyped[Rise]=depFun((p: Nat, c: Nat, f: Nat)=>

27 fun((p‘.‘f‘.‘u32) ->:(c‘.‘f‘.‘u32) ->:(p‘.‘u32))(

28 (features, clusters)=>

29 gap8Run(8)(

30 features |> mapPar(fun(feature=>

31 clusters |> reduceSeq(fun(tuple=>fun(cluster=>{

32 valdist=zip(feature)(cluster) |>

33 reduceSeq(update)(cast(l(0)) :: u32)

85

Model Evaluation

34 testF(dist)(tuple)

35 })))(

36 makePair(cast(l(4294967295L)) :: u32)

37 (makePair(cast(l(0)) :: u32)(cast(l(0)) :: u32))

38) |> select

39))

40)

41)

42)

6.2.4 Convolution

Convolution is one of the most common yet non-primitive operations in the domain of signal

processing. That being said, together with the existence of the specialized hardware convo-

lution engine, merits for a specialized benchmark that would test the performance and energy

efficiency both for the convolution executed on the RISC-V processing cores in the cluster, and

for the convolution executed on the specialized hardware convolution engine.

Expression describing convolution with 3×3 filter in RISE is available in listing 6.11.

Listing 6.11: Convolution with 3 X 3 filter in RISE

1 valexpr: ToBeTyped[Rise]={

2 depFun((w:Nat, h: Nat)=>

3 fun((w‘.‘h‘.‘i16) ->:(3‘.‘3‘.‘i16) ->:((w - 2)‘.‘(h - 2)‘.‘i16))(

4 (in, filter)=>

5 gap8Run(8)(

6 in |>

7 slide2D(3, 1) |>

8 mapPar(mapPar(fun(sub=>{

9 zip(sub |> join)(filter |> join) |>

10 map(fun(x=>fst(x) * snd(x))) |>

11 reduceSeq(add)(li16(0))

12 })))

13)

14)

15)

16 }

1Adapted from https://github.com/rise-lang/shine/blob/main/src/main/scala/apps/kmeans.

scala

86

https://github.com/rise-lang/shine/blob/main/src/main/scala/apps/kmeans.scala
https://github.com/rise-lang/shine/blob/main/src/main/scala/apps/kmeans.scala

Model Evaluation

The expression declares two size variables, w and h, which represent the width and height

of the input matrix respectively. The type of the expression is:

(w×h) : i16,(3×3) : i16 → ((w−2)× (h−2)) : i16 (6.8)

which means that it accepts a matrix of size w× h, a matrix of size 3× 3, and produces a

matrix of size ((w−2)×(h−2)). All of the matrices contain elements of 16-bit signed integers.

The underlying lambda has 2 parameters in and f ilter which correspond to the input ma-

trices. The expression is first wrapped with gap8Run primitive, indicating that the underlying

code has to be run on the cluster. In the context of this expression, this is particularly important,

because of the transformation that, once applied, will attempt to produce code that utilizes the

hardware convolution engine which resides in the cluster. Attempting such a transformation

with an expression set to be run on the fabric controller would not yield code utilizing that

engine.

Input matrix is first piped through a slide2D pattern with parameters slide = 3,size = 1,

which creates a matrix of neighbourhoods of size 3×3. The matrix of neighbourhoods is then

mapped over a function with a pair of mapPar patterns that first join both the input matrix

and the filter matrix and then zip them. The zipped array of input and filter matrices is then

mapped over a function that multiplies respective elements just before reducing the array with

add operator with the initial element being 0.

The expression describing convolution in listing 6.11, when translated can be run on the

cluster of the GAP8 chip. However, that expression won’t utilize hardware convolution engine

per se, regardless of its existence. To utilize the engine, the series of patterns in the provided

expression have to be transformed to a pattern that will indicate the usage of the hardware con-

volution engine. That pattern will further in compilation be translated to the concrete invocation

of the engine. The optimization strategy which attempts to transform a series of patterns con-

stituting convolution into one single pattern which indicates usage of the convolution engine is

available in 5.11. The attempt of applying the optimization strategy can be observed on line 4

in listing 6.12.

Listing 6.12: Applying GAP8-specific convolution transformation

1 valconv: Strategy[Rise]=

2 (gap8hwConvMerge ‘@‘ everywhere)

3

4 vallowExpr=conv(exprOnAcc).get

5 valmodule=util.gen.gap8.hosted.fromExpr(lowExpr)

6 valcode=GAP8.Module.translateToString(module)

87

Model Evaluation

After the attempt of applying the optimization strategy, expression is further translated to

the native programming model for the GAP8 chip. The expression after application of the

optimization strategy somewhat resembles the body of the lambda on line 7 in listing 6.13 since

the strategy transforms a series of patterns that constitute convolution operation with the pattern

that utilizes hardware convolution engine.

Listing 6.13: Utilizing gap8hwConv3x3 primitive directly

1 /**

2 *HWCE_ProcessOneTile3x3_MultiOut(e1,output,NULL,NULL,e2,0,n,m,0x7)

3 **/

4 valexpr: ToBeTyped[Rise]={

5 fun((w‘.‘h‘.‘i16) ->:(3‘.‘3‘.‘i16) ->:((w - 2)‘.‘(h - 2)‘.‘i16))(

6 (in, filter)=>

7 gap8Run(8)(gap8hwConv3x3(0)(in)(filter))

8)

9 }

This also implies that the hardware convolution engine can be utilized directly, though that

to some extent violates the idea of the encapsulation of the underlying hardware from the pro-

grammer, which is the main reason why programmers, i. e. domain scientists should opt-in

using RISE or similar domain-specific language. Furthermore, describing computations from

high-level patterns opens a relatively large exploration space for future optimizations which

could be performed without the programmer’s explicit knowledge, yielding even higher perfor-

mance and energy efficiency.

The aforementioned expressions can be slightly modified to support convolution with filters

of other sizes. More concretely, one has to change the type of the expression, parameters of the

slide2D primitive in case of the manually written RISE expression (listing 6.12), or the concrete

primitive in case of the directly-invoked convolution (listing 6.13).

•Filter of size 5 ×5 Type of the expression should be:

(w×h) : i16,(5×5) : i16 → ((w−4)× (h−4)) : i16 (6.9)

Parameters of the slide2D should be size= 5,step= 1 in case of a manually-written RISE

expression or gap8hwConv5x5 in case of a direct invocation.

•Filter of size 7 ×7 The type of the expression should be:

(w×h) : i16,(7×7) : i16 → ((w−6)× (h−6)) : i16 (6.10)

Parameters of the slide2D should be size= 7,step= 1 in case of a manually-written RISE

88

Model Evaluation

expression or gap8hwConv7x7 in case of a direct invocation.

•Filter of size 7 ×4 The type of the expression should be:

(w×h) : i16,(7×4) : i16 → ((w−6)× (h−3)) : i16 (6.11)

Parameters of the slide2D should be sizew = 7,step = 1,sizeh = 4,step = 1 in case of a

manually-written RISE expression or gap8hwConv5x5 in case of a direct invocation.

Native code that is translated from the expressions is available in the appendix B.2.

6.3 Evaluation

6.3.1 Performance evaluation

As mentioned previously in the text, performance is measured in active cycles of the processing

cores, i. e. cycles during which the core was active, excluding sleeping, etc., and in wall-clock

time. The results for benchmarks, excluding convolution as a special case, are given in table

6.1. Data in columns Hand-tuned code and Generated code are given in the raw number of

active cycles measured for hand-tuned and generated code respectively, in terms of average and

standard deviation of a sample. Column Diff provides the difference between hand-tuned and

generated code, from the perspective of the generated code. If a result is negative, it means

that the generated code is more performant, and vice versa. Gain is given in percentages, again

from the perspective of the generated code, but with the inverted sign. A positive percentage

means that there is a gain in performance compared to the hand-tuned code. The same data is

plotted for clarity on figure 6.5. Each bar group represents one benchmark, with green shaded

bars representing hand-tuned code, and blue shaded bars representing generated code.

Table 6.1: Clock cycle-wise performance evaluation results

Hand-tuned code [#] Generated code [#] Diff [#] Gain [%]

Matrix multiplication
55311948.50

± 72120.86

55309519.50

± 15632.25
-2429 +0.0044

Sobel filter
6028773.5

± 1830.44

5152102.25

± 4594.54
-876671.25 +14.5415

k-means clustering
21812.25

± 26.02

8567.00

± 76.00
-13245.25 +60.7240

Clock cycle-wise performance analysis suggests promising results. Gains can be observed

regarding all three benchmarks, with matrix multiplication benchmark being on par, and huge

89

Model Evaluation

gains regarding Sobel filter and k-means clustering benchmarks, especially the latter. The re-

sults here should be taken cum granulo salis though, as the increase in performance greater than

60% certainly draws suspicion. Such results, and results in an increase regarding active cycles,

could suggest that processing cores were better exploited, i. e. that their duty cycle was higher

but that the duration of the computation did not necessarily become shorter.

Figure 6.5: Cycle-wise performance comparison

55311948.50

6028773.50

21812.25

55309519.50

5152102.25

8567.00

1.00 10.00 100.00 1000.00 10000.00 100000.00 1000000.00 10000000.00 100000000.00

Matrix multiplication

Sobel filter

k-means clustering

Cycles [#]

Generated code Hand-tuned code

When it comes to measuring wall-clock time, the results are provided in table 6.2. This time

columns Hand-tuned code and Generatedcode provide average and standard deviation of sam-

ple for wall-clock time measured in µS, for hand-tuned code and generated code respectively.

Diff provides the difference in time, again in µS from the perspective of generated code, nega-

tive result implying that generated code executed in a shorter amount of time. Gain provides a

relative percentage increase, but again with an inverted sign, which means that a positive result

indicates shorter execution of time of the generated code. Data are plotted for clarity on figure

6.6, with the same representation scheme as on the previous figure.

The results again show the increase in performance, observed through shorter execution

time for all of the benchmarks, with matrix multiplication gaining the most, followed by k-

means clustering, and at last Sobel filter. Gains achieved for generated code range from 0.2%

to 4.2% which cannot be considered a significant gain, but is at least on-par with respect to

hand-tuned code.

90

Model Evaluation

Table 6.2: Wall-clock time performance evaluation results

Hand-tuned code [µS] Generated code [µS] Diff [µS] Gain [%]

Matrix multiplication
1180778.50

± 57945.11

1131195.00

± 1330.48
-49583.50 +4.1992

Sobel filter
222030.50

± 1884.54

221565.00

± 3773.39
-465.50 +0.2097

k-means clustering
121963.50

± 2197.50

120666.50

± 2680.05
-1297.00 +1.0634

Figure 6.6: Wall-clock time performance comparison

1180778.50

222030.50

121963.50

1131195.00

221565.00

120666.50

1.00 10.00 100.00 1000.00 10000.00 100000.00 1000000.00 10000000.00

Matrix multiplication

Sobel filter

k-means clustering

Microseconds [µs]

Generated code Hand-tuned code

91

Model Evaluation

6.3.2 Energy efficiency evaluation

The energy efficiency evaluation was conducted by continuously measuring the power con-

sumption of the platform while the code was being executed. One can argue that energy con-

sumption can be derived from performance, because code that executes faster, usually stresses

the platform for a shorter period of time, thus consuming more energy but in a shorter period of

time. Nevertheless, the energy consumption was measured as one of the main topics that this

thesis covered is energy-efficient computing. Furthermore, a computation can consume energy

less-efficient than the analogous computation while yielding the same result.

Energy consumption and implicitly energy efficiency were measured in two different ways.

As previously described in the text, the most accurate way of measuring energy consumption

is by calculating the area below the plotted function of power with respect to time. Since the

measurement tool, i. e. oscilloscope, provided enough data with a satisfying resolution, by

utilizing relation 6.5, numerical integration was performed to calculate energy consumption for

each benchmark. The results are provided in table 6.3 and for clarity on figure 6.7. Columns

Hand-tuned code and Generated code present the average and standard deviation of a sample

of measured energy consumption in Joules. Diff presents the difference between measurements

from the perspective of the generated code, negative result meaning that generated code con-

sumed less energy. Gain presents a difference in percentages, again from the perspective of the

generated code, but with an inverted sign to intuitively hint at the spirit of the result. Positive

gain implies less energy consumed and vice versa.

Table 6.3: Energy efficiency evaluation - Numerical integration

Hand-tuned code [J] Generated code [J] Diff [J] Gain [%]

Matrix multiplication
8.52×10−5

± 2.77×10−6

9.02×10−5

± 2.24×10−6
4.98×10−6 -5.85

Sobel filter
1.10×10−5

± 2.01×10−7

1.01×10−5

± 4.36×10−8
-9.20×10−7 +8.35

k-means clustering
1.27×10−6

± 2.51×10−8

1.23×10−6

± 2.52×10−8
-3.56×10−8 +2.81

Results show gains in energy efficiency for Sobel filter and k-means clustering benchmark

and loss for matrix multiplication benchmark. This interestingly depicts how performance is

not necessarily tied to energy consumption, as an increase has been observed with respect to

performance (section 6.3.1) for all of the benchmarks. While this cannot be clearly explained

at this point in time, the probable cause might be due to the worse utilization of processing

92

Model Evaluation

cores which yielded higher power consumption for generated code, although it was executed in

a shorter period of time.

Figure 6.7: Energy consumption comparison (Numeric integration)

8.52E-05

1.10E-05

1.27E-06

9.02E-05

1.01E-05

1.23E-06

0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05 1.00E-04

Matrix multiplication

Sobel filter

k-means clustering

Energy [J]

Generated code Hand-tuned code

The second method by which the energy consumption was measured is deriving it from the

average power in a time period, as described by relation 6.3 in the previous section describing

the methodology. Again, samples collected from the probes of the oscilloscope were used to

extract a subset of those samples which represented measurements of the voltage of the internal

DC/DC regulator during the execution of computation of interest. An average of those samples

was calculated, and that average was multiplied by the duration of the timeframe in which

the samples were collected. The resulting calculations are available in table 6.4, again as an

average with a standard deviation of a sample for Hand-tuned code and Generated code, with

Diff showing the difference in energy consumption from the perspective of generated code, and

with Gain showing a difference in percentage, positive result meaning that there is an increase

in energy efficiency and vice versa. Results are for clarity available on figure 6.8 as well.

As can be seen in the corresponding table (6.4) and figure (6.8), matrix multiplication bench-

marks show some loss in energy efficiency, while the rest two benchmarks show positive results,

i. e. increases in energy efficiency. These results correspond to the previously depicted ones

obtained by numerically integrating power function with respect to time, but with some devia-

tions. Deviations could be explained by potential variations in the voltage measurement which

93

Model Evaluation

Table 6.4: Energy efficiency evaluation – Average voltage and wall-clock time

Hand-tuned code [J] Generated code [J] Diff [J] Gain [%]

Matrix multiplication
8.31×10−5

± 2.41×10−6

8.94×10−5

± 2.25×10−6
6.28×10−6 -7.5604

Sobel filter
9.12×10−6

± 1.56×10−7

8.07×10−6

± 2.17×10−8
-1.04×10−6 +11.4582

k-means clustering
1.25×10−6

± 2.21×10−8

1.23×10−6

± 2.60×10−8
-2.60×10−8 +2.0739

biased the average of the measurements slightly.

Figure 6.8: Energy consumption comparison (Average with wall-clock time)

8.31E-05

9.12E-06

1.25E-06

8.94E-05

8.07E-06

1.23E-06

0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05 1.00E-04

Matrix multiplication

Sobel filter

k-means clustering

Energy [J]

Generated code Hand-tuned code

Regarding energy efficiency evaluation, there is one perspective point for future work. If

a computation is run on a general-purpose controller or on one core in the cluster, it might

take longer to compute, but would definitely consume less energy. On the other hand, if a

computation is run on the whole system, it will definitely be computed in less time, but consume

more energy. This poses a solid ground for optimization of the energy consumption regarding

the application being run on the system, and the context the system is placed in.

94

Model Evaluation

6.3.3 Programability evaluation

Programmability evaluation poses an ungrateful task, as evaluating the programmability of the

programming model, often implies a relatively high amount of subjectivity. Some metrics exist

but are rarely used in practice. One of the most naive metrics is lines of code. Although that

metric by itself cannot efficiently grade a programming model, as it is heavily influenced by

the programmer’s style, including bracketing and spacing rules, it can show what the model is

capable of with respect to program brevity and conciseness. Table 6.5 provides lines of code for

the each benchmark used for evaluation purposes. Each column contains lines of code counted

for the respective benchmark.

Table 6.5: Naive comparison of programming models with respect to lines of code

Hand-tuned code Generated code RISE expression

Matrix multiplication 114 166 13

Sobel filter 214 233 43

k-means clustering 176 220 34

Again, for clarity, data is presented on figure 6.9 as well. Each bar group represents one

benchmark. Green shaded bars represent lines of code of hand-tuned code, blue bars represent

the same for generated code, and at last, grey-shaded bars represent lines of code of analogous

RISE expressions.

The results are expected, benchmarking applications expressed in RISE are up to an order

of magnitude shorter than the hand-tuned code. Generated code is somewhat longer than the

hand-tuned code, but this observation can be disregarded as the generated code itself in real

applications can be observed just as another step in the compilation process.

When it comes to benchmarking utilization of HWCE but in terms of programmability, some

of the scenarios were analyzed. Table 6.6 provides lines of code for hand-tuned code that utilizes

HWCE for convolution (Hand-tuned code with HWCE), for the generated code that performs

convolution but without utilizing HWCE (Generated code without HWCE), for RISE program

expressing convolution by direct utilization of the HWCE through the appropriate primitives

(With direct usage of HWCE), and for RISE program expressing convolution by a series of

patterns that could later be transformed to convolution-utilizing primitives (Witout direct usage

of HWCE).

The data presented is clear. Either direct or indirect utilization of HWCE in RISE yields an

order of magnitude fewer lines of code than manual utilization. Generated code again yields

a larger program, which can objectively be disregarded. Indirect usage of HWCE from RISE

clearly contains more lines of code which are expected, but not that much important as the

95

Model Evaluation

Figure 6.9: Total lines of code comparison

114

214

176

166

233

220

13

43

34

0

50

100

150

200

250

Matrix multiplication Sobel filter k-means clustering

Li

n
es

 o
f

C
o

d
e

Hand-tuned code Generated code RISE expression

Table 6.6: Naive comparison - Convolution benchmark

Native programming model RISE

Hand-tuned code

with HWCE

Generated code

without HWCE

With direct usage

of HWCE

Without direct usage

of HWCE

Convolution 120 186 9 17

96

Model Evaluation

absolute difference between the number of lines of code between direct usage of HWCE and

without direct usage of HWCE is relatively small.

97

Chapter 7

Conclusion

The constant increase of the need for computing power can be easily perceived in the current

temporal moment. That need is driven by the tremendous increase of the aggregated data re-

garding physical simulations, climate models, and other similar application domains, further

followed by big data processing and brain-inspired computing. Everything mentioned drives

the need to enter the so-called exascale domain. The exascale domain is a domain of comput-

ing processing power in which there would exist supercomputers with processing power on the

scale of exaFLOPS. The importance of reaching that domain is stressed out by the existence of

multiple projects in well technologically-developed countries with the ultimate goal to develop

an exascale machine in near future. There are some allegations that ceratin projects already

achieved that goal. Regarding reaching the exascale domain, one of the key points is hetero-

geneity. Heterogeneity, when considered in the context of computing systems implies that such

system or processing node consists of dissimilar or diverse components, i. e. processing units of

different purposes. Heterogeneous systems in most cases imply systems containing a general-

purpose processing core, coupled with a non-general purpose accelerator. An accelerator can be

a general-purpose graphics processing unit that can achieve high throughput in intensive data-

parallel applications, or an accelerator for a specific domain, e. g. cryptographic processing or

matrix calculations. When considering the latter type of accelerators, such accelerators usually

achieve the best results regarding performance and energy efficiency, but with a cost of being

unusable in other domains. Given everything stated, there exists a large gap for customizable

accelerators which would balance between achieving high performance and energy efficiency

in the application domain they are accelerating, and providing an interface for customization of

themselves to some extent.

However, heterogeneity itself does not guarantee an increase in performance or energy ef-

ficiency. Heterogeneity has to be appropriately and efficiently exploited, together with paral-

lelism on every level, which is inherently hard. This thesis tackled the problem of the pro-

grammability of complex heterogeneous systems with customizable accelerators. The exist-

98

Conclusion

ing models usually rely on imperative programming paradigm which approaches algorithm de-

composition with respect to how calculations are performed. On the other hand, the proposed

model approaches problem decomposition with respect to what is being calculated, thus offer-

ing domain scientists who usually exploit massively available computing power embodied in

heterogeneous computing systems, a cleaner, simpler, and more concise programming model.

Furthermore, the conventional programming approach usually requires a deep understanding of

the underlying hardware’s architecture, explicit memory manipulation, memory synchroniza-

tion, etc. Another benefit of the proposed model, mirroring the original idea of the approach in

this thesis, is an abstraction of the underlying hardware and peculiarities implied by the highly

parallel and heterogeneous systems.

This thesis aimed to fulfill the expected scientific contribution consisting of two parts:

1.Programming model for heterogeneous systems with customizable accelerators based on

a domain-specific language

2.Algorithms for accelerator customization based on program features for performance and

energy efficiency optimization

The first part of the thesis is completely fulfilled through extensions of the infrastructure

based on the RISE language for supporting heterogeneous systems with customizable accelera-

tors. However, the second part of the expected scientific contribution was heavily influenced by

the inexistence of the anticipated customizable accelerators, which would expose tunable pa-

rameters. Accelerators and general-purpose controllers usually can tune frequency and voltage,

but those parameters cannot be fully considered customizations. Instead of algorithms for ac-

celerator customizations, support for the specialized part of the chip, i. e. hardware convolution

engine was added, serving partly as a showcase of the principle of supporting specialized hard-

ware by providing transformations for a series of patterns that constitute operations that that

hardware supports. Infrastructure around RISE language then applies provided transformations

that offloads computation to the underlying hardware without explicit knowledge or invoca-

tion of the programmer. Furthermore, extensive benchmarks and evaluations of the proposed

solution were provided.

The proposed solution was compared to the native programming model for the chosen hard-

ware platform in terms of performance, energy efficiency, and programmability. Carefully

hand-tuned code was compared with code generated by the Shine compiler from the expres-

sions describing the same benchmarks in RISE. It is experimentally shown that it is possible

to achieve performance and energy efficiency of the generated code that is on par or better

than hand-tuned code, while at the same time providing a programming model that is cleaner,

simpler, and more concise than the conventional or native model.

Regarding future work in the field of this thesis, multiple prospective opportunities are avail-

able. First, there is an objective need to investigate into memory systems of heterogeneous

99

Conclusion

systems and their hierarchy, minding latencies, and speeds of particular parts of the memory

subsystem. The current approach relies on the fact that there exists a memory that is accessible

both by the general-purpose controller and the accelerator. While this is true for the platform

targeted in this thesis, that might not be the case in general. Furthermore, if a system contains

multiple types of memories available only to disjunct parts of the system, there is a high proba-

bility that memory available only to one part of the system will be faster for that respective part

of the system. Therefore, the proposed model could be extended by either explicit or implicit

directives for data splitting and chunked data transferring to faster memories accessible by the

processing element which operates on data. Such a mechanism should include writing back that

data and generating API calls that would invoke the needed DMA transfers.

Second, an optimization strategy that translates a series of patterns constituting convolu-

tion operation needs to be generalized and applicable to actual computing problems. Begin

too-specifically defined, renders it unable to be applied correctly to applications utilizing con-

volution. Regarding optimization strategies for accelerators for specific domains, the current

system requires manual writing optimization strategies for each piece of the specialized hard-

ware contained by the underlying platform. Descriptors of the underlying hardware could be

introduced which could be used to generate optimization strategies, thus lowering the need for

compiler engineers to write those strategies manually. Hardware descriptors could be used to

improve other aspects of the compiler as well.

Third and last, while the approach provided in this thesis ultimately provides a model that

is simpler, cleaner, and more concise than the imperative-based native programming model, it

can arguably be made even easier or cleaner. Functional programming paradigm and domain-

specific languages have a relatively steep learning curve that could repel programmers and

domain-scientist from exploiting it for good. It is therefore a responsibility of researchers to

make the provided models as approachable as possible to drive their further usage in domains

of industry, academia, and research in general.

100

Appendix A

Hand-tuned code

This appendix provides an example of a hand-tuned code for the Sobel filter benchmark avail-

able in subsection 6.2.2, with code necessary to perform performance and energy efficiency

measurements described in section 6.

1 #i n c l u d e< s t d i o . h>

2

3 / * PMSISi n c l u d e s. * /

4 #i n c l u d e"pmsis.h"

5

6 / * Gap_ l ibi n c l u d e s. * /

7 #i n c l u d e"g a p l i b/ImgIO.h"

8

9 / * Imaged i m e n s i o n s * /

10 #d e f i n eIMG_LINES 240

11 #d e f i n eIMG_COLS 320

12

13 #d e f i n eSTACK_SIZE 2048

14

15 / * Forc o n v e n i e n c e * /

16 t y p e d e fu n s i g n e dc h a rb y t e ;

17

18 / * P o i n t e r si nmemoryf o ri n p u tando u t p u timages * /

19 b y t e * ImageIn_L2 ;

20 b y t e * ImageOut_L2 ;

21

22 i n tG_X [] = {

23 −1 , 0 , 1 ,

24 −2 , 0 , 2 ,

25 −1 , 0 , 1

26 } ;

27

28 i n tG_Y [] = {

101

Hand-tuned code

29 −1 , −2 , −1 ,

30 0 , 0 , 0 ,

31 1 , 2 , 1

32 } ;

33

34 / **
35 * GAP8doesn o timplementmathl i b r a r y

36 * (o ri tc e r t a i n l ydoesn’tdosof o ra tl e a s tp a r to fi t)

37 * Th i s(r e u s e d)i m p l e m e n t a t i o ni sa p p r o p r i a t ef o rembeddedd e v i c e s

38 * See:h t t p s: / /s t a c k o v e r f l o w.com/q u e s t i o n s/ 1 1 0 0 0 9 0 /

39 * l o o k i n g−f o r−an−e f f i c i e n t−i n t e g e r−squa re−r o o t−a l g o r i t h m−f o r−arm−thumb2

40 * /

41 u i n t 3 2 _ t SquareRoot (u i n t 3 2 _ t a _ n I n p u t)

42 {

43 u i n t 3 2 _ t op = a _ n I n p u t ;

44 u i n t 3 2 _ t r e s = 0 ;

45 / /1u<<14f o ru i n t 1 6 _ tt y p e;

46 u i n t 3 2 _ t one = 1uL << 3 0 ;

47

48 w h i l e(one > op)

49 {

50 one >>= 2 ;

51 }

52

53 w h i l e(one != 0)

54 {

55 i f(op >= r e s + one)

56 {

57 op = op − (r e s + one) ;

58 r e s = r e s + 2 * one ;

59 }

60 r e s >>= 1 ;

61 one >>= 2 ;

62 }

63 r e t u r nr e s ;

64 }

65

66 vo ids u b p i c t u r e (b y t e * i n _ p i c t u r e , b y t e * o u t _ s u b p i c t u r e ,

67 i n tp i c t u r e _ s i z e ,i n twidth ,i n tc u r r _ e l e m e n t)

68 {

69 b y t e i s _ t o p _ r o w _ p i x e l = c u r r _ e l e m e n t − wid th < 0 ;

70 b y t e i s _ l e f t _ c o l u m n _ p i x e l = c u r r _ e l e m e n t % wid th == 0 ;

71 b y t e i s _ b o t t o m _ r o w _ p i x e l = c u r r _ e l e m e n t + wid th >= p i c t u r e _ s i z e ;

72 b y t e i s _ r i g h t _ c o l u m n _ p i x e l = (c u r r _ e l e m e n t + 1) % wid th == 0 ;

73

102

Hand-tuned code

74 o u t _ s u b p i c t u r e [0] = ! i s _ t o p _ r o w _ p i x e l && ! i s _ l e f t _ c o l u m n _ p i x e l ?

75 i n _ p i c t u r e [c u r r _ e l e m e n t − wid th − 1] : 0 ;

76 o u t _ s u b p i c t u r e [1] = ! i s _ t o p _ r o w _ p i x e l ?

77 i n _ p i c t u r e [c u r r _ e l e m e n t − wid th] : 0 ;

78 o u t _ s u b p i c t u r e [2] = ! i s _ t o p _ r o w _ p i x e l && ! i s _ r i g h t _ c o l u m n _ p i x e l ?

79 i n _ p i c t u r e [c u r r _ e l e m e n t − wid th + 1] : 0 ;

80

81 o u t _ s u b p i c t u r e [3] = ! i s _ l e f t _ c o l u m n _ p i x e l ?

82 i n _ p i c t u r e [c u r r _ e l e m e n t − 1] : 0 ;

83 o u t _ s u b p i c t u r e [4] =

84 i n _ p i c t u r e [c u r r _ e l e m e n t] ;

85 o u t _ s u b p i c t u r e [5] = ! i s _ r i g h t _ c o l u m n _ p i x e l ?

86 i n _ p i c t u r e [c u r r _ e l e m e n t + 1] : 0 ;

87

88 o u t _ s u b p i c t u r e [6] = ! i s _ b o t t o m _ r o w _ p i x e l && ! i s _ l e f t _ c o l u m n _ p i x e l ?

89 i n _ p i c t u r e [c u r r _ e l e m e n t + wid th − 1] : 0 ;

90 o u t _ s u b p i c t u r e [7] = ! i s _ b o t t o m _ r o w _ p i x e l ?

91 i n _ p i c t u r e [c u r r _ e l e m e n t + wid th] : 0 ;

92 o u t _ s u b p i c t u r e [8] = ! i s _ b o t t o m _ r o w _ p i x e l && ! i s _ r i g h t _ c o l u m n _ p i x e l ?

93 i n _ p i c t u r e [c u r r _ e l e m e n t + wid th + 1] : 0 ;

94

95 }

96

97 / * Mainc l u s t e re n t r yp o i n t,e x e c u t e donc o r e0 * /

98 vo idc l u s t e r _ e n t r y _ p o i n t (vo id * a r g s)

99 {

100 / * Benchmarking.Counta c t i v ec y c l e s * /

101 p i _ p e r f _ c o n f (1 << PI_PERF_ACTIVE_CYCLES) ;

102 p i _ p e r f _ r e s e t () ;

103 p i _ p e r f _ s t a r t () ;

104 i n tt ime1 = p i _ p e r f _ r e a d (PI_PERF_ACTIVE_CYCLES) ;

105

106 i n ti , j ;

107

108 i n taccu_x ;

109 i n taccu_y ;

110

111 b y t e t m p _ s u b p i c t u r e [9] ;

112 memset (t m p _ s u b p i c t u r e , 0 , 9) ;

113

114 / * Th i sd i r e c t i v ew i l lp a r a l l e l i z eona l lo ft h ec l u s t e rc o r e s * /

115 # pragma omp p a r a l l e lf o rf i r s t p r i v a t e (t m p _ s u b p i c t u r e)

116 f o r(i = 0 ; i < IMG_LINES * IMG_COLS ; ++ i) {

117 s u b p i c t u r e (ImageIn_L2 , t m p _ s u b p i c t u r e ,

118 IMG_LINES * IMG_COLS , IMG_COLS , i) ;

103

Hand-tuned code

119

120 accu_x = 0 ;

121 accu_y = 0 ;

122

123 f o r(j = 0 ; j < 9 ; ++ j) {

124 accu_x = accu_x + (t m p _ s u b p i c t u r e [j] * G_X[9 − j − 1]) ;

125 accu_y = accu_y + (t m p _ s u b p i c t u r e [j] * G_Y[9 − j − 1]) ;

126 }

127

128 ImageOut_L2 [i] =

129 (b y t e) SquareRoot (accu_x * accu_x + accu_y * accu_y) ;

130 }

131

132

133 / * S topt h ec o u n t e randp r i n t#a c t i v ec y c l e s * /

134 p i _ p e r f _ s t o p () ;

135 i n tt ime2 = p i _ p e r f _ r e a d (PI_PERF_ACTIVE_CYCLES) ;

136 p r i n t f ("T o t a lc y c l e s:%d\n", t ime2 − t ime1) ;

137 }

138

139 s t r u c tp i _ d e v i c e gp io_a1 ;

140 s t r u c tp i _ g p i o _ c o n f g p i o _ c o n f ;

141

142 #d e f i n eFREQ_FC (250 *1000000)

143 #d e f i n eFREQ_CL (175 *1000000)

144

145 / * E n t r yp o i n t−E x e c u t e sonFC * /

146 vo ids o b e l _ f i l t e r _ m a i n ()

147 {

148 p r i n t f ("MainFCe n t r yp o i n t\n") ;

149

150 p i _ p a d _ s e t _ f u n c t i o n (

151 PI_PAD_12_A3_RF_PACTRL0 ,

152 PI_PAD_12_A3_GPIO_A0_FUNC1

153) ;

154 p i _ g p i o _ e g p i o _ o u t _ a 1 = PI_GPIO_A0_PAD_12_A3 ;

155 p i _ g p i o _ f l a g s _ e c f g _ f l a g s = PI_GPIO_OUTPUT ;

156 p i _ g p i o _ p i n _ c o n f i g u r e (& gpio_a1 , gp io_ou t_a1 , c f g _ f l a g s) ;

157 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

158

159 c h a r * i n _ i m a g e _ f i l e _ n a m e ="v a l v e.pgm";

160 c h a rp a t h _ t o _ i n _ i m a g e [6 4] ;

161 s p r i n t f (p a t h _ t o _ i n _ i m a g e ,". . / . . / . . / %s", i n _ i m a g e _ f i l e _ n a m e) ;

162

163 i n ti m a g e _ s i z e _ b y t e s = IMG_COLS * IMG_LINES * s i z e o f(b y t e) ;

104

Hand-tuned code

164

165 / * A l l o c a t ememoryf o rbo thi n p u tando u t p u timagesi nL2memory * /

166 ImageIn_L2 = (b y t e *) p i _ l 2 _ m a l l o c (i m a g e _ s i z e _ b y t e s) ;

167 ImageOut_L2 = (b y t e *) p i _ l 2 _ m a l l o c (i m a g e _ s i z e _ b y t e s) ;

168

169 i f(ReadImageFromFi le (

170 p a t h _ t o _ i n _ i m a g e , IMG_COLS , IMG_LINES , 1 , ImageIn_L2 ,

171 i m a g e _ s i z e _ b y t e s , IMGIO_OUTPUT_CHAR, 0

172))

173 {

174 p r i n t f ("F a i l e dt ol o a dimage%s\n", p a t h _ t o _ i n _ i m a g e) ;

175 p m s i s _ e x i t (−1) ;

176 }

177

178 / * P r e p a r ec l u s t e rd e s c r i p t i o ns t r u c t u r eandopenc l u s t e r * /

179 s t r u c tp i _ d e v i c e c l _ d e v i c e ;

180 s t r u c tp i _ c l u s t e r _ c o n f c l _ c o n f i g u r a t i o n ;

181 p i _ c l u s t e r _ c o n f _ i n i t (& c l _ c o n f i g u r a t i o n) ;

182 c l _ c o n f i g u r a t i o n . i d = 0 ;

183 p i _o pen _ f rom _c on f (& c l _ d e v i c e , &c l _ c o n f i g u r a t i o n) ;

184 i f(p i _ c l u s t e r _ o p e n (& c l _ d e v i c e))

185 {

186 p r i n t f ("C l u s t e ropenf a i l e d\n") ;

187 p m s i s _ e x i t (−1) ;

188 }

189

190 p r i n t f ("FCFREQ:%d\n", r t _ f r e q _ g e t (RT_FREQ_DOMAIN_FC)) ;

191 p r i n t f ("CLFREQ:%d\n", r t _ f r e q _ g e t (RT_FREQ_DOMAIN_CL)) ;

192

193 / * P r e p a r et a s kd e s c r i p t i o ns t r u c t u r e * /

194 s t r u c tp i _ c l u s t e r _ t a s k * c l _ t a s k =

195 p m s i s _ l 2 _ m a l l o c (s i z e o f(s t r u c tp i _ c l u s t e r _ t a s k)) ;

196 memset (c l _ t a s k , 0 ,s i z e o f(s t r u c tp i _ c l u s t e r _ t a s k)) ;

197 c l _ t a s k −> e n t r y = c l u s t e r _ e n t r y _ p o i n t ;

198 c l _ t a s k −> a r g = NULL;

199 c l _ t a s k −> s t a c k _ s i z e = (u i n t 3 2 _ t) STACK_SIZE ;

200

201 p r i n t f ("S t a r t\n") ;

202 / * Benchmarking.Counta c t i v ec y c l e s * /

203 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 1) ;

204 l ongt i m e _ u s e c 1 = r t _ t i m e _ g e t _ u s () ;

205

206 / * Sendt a s kt oc l u s t e r,b l o c ku n t i lc o m p l e t i o n * /

207 p i _ c l u s t e r _ s e n d _ t a s k _ t o _ c l (& c l _ d e v i c e , c l _ t a s k) ;

208

105

Hand-tuned code

209

210 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

211 l ongt i m e _ u s e c 2 = r t _ t i m e _ g e t _ u s () ;

212 p r i n t f ("Wallc l o c kt ime:%l dusec\n", t i m e _ u s e c 2 − t i m e _ u s e c 1) ;

213 p r i n t f ("End\n") ;

214

215 / * Wr i t eimaget of i l e * /

216 c h a r * o u t _ i m a g e _ f i l e _ n a m e ="img_out.ppm";

217 c h a rp a t h _ t o _ o u t _ i m a g e [5 0] ;

218 s p r i n t f (p a t h _ t o _ o u t _ i m a g e ,". . / . . / . . / %s", o u t _ i m a g e _ f i l e _ n a m e) ;

219 p r i n t f ("Pa tht oo u t p u timage:%s\n", p a t h _ t o _ o u t _ i m a g e) ;

220 W r i t e I m a g e T o F i l e (

221 p a t h _ t o _ o u t _ i m a g e , IMG_COLS , IMG_LINES , 1 ,

222 ImageOut_L2 , GRAY_SCALE_IO

223) ;

224

225 p i _ c l u s t e r _ c l o s e (& c l _ d e v i c e) ;

226

227 p r i n t f ("C l u s t e rc l o s e d,ove rando u t\n") ;

228

229 p m s i s _ e x i t (0) ;

230 }

231

232 / * PMSISmainf u n c t i o n * /

233 i n tmain (i n ta rgc ,c h a r * a rgv [])

234 {

235 p r i n t f ("\n\n\t *** Sobe lF i l t e r(OMP) *** \n\n") ;

236 r e t u r np m s i s _ k i c k o f f ((vo id *) s o b e l _ f i l t e r _ m a i n) ;

237 }

Listing A.1: Sobel filter benchmark – Hand-tuned code

106

Appendix B

Generated code

This appendix provides examples of the generated programming codes for the GAP8 chip. The

first example in section B.1 is generated code for Sobel filter benchmark available in subsection

6.2.2, while the second example in section B.2 provides the generated code which utilizes the

hardware convolution engine.

B.1 Sobel filter benchmark

1 / /A c c e l e r a t o rf u n c t i o n s

2

3 #i n c l u d e< s t d i n t . h>

4 / /movedh e r e

5 #i n c l u d e"gap8/gap8.h"

6 u i n t 3 2 _ t g a p _ s q r t (u i n t 3 2 _ t a _ n I n p u t)

7 {

8 u i n t 3 2 _ t op = a _ n I n p u t ;

9 u i n t 3 2 _ t r e s = 0 ;

10

11 u i n t 3 2 _ t one = 1uL << 3 0 ;

12 w h i l e(one > op) {

13 one >>= 2 ;

14 }

15 w h i l e(one != 0) {

16 i f(op >= r e s + one) {

17 op = op − (r e s + one) ;

18 r e s = r e s + 2 * one ;

19 }

20 r e s >>= 1 ;

21 one >>= 2 ;

22 }

23 r e t u r nr e s ;

107

Generated code

24 }

25

26 s t r u c tc l u s t e r _ p a r a m s {

27 u i n t 8 _ t * o u t p u t ;

28 i n tn2 ;

29 i n tn1 ;

30 i n t * e5 ;

31 i n t * e4 ;

32 u i n t 8 _ t * e3 ;

33 } ;

34

35 vo idc l u s t e r _ c o r e _ t a s k (vo id * a r g s) {

36 / * Benchmarking.Counta c t i v ec y c l e s * /

37 p i _ p e r f _ c o n f (1 << PI_PERF_ACTIVE_CYCLES) ;

38 p i _ p e r f _ r e s e t () ;

39 p i _ p e r f _ s t a r t () ;

40 i n tt ime1 = p i _ p e r f _ r e a d (PI_PERF_ACTIVE_CYCLES) ;

41

42 s t r u c tc l u s t e r _ p a r a m s * c l _ p a r a m s = (s t r u c tc l u s t e r _ p a r a m s *) a r g s ;

43 u i n t 8 _ t * o u t p u t = (* c l _ p a r a m s) . o u t p u t ;

44 i n tn2 = (* c l _ p a r a m s) . n2 ;

45 i n tn1 = (* c l _ p a r a m s) . n1 ;

46 i n t * e5 = (* c l _ p a r a m s) . e5 ;

47 i n t * e4 = (* c l _ p a r a m s) . e4 ;

48 u i n t 8 _ t * e3 = (* c l _ p a r a m s) . e3 ;

49 {

50 / /c o l l a p s e(2)

51 # pragma omp p a r a l l e lf o rc o l l a p s e (2)

52 f o r(i n ti_793 = 0 ; i_793 < n1 ; i_793 = 1 + i_793) {

53 / /#pragmaompp a r a l l e lf o r

54 f o r(i n ti_794 = 0 ; i_794 < n2 ; i_794 = 1 + i_794) {

55 / * r educeSeq * /

56 {

57 u i n t 3 2 _ t x742 ;

58 x742 = (u i n t 3 2 _ t) 0 ;

59 / * u n r o l l i n gloopof9 * /

60 x742 = x742 + (((u i n t 3 2 _ t) ((i_794 < 1) ? ((u i n t 8 _ t) 0) :

61 ((i _793 < 1) ? ((u i n t 8 _ t) 0) : e3 [((− 1 + i_794) +

62 (−1 * n2)) + (i_793 * n2)]))) * ((u i n t 3 2 _ t) e4 [0])) ;

63 x742 = x742 + (((u i n t 3 2 _ t) ((i_793 < 1) ? ((u i n t 8 _ t) 0) :

64 e3 [(i_794 + (−1 * n2)) +

65 (i_793 * n2)])) * ((u i n t 3 2 _ t) e4 [1])) ;

66 x742 = x742 + (((u i n t 3 2 _ t) (((2 + i_794) < (1 + n2)) ?

67 ((i _793 < 1) ? ((u i n t 8 _ t) 0) : e3 [((1 + i_794) +

68 (−1 * n2)) + (i_793 * n2)]) :

108

Generated code

69 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e4 [2])) ;

70 x742 = x742 + (((u i n t 3 2 _ t) ((i_794 < 1) ? ((u i n t 8 _ t) 0) :

71 e3 [(−1 + i_794) + (i_793 * n2)])) * ((u i n t 3 2 _ t) e4 [3])) ;

72 x742 = x742 + (((u i n t 3 2 _ t) e3 [i_794 +

73 (i_793 * n2)]) * ((u i n t 3 2 _ t) e4 [4])) ;

74 x742 = x742 + (((u i n t 3 2 _ t) (((2 + i_794) < (1 + n2)) ?

75 e3 [(1 + i_794) + (i_793 * n2)] :

76 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e4 [5])) ;

77 x742 = x742 + (((u i n t 3 2 _ t) ((i_794 < 1) ? ((u i n t 8 _ t) 0) :

78 (((2 + i_793) < (1 + n1)) ? e3 [((− 1 + i_794) + n2) +

79 (i_793 * n2)] : ((u i n t 8 _ t) 0)))) * ((u i n t 3 2 _ t) e4 [6])) ;

80 x742 = x742 + (((u i n t 3 2 _ t) (((2 + i_793) < (1 + n1)) ?

81 e3 [(i_794 + n2) + (i_793 * n2)] :

82 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e4 [7])) ;

83 x742 = x742 + (((u i n t 3 2 _ t) (((2 + i_794) < (1 + n2)) ?

84 (((2 + i_793) < (1 + n1)) ? e3 [((1 + i_794) + n2) +

85 (i_793 * n2)] : ((u i n t 8 _ t) 0)) :

86 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e4 [8])) ;

87 / * r educeSeq * /

88 {

89 u i n t 3 2 _ t x716 ;

90 x716 = (u i n t 3 2 _ t) 0 ;

91 / * u n r o l l i n gloopof9 * /

92 x716 = x716 + (((u i n t 3 2 _ t) ((i_794 < 1) ? ((u i n t 8 _ t) 0) :

93 ((i _793 < 1) ? ((u i n t 8 _ t) 0) : e3 [((− 1 + i_794) +

94 (−1 * n2)) + (i_793 * n2)]))) * ((u i n t 3 2 _ t) e5 [0])) ;

95 x716 = x716 + (((u i n t 3 2 _ t) ((i_793 < 1) ? ((u i n t 8 _ t) 0) :

96 e3 [(i_794 + (−1 * n2)) +

97 (i_793 * n2)])) * ((u i n t 3 2 _ t) e5 [1])) ;

98 x716 = x716 + (((u i n t 3 2 _ t) (((2 + i_794) < (1 + n2)) ?

99 ((i _793 < 1) ? ((u i n t 8 _ t) 0) : e3 [((1 + i_794) +

100 (−1 * n2)) + (i_793 * n2)]) :

101 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e5 [2])) ;

102 x716 = x716 + (((u i n t 3 2 _ t) ((i_794 < 1) ? ((u i n t 8 _ t) 0) :

103 e3 [(−1 + i_794) + (i_793 * n2)])) * ((u i n t 3 2 _ t) e5 [3])) ;

104 x716 = x716 + (((u i n t 3 2 _ t) e3 [i_794 +

105 (i_793 * n2)]) * ((u i n t 3 2 _ t) e5 [4])) ;

106 x716 = x716 + (((u i n t 3 2 _ t) (((2 + i_794) < (1 + n2)) ?

107 e3 [(1 + i_794) + (i_793 * n2)] :

108 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e5 [5])) ;

109 x716 = x716 + (((u i n t 3 2 _ t) ((i_794 < 1) ? ((u i n t 8 _ t) 0) :

110 (((2 + i_793) < (1 + n1)) ? e3 [((− 1 + i_794) + n2) +

111 (i_793 * n2)] : ((u i n t 8 _ t) 0)))) * ((u i n t 3 2 _ t) e5 [6])) ;

112 x716 = x716 + (((u i n t 3 2 _ t) (((2 + i_793) < (1 + n1)) ?

113 e3 [(i_794 + n2) + (i_793 * n2)] :

109

Generated code

114 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e5 [7])) ;

115 x716 = x716 + (((u i n t 3 2 _ t) (((2 + i_794) < (1 + n2)) ?

116 (((2 + i_793) < (1 + n1)) ? e3 [((1 + i_794) + n2) +

117 (i_793 * n2)] : ((u i n t 8 _ t) 0)) :

118 ((u i n t 8 _ t) 0))) * ((u i n t 3 2 _ t) e5 [8])) ;

119 o u t p u t [i_794 + (i_793 * n2)] =

120 (u i n t 8 _ t) g a p _ s q r t ((x742 * x742) + (x716 * x716)) ;

121 }

122 }

123 }

124 }

125 }

126 / * S topt h ec o u n t e randp r i n t#a c t i v ec y c l e s * /

127 p i _ p e r f _ s t o p () ;

128 i n tt ime2 = p i _ p e r f _ r e a d (PI_PERF_ACTIVE_CYCLES) ;

129 p r i n t f ("T o t a lc y c l e s:%d\n", t ime2 − t ime1) ;

130 }

131

132

133 / /Hostcode

134

135 / /#i n c l u d e"gap8/gap8.h"

136 s t r u c tf o o _ t {

137 K er ne l c l u s t e r _ c o r e _ t a s k ;

138 } ;

139

140 t y p e d e fs t r u c tf o o _ t f o o _ t ;

141

142 vo idf o o _ i n i t (f o o _ t * s e l f) {

143 (* s e l f) . c l u s t e r _ c o r e _ t a s k = l o a d K e r n e l (c l u s t e r _ c o r e _ t a s k , 2048) ;

144 }

145

146 vo idf o o _ d e s t r o y (C o n t e x t c tx , f o o _ t * s e l f) {

147 d e s t r o y K e r n e l (c tx , (* s e l f) . c l u s t e r _ c o r e _ t a s k) ;

148 }

149

150 vo idf o o _ r u n (C o n t e x t c tx , f o o _ t * s e l f , B u f f e r moutput ,i n tn1 ,i n tn2 ,

151 B u f f e r me3 , B u f f e r me4 , B u f f e r me5) {

152 {

153 D e v i c e B u f f e r b0 =

154 d e v i c e B u f f e r S y n c (c tx , moutput ,

155 n1 * (n2 * s i z e o f(u i n t 8 _ t)) , 0) ;

156 i n tb1 = n2 ;

157 i n tb2 = n1 ;

158 D e v i c e B u f f e r b3 =

110

Generated code

159 d e v i c e B u f f e r S y n c (c tx , me5 , 3 * (3 * s i z e o f(i n t)) , 0) ;

160 D e v i c e B u f f e r b4 =

161 d e v i c e B u f f e r S y n c (c tx , me4 , 3 * (3 * s i z e o f(i n t)) , 0) ;

162 D e v i c e B u f f e r b5 =

163 d e v i c e B u f f e r S y n c (c tx , me3 , n1 * (n2 * s i z e o f(u i n t 8 _ t)) , 0) ;

164 s t r u c tc l u s t e r _ p a r a m s * c l _ p a r a m s = (s t r u c tc l u s t e r _ p a r a m s *)

165 p m s i s _ l 2 _ m a l l o c (s i z e o f(s t r u c tc l u s t e r _ p a r a m s)) ;

166 (* c l _ p a r a m s) . o u t p u t = b0 ;

167 (* c l _ p a r a m s) . n2 = b1 ;

168 (* c l _ p a r a m s) . n1 = b2 ;

169 (* c l _ p a r a m s) . e5 = b3 ;

170 (* c l _ p a r a m s) . e4 = b4 ;

171 (* c l _ p a r a m s) . e3 = b5 ;

172 l a u n c h K e r n e l (c tx , (* s e l f) . c l u s t e r _ c o r e _ t a s k , 8 , c l _ p a r a m s) ;

173 }

174 }

175

176 vo idf o o _ i n i t _ r u n (C o n t e x t c tx , B u f f e r moutput ,i n tn1 ,i n tn2 , B u f f e r me3 ,

B u f f e r me4 , B u f f e r me5) {

177 f o o _ t foo ;

178 f o o _ i n i t (& foo) ;

179 f o o _ r u n (c tx , &foo , moutput , n1 , n2 , me3 , me4 , me5) ;

180 f o o _ d e s t r o y (c tx , &foo) ;

181 }

182

183

184 B u f f e r I m a g e I n B u f f e r ;

185 B u f f e r ImageOutBuf fe r ;

186

187 B u f f e r g x B u f f e r ;

188 B u f f e r g y B u f f e r ;

189

190 i n tG_X [] = {

191 −1 , 0 , 1 ,

192 −2 , 0 , 2 ,

193 −1 , 0 , 1

194 } ;

195

196 i n tG_Y [] = {

197 −1 , −2 , −1 ,

198 0 , 0 , 0 ,

199 1 , 2 , 1

200 } ;

201

202 #d e f i n eIMG_LINES 240

111

Generated code

203 #d e f i n eIMG_COLS 320

204

205 s t r u c tp i _ d e v i c e gp io_a1 ;

206 s t r u c tp i _ g p i o _ c o n f g p i o _ c o n f ;

207

208 #d e f i n eFREQ_FC (250 *1000000)

209 #d e f i n eFREQ_CL (175 *1000000)

210

211 vo id__main (i n ta rgc ,c h a r ** a rgv)

212 {

213 p r i n t f ("MainFCe n t r yp o i n t(Manual lyw r i t t e n)\n") ;

214

215 p i _ p a d _ s e t _ f u n c t i o n (PI_PAD_12_A3_RF_PACTRL0 ,

216 PI_PAD_12_A3_GPIO_A0_FUNC1) ;

217 p i _ g p i o _ e g p i o _ o u t _ a 1 = PI_GPIO_A0_PAD_12_A3 ;

218 p i _ g p i o _ f l a g s _ e c f g _ f l a g s = PI_GPIO_OUTPUT ;

219 p i _ g p i o _ p i n _ c o n f i g u r e (& gpio_a1 , gp io_ou t_a1 , c f g _ f l a g s) ;

220 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

221

222 c h a r * i n _ i m a g e _ f i l e _ n a m e ="v a l v e.pgm";

223 c h a rp a t h _ t o _ i n _ i m a g e [6 4] ;

224 s p r i n t f (p a t h _ t o _ i n _ i m a g e ,". . / . . / . . / %s", i n _ i m a g e _ f i l e _ n a m e) ;

225

226 C o n t e x t c t x = c r e a t e D e f a u l t C o n t e x t () ;

227

228 I m a g e I n B u f f e r = c r e a t e B u f f e r (c tx ,

229 IMG_COLS * IMG_LINES * s i z e o f(u n s i g n e dc h a r) , 0) ;

230 ImageOutBuf fe r = c r e a t e B u f f e r (c tx ,

231 IMG_COLS * IMG_LINES * s i z e o f(u n s i g n e dc h a r) , 0) ;

232 g x B u f f e r = c r e a t e B u f f e r (c tx , 9 , HOST_READ) ;

233 g y B u f f e r = c r e a t e B u f f e r (c tx , 9 , HOST_READ) ;

234

235 gxBuf fe r −> i n n e r = G_X;

236 gyBuf fe r −> i n n e r = G_Y;

237

238 i f(ReadImageFromFi le (p a t h _ t o _ i n _ i m a g e , IMG_COLS , IMG_LINES , 1 ,

239 Image InBuf f e r −> i n n e r , IMG_COLS * IMG_LINES * s i z e o f(u n s i g n e dc h a r) ,

240 IMGIO_OUTPUT_CHAR, 0))

241 {

242 p r i n t f ("F a i l e dt ol o a dimage%s\n", p a t h _ t o _ i n _ i m a g e) ;

243 p m s i s _ e x i t (−1) ;

244 }

245

246 p r i n t f ("FCFREQ:%d\n", r t _ f r e q _ g e t (RT_FREQ_DOMAIN_FC)) ;

247 p r i n t f ("CLFREQ:%d\n", r t _ f r e q _ g e t (RT_FREQ_DOMAIN_CL)) ;

112

Generated code

248

249 p r i n t f ("S t a r t\n") ;

250 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 1) ;

251 l ongt i m e _ u s e c 1 = r t _ t i m e _ g e t _ u s () ;

252

253 f o o _ i n i t _ r u n (c tx , ImageOutBuffe r , IMG_LINES , IMG_COLS ,

254 Image InBuf f e r , gxBuf fe r , g y B u f f e r) ;

255

256 p i _ g p i o _ p i n _ w r i t e (& gpio_a1 , gp io_ou t_a1 , 0) ;

257 l ongt i m e _ u s e c 2 = r t _ t i m e _ g e t _ u s () ;

258 p r i n t f ("Wallc l o c kt ime:%l dusec\n", t i m e _ u s e c 2 − t i m e _ u s e c 1) ;

259 p r i n t f ("End\n") ;

260

261 / * Wr i t eimaget of i l e * /

262 c h a r * o u t _ i m a g e _ f i l e _ n a m e ="img_out.ppm";

263 c h a rp a t h _ t o _ o u t _ i m a g e [5 0] ;

264 s p r i n t f (p a t h _ t o _ o u t _ i m a g e ,". . / . . / . . / %s", o u t _ i m a g e _ f i l e _ n a m e) ;

265 p r i n t f ("Pa tht oo u t p u timage:%s\n", p a t h _ t o _ o u t _ i m a g e) ;

266 W r i t e I m a g e T o F i l e (p a t h _ t o _ o u t _ i m a g e , IMG_COLS , IMG_LINES , 1 ,

267 ImageOutBuffe r −> i n n e r , GRAY_SCALE_IO) ;

268

269 d e s t r o y B u f f e r (c tx , I m a g e I n B u f f e r) ;

270 d e s t r o y B u f f e r (c tx , ImageOutBuf fe r) ;

271 d e s t r o y B u f f e r (c tx , g x B u f f e r) ;

272 d e s t r o y B u f f e r (c tx , g y B u f f e r) ;

273 d e s t r o y C o n t e x t (c t x) ;

274

275 p m s i s _ e x i t (0) ;

276 }

277

278 i n tmain (i n ta rgc ,c h a r ** a rgv) {

279 p r i n t f ("\n\n\t *** Sobe lF i l t e r(RISE) *** \n\n") ;

280 r e t u r np m s i s _ k i c k o f f ((vo id *) __main) ;

281 }

Listing B.1: Sobel filter benchmark – Generated code

113

Generated code

B.2 HWCE utilization

1 / /A c c e l e r a t o rf u n c t i o n s

2 #i n c l u d e< s t d i n t . h>

3 s t r u c tc l u s t e r _ p a r a m s {

4 i n t 1 6 _ t * o u t p u t ;

5 i n t 1 6 _ t * e18 ;

6 i n t 1 6 _ t * e19 ;

7 } ;

8

9 vo idc l u s t e r _ c o r e _ t a s k (vo id * a r g s) {

10 s t r u c tc l u s t e r _ p a r a m s * c l _ p a r a m s = (s t r u c tc l u s t e r _ p a r a m s *) a r g s ;

11 i n t 1 6 _ t * o u t p u t = (* c l _ p a r a m s) . o u t p u t ;

12 i n t 1 6 _ t * e18 = (* c l _ p a r a m s) . e18 ;

13 i n t 1 6 _ t * e19 = (* c l _ p a r a m s) . e19 ;

14 {

15 {

16 HWCE_Enable () ;

17 HWCE_GenericIni t ((u i n t 3 2 _ t)HWCE_CONV3x3, (u i n t 3 2 _ t) 0 ,

18 (u i n t 3 2 _ t) 0) ;

19 HwCE_SetYinMode ((u i n t 3 2 _ t) 1) ;

20 HWCE_ProcessOneTile3x3_Mult iOut (

21 e18 , o u t p u t , NULL, NULL,

22 e19 , 0 , 6 , 6 , 0x7

23) ;

24 HWCE_Disable () ;

25 }

26 }

27 }

28

29 / /Hostcode

30 #i n c l u d e"gap8/gap8.h"

31 s t r u c tf o o _ t {

32 K er ne l c l u s t e r _ c o r e _ t a s k ;

33 } ;

34

35 t y p e d e fs t r u c tf o o _ t f o o _ t ;

36

37 vo idf o o _ i n i t (f o o _ t * s e l f) {

38 (* s e l f) . c l u s t e r _ c o r e _ t a s k = l o a d K e r n e l (c l u s t e r _ c o r e _ t a s k , 2048) ;

39 }

40

41 vo idf o o _ d e s t r o y (C o n t e x t c tx , f o o _ t * s e l f) {

42 d e s t r o y K e r n e l (c tx , (* s e l f) . c l u s t e r _ c o r e _ t a s k) ;

43 }

114

Generated code

44

45 vo idf o o _ r u n (C o n t e x t c tx , f o o _ t * s e l f ,

46 B u f f e r moutput , B u f f e r me18 , B u f f e r me19) {

47 {

48 D e v i c e B u f f e r b0 = d e v i c e B u f f e r S y n c (

49 c tx , moutput , 4 * (4 * s i z e o f(i n t 1 6 _ t)) , 0

50) ;

51 D e v i c e B u f f e r b1 = d e v i c e B u f f e r S y n c (

52 c tx , me18 , 6 * (6 * s i z e o f(i n t 1 6 _ t)) , 0

53) ;

54 D e v i c e B u f f e r b2 = d e v i c e B u f f e r S y n c (

55 c tx , me19 , 3 * (3 * s i z e o f(i n t 1 6 _ t)) , 0

56) ;

57 s t r u c tc l u s t e r _ p a r a m s * c l _ p a r a m s =

58 (s t r u c tc l u s t e r _ p a r a m s *) p m s i s _ l 2 _ m a l l o c (s i z e o f(

59 s t r u c tc l u s t e r _ p a r a m s

60)) ;

61 (* c l _ p a r a m s) . o u t p u t = b0 ;

62 (* c l _ p a r a m s) . e18 = b1 ;

63 (* c l _ p a r a m s) . e19 = b2 ;

64 l a u n c h K e r n e l (c tx , (* s e l f) . c l u s t e r _ c o r e _ t a s k , 8 , c l _ p a r a m s) ;

65 }

66 }

67

68 vo idf o o _ i n i t _ r u n (C o n t e x t c tx , B u f f e r moutput , B u f f e r me18 , B u f f e r me19) {

69 f o o _ t foo ;

70 f o o _ i n i t (& foo) ;

71 f o o _ r u n (c tx , &foo , moutput , me18 , me19) ;

72 f o o _ d e s t r o y (c tx , &foo) ;

73 }

74

75 / ** Here,vo id__main()f u n c t i o ni sm i s s i n gwhichs h o u l d

76 * i n s t a n t i a t eb u f f e r s,f i l lthemwi thda t a,t r i g g e rsyncc a l l s,

77 * andl a u n c hc o m p u t a t i o nonc l u s t e r.

78 * Thatf u n c t i o np e r f o r m son lya d m i n i s t r a t i v eo p e r a t i o n s,

79 * andt h u si sn o tc o n s i d e r e dn e c e s s a r i l yi m p o r t a n t

80 * f o re v a l u a t i o nw h a t s o e v e r.

81 * /

82

83 i n tmain (i n ta rgc ,c h a r ** a rgv) {

84 r e t u r np m s i s _ k i c k o f f ((vo id *) __main) ;

85 }

Listing B.2: HWCE benchmark – Generated code

115

Bibliography

[1]TOP500.org, “November 2021 | Top500”, [Online]. Available: https://www.top500.org/

lists/top500/2021/11/ (December 9 2021.).

[2]TechTarget, “Japan named HPC leader as world races to exascale

”, [Online]. Available: https://searchdatacenter.techtarget.com/news/252492169/

Japan-named-HPC-leader-as-world-races-to-exascale (December 4 2021.).

[3]Messina, P., “The Exascale Computing Project”, Computing in Science and Engineering,

vol. 19, no. 3, 2017, pp. 63–67.

[4]RIKEN, “To exascale and beyond”, [Online]. Available: https://www.riken.jp/en/news_

pubs/research_news/rr/2019spring/ (November 23 2021.).

[5]The Next Platform, “China Has Already Reached Exascale - On Two Sep-

arate Systems”, [Online]. Available: https://www.nextplatform.com/2021/10/26/

china-has-already-reached-exascale-on-two-separate-systems/ (November 15 2021.).

[6]Gagliardi, F., Moreto, M., Olivieri, M., and Valero, M., “The international race towards

Exascale in Europe”, CCF Transactions on High Performance Computing, vol. 1, no. 1,

2019, pp. 3–13, [Online]. Available: https://doi.org/10.1007/s42514-019-00002-y

[7]Skordas, T., “Toward a European exascale ecosystem”, Communications of the

ACM, vol. 62, no. 4, mar 2019, pp. 70–70, [Online]. Available: https:

//dl.acm.org/doi/10.1145/3312567

[8]Ayris, P., Berthou, J.-Y., Bruce, R., Lindstaedt, S., Monreale, A., Mons, B.,

Murayama, Y., Södergård, C., Tochtermann, K., and Wilkinson, R., “Realising

the European open science cloud”, Tech. Rep., dec 2016, [Online]. Available:

https://cris.vtt.fi/en/publications/realising-the-european-open-science-cloud

[9]Rigo, A., Pinto, C., Pouget, K., Raho, D., Dutoit, D., Martinez, P. Y., Doran, C., Benini,

L., Mavroidis, I., Marazakis, M., Bartsch, V., Lonsdale, G., Pop, A., Goodacre, J., Col-

liot, A., Carpenter, P., Radojković, P., Pleiter, D., Drouin, D., and De Dinechin, B. D.,

116

https://www.top500.org/lists/top500/2021/11/
https://www.top500.org/lists/top500/2021/11/
https://searchdatacenter.techtarget.com/news/252492169/Japan-named-HPC-leader-as-world-races-to-exascale
https://searchdatacenter.techtarget.com/news/252492169/Japan-named-HPC-leader-as-world-races-to-exascale
https://www.riken.jp/en/news_pubs/research_news/rr/2019spring/
https://www.riken.jp/en/news_pubs/research_news/rr/2019spring/
https://www.nextplatform.com/2021/10/26/china-has-already-reached-exascale-on-two-separate-systems/
https://www.nextplatform.com/2021/10/26/china-has-already-reached-exascale-on-two-separate-systems/
https://doi.org/10.1007/s42514-019-00002-y
https://dl.acm.org/doi/10.1145/3312567
https://dl.acm.org/doi/10.1145/3312567
https://cris.vtt.fi/en/publications/realising-the-european-open-science-cloud

Bibliography

“Paving the Way Towards a Highly Energy-Efficient and Highly Integrated Compute

Node for the Exascale Revolution: The ExaNoDe Approach”, Proceedings - 20th Eu-

romicro Conference on Digital System Design, DSD 2017, 2017, pp. 486–493.

[10]Kova č, M., Reinhardt, D., Jesorsky, O., Traub, M., Denis, J.-m., and Notton,

P., “European Processor Initiative (EPI)—An Approach for a Future Automotive

eHPC Semiconductor Platform”, ser. Lecture Notes in Mobility, Langheim, J., Ed.

Cham: Springer International Publishing, 2019, pp. 185–195, [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-030-14156-1_15

[11]European Processor Initiative, “EPI - European Processor Initiative”, [Online]. Available:

https://www.european-processor-initiative.eu/project/epi/ (December 6 2021.).

[12]Schulte, M. J., Ignatowski, M., Loh, G. H., Beckmann, B. M., Brantley, W. C., Guru-

murthi, S., Jayasena, N., Paul, I., Reinhardt, S. K., and Rodgers, G., “Achieving Exascale

Capabilities through Heterogeneous Computing”, IEEE Micro, vol. 35, no. 4, 2015, pp.

26–36.

[13]NVIDIA Developer, “CUDA Toolkit”, [Online]. Available: https://developer.nvidia.

com/cuda-toolkit (January 14 2022.).

[14]The Khronos Group Inc, “OpenCL Overview”, [Online]. Available: https://www.

khronos.org/opencl/ (January 14 2022.).

[15]Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R., Wawrzynek,

J., and Asanović, K., “Chisel: Constructing Hardware in a Scala Embedded Language”,

in Proceedings of the 49th Annual Design Automation Conference on - DAC ’12.

New York, New York, USA: ACM Press, 2012, p. 1216, [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2228360.2228584

[16]Amazon, “Amazon EC2 F1 Instances”, [Online]. Available: https://aws.amazon.com/

ec2/instance-types/f1/ (January 29 2022.).

[17]Chiou, D., “The Microsoft Catapult Project”, in 2017 IEEE International Symposium

on Workload Characterization (IISWC), vol. 1. IEEE, oct 2017, pp. 124–124, [Online].

Available: http://ieeexplore.ieee.org/document/8167769/

[18]Putnam, A., “FPGAs in the Datacenter”, in Proceedings of the on Great Lakes

Symposium on VLSI 2017. New York, NY, USA: ACM, may 2017, pp. 5–5, [Online].

Available: https://dl.acm.org/doi/10.1145/3060403.3066860

117

https://link.springer.com/chapter/10.1007/978-3-030-14156-1_15
https://www.european-processor-initiative.eu/project/epi/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://dl.acm.org/citation.cfm?doid=2228360.2228584
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
http://ieeexplore.ieee.org/document/8167769/
https://dl.acm.org/doi/10.1145/3060403.3066860

Bibliography

[19]TOP500.org, “TOP500 Expands Exaflops Capacity Amidst

Low Turnover”, [Online]. Available: https://www.top500.org/news/

top500-expands-exaflops-capacity-amidst-low-turnover/ (December 9 2021.).

[20]TOP500.org, “HPC in 2016: Hits and Misses”, [Online]. Available: https:

//top500.org/news/hpc-in-2016-hits-and-misses/ (December 9 2021.).

[21]Silver, A., “Rethinking CS101 [Resources_Education]”, IEEE Spectrum, vol. 54, no. 4,

apr 2017, pp. 23–23, [Online]. Available: http://ieeexplore.ieee.org/document/7880452/

[22]Sahami, M., and Roach, S., Computer Science Curricula 2013: Curriculum

Guidelines for Undergraduate Degree Programs in Computer Science, ACM Computing

Curricula Task Force, Ed. ACM, Inc, jan 2013, vol. 45, no. 2, [Online]. Available:

http://dl.acm.org/citation.cfm?id=2534860

[23]Flamand, E., Rossi, D., Conti, F., Loi, I., Pullini, A., Rotenberg, F., and Benini,

L., “GAP-8: A RISC-V SoC for AI at the Edge of the IoT”, in 2018 IEEE

29th International Conference on Application-specific Systems, Architectures and

Processors (ASAP), vol. 2018-July. IEEE, jul 2018, pp. 1–4, [Online]. Available:

https://ieeexplore.ieee.org/document/8445101/

[24]Conti, F., Rossi, D., Pullini, A., Loi, I., and Benini, L., “Energy-efficient vision on the

PULP platform for ultra-low power parallel computing”, IEEE Workshop on Signal Pro-

cessing Systems, SiPS: Design and Implementation, 2014.

[25]Pullini, A., Conti, F., Rossi, D., Loi, I., Gautschi, M., and Benini, L., “A Heterogeneous

Multicore System on Chip for Energy Efficient Brain Inspired Computing”, IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 8, aug 2018, pp.

1094–1098, [Online]. Available: https://ieeexplore.ieee.org/document/7817777/

[26]Kurth, A., Vogel, P., Capotondi, A., Marongiu, A., and Benini, L., “HERO:

Heterogeneous Embedded Research Platform for Exploring RISC-V Manycore

Accelerators on FPGA”, 2017, [Online]. Available: http://arxiv.org/abs/1712.06497

[27]IEEE Spectrum, “Gordon Moore: The Man Whose Name

Means Progress”, [Online]. Available: https://spectrum.ieee.org/

gordon-moore-the-man-whose-name-means-progress (January 18 2022.).

[28]Trusted Reviews, “Moore’s Law: What is it and why is it dying out?”, [Online]. Avail-

able: https://www.trustedreviews.com/opinion/what-is-moore-s-law-2946125 (January

18 2022.).

118

https://www.top500.org/news/top500-expands-exaflops-capacity-amidst-low-turnover/
https://www.top500.org/news/top500-expands-exaflops-capacity-amidst-low-turnover/
https://top500.org/news/hpc-in-2016-hits-and-misses/
https://top500.org/news/hpc-in-2016-hits-and-misses/
http://ieeexplore.ieee.org/document/7880452/
http://dl.acm.org/citation.cfm?id=2534860
https://ieeexplore.ieee.org/document/8445101/
https://ieeexplore.ieee.org/document/7817777/
http://arxiv.org/abs/1712.06497
https://spectrum.ieee.org/gordon-moore-the-man-whose-name-means-progress
https://spectrum.ieee.org/gordon-moore-the-man-whose-name-means-progress
https://www.trustedreviews.com/opinion/what-is-moore-s-law-2946125

Bibliography

[29]CNET, “CES 2019: Moore’s Law is dead, says

Nvidia’s CEO”, [Online]. Available: https://www.cnet.com/tech/computing/

moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/ (January 18 2022.).

[30]Alfio Lazzaro, “Programming in Multi-cores Era”, Geneva, Switzerland, [On-

line]. Available: https://indico.cern.ch/event/59397/contributions/2050044/attachments/

996317/1416877/SS_lazzaro.pdf 2010.

[31]Manferdelli, J., Govindaraju, N., and Crall, C., “Challenges and Opportunities in

Many-Core Computing”, Proceedings of the IEEE, vol. 96, no. 5, may 2008, pp.

808–815, [Online]. Available: http://ieeexplore.ieee.org/document/4484943/

[32]Sutter, H., and Larus, J., “Software and the Concurrency Revolution”, Queue, vol. 3,

no. 7, sep 2005, pp. 54–62, [Online]. Available: https://dl.acm.org/doi/10.1145/1095408.

1095421

[33]The Wall Street Journal, “Huang’s Law Is the New Moore’s Law, and

Explains Why Nvidia Wants Arm”, [Online]. Available: https://www.wsj.com/articles/

huangs-law-is-the-new-moores-law-and-explains-why-nvidia-wants-arm-11600488001

(January 18 2022.).

[34]Bacon, D. F., Rabbah, R., and Shukla, S., “FPGA Programming for the Masses”,

Communications of the ACM, vol. 56, no. 4, apr 2013, pp. 56–63, [Online]. Available:

https://dl.acm.org/doi/10.1145/2436256.2436271

[35]Flynn, M. J., “Some Computer Organizations and Their Effectiveness”, IEEE

Transactions on Computers, vol. C-21, no. 9, sep 1972, pp. 948–960, [Online].

Available: http://ieeexplore.ieee.org/document/5009071/

[36]McCool, M., Robison, A., and Reinders, J., Structured Parallel Programming: Patterns

for Efficient Computation, 1st ed. Elsevier, 2012.

[37]Hennessy, J. L., and Patterson, D. A., Computer Architecture: A Quantitative Approach,

5th ed. Elsevier, 2011.

[38]Petersen, W., and Arbenz, P., Introduction to Parallel Computing: A Practical Guide with

Examples in C. Oxford University Press, 2004.

[39]Nicolau, A., “Loop Quantization: Unwinding for Fine-Grain Parallelism Exploitation”,

Cornell University, Tech. Rep., 1985.

[40]Yeh, T.-Y., and Patt, Y. N., “Two-Level Adaptive Training Branch Prediction”, in

Proceedings of the 24th annual international symposium on Microarchitecture - MICRO

119

https://www.cnet.com/tech/computing/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/
https://www.cnet.com/tech/computing/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/
https://indico.cern.ch/event/59397/contributions/2050044/attachments/996317/1416877/SS_lazzaro.pdf
https://indico.cern.ch/event/59397/contributions/2050044/attachments/996317/1416877/SS_lazzaro.pdf
http://ieeexplore.ieee.org/document/4484943/
https://dl.acm.org/doi/10.1145/1095408.1095421
https://dl.acm.org/doi/10.1145/1095408.1095421
https://www.wsj.com/articles/huangs-law-is-the-new-moores-law-and-explains-why-nvidia-wants-arm-11600488001
https://www.wsj.com/articles/huangs-law-is-the-new-moores-law-and-explains-why-nvidia-wants-arm-11600488001
https://dl.acm.org/doi/10.1145/2436256.2436271
http://ieeexplore.ieee.org/document/5009071/

Bibliography

24. New York, New York, USA: ACM Press, 1991, pp. 51–61, [Online]. Available:

http://portal.acm.org/citation.cfm?doid=123465.123475

[41]Intel, “Intel©64 and IA-32 Architectures Software Developer’s Manual. Volume

1: Basic Architecture”, [Online]. Available: file:///home/bpervan/Desktop/Papers/

64-ia-32-architectures-software-developer-vol-1-manual.pdf (January 14 2022.).

[42]Lamport, L., “How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs”, IEEE Transactions on Computers, vol. C-28, no. 9, sep 1979,

pp. 690–691, [Online]. Available: http://ieeexplore.ieee.org/document/1675439/

[43]Savage, J. E., Models of Computation. Addison-Wesley Reading, MA, 1998, vol. 136.

[44]Diaz, J., Munoz-Caro, C., and Nino, A., “A Survey of Parallel Programming Models

and Tools in the Multi and Many-Core Era”, IEEE Transactions on Parallel and

Distributed Systems, vol. 23, no. 8, aug 2012, pp. 1369–1386, [Online]. Available:

http://ieeexplore.ieee.org/document/6122018/

[45]ISO, “ISO/IEC/IEEE 9945:2009 Information technology — Portable Operating

System Interface (POSIX®) Base Specifications, Issue 7”, [Online]. Available:

https://www.iso.org/standard/50516.html (January 14 2022.).

[46]OpenMP, “OpenMP Application Programming Interface”, Tech. Rep.,

nov 2021, [Online]. Available: https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5-2.pdf

[47]Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard Version

4.0”, University of Tennessee, Knoxville, Tennessee, USA, Tech. Rep., jun 2021,

[Online]. Available: https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[48]Open MPI, “Open MPI:Open Source High Performance Computing”, (January 15

2022.).

[49]TOP500.org, “TOP500 - The List.”, [Online]. Available: https://www.top500.org/

(November 15 2021.).

[50]Olofsson, A., “Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip”, oct 2016,

pp. 1–15, [Online]. Available: http://arxiv.org/abs/1610.01832

[51]Guo, K., Zeng, S., Yu, J., Wang, Y., and Yang, H., “A Survey of FPGA-Based

Neural Network Accelerator”, vol. 9, no. 4, dec 2017, pp. 1–26, [Online]. Available:

http://arxiv.org/abs/1712.08934

120

http://portal.acm.org/citation.cfm?doid=123465.123475
file:///home/bpervan/Desktop/Papers/64-ia-32-architectures-software-developer-vol-1-manual.pdf
file:///home/bpervan/Desktop/Papers/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://ieeexplore.ieee.org/document/1675439/
http://ieeexplore.ieee.org/document/6122018/
https://www.iso.org/standard/50516.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.top500.org/
http://arxiv.org/abs/1610.01832
http://arxiv.org/abs/1712.08934

Bibliography

[52]Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., and Zhou, X., “DLAU: A Scalable Deep

Learning Accelerator Unit on FPGA”, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 36, no. 3, 2016, pp. 1–1, [Online]. Available:

http://ieeexplore.ieee.org/document/7505926/

[53]Bai, L., Zhao, Y., and Huang, X., “A CNN Accelerator on FPGA Using

Depthwise Separable Convolution”, IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 65, no. 10, oct 2018, pp. 1415–1419, [Online]. Available:

https://ieeexplore.ieee.org/document/8438987/

[54]Li, Y., Liu, Z., Xu, K., Yu, H., and Ren, F., “A GPU-Outperforming FPGA Accelerator

Architecture for Binary Convolutional Neural Networks”, ACM Journal on Emerging

Technologies in Computing Systems, vol. 14, no. 2, jul 2018, pp. 1–16, [Online].

Available: https://dl.acm.org/doi/10.1145/3154839

[55]Liu, Z., Dou, Y., Jiang, J., Xu, J., Li, S., Zhou, Y., and Xu, Y., “Throughput-Optimized

FPGA Accelerator for Deep Convolutional Neural Networks”, ACM Transactions on

Reconfigurable Technology and Systems, vol. 10, no. 3, 2017.

[56]Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., and Cong, J., “Optimizing FPGA-

based Accelerator Design for Deep Convolutional Neural Networks”, in Proceedings

of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. New York, NY, USA: ACM, feb 2015, pp. 161–170, [Online]. Available:

https://dl.acm.org/doi/10.1145/2684746.2689060

[57]Strizic, L., Pervan, B., and Knezovic, J., “Deep Learning Accelerator on Programmable

Heterogeneous System with RISC-V Processor”, in 2019 proceedings of the 42nd

international convention MIPRO. IEEE, 2019, pp. 1126–1131, [Online]. Available:

https://www.bib.irb.hr/1021661/download/1021661.16_cts_5493.pdf

[58]Karandikar, S., Mao, H., Kim, D., Biancolin, D., Amid, A., Lee, D., Pemberton, N.,

Amaro, E., Schmidt, C., Chopra, A., Huang, Q., Kovacs, K., Nikolic, B., Katz, R.,

Bachrach, J., and Asanovic, K., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out

System Simulation in the Public Cloud”, in 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA). IEEE, jun 2018, pp. 29–42, [Online].

Available: https://ieeexplore.ieee.org/document/8416816/

[59]Ovtcharov, K., Ruwase, O., Kim, J.-y., Fowers, J., Strauss, K., and Chung,

E. S., “Accelerating Deep Convolutional Neural Networks Using Specialized

Hardware”, Microsoft Research Whitepaper, 2015, pp. 3–6, [Online]. Available: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1050.9891&rep=rep1&type=pdf

121

http://ieeexplore.ieee.org/document/7505926/
https://ieeexplore.ieee.org/document/8438987/
https://dl.acm.org/doi/10.1145/3154839
https://dl.acm.org/doi/10.1145/2684746.2689060
https://www.bib.irb.hr/1021661/download/1021661.16_cts_5493.pdf
https://ieeexplore.ieee.org/document/8416816/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1050.9891&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1050.9891&rep=rep1&type=pdf

Bibliography

[60]Tarafdar, N., Eskandari, N., Lin, T., and Chow, P., “Designing for FPGAs in the

Cloud”, IEEE Design & Test, vol. 35, no. 1, feb 2018, pp. 23–29, [Online]. Available:

http://ieeexplore.ieee.org/document/8030335/

[61]Kachris, C., and Soudris, D., “A Survey on Reconfigurable Accelerators for

Cloud Computing”, in 2016 26th International Conference on Field Programmable

Logic and Applications (FPL). IEEE, aug 2016, pp. 1–10, [Online]. Available:

http://ieeexplore.ieee.org/document/7577381/

[62]Abel, F., Weerasinghe, J., Hagleitner, C., Weiss, B., and Paredes, S., “An FPGA

Platform for Hyperscalers”, in 2017 IEEE 25th Annual Symposium on High-

Performance Interconnects (HOTI). IEEE, aug 2017, pp. 29–32, [Online]. Available:

http://ieeexplore.ieee.org/document/8071053/

[63]Hernández, M., Guerrero, G. D., Cecilia, J. M., García, J. M., Inuggi, A., Jbabdi, S.,

Behrens, T. E., and Sotiropoulos, S. N., “Accelerating Fibre Orientation Estimation from

Diffusion Weighted Magnetic Resonance Imaging Using GPUs”, PLoS ONE, vol. 8,

no. 4, 2013.

[64]Chen, C.-C., Yang, C.-L., and Cheng, H.-Y., “Efficient and Robust Parallel DNN

Training through Model Parallelism on Multi-GPU Platform”, sep 2018, [Online].

Available: http://arxiv.org/abs/1809.02839

[65]Manavski, S. A., “CUDA Compatible GPU as an Efficient Hardware Accelerator for

AES Cryptography”, in 2007 IEEE International Conference on Signal Processing

and Communications, no. November. IEEE, 2007, pp. 65–68, [Online]. Available:

http://ieeexplore.ieee.org/document/4728256/

[66]Harrison, O., and Waldron, J., “Efficient Acceleration of Asymmetric Cryptography

on Graphics Hardware”, in International conference on cryptology in Africa. Springer,

2009, pp. 350–367, [Online]. Available: https://nslab.kaist.ac.kr/courses/2015/cs710/

paperlist/2-2.pdf

[67]Burtscher, M., and Pingali, K., “An Efficient CUDA Implementation of the Tree-Based

Barnes Hut n-Body Algorithm”, in GPU Computing Gems Emerald Edition. Elsevier,

2011, pp. 75–92, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

B9780123849885000061

[68]NVIDIA, “NVIDIA Jetson: The AI platform for autonomous machines.”, [Online].

Available: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

(January 23 2022.).

122

http://ieeexplore.ieee.org/document/8030335/
http://ieeexplore.ieee.org/document/7577381/
http://ieeexplore.ieee.org/document/8071053/
http://arxiv.org/abs/1809.02839
http://ieeexplore.ieee.org/document/4728256/
https://nslab.kaist.ac.kr/courses/2015/cs710/paperlist/2-2.pdf
https://nslab.kaist.ac.kr/courses/2015/cs710/paperlist/2-2.pdf
https://linkinghub.elsevier.com/retrieve/pii/B9780123849885000061
https://linkinghub.elsevier.com/retrieve/pii/B9780123849885000061
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

Bibliography

[69]Pervan, B., Guberovic, E., and Turcinovic, F., “Hazelnut - An Energy Efficient Base IoT

Module for Wide Variety of Sensing Applications”, in Proceedings of the 6th Conference

on the Engineering of Computer Based Systems. New York, NY, USA: ACM, sep 2019,

pp. 1–4, [Online]. Available: https://dl.acm.org/doi/10.1145/3352700.3352702

[70]Pervan, B., Knezovic, J., and Pericin, K., “Distributed Password Hash Computation on

Commodity Heterogeneous Programmable Platforms”, in 13th USENIX Workshop on

Offensive Technologies, WOOT 2019, co-located with USENIX Security 2019, 2019,

[Online]. Available: https://www.usenix.org/conference/woot19/presentation/pervan

[71]Pervan, B., Knezovi ć, J., and Guberović, E., “Energy-efficient distributed password hash

computation on heterogeneous embedded system”, Automatika, vol. 63, no. 3, 2022, pp.

399–417, [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/00051144.

2022.2042115

[72]Deursen, A. V., Klint, P., and Visser, J., “Domain-specific languages: an annotated bibli-

ography”, ACM Sigplan Notices, vol. 35, no. 6, 2000, pp. 26–36.

[73]Ghosh, D., DSLs in Action, 1st ed. USA: Manning Publications Co., 2010.

[74]Artho, C., Havelund, K., Kumar, R., and Yamagata, Y., “Domain-specific languages

with scala”, Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9407, 2015, pp. 1–16.

[75]Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S.,

“Halide: A language and compiler for optimizing parallelism, locality, and recomputa-

tion in image processing pipelines”, Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2013, pp. 519–530.

[76]Pu, J., Bell, S., Yang, X., Setter, J., Richardson, S., Ragan-Kelley, J., and Horowitz, M.,

“Programming Heterogeneous Systems from an Image Processing DSL”, vol. 14, no. 3,

2016, pp. 1–25, [Online]. Available: http://arxiv.org/abs/1610.09405

[77]Koehler, T., and Steuwer, M., “Towards a Domain-Extensible Compiler: Optimizing

an Image Processing Pipeline on Mobile CPUs”, in 2021 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO). IEEE, feb 2021, pp. 27–38,

[Online]. Available: https://ieeexplore.ieee.org/document/9370337/

[78]Chafi, H., Sujeeth, A. K., Brown, K. J., Lee, H., Atreya, A. R., and

Olukotun, K., “A Domain-Specific Approach To Heterogeneous Parallelism”, ACM

SIGPLAN Notices, vol. 46, no. 8, sep 2011, pp. 35–46, [Online]. Available:

https://dl.acm.org/doi/10.1145/2038037.1941561

123

https://dl.acm.org/doi/10.1145/3352700.3352702
https://www.usenix.org/conference/woot19/presentation/pervan
https://www.tandfonline.com/doi/abs/10.1080/00051144.2022.2042115
https://www.tandfonline.com/doi/abs/10.1080/00051144.2022.2042115
http://arxiv.org/abs/1610.09405
https://ieeexplore.ieee.org/document/9370337/
https://dl.acm.org/doi/10.1145/2038037.1941561

Bibliography

[79]Brown, K. J., Sujeeth, A. K., Lee, H. J., Rompf, T., Chafi, H., Odersky, M., and Olukotun,

K., “A Heterogeneous Parallel Framework for Domain-Specific Languages”, in 2011

International Conference on Parallel Architectures and Compilation Techniques. IEEE,

oct 2011, pp. 89–100, [Online]. Available: http://ieeexplore.ieee.org/document/6113791/

[80]Sujeeth, A. K., Brown, K. J., Lee, H., Rompf, T., Chafi, H., Odersky, M., and Olukotun,

K., “Delite: A Compiler Architecture for Performance-Oriented Embedded Domain-

Specific Languages”, ACM Transactions on Embedded Computing Systems, vol. 13,

no. 4s, jul 2014, pp. 1–25, [Online]. Available: https://dl.acm.org/doi/10.1145/2584665

[81]Sujeeth, A. K., Lee, H. J., Brown, K. J., Chafi, H., Wu, M., Atreya, A. R., Oluko-

tun, K., Rompf, T., and Odersky, M., “OptiML: An Implicitly Parallel Domain-Specific

Language for Machine Learning”, Proceedings of the 28th International Conference on

Machine Learning, ICML 2011, no. Ml, 2011, pp. 609–616.

[82]Brown, K. J., Lee, H., Rompf, T., Sujeeth, A. K., De Sa, C., Aberger, C., and Olukotun,

K., “Have Abstraction and Eat Performance, Too: Optimized Heterogeneous Computing

with Parallel Patterns”, in Proceedings of the 2016 International Symposium on Code

Generation and Optimization. New York, NY, USA: ACM, feb 2016, pp. 194–205,

[Online]. Available: https://dl.acm.org/doi/10.1145/2854038.2854042

[83]Steuwer, M., Remmelg, T., and Dubach, C., “LIFT: A functional data-parallel IR for

high-performance GPU code generation”, in 2017 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO). IEEE, feb 2017, pp. 74–85, [Online].

Available: http://ieeexplore.ieee.org/document/7863730/

[84]Hagedorn, B., Lenfers, J., Kœhler, T., Qin, X., Gorlatch, S., and Steuwer, M.,

“Achieving high-performance the functional way: a functional pearl on expressing

high-performance optimizations as rewrite strategies”, Proceedings of the ACM on

Programming Languages, vol. 4, no. ICFP, aug 2020, pp. 1–29, [Online]. Available:

https://dl.acm.org/doi/10.1145/3408974

[85]Hagedorn, B., Lenfers, J., Koehler, T., Gorlatch, S., and Steuwer, M., “A

Language for Describing Optimization Strategies”, 2020, [Online]. Available:

http://arxiv.org/abs/2002.02268

[86]Leißa, R., Boesche, K., Hack, S., Pérard-Gayot, A., Membarth, R., Slusallek,

P., Müller, A., and Schmidt, B., “AnyDSL: A Partial Evaluation Framework for

Programming High-Performance Libraries”, Proceedings of the ACM on Programming

Languages, vol. 2, no. OOPSLA, oct 2018, pp. 1–30, [Online]. Available:

https://dl.acm.org/doi/10.1145/3276489

124

http://ieeexplore.ieee.org/document/6113791/
https://dl.acm.org/doi/10.1145/2584665
https://dl.acm.org/doi/10.1145/2854038.2854042
http://ieeexplore.ieee.org/document/7863730/
https://dl.acm.org/doi/10.1145/3408974
http://arxiv.org/abs/2002.02268
https://dl.acm.org/doi/10.1145/3276489

Bibliography

[87]Koeplinger, D., Feldman, M., Prabhakar, R., Zhang, Y., Hadjis, S., Fiszel,

R., Zhao, T., Nardi, L., Pedram, A., Kozyrakis, C., and Olukotun, K.,

“Spatial: A Language and Compiler for Application Accelerators”, ACM SIGPLAN

Notices, vol. 53, no. 4, dec 2018, pp. 296–311, [Online]. Available: https:

//dl.acm.org/doi/10.1145/3296979.3192379

[88]Dubach, C., Cheng, P., Rabbah, R., Bacon, D. F., and Fink, S. J., “Compiling a

high-level language for GPUs”, ACM SIGPLAN Notices, vol. 47, no. 6, aug 2012, pp.

1–12, [Online]. Available: http://dl.acm.org/citation.cfm?doid=2345156.2254066

[89]Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., and Amarasinghe,

S., “GraphIt: A High-Performance Graph DSL”, Proceedings of the ACM on

Programming Languages, vol. 2, no. OOPSLA, oct 2018, pp. 1–30, [Online]. Available:

https://dl.acm.org/doi/10.1145/3276491

[90]Silvano, C., Agosta, G., Bartolini, A., Beccari, A., Benini, L., Besnard, L., Bispo, J.,

Cmar, R., Cardoso, J. M. P., Cavazzoni, C., Cherubin, S., Gadioli, D., Golasowski,

M., Lasri, I., Martinovič, J., Palermo, G., Pinto, P., Rohou, E., Sanna, N., Slaninova,

K., and Vitali, E., “ANTAREX: A DSL-based Approach to Adaptively Optimizing and

Enforcing Extra-Functional Properties in High Performance Computing”, in Euromicro

DSD/SEEA 2018, Prague, Czech Republic, 2018, pp. 1–8, [Online]. Available:

https://hal.inria.fr/hal-01890152

[91]Cardoso, J. M., Carvalho, T., Coutinho, J. G., Luk, W., Nobre, R., Diniz, P., and Petrov,

Z., “LARA: An Aspect-Oriented Programming Language for Embedded Systems”, in

Proceedings of the 11th annual international conference on Aspect-oriented Software

Development - AOSD ’12. New York, New York, USA: ACM Press, 2012, p. 179,

[Online]. Available: http://dl.acm.org/citation.cfm?doid=2162049.2162071

[92]Diamos, G. F., and Yalamanchili, S., “Harmony: An Execution Model and

Runtime for Heterogeneous Many Core Systems”, in Proceedings of the 17th

international symposium on High performance distributed computing - HPDC ’08.

New York, New York, USA: ACM Press, 2008, p. 197, [Online]. Available:

http://portal.acm.org/citation.cfm?doid=1383422.1383447

[93]Rossbach, C. J., Yu, Y., Currey, J., Martin, J.-p., and Fetterly, D., “Dandelion: a Compiler

and Runtime for Heterogeneous Systems”, in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles. New York, NY, USA: ACM, nov 2013,

pp. 49–68, [Online]. Available: https://dl.acm.org/doi/10.1145/2517349.2522715

125

https://dl.acm.org/doi/10.1145/3296979.3192379
https://dl.acm.org/doi/10.1145/3296979.3192379
http://dl.acm.org/citation.cfm?doid=2345156.2254066
https://dl.acm.org/doi/10.1145/3276491
https://hal.inria.fr/hal-01890152
http://dl.acm.org/citation.cfm?doid=2162049.2162071
http://portal.acm.org/citation.cfm?doid=1383422.1383447
https://dl.acm.org/doi/10.1145/2517349.2522715

Bibliography

[94]Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Amarasinghe, S., “The tensor algebra

compiler”, Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA,

oct 2017, pp. 1–29, [Online]. Available: http://dl.acm.org/citation.cfm?doid=3152284.

3133901

[95]Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., and Fey, D., “HPX – A Task

Based Programming Model in a Global Address Space”, in Proceedings of the 8th

International Conference on Partitioned Global Address Space Programming Models -

PGAS ’14, vol. 2014-Octob. New York, New York, USA: ACM Press, 2014, pp. 1–11,

[Online]. Available: http://dl.acm.org/citation.cfm?doid=2676870.2676883

[96]Ofenbeck, G., Rompf, T., Stojanov, A., Odersky, M., and Püschel, M., “Spiral in Scala:

Towards the Systematic Construction of Generators for Performance Libraries”, in

Proceedings of the 12th international conference on Generative programming: concepts

& experiences - GPCE ’13. New York, New York, USA: ACM Press, 2013, pp.

125–134, [Online]. Available: http://dl.acm.org/citation.cfm?doid=2517208.2517228

[97]Rompf, T., and Odersky, M., “Lightweight Modular Staging: A Pragmatic

Approach to Runtime Code Generation and Compiled DSLs”, Communications

of the ACM, vol. 55, no. 6, jun 2012, pp. 121–130, [Online]. Available:

https://dl.acm.org/doi/10.1145/2184319.2184345

[98]Lab, T. S. P. P., “Argon”, [Online]. Available: https://github.com/stanford-ppl/argon

(February 5 2022.).

[99]Asanovi ć, K., and Patterson, D. A., “Instruction Sets Should Be Free: The Case

For RISC-V”, EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2014-146, Aug 2014, [Online]. Available: http://www2.eecs.berkeley.edu/

Pubs/TechRpts/2014/EECS-2014-146.html

[100]RISC-V International, “About RISC-V”, [Online]. Available: https://riscv.org/about/

(January 19 2022.).

[101]Waterman, A., and Asanovic, K., “The RISC-V Instruction Set Manual Volume

I: Unprivileged ISA”, Tech report, vol. I, 2019, [Online]. Available: https:

//riscv.org/technical/specifications/

[102]Waterman, A., Asanovi ć, K., and Hauser, J., “The RISC-V Instruction Set

Manual Volume II: Privileged Architecture”, Tech report, vol. II, 2021, [On-

line]. Available: https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.

12/riscv-privileged-20211203.pdf

126

http://dl.acm.org/citation.cfm?doid=3152284.3133901
http://dl.acm.org/citation.cfm?doid=3152284.3133901
http://dl.acm.org/citation.cfm?doid=2676870.2676883
http://dl.acm.org/citation.cfm?doid=2517208.2517228
https://dl.acm.org/doi/10.1145/2184319.2184345
https://github.com/stanford-ppl/argon
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://riscv.org/about/
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

Bibliography

[103]Gautschi, M., Schiavone, P. D., Traber, A., Loi, I., Pullini, A., Rossi, D., Flamand, E.,

Gurkaynak, F. K., and Benini, L., “Near-Threshold RISC-V Core With DSP Extensions

for Scalable IoT Endpoint Devices”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 25, no. 10, oct 2017, pp. 2700–2713, [Online]. Available:

https://ieeexplore.ieee.org/document/7864441/

[104]Perotti, M., Schiavone, P. D., Tagliavini, G., Rossi, D., Kurd, T., Hill, M., Yingying, L.,

and Benini, L., “HW / SW approaches for RISC-V code size reduction”, in Workshop on

Computer Architecture Research with RISC-V (CARRV 2020), Online, 2020, [Online].

Available: https://www.research-collection.ethz.ch/handle/20.500.11850/461404

[105]European Processor Initiative, “EPI EPAC1.0 RISC-V Test Chip Sam-

ples Delivered”, [Online]. Available: https://www.european-processor-initiative.eu/

epi-epac1-0-risc-v-test-chip-samples-delivered/ (January 19 2022.).

[106]SiFive, “About”, [Online]. Available: https://www.sifive.com/ (January 19 2022.).

[107]Celio, C., Patterson, D. A., and Asanovi ć, K., “The Berkeley Out-of-Order Machine

(BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor”,

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-

167, Jun 2015, [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/

2015/EECS-2015-167.html

[108]Celio, C., Chiu, P.-F., Nikolic, B., Patterson, D. A., and Asanovi ć, K., “BOOM

v2: an open-source out-of-order RISC-V core”, EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2017-157, Sep 2017, [Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

[109]Asanovi ć, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C.,

Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., Karandikar, S., Keller, B., Kim,

D., Koenig, J., Lee, Y., Love, E., Maas, M., Magyar, A., Mao, H., Moreto,

M., Ou, A., Patterson, D. A., Richards, B., Schmidt, C., Twigg, S., Vo, H.,

and Waterman, A., “The Rocket Chip Generator”, EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016, [Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[110]Olof Kindgren, “SERV - The SErial RISC-V CPU”, [Online]. Available: https:

//github.com/olofk/serv (January 20 2022.).

[111]Olof Kindgren, “CoreScore”, [Online]. Available: https://github.com/olofk/corescore

(January 20 2022.).

127

https://ieeexplore.ieee.org/document/7864441/
https://www.research-collection.ethz.ch/handle/20.500.11850/461404
https://www.european-processor-initiative.eu/epi-epac1-0-risc-v-test-chip-samples-delivered/
https://www.european-processor-initiative.eu/epi-epac1-0-risc-v-test-chip-samples-delivered/
https://www.sifive.com/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/olofk/serv
https://github.com/olofk/serv
https://github.com/olofk/corescore

Bibliography

[112]PULP Platform, “PULP Project Information”, [Online]. Available: https://pulp-platform.

org/projectinfo.html (January 22 2022.).

[113]Davide Schiavone, P., Conti, F., Rossi, D., Gautschi, M., Pullini, A., Flamand,

E., and Benini, L., “Slow and Steady Wins the Race? A Comparison of

Ultra-Low-Power RISC-V Cores for Internet-of-Things Applications”, in 2017

27th International Symposium on Power and Timing Modeling, Optimization and

Simulation (PATMOS), vol. 2017-Janua. IEEE, sep 2017, pp. 1–8, [Online]. Available:

http://ieeexplore.ieee.org/document/8106976/

[114]lowRISC, “Ibex: An embedded 32 bit RISC-V CPU core”, [Online]. Available:

https://ibex-core.readthedocs.io/en/latest/ (January 23 2022.).

[115]Zaruba, F., Schuiki, F., Hoefler, T., and Benini, L., “Snitch: A Tiny Pseudo

Dual-Issue Processor for Area and Energy Efficient Execution of Floating-Point

Intensive Workloads”, IEEE Transactions on Computers, vol. 70, no. 11, nov 2021, pp.

1845–1860, [Online]. Available: https://ieeexplore.ieee.org/document/9216552/

[116]Zaruba, F., and Benini, L., “The Cost of Application-Class Processing: Energy

and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in

22-nm FDSOI Technology”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 27, no. 11, nov 2019, pp. 2629–2640, [Online]. Available:

https://ieeexplore.ieee.org/document/8777130/

[117]Traber, A., and Gautschi, M., “PULPino: Datasheet”, Tech. Rep., 2017, [Online].

Available: https://pulp-platform.org/docs/pulpino_datasheet.pdf

[118]Traber, A., Zaruba, F., Stucki, S., Pullini, A., Haugou, G., Flamand, E., Gürkaynak, F. K.,

and Benini, L., “PULPino : A small single-core RISC-V SoC”, [Online]. Available:

https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf 2016.

[119]Schiavone, P. D., Rossi, D., Pullini, A., Di Mauro, A., Conti, F., and Benini, L.,

“Quentin: an Ultra-Low-Power PULPissimo SoC in 22nm FDX”, in 2018 IEEE

SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE,

oct 2018, pp. 1–3, [Online]. Available: https://ieeexplore.ieee.org/document/8640145/

[120]Pullini, A., Rossi, D., Loi, I., Tagliavini, G., and Benini, L., “Mr.Wolf: An

Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing”,

IEEE Journal of Solid-State Circuits, vol. 54, no. 7, jul 2019, pp. 1970–1981, [Online].

Available: https://ieeexplore.ieee.org/document/8715500/

128

https://pulp-platform.org/projectinfo.html
https://pulp-platform.org/projectinfo.html
http://ieeexplore.ieee.org/document/8106976/
https://ibex-core.readthedocs.io/en/latest/
https://ieeexplore.ieee.org/document/9216552/
https://ieeexplore.ieee.org/document/8777130/
https://pulp-platform.org/docs/pulpino_datasheet.pdf
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://ieeexplore.ieee.org/document/8640145/
https://ieeexplore.ieee.org/document/8715500/

Bibliography

[121]Pullini, A., Rossi, D., Loi, I., Di Mauro, A., and Benini, L., “Mr. Wolf: A

1 GFLOP/s Energy-Proportional Parallel Ultra Low Power SoC for IOT Edge

Processing”, in ESSCIRC 2018 - IEEE 44th European Solid State Circuits

Conference (ESSCIRC). IEEE, sep 2018, pp. 274–277, [Online]. Available:

https://ieeexplore.ieee.org/document/8494247/

[122]OpenRISC, “OpenRISC 1000 Architecture Manual”, [Online]. Available: https:

//openrisc.io/or1k.html (January 23 2022.).

[123]Conti, F., Schilling, R., Schiavone, P. D., Pullini, A., Rossi, D., Gurkaynak, F. K.,

Muehlberghuber, M., Gautschi, M., Loi, I., Haugou, G., Mangard, S., and Benini, L., “An

IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics”,

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, sep 2017,

pp. 2481–2494, [Online]. Available: http://ieeexplore.ieee.org/document/7927716/

[124]Rossi, D., Conti, F., Eggiman, M., Mauro, A. D., Tagliavini, G., Mach, S., Guermandi,

M., Pullini, A., Loi, I., Chen, J., Flamand, E., and Benini, L., “Vega: A Ten-Core SoC

for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up From MRAM-Based

State-Retentive Sleep Mode”, IEEE Journal of Solid-State Circuits, vol. 57, no. 1, jan

2022, pp. 127–139, [Online]. Available: https://ieeexplore.ieee.org/document/9560136/

[125]Kurth, A., Forsberg, B., and Benini, L., “HEROv2: Full-Stack Open-Source

Research Platform for Heterogeneous Computing”, 2022, pp. 1–14, [Online]. Available:

http://arxiv.org/abs/2201.03861

[126]Balkind, J., McKeown, M., Fu, Y., Nguyen, T., Zhou, Y., Lavrov, A., Shahrad, M., Fuchs,

A., Payne, S., Liang, X., Matl, M., and Wentzlaff, D., “OpenPiton: An Open Source

Manycore Research Framework”, ACM SIGPLAN Notices, vol. 51, no. 4, jun 2016, pp.

217–232, [Online]. Available: https://dl.acm.org/doi/10.1145/2954679.2872414

[127]Balkind, J., Lim, K., Gao, F., Tu, J., Wentzlaff, D., Schaffner, M., Zaruba,

F., and Benini, L., “OpenPiton+Ariane: The First Open-Source, SMP Linux-

booting RISC-V System Scaling From One to Many Cores”, Third Workshop on

Computer Architecture Research with RISC-V, CARRV, 2019, [Online]. Available:

https://parallel.princeton.edu/papers/balkind_carrv2019.pdf

[128]Gürkaynak, F. K., Schilling, R., Muehlberghuber, M., Conti, F., Mangard, S., and

Benini, L., “Multi-Core Data Analytics SoC with a Flexible 1.76 Gbit/s AES-XTS

Cryptographic Accelerator in 65 nm CMOS”, in Proceedings of the Fourth Workshop

on Cryptography and Security in Computing Systems. New York, NY, USA: ACM, jan

2017, pp. 19–24, [Online]. Available: https://dl.acm.org/doi/10.1145/3031836.3031840

129

https://ieeexplore.ieee.org/document/8494247/
https://openrisc.io/or1k.html
https://openrisc.io/or1k.html
http://ieeexplore.ieee.org/document/7927716/
https://ieeexplore.ieee.org/document/9560136/
http://arxiv.org/abs/2201.03861
https://dl.acm.org/doi/10.1145/2954679.2872414
https://parallel.princeton.edu/papers/balkind_carrv2019.pdf
https://dl.acm.org/doi/10.1145/3031836.3031840

Bibliography

[129]Azarkhish, E., Rossi, D., Loi, I., and Benini, L., “Neurostream: Scalable and Energy

Efficient Deep Learning with Smart Memory Cubes”, IEEE Transactions on Parallel

and Distributed Systems, vol. 29, no. 2, feb 2018, pp. 420–434, [Online]. Available:

http://ieeexplore.ieee.org/document/8038819/

[130]Palossi, D., Loquercio, A., Conti, F., Flamand, E., Scaramuzza, D., and Benini, L., “A

64-mW DNN-Based Visual Navigation Engine for Autonomous Nano-Drones”, IEEE

Internet of Things Journal, vol. 6, no. 5, 2019, pp. 8357–8371.

[131]Greenwaves Technolgies, “GAPuino development board”, [Online]. Available:

https://greenwaves-technologies.com/product/gapuino/ (December 27 2021.).

[132]GreenWaves Technologies, “PMSIS API documentation”, [Online]. Available:

https://pmsis.readthedocs.io/en/latest/ (January 21 2022.).

[133]Greenwaves Technolgies, “GAP8 Software Development Kit”, [Online]. Avail-

able: https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html

(December 29 2021.).

[134]GreenWaves Technologies, “GAP8 Auto-tiler Manual”, [Online]. Available: https:

//greenwaves-technologies.com/manuals/BUILD/PMSIS_API/html/index.html (January

22 2022.).

[135]Stoltzfus, L., Hagedorn, B., Steuwer, M., Gorlatch, S., and Dubach, C., “Tiling

Optimizations for Stencil Computations Using Rewrite Rules in Lift”, ACM

Transactions on Architecture and Code Optimization, vol. 16, no. 4, dec 2019, pp. 1–25,

[Online]. Available: https://dl.acm.org/doi/10.1145/3368858

[136]Atkey, R., Steuwer, M., Lindley, S., and Dubach, C., “Data Parallel Idealised Algol”,

vol. 0, no. 0, 2018, [Online]. Available: https://homepages.inf.ed.ac.uk/slindley/papers/

dpia-draft-july2018.pdf

[137]Steuwer, M., Koehler, T., Köpcke, B., and Pizzuti, F., “RISE & Shine:

Language-Oriented Compiler Design”, jan 2022, pp. 1–12, [Online]. Available:

http://arxiv.org/abs/2201.03611

[138]Stoltzfus, L., Hamilton, B., Steuwer, M., Li, L., and Dubach, C., “Code Generation for

Room Acoustics Simulations with Complex Boundary Conditions”, Proceedings - 2021

IEEE 35th International Parallel and Distributed Processing Symposium, IPDPS 2021,

2021, pp. 485–496.

130

http://ieeexplore.ieee.org/document/8038819/
https://greenwaves-technologies.com/product/gapuino/
https://pmsis.readthedocs.io/en/latest/
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/PMSIS_API/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/PMSIS_API/html/index.html
https://dl.acm.org/doi/10.1145/3368858
https://homepages.inf.ed.ac.uk/slindley/papers/dpia-draft-july2018.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/dpia-draft-july2018.pdf
http://arxiv.org/abs/2201.03611

Bibliography

[139]Köpcke, B., Steuwer, M., and Gorlatch, S., “Generating Efficient FFT GPU Code with

LIFT”, FHPNC 2019 - Proceedings of the 8th ACM SIGPLAN International Workshop

on Functional High-Performance and Numerical Computing, co-located with ICFP 2019,

2019, pp. 1–13.

[140]Kristien, M., Bodin, B., Steuwer, M., and Dubach, C., “High-Level Synthesis

of Functional Patterns with LIFT”, in Proceedings of the 6th ACM SIGPLAN

International Workshop on Libraries, Languages and Compilers for Array Programming.

New York, NY, USA: ACM, jun 2019, pp. 35–45, [Online]. Available: https:

//dl.acm.org/doi/10.1145/3315454.3329957

[141]Mogers, N., Steuwer, M., Smith, A., Dubach, C., Vytiniotis, D., and Tomioka, R., “To-

wards Mapping Lift to Deep Neural Network Accelerators”, in 1st HiPEAC Workshop on

Emerging Deep Learning Accelerators (EDLA), HiPEAC EDLA 2019 ; Conference date:

21-01-2019 Through 21-01-2019", 2019, [Online]. Available: https://www.research.ed.

ac.uk/en/publications/towards-mapping-lift-to-deep-neural-network-accelerators

[142]Lücke, M., Steuwer, M., and Smith, A., “Integrating a Functional Pattern-Based IR into

MLIR”, CC 2021 - Proceedings of the 30th ACM SIGPLAN International Conference

on Compiler Construction, 2021, pp. 12–22.

[143]RISE, “RISE language Git repository”, [Online]. Available: https://github.com/rise-lang/

shine (December 4 2021.).

[144]Budiu, M., Galenson, J., and Plotkin, G. D., “The Compiler Forest”, in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2013, vol. 7792 LNCS, pp. 21–40, [Online].

Available: http://link.springer.com/10.1007/978-3-642-37036-6_2

[145]Bruschi, N., Haugou, G., Tagliavini, G., Conti, F., Benini, L., and Rossi, D.,

“GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for

RISC-V based IoT Processors”, in 2021 IEEE 39th International Conference on

Computer Design (ICCD), no. Iccd. IEEE, oct 2021, pp. 409–416, [Online]. Available:

https://ieeexplore.ieee.org/document/9643828/

[146]Greenwaves Technolgies, “GAPuino V1.1 User’s Manual”, Tech. Rep., 2019, [Online].

Available: https://gwt-website-files.s3.eu-central-1.amazonaws.com/gapuino_v1.1_um.

pdf

[147]Sobel, I., and Feldman, G. M., “An Isotropic 3x3 Image Gradient Operator”,

1990, [Online]. Available: https://www.researchgate.net/publication/281104656_An_

Isotropic_3x3_Image_Gradient_Operator

131

https://dl.acm.org/doi/10.1145/3315454.3329957
https://dl.acm.org/doi/10.1145/3315454.3329957
https://www.research.ed.ac.uk/en/publications/towards-mapping-lift-to-deep-neural-network-accelerators
https://www.research.ed.ac.uk/en/publications/towards-mapping-lift-to-deep-neural-network-accelerators
https://github.com/rise-lang/shine
https://github.com/rise-lang/shine
http://link.springer.com/10.1007/978-3-642-37036-6_2
https://ieeexplore.ieee.org/document/9643828/
https://gwt-website-files.s3.eu-central-1.amazonaws.com/gapuino_v1.1_um.pdf
https://gwt-website-files.s3.eu-central-1.amazonaws.com/gapuino_v1.1_um.pdf
https://www.researchgate.net/publication/281104656_An_Isotropic_3x3_Image_Gradient_Operator
https://www.researchgate.net/publication/281104656_An_Isotropic_3x3_Image_Gradient_Operator

Bibliography

[148]Hartigan, J. A., Clustering Algorithms. John Wiley & Sons, Inc., 1975.

[149]Hartigan, J. A., and Wong, M. A., “Algorithm AS 136: A K-Means Clustering

Algorithm”, Journal of the Royal Statistical Society, vol. 28, no. 1, 1979, pp.

100–108, [Online]. Available: https://www.stat.cmu.edu/~rnugent/PCMI2016/papers/

HartiganKMeans.pdf

132

https://www.stat.cmu.edu/~rnugent/PCMI2016/papers/HartiganKMeans.pdf
https://www.stat.cmu.edu/~rnugent/PCMI2016/papers/HartiganKMeans.pdf

Nomenclature

APIApplication Programming Interface

ASTAbstract Syntax Tree

CPUCentral Processing Unit

DPIAData Parallel Idealised Algol

DSLDomain-Specific Language

DSPDigital Signal Processing

FCFabric Controller

GPGPUGeneral-Purpose Graphics Processing Unit

GPUGraphics Processing Unit

HPCHigh-Performance Computing

HWCEHardware Convolution Engine

SoCSystem-on-Chip

TCDMTightly-Coupled Data Memory

133

List of Figures

2.1. 4 stage pipeline1 .11

2.2. SIMD CPU2 .12

2.3. Architecture of a GPU3[63] .18

3.1. High-level overview of Delite framework4[79]21

3.2. Architecture of the AnyDSL framework5 .23

3.3. High-level overview of the PULP platform629

3.4. Block diagram of the GAP8 architecture7[130]35

3.5. GAPuino development board8 .36

4.1. RISE stack .48

6.1. Five consecutive measurements .74

6.2. Single zoomed measurement .77

6.3. Block diagram of the measurement equipment78

6.4. Single measurement .80

6.5. Cycle-wise performance comparison .90

6.6. Wall-clock time performance comparison .91

6.7. Energy consumption comparison (Numeric integration)93

6.8. Energy consumption comparison (Average with wall-clock time)94

6.9. Total lines of code comparison .96

List of Tables

3.1. Pros and cons of DSLs with Scala[74] .20

3.2. RISC-V extension sets as of December 2021 (unpriviledged ISA) [101]27

5.1. Shine vs. GAP8 native API HWCE calls8 .57

5.2. Parameters of the low-level counterparts .59

6.1. Clock cycle-wise performance evaluation results89

6.2. Wall-clock time performance evaluation results91

6.3. Energy efficiency evaluation - Numerical integration92

6.4. Energy efficiency evaluation – Average voltage and wall-clock time94

6.5. Naive comparison of programming models with respect to lines of code95

6.6. Naive comparison - Convolution benchmark96

Listings

3.1. Kickoff and exit functions9 .36

3.2. Cluster handling functions10 .36

3.3. Device handling functions11 .37

3.4. Device encapsulating structure12 .37

3.5. Cluster encapsulating structures13 .37

3.6. Wall-time fetch14 .38

3.9. GPIO functions15 .39

3.7. Performance calls16 .39

3.8. Pad function17 .39

3.10. Enable and disable functions .40

3.11. Setup functions .41

3.12. Convolution kickoff functions .41

4.1. Dot product in RISE .47

4.2. Array construction .49

4.3. Tuple construction .49

4.4. Literals .49

4.5. Literal cast .50

4.6. Frequent constructors .50

4.7. Type construction .50

4.8. Function declaration .51

4.9. Dependable function declaration .51

4.10. Pipe operator in RISE .51

4.11. Example of a strategy in ELEVATE18 .52

5.1. GAP8 Module .55

5.2. GAP8 Module .55

5.3. ConvolutionFilterSize19trait .57

5.4. HWCE call sequence .58

5.5. GAP8 cluster running primitive in RISE .61

5.6. GAP8 cluster running DPIA functional primitive62

136

Listings

5.7. GAP8 cluster running DPIA imperative primitive62

5.8. RISE primitives for HWCE .63

5.9. Functional DPIA primitives for HWCE .64

5.10. Imperative DPIA primitives for HWCE .64

5.11. Convolution optimization rule in ELEVATE66

5.12. runtime.h20 .68

5.13. nosync.c .69

5.14. gap8.h .70

5.15. Makefile excerpt .72

6.1. Run command .74

6.2. Code snippet which does active cycle counting75

6.3. Wall clock time measurment – Hand-tuned code75

6.4. Wall clock time measurment – Generated code76

6.5. GPIO pin setup .78

6.6. Computation marking – Hand-tuned code .79

6.7. Computation marking – Generated code .79

6.8. Matrix multiplication expression in RISE .81

6.9. Sobel filter expression in RISE .83

6.10. k-means clustering expression in RISE21 .85

6.11. Convolution with 3 X 3 filter in RISE .86

6.12. Applying GAP8-specific convolution transformation87

6.13. Utilizing gap8hwConv3x3 primitive directly88

A.1. Sobel filter benchmark – Hand-tuned code .101

B.1. Sobel filter benchmark – Generated code .107

B.2. HWCE benchmark – Generated code .114

137

Biography

Branimir Pervan was born in Zagreb where he finished elementary and high school. He gradu-

ated in 2015. from the University of Zagreb Faculty of Electrical Engineering and Computing.

Throughout his studies and briefly after graduation he worked as a software engineer in various

companies. In 2016. he started his postgraduate studies in the field of heterogeneous comput-

ing. His scientific and professional interests span across parallelism, heterogeneous computing

systems, domain-specific languages, functional programming, and embedded systems. While

working on his PhD he undertook multiple visits to research groups of similar interests and

attended two summer schools in high-performance computing. From March 2021. to Novem-

ber 2021. he was closely collaborating with a research group at the University of Edinburgh

regarding the development of practical outcomes of his doctoral thesis. He is affiliated with

Green Light Technologies Ltd. where he works part-time as a software engineer and consul-

tant. Throughout his studies and up to now, he held various governing positions in volunteering

organizations. He is a member of professional organizations IEEE, IEEE Computer Society,

and HiPEAC. He authored or co-authored several scientific papers published in international

journals and conferences.

Bibliography

Journal papers

1. B. Pervan, J. Knezović, and E. Guberović, “Energy-Efficient Distributed Password Hash

Computation on Heterogeneous Embedded System” Automatika, vol. 63, no. 3, pp.

399–417, 2022, doi: https://doi.org/10.1080/00051144.2022.2042115.

Conference papers

1. B. Pervan and J. Knezovic, “A Survey on Parallel Architectures and Programming Mod-

els,” in 2020 43rd International Convention on Information, Communication and Elec-

tronic Technology (MIPRO), Sep. 2020, pp. 999–1005, doi: https://doi.org/10.

23919/MIPRO48935.2020.9245341.

138

https://doi.org/10.1080/00051144.2022.2042115
https://doi.org/10.23919/MIPRO48935.2020.9245341
https://doi.org/10.23919/MIPRO48935.2020.9245341

Biography

2. B. Pervan, J. Knezovic, and K. Pericin, “Distributed Password Hash Computation on

Commodity Heterogeneous Programmable Platforms” 2019, [Online]. Available: https:

//www.usenix.org/conference/woot19/presentation/pervan.

3. B. Pervan, E. Guberovic, and F. Turcinovic, “Hazelnut - An Energy Efficient Base IoT

Module for Wide Variety of Sensing Applications,” in Proceedings of the 6th Conference

on the Engineering of Computer Based Systems, Sep. 2019, pp. 1–4, doi: https://

doi.org/10.1145/3352700.3352702.

4.L. Strizic, B. Pervan, and J. Knezovic, “Deep Learning Accelerator on Programmable

Heterogeneous System with RISC-V Processor,” in 2019 proceedings of the 42nd in-

ternational convention MIPRO, 2019, pp. 1126–1131, [Online]. Available: https:

//www.bib.irb.hr/1021661/download/1021661.16_cts_5493.pdf.

5.J. Knezovi ć, B. Pervan, Z. Relja, and J. Knezović, “Project Houseleek - A Case Study

of Applied Object Recognition Models in Internet of Things,” in 2019 proceedings of

the 42nd international convention MIPRO, 2019, no. May, pp. 1051–1055, [Online].

Available: https://www.bib.irb.hr/1021658/download/1021658.04_cts_5327.

pdf.

Posters

1. B. Pervan, J. Knezovic, and M. Steuwer, "Heterogeneous Hardware Programming Made

Easy - An Extensible Compiler Targeting Heterogeneous Hardware", 17th International

Summer School on Advanced Computer Architecture and Compilation for High-performance

Embedded Systems, Sep. 2021

139

https://www.usenix.org/conference/woot19/presentation/pervan
https://www.usenix.org/conference/woot19/presentation/pervan
https://doi.org/10.1145/3352700.3352702
https://doi.org/10.1145/3352700.3352702
https://www.bib.irb.hr/1021661/download/1021661.16_cts_5493.pdf
https://www.bib.irb.hr/1021661/download/1021661.16_cts_5493.pdf
https://www.bib.irb.hr/1021658/download/1021658.04_cts_5327.pdf
https://www.bib.irb.hr/1021658/download/1021658.04_cts_5327.pdf

Životopis

Branimir Pervan je rod̄en u Zagrebu gdje je završio osnovnu i srednju školu. Diplomski studij

završio je 2015. g. na Sveučilištu u Zagrebu, Fakultet elektrotehnike i računarstva. Tijekom te

kratko nakon završetka studija radio je kao programski inženjer u više različitih tvrtki. 2016. go-

dine započeo je posljediplomski studij u području raznorodnog računarstva. Njegovi znanstveni

i profesionalni interesi sežu od paralelizma, raznorodnih računalnih sustava, jezika za speci-

fične domene, funkcijskog programiranja, pa sve do ugradbenih sustava. Za vrijeme rada na

doktorskom studiju, poduzeo je više posjeta istraživačkim skupinama sličnoga interesa, te je

pohad̄ao dvije ljetne škole u području računarstva visokih performansi. Od ožujka 2021. do

studenog 2021. blisko je surad̄ivao s istraživačkom skupinom sa Sveučilišta u Edinburghu radi

razvoja praktičnih ishoda doktorskog rada. Suradnik je tvrtke Green Light Technologies gdje

povremeno radi kao programski inženjer i konzultant. Kroz studij pa sve do sada, bio je u

upravljačkim tijelima različitih volonterskih organizacija. Član je strukovnih udruženja IEEE,

IEEE Computer Society i HiPEAC. Autor je ili koautor više znanstvenih radova objavljenih u

med̄unarodnim časopisima ili na konferencijama.

140

	Introduction
	Research goals
	Thesis outline

	Theoretical Background
	General motivation
	Parallelism
	Levels of parallelism
	Programming models

	Heterogeneous systems
	Heterogeneity as a concept
	Accelerators
	GPGPUs
	Other

	General Concepts
	Domain-specific languages
	General
	Overview of the field

	RISC-V
	General
	Extensions
	Notable projects

	PULP
	Processors
	Single core platforms
	Multi-core platforms
	Multi-cluster systems
	Accelerators

	GAP8
	Architecture of the platform
	API

	RISE Stack
	General concepts
	RISE & Shine
	General
	Important constructs

	ELEVATE
	Notable research

	Model Implementation
	General
	GAP8 Module
	Code generation
	Accelerator code generation
	Host side

	Expression running mechanism
	Host and accelerator code separation

	Hardware convolution engine support
	Optimization strategy

	Runtime environment
	Executor

	Model Evaluation
	Methodology
	Performance measuring
	Measuring energy consumption

	Benchmarks
	Matrix multiplication
	Sobel filter
	k-means clustering
	Convolution

	Evaluation
	Performance evaluation
	Energy efficiency evaluation
	Programability evaluation

	Conclusion
	Hand-tuned code
	Generated code
	Sobel filter benchmark
	HWCE utilization

	Bibliography
	Biography
	Životopis

