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Abstract 

This paper introduces the reader to the problem of language identification (LID) based 

on audio content and to the implementation of a solution that uses a convolutional recurrent 

deep neural network (CRNN) and visual representation of sound – spectrograms. It will first 

guide through the current state of LID systems and then it will proceed to describe the method 

used for obtaining a dataset from YouTube and the steps taken in preprocessing and extracting 

features from that data. Furthermore, the paper will briefly explain how convolutional neural 

networks (CNN) and recurrent neural networks (RNN) work, present the hybrid architecture 

used for building the LID system and its results. Finally, it will give insight into a possible 

practical usage of such systems and showcase a proof of concept which, by combining the LID 

system with Google APIs for speech and translation, acts as real time translator. 

Keywords 

Language identification, language recognition, deep learning, audio classification, audio 

preprocessing, python, tensorflow. 
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1. Introduction 

Natural language recognition, also known as language identification (LID), is the task 

of determining the language used in textual or audio content. Today, identifying the language 

from a text performs well and is widely used, very much unlike language identification from 

audio samples. Speech recognition systems, such as Alexa or Siri, are still not able to inherit 

the language in which the user's command was given and require the input language to be 

predefined for their proper functioning. Furthermore, LID systems of high accuracy seem to be 

the missing block for creating translation devices that can seamlessly translate audio from other 

languages to one's mother tongue, and vice versa.  

Current state-of-the-art approaches to language identification are based on the 

classification of visual representation of audio samples. That means that the problem of 

language identification is transferred from audio domain to the image domain using signal 

processing techniques. There is an ongoing research being done on architectures inspired by 

human hearing with the goal of developing the field of machine hearing [1]. Convolutional 

neural networks were developed in a similar fashion [2] - through the influence of Fukushima's 

neocognitron neural network [3] that was inspired by the work in cat's visual cortex by Nobel 

prize winning neuroscientists Hubel and Viesel [4]. 

The biggest challenge that the language identification is facing today is that the current 

technology is not yet capable of having satisfactory accuracy on short audio samples. For 

example, saying the sentence „Hello, how are you today?“ takes up to two seconds if said in a 

normal, conversational, speed. Not only is it difficult for a LID system to detect a language 

from such a short sample, but it also gets more difficult with the implementaton of more 

languages, as it can get more easily confused. It is a problem relatable to humans as well – 

Muthusamy, Jain and Cole [5] experimented with and measured humans' ability to detect 

language in speech utterances of different durations. The subjects of the experiment had to 

classify utterances between ten languages. One of the experiments involved 10 native speakers 

of English and 2 native speakers of each of the other language and all of them participated in a 

training session. During that training, the subjects listened to 2 utterances of each language and 

did a dry run of the experiment where they listened to 8 utterances per language more. The 

average perfomance reported on all languages excluding English were 65.3%, 62.3%, 52.8% 

and 44.8% on the utterances of duration of 6, 4, 2 and 1 second, respectively.  
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The aim of this project is to create an LID model that can classify short speech utterances 

between three languages – Croatian, French and Spanish. Audio samples of duration of 3 

seconds seemed the most suitable option for the method used in this paper. While being 

relatively short, 3-second speech have shown contain enough information in order for the neural 

network to generalise and have satisfactory results [6]. Moreover, a lot of attention will be given 

to audio data preprocessing and feature extraction as the crucial step that facilitates neural 

network’s learning.  

The first part of this paper will explain in which way was the data obtained, provide 

detailed information about the dataset used and will look into the importance of having high-

quality data in supervised learning. 

The second part of the paper will guide through the steps of preparing, preprocessing 

and extracting features from the data: segmentation of audio files to 3-second samples, audio 

normalisation, exclusion of mostly irrelevant frequencies and conversion of audio samples to 

spectrograms. 

The third part will introduce the machine learning framework used in this project – 

Tensorflow [7], and it’s high-level API for building and training deep learning models – Keras 

[8]. It will then explain how convolutional neural networks and recurrent neural networks 

function and their applications. Afterwards, it will present the architecture of the neural 

network, the procedure of training and the results of the trained model. 

Finally, it will show a proof of concept of a real-time speech translator that combines 

Google APIs with the LID model developed in this project. 
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2. Data 

Deep learning tasks require a great amount of labelled data and acquiring it is often 

costly both in time and resources. Moreover, having high-quality data is much more important 

than the neural network architecture used since the neural networks can only get as good as 

the data is. Data is like a road  – if the road is bad, the car (neural network) won’t get far and 

it won’t be of importance if it’s a lower or a higher class model. 

2.1. Acquiring the Dataset 

The method for obtaining the dataset used in this paper was proposed by Bartz, 

Herold, Yang and Meinel [9]. Since the Youtube contains hundreds of thousands of hours of 

content in virtually every relevant language, the mentioned method relies on extracting audio 

from selected channels and playlists that are labelled with the language that their videos 

contain. Therefore, instead of having to label each audio file separately, it is enough to specify 

only the playlist’s or channel’s language which will be then be inherited as the label of each 

separate audio file. 

The playlists used in the project consist mainly of news and talk show videos. These 

two categories were used because they incorporate a variety of speakers – it is important to 

avoid the biases that could result from the neural network’s association of a certain voice or a 

pitch with a language. Also, these categories contain occasional background noise like crowd 

noise or music which is useful for making the model more robust. 

On the other side, this method has the disadvantage of introducing some noise to the 

data - parts of audio files that contain something other than speech, such as intro music, 

laughter, clapping or silence. Nevertheless, the number of these is not significant and the 

neural network should be able to generalise well in spite of them. It is a small price to pay for 

such an efficient way of obtaining a dataset.  

Optionally, this method could be extended with a model that can classify audio files 

between those that contain speech and those that don’t which would clean most of the noise in 

the dataset, but that has not been done in this project. 

The dataset contains 2920 hours of speech data for three languages: Croatian, French 

and Spanish.  
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3. Data Preprocessing and Feature Extraction 

In order to get the data ready for feeding it into the neural network, a number of steps 

are to be done. First of all, since the goal of this project is to have an LID system that can 

identify language from a 3-second speech utterance, all the downloaded audio files in the 

dataset are separated into 3-second segments and downsampled to 16000 Hz.  

3.1. Audio loudness normalisation 

 Loudness normalisation is the process of levelling the amplitudes of an audio 

recording to a specified norm in order to adjust the perceived loudness of it. Normalising the 

data is a common step in machine learning pipelines because it allows the algorithms or 

neural networks to capture the patterns in an easier manner. 

The norm for loudness normalisation used in this project is EBU R128 [10]. The 

mentioned guideline was created and recommended by the European Broadcasting Union and 

its primary use is for making the loudness level even between different TV and radio stations 

as well as for creators of commercials that are broadcasted on them. 

3.2. Exclusion of Irrelevant Frequencies 

Since the phonemes that the languages in the dataset consist of fall under 5kHz [9], all 

the frequencies above the mentioned level are excluded. The reasoning behind this decision is 

that the excluded frequencies do not contain any properties associated with speaking or with 

languages and therefore are irrelevant to the task of language identification.  

3.3. Conversion of Audio Recordings to Spectrograms 

 A spectrogram is a two-dimensional visual respresentation of a sound. Time is usually 

located on the x-axis while the frequencies are set on the vertical axis. Even though a 

spectrogram is two-dimensional, it also contains a third dimension represented as a heat map 

that shows the amplitude of a frequency at a specific time. In practice, the amplitude is 

associated with a darker color if it is lower while the higher amplitudes are indicated with  

brighter colors.  
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This project opts for the shades of grey for representing the spectrograms. This choice 

is made because greyscale images contain a single color dimension whereas RGB images 

contain three dimensions – red, green and blue dimension. As a result, the neural network will 

have less parameters to compute.  

The sound processing utility called SoX [12] is used for spectrogram generation in the 

project. When SoX generates spectrograms, it does it by using mathematical functions crucial 

for signal processing – discrete Fourier’s transform (DFT) and Hann windowing. 

 

3.3.1. Fourier Transform and DFT 

As it is already stated, spectrograms describe the energy of a frequency at a given 

time. With that said, and regarding the fact that sound is a waveform usually composed of 

more frequencies, an interesting question arises – What is being done in the process of 

generating a spectrogram that it is able to tell the energy of each, separate, frequency? Put 

simply – How is the decomposition of a sound done? 

The Fourier transform (FT) is a mathematical function that, as its input, takes a 

waveform which, in essence, is a time-based function, and decomposes it into the frequencies 

that make it up [13]. In other words, it transfers the waveform from time-domain to 

frequency- domain. It has various practical usages such as picking-out the frequency of a 

Figure 1: Waveform and spectrogram representation of a male person saying “PloS Biology” [11] 

Figure 2: Example of spectrograms [author’s work] 
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radio station that one would like to listen to or in data compression for ignoring the least 

important frequencies – just like how, for example, MP3 format does. 

 

 

 

 

 

 

 

 

 

 

The waves that make a waveform are sines with different frequencies and amplitudes 

[15]. Once the Fourier transform decomposes a waveform, it provides the information for 

both the energy (intensity) of the amplitudes of the wave and its frequency, which is 

essentially the recipe for making that specific waveform. 

Figure 3: Bottom four waves make up the top waveform [14] 

Figure 4 Waveform and the output of the Fourier transform [16] 
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When talking over a phone, the waveforms that the interlocutors produce are being 

digitalised by sampling them into discrete values. That means that the digitiser is “describing” 

the original waveform with a set of values for the purpose of making it understandable to 

digital devices like computers or telephones.  

 

 

 

 

 

 

 

 

 

 

 

 

The original Fourier transform, also know as continuous Fourier transform, works 

with continuous signals and is therefore not applicable to discrete signals. On the other hand, 

the discrete Fourier transform (DFT) is made just for that purpose. The DFT uses frequency 

bins for discretising frequencies – it acts like histograms do, ranges of frequency are put into 

separate frequency bins. In the project, 129 frequency bins are used. 

3.3.2. Windowing and Hann Window 

The way in which DFT processes a signal is by looking at its endpoints as if they were 

connected. When the signal is periodic and the number of times it cycles is an integer, the 

endpoints connect well and no problem is presented. Unfortunately, it usually does not repeat 

an integer number of times and it is when the transition between two endpoints become sharp. 

The term for sharp transitions is discontinuities. [15] 

To avoid spectral leakage, the discontinuities can be smoothed using window fuction. 

Windowing, the process of applying a window function, reduces the discontinuities on each 

finite sequence which makes the aforementioned endpoints meet (figure 6) [15].  When 

windowing is done, the side lobes of a signal are weakened and thus the technique of 

overlapping the sequence with each other is applied in order to preserve the information. 

Different window functions are suitable for different tasks, but the most commonly 

used one is Hanning window, which is also used in the project. 

Figure 5: Sampling a signal [17] 
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Hanning window has the shape as it is shown in the figure 6. Unlike some other 

window functions, such as Hamming window, Hann window eliminates all discontinuity by 

being closed at both of its ends [15]. 

3.4. Spectrograms – End Result  

The generated spectrograms are greyscale 150×129 images where the vertical axis is the 

representation of the 129 frequency bins produced by the DFT. Regarding the fact that the audio 

samples in the dataset were segmented into 3 seconds and since the time axis was rendered at 

50 pixels per second, the resulting number of pixels equals 150, which explains the horizontal 

axis of the spectrogram resolution. 

The advantage of visually respresenting audio is that it results in lower dimensionality 

compared to raw audio files while retaining enough information required for the task of sound 

classification [6].  

 

  

Figure 6: Applying a windows function on a signal [18] 
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4. Deep Learning and Language Identification 

The approach in this paper is based on the “Language Identification Using Deep 

Convolutional Recurrent Neural Networks” by Bartz, Herold, Yang and Meinel [9]. The authors 

proposed a hybrid neural network combinations that joins convolutional and recurrent neural 

networks in order to capture both the spatial and sequential information. They achieve current 

state-of-the-art results using audio samples of duration of 10 seconds. 

The aim of this paper is to explore the prospect of using significantly shorter audio 

samples in applying deep learning on the task of language identification. The neural network 

used is a combination of Inception-Resnet-v2 with a long short-term memory (LSTM) unit. The 

project was done in Python using Tensorflow. 

4.1. Tensorflow and Keras 

Tensorflow is an open-source machine learning library for both research and production. 

It was created by the Google Brain team and it incorporates Python front-end API for 

convenient application development with the backend written in C++ for performance reasons. 

Nowadays, fronted APIs for languages like R, Java and C++ exist as well, but Python remains 

being the best supported.  It also features implementation of it for mobile and embedded 

devices, Tensorflow Lite, as well as for training and deploying machine learning models in the 

browser, Tensorflow.js. [7] 

 

 

  

Figure 7 Tensorflow architecture [19] 
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 The principle in which Tensorflow works is simple: firstly, the graph of computations 

is defined in the front-end API and then it is ran efficiently in the backend. A very important 

feature that Tensorflow has is its ability to break up a graph into several chunks for running it 

across multiple CPUs or GPUs. Furthermore, distributed computing is supported as well, 

where the computation can be done across hundreds of servers. [20] 

Keras is a Python API for neural networks with a higher level of abstraction than what 

Tensorflow’s front-end API offers. Keras is imagined as an interface that supports multiple 

backends, amongst which is also Tensorflow. It allows fast experimentation and prototyping 

through its user friendliness, extensibility and modularity which made it gain a lot of 

popularity. Tensorflow has implemented its specification of the Keras API and has been, ever 

since, recommending it as the way to go for general purpose. [7][8] 

Getting started with Tensorflow can be as easy as writing couple of lines of code. 

Tensorflow provides the users with the most popular datasets, such as MNIST hand written 

digit database [21] used in the example in the figure 8.  

 

In the code above we can see that the data is divided into two sets, one for training and 

one for testing (evaluating) it. In machine learning code, Y usually denotes the label of the 

data, while the actual data (image, text etc.) is represented by X. Since the MNIST dataset 

contains images of hand written digits, those images have to be normalised before passing 

Figure 8: Tensorflow code for creating, training and evaluating a neural network on MNIST 

dataset [7]  
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them to the neural network. A pixel is a value between 0 and 255, so the images are 

normalised by dividing its pixels with 255 which as a result has the values of pixels being 

floats between 0 and 1. This step is an example of what is called data preprocessing. 

Afterwards comes the definition of a neural network, which in the example is a very 

simple one. In order to train a neural network, one needs to specify the optimiser and the loss 

function for the neural network. In a simplified explanation, they are what guides the neural 

network in its training. Finally, the neural network can be trained by fitting it the prepared 

data and labels. If the training was successful, the model will be able to recognise previously 

unseen digits with a certain accuracy.  

4.2. Neural Network Architectures 

The convolutional recurrent neural network (CRNN) that is used in the project is a 

hybrid between convolutional neural network (CNN) and recurrent neural network (RNN). 

Thus, the mentioned two separate neural network architectures will be explained separately 

before presenting the hybrid one. 

4.2.1. Convolutional Neural Networks 

As shown in the introduction of this paper, the convolutional neural networks are an 

example of neuroscientific principles influencing deep learning [22]. Since convolutional 

neural networks took inspiration from visual cortex, one could imagine that they would be 

successful on the computer vision tasks. They indeed have revolutionised the field – in the 

ILSVRC ImageNet challenge [23] the top-5 error went from 26% to just 3% [20]. 

Convolutional networks have also found their application in the field of natural language 

processing. 

Unlike the traditional fully-connected neural networks, neurons in a CNN are 

connected only with a number of other neurons. Each neuron in a convolutional layer, the 

building block of a CNN, covers only a number of pixels in its receptive field (figure 9). The 

sparse interaction (figure 11) between neurons results in fewer parameters to compute but also 

presents a fundamental feature of CNNs – hierachical learning. Since the receptive field of a 

neuron increases as it is located deeper in the network, it allows it to find complex features by 

combining the elements from the shallower neurons. For example, the first hidden layer will 

learn low-level features such as edges, the hidden layers in the middle may learn features such 



12 

 

as rectangles, curves or circles and the last hidden layer will learn complex features by 

combining the previous lower-level ones into something that resembles a shape of a car, 

house, or anything else depending on what the task was (figure 10).  [20][22] 

The weights of a specific neuron in a CNN are called filters. Each filter is able to 

detect a certain pattern that it learned, as explained in the previous paragraph.  In CNNs, every 

member of a filter is used at every position of the input which enables the detection of a 

pattern at any location. This characteristic of CNNs is called translation invariance. Using the 

same weights on different locations, known as parameter sharing, also greatly reduces the 

number of parameters to compute. Traditional neural networks, on the contrary, calculate and 

use each neuron’s weights only once. Furthermore, stacking up the feature maps allows the 

CNN to detect multiple features from an input at once. [22]  

 

Figure 9: Receptive field [24] 

Figure 10: Examples of learned feature maps [25] 

Figure 11: Fully connected neurons (left) and sparsely connected neurons (right) [22] 
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In order to preserve the height and the width of the output of the convolution, zero 

padding is used. Zero padding, as the name says, pads the input with zeros before computing 

the output. 

 

When applying a filter on an input, a very useful parameter for defining the 

dimensionality of the output can be tweaked – stride. Stride is the number of steps between 

two consecutive receptive fields and, if the number of steps is increased, results in an output 

of lower height and width [20].  

These were the parts of the convolutional layer in a CNN. Another fundamental part of 

CNNs are pooling layers. A pooling layer’s purpose is to reduce the computational load and 

memory usage by subsampling the input. It shares the same parameters as convolutional layer 

does: size, stride and, optionally, padding. Pooling layers do not learn, thus they have no 

weights – their sole function is aggregating the inputs and returning, most commonly, the max 

value or the average value. [20] 

Figure 12: Zero padding [20] 

Figure 13: Stride with step size of 2 [26] 
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CNN architectures often repeat a number of stacked convolutional layers followed by 

a pooling layer for as much as it is necessary, and are usually ended with one or two fully 

connected layers for outputing the prediction, possibly with a dropout layer between them in 

order to avoid overfitting.  

4.2.2. Recurrent Neural Networks 

Both the traditional and convolutional neural networks require the input and the output 

to be of a fixed size. For example, a CNN does not accept any other image size than the size 

that it was trained on and will return a vector of a specific length containing the class 

probabilities. While such behaviour is suitable for numerous problems, there are cases in 

which such limitation makes them impossible to be applied on.  

 Machine translation, sentiment classification and image captioning are some of those 

cases. In image captioning, the input (image) is of a fixed size, but the output size, being the 

description of the content on the image, is variable. On the other hand, evaluating products’ 

reviews in order to find out if the customers are satisfied (sentiment classification) is the other 

way round. It outputs a fixed-size value – the percentage of the positivity of a review, but 

does it by evaluating the review text that can be of arbitrary length. Machine translation, 

unlike the previous two examples, has sequential data on both of its ends. It accepts an 

arbitrary number of words in one language and outputs a number of words in another 

language, which may be of a different size than the input due to the nature of the languages. 

Recurrent neural networks are type of neural networks that, instead of looking only at 

the input given at the moment, take into account both the actual input and the history of inputs 

fed in the past [28]. This feature of RNNs allows them to “remember” and use that knowledge 

Figure 14: Max pooling with 2x2 filter and stride 2 [27] 
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to make a better judgement. For example, RNNs can be used to generate music because they 

can recall which chords it already generated and build progressions based on it. 

The mentioned property of RNNs is achieved by expanding the neurons with a 

connection that points backwards. The added connection serves for sending the produced 

output back to itself for aiding the generation of the following outputs. The connection can 

also be represented in a more intuitive way by unrolling the network throught time (figure 

15). [20] 

There are several different types of RNNs based on the type of input and output they 

have. One-to-many takes a single input and outputs multiple values (e.g. image captioning). 

Many-to-one takes a sequence and outputs a single value (e.g. sentiment classification of 

reviews). There are two types of many-to-many RNNs: the simple many-to-many architecture 

and the encoder-decoder architecture. The example of the first one would be music generation 

– when RNN produces music, the first input may be the desired genre but the neural network 

will, at each step of producing new sound, take the output from the step before and use it as its 

input. On the other hand, the encoder-decoder architecture is very useful in tasks such as 

machine translation where the input and output are often of different length. The encoder 

encodes the input into a vector and the decoder unwraps it to produce the output. [20][28] 

Figure 15: Recurrent neuron (left) and  recurrent neuron unrolled through time (right) [29] 

Figure 16: Types of RNNs, from left to right, one to many, many to one, many to many (encoder-decoder) and 

simple many to many [28] 



16 

 

When training an RNN, the backpropagation is done by unrolling the network and 

calculating the loss and updating the weights at each time step. It is oftend denoted as 

backpropagation through time.  

Sometimes it is useful to make the RNN able to look into the future as well. Fortunately, 

it is not as hard to implement it as it may sound. To make an RNN bidirectional, as presented 

in [30], it is only necessary to specify that it should “read” the sequence not only from left to 

right, but also from right to left. In that way, the bidirectional recurrent neural network (BRNN) 

can make a prediction based on all of the inputs around it. For example, when doing speech 

recognition the sentence “The rain is falling down”, a typical RNN would have a problem 

determining if the word “rain” or “reign” is told, whereas a BRNN would be able to look into 

what was told afterwards in order to maximise the chance of making a correct prediction. 

The architecture that will be proposed in this paper contains a special kind of RNN 

called long short-term memory (LSTM) and will be discussed in the next section. 

4.3. Proposed Architecture 

In [9], the authors experimented with a combination of Inception v3 CNN architecture 

and a bidirectional LSTM, achieving test accuracy as high as 96% on the dataset they collected. 

By comparing it to a simpler architecture of the same form, in which the CNN part is much 

shallower, the deeper architecture demonstrates greater robustness on noisy data – achieving 

89% accuracy on the noisiest data. 

The architecture that will be used in this thesis is a step forward from the mentioned 

architecture. Instead of Inception v3, the deeper Inception-Resnet v2 will be used in 

Figure 17: Bidirectional RNN [29] 
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combination with the bidirectional LSTM unit. In this section, both of the components of the 

final architecture will be presented separately before explaining the joint architecture.  

4.3.1.  Inception-Resnet v2 

Inception-Resnet v2 [31] is a CNN architecture from the Inception family. It gradually 

evolved from the first Inception neural network – GoogLeNet [32], over Inception v2 and 

Inception v3 [33] and finally, Inception v4 [31]. Each one of the architectures brought 

improvements mainly regarding the Inception module, the building block of Inception 

networks. Inspired by the results that residual neural networks achieved [34], the authors of 

[31] experimented with combining the residual connections, main characteristic of residual 

networks, with the Inception module. The end-result, Inception-Resnet v2, is a very deep 

network that is able to achieve higher accuracy on a lower number of epochs.  

Figure 18: Inception-Resnet v2 architecture (left) and its stem (right) [31] 
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 The architecture, as shown in the figure 18, features three different types of Residual 

Inception modules,  named A, B and C, and two distinct reduction blocks. In order to understand 

the Residual Inception module, it is necessary to be familiar with the residual connections.  

 Residual connection (figure 19) is a simple concept invented as a way to resolve the 

problems of the vanishing gradient and exploding gradient that can appear in very deep neural 

network. The intuition behind it is that instead of computing the output “from scratch”, the 

residual block can only calculate the changes that would make the input better, add them to the 

input and return it as its output. In the words of the authors of residual neural networks it is 

explained as follows: “Instead of hoping each stack of layers directly fits a desired underlying 

mapping, we explicitly let these layers fit a residual mapping. (…) The original mapping is 

recast into F(x)+x. We hypothesize that it is easier to optimize the residual mapping than to 

optimize the original, unreferenced mapping. To the extreme, if an identity mapping were 

optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack 

of nonlinear layers.” [34, pp. 2]. 

The Residual Inception module combines the residual learning with Inception module 

by adding a residual connection to it. The modules used in the Inception-Resnet v2 can be seen 

in the figure 20. The principle on which Inception module works is by making the neural 

network wider instead of deeper. The expanded width allows it to capture complex patterns at 

various scales [20]. The initial 1×1 convolutions are used only to reduce dimensionality on the 

channel axis in order to make the following convolutions lighter. All of the convolutions use 

zero padding for preserving the width and height. It is important because after each separate 

calculation in the module, their outputs are concatenated along the depth dimension, which 

would not be possible if they differed in their heights and widths. Another characteristic of 

Inception modules is the split of an n×n convolution to two convolutions – 1×n and n×1 stacked 

on top of each other. The rationale for it is that it requires much fewer parameters while 

Figure 19: Residual learning [34] 
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producing the same result. An important detail in the Residual Inception module is that there is 

a 1×1 convolution after the concatenation for the reason of permitting the addition between the 

identity passed through the residual connection and the actual output by aligning their 

dimensions [31]. 

 

Figure 20: Residual Inception modules A (left), B (right), C (bottom) [31] 
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The reduction modules in the Inception-Resnet v2 are essentially slightly modified 

Inception modules. (figure 21). These modules, unlike the ones previously explained, contain 

average pooling followed by a  1×1 convolution on one of their branches. 

 

  

Figure 21: Reduction modules A (top) and B (bottom) [31] 



21 

 

4.3.2. Bidirectional LSTM 

A problem faced by RNNs when handling long sequences is their lack of ability to 

remember the information from the beginning of the sequence. The inputs that are farther in the 

past tend to fade away which makes it easy for the network to misinterpret the sequence. For 

example, if a review mentioned at the beginning that the movie was great and continued to 

explain what could have been better, an RNN could lose the information from the start of the 

review and rate the review as negative. In order to fight that behaviour, long short-term memory 

cells were introduced. [20] 

The idea behind the long short-term memory (LSTM) [35] is to have two different states 

of memory – long-term (c(t)) and short-term (h(t)). As the short-term state flows through the 

network, the LSTM tries to learn what to store in the long-term state and what to discard [20]. 

To be able to do that, LSTM uses several gates and fully connected layers (figure 22). 

The layer g(t) analyses the input x(t) and the previous short-term state h(t-1) and partially stores 

the output into the long-term state. The three other layers use logistic activation so their outputs 

range from 0 to 1, which are then used for closing or opening the gates that they are connected 

to. The forget gate (f(t)) controls which parts of the long-term state are to be erased, the input 

gate (i(t)) decides what is to be added to the long-term state and the output gate (o(t)) controls 

which parts of the long-term state should be read and output at the actual time step. [20] 

Figure 22: LSTM [20] 
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Making an LSTM cell bidirectional gives it the ability to process long sequences with 

taking into account the inputs from both before and after the input, no matter how “far” they 

are. 

4.3.3. Final Architecture 

The final architecture, Inception-Resnet-LSTM CRNN (figure 23) comprises the 

elements explained in the previous two sections with an addition of the “binding material” 

between them. After the last convolution of the Inception-Resnet part of the network, the usual 

layers are removed. Instead of them goes a permute layer, which changes the order of the 

dimensions whose output is then stacked and sliced along the time axis. Finally, the prepared 

input is fed to the bidirectional LSTM layer which is followed by a fully-connected layer and 

softmax activation for determining the the output (language).  

 

 

Figure 23: Inception-Resnet-LSTM CRNN [author’s work] 
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5. Results 

The network was trained on the collected dataset using two Nvidia Tesla P100 GPUs, 

batch size of 256 and Adam optimiser with the learning rate of 0.001. The data is evenly 

distributed and divided into training (70%), validation (20%) and testing (10%) sets.  

Due to the budget limitations, the training was stopped after the 7th epoch. In total, the 

training lasted 19 hours.  

The neural network achieves the accuracy of 96% on the test set. Considering the size 

of the dataset and the behaviour of the neural network while training, it is very likely that even 

better results would have been achieved if it was trained longer. Furthermore, it shows to 

perform well in the practice, or more specifically, when using the web application developed 

as a part of this project which allows users to record the input and to get the language prediction 

by the trained model (see section 6). It achieves a high accuracy when a native speaker is 

talking, while the accuracy is noticeably lower when a foreign accent is present. 

The confusion matrix (figure 25) shows that the model performs best, by a narrow 

margin, on Croatian. False predictions for both Spanish and French were more often cofused 

for Croatian than for the other language.  

Figure 24: Output of the network’s training [author's work] 
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The results have shown that it is possible to train a language identificator on very short 

audio samples with surprisingly satisfactory results. In the next section a possible use case for 

its application will be presented. 

  

Figure 25: Confusion matrix; output after the evaluation of the model (left) and a heatmap of it (right) 
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6. Web Application 

The web application is meant as a mean of demonstrating the performance of the trained 

model by allowing the users to record their own sentences and get a prediction of the language 

they were told in. The web application’s main functionality is to output the flag of the detected 

language and the probabilities of its confidence for each of the languages. On top of that, three 

Google APIs were added: Speech-to-Text [36], Translate [37] and Text-to-Speech [38]. Their 

purpose is as follows: once the model detects the language of the recording, the language and 

the recording are passed to the Speech-to-Text API which needs to know in which language is 

the recording in order to transcribe it. Once the transcription is obtained, it is passed on to the 

Translate API that translates it to English. Finally, the English translation of the recording is 

given to the Speech-to-Text API to convert it to speech which is then played by the web 

application. Essentially, the user perceives the application as a speech-to-speech translator. 
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7. Conclusion 

In this paper, a large dataset for three languages was created for the task of language 

identification. The proposed convolutional recurrent neural network architecture is able to 

capture both spatial and sequential information from the visual representation of sound – 

spectrograms. By doing it, it achieves high performance in spite of the speech utterances being 

relatively short – 3 seconds. Furthermore, a possible use case is presented: an application that 

allows its users to record a sentence told either in Croatian, French or Spanish which is then 

processed by the model in order to detect the language it was told it. With that information, 

Google APIs are used in order to provide the English translation of the sentence and to return 

it in speech form. The application demonstrates the performance of the trained model which 

achieves very accurate predictions for native speakers while having a higher error when a 

foreign accent is present. The code used for this paper is open-sourced and available: the code 

for obtaining and preprocessing a dataset and training a neural network can be found at [39], 

while the speech-to-speech translator web application is at [40]. 
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