
Effect of source-code preprocessing techniques on
plagiarism detection accuracy in student
programming assignments

Novak, Matija

Doctoral thesis / Disertacija

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:528052

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-06-29

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:528052
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:4787
https://dabar.srce.hr/islandora/object/foi:4787

FACULTY OF ORGANIZATION AND INFORMATICS

Matija Novak

EFFECT OF SOURCE-CODE
PREPROCESSING TECHNIQUES ON

PLAGIARISM DETECTION ACCURACY
IN STUDENT PROGRAMMING

ASSIGNMENTS

DOCTORAL THESIS

Varaždin, 2020

FACULTY OF ORGANIZATION AND INFORMATICS

Matija Novak

EFFECT OF SOURCE-CODE
PREPROCESSING TECHNIQUES ON

PLAGIARISM DETECTION ACCURACY
IN STUDENT PROGRAMMING

ASSIGNMENTS

DOCTORAL THESIS

Supervisors:
professor Dragutin Kermek, PhD

professor Mike S. Joy, PhD

Varaždin, 2020

FAKLULTET ORGANIZACIJE I INFORMATIKE

Matija Novak

UTJECAJ TEHNIKA ZA PREDOBRADU
IZVORNOG KODA NA TOČNOST

OTKRIVANJA PLAGIJATA U
STUDENTSKIM ZADACIMA IZ

PROGRAMIRANJA

DOKTORSKI RAD

Mentori:
prof. dr. sc. Dragutin Kermek

prof. dr. sc. Mike S. Joy

Varaždin, 2020.

DOCTORAL THESIS INFORMATION

I. AUTHOR

Name and surname Matija Novak

Date and place of birth 16.03.1987, Čakovec

Faculty name and graduation date for
level VII/I

Faculty of Organization and Informatics,
19 September 2008

Faculty name and graduation date for
level VII/II

Faculty of Organization and Informatics,
10 September 2010

Current employment Faculty of Organization and Informatics

II. DOCTORAL THESIS

Title Effect of source-code preprocessing techniques
on plagiarism detection accuracy in student
programming assignments

Number of pages, figures, tables,
appendixes, bibliographic information

223 pages, 49 figures, 66 tables, 12 appendices,
201 items of bibliographic information

Scientific area and field in which the title
has been awarded

Scientific area Social Sciences,
Scientific field Information and
Communication Sciences

Supervisors prof. Dragutin Kermek, PhD
prof. Mike Joy, PhD

Faculty where the thesis was defended Faculty of Organization and Informatics

Thesis mark and ordinal number 157

III. GRADE AND DEFENCE

Date of doctoral thesis topic acceptance 17 July 2017

Date of doctoral thesis submission 03 September 2019

Date of doctoral thesis positive grade 17 December 2019

Grading committee members prof. Jasminka Dobša, PhD
prof. Marjan Krašna, PhD
prof. Neven Vrček, PhD

Date of doctoral thesis defence 03 February 2020

Defence committee members prof. Jasminka Dobša, PhD
prof. Marjan Krašna, PhD
prof. Zlatko Stapić, PhD

Date of promotion

SUPERVISOR INFORMATION

Dragutin Kermek received 1999. his Ph.D. in Information Sciences from University of
Zagreb, Croatia. From 1986. to 1993. he worked as a programmer, software architect, and
project leader at the Center for informatics at the University of Zagreb Faculty of organization
and informatics in Varaždin. He has published over 60 research and professional papers in
various international and domestic journals, books and conferences. He has participated in
several scientific projects. He is a member of: ACM, IEEE Computer Societay, HrOpen, HUJAK.
His research interests include Web Engineering, Design Patterns, and E-learning. He served at
University of Zagreb Faculty of Organization and Informatics as Vice dean for Academic affairs
in 3 consecutive terms from academic year 2005/2006 to 2010/2011. Currently, he is a Full
Professor at the Department of Theoretical and Applied Foundations of Information Sciences at
the University of Zagreb Faculty of Organization and Informatics. He teaches following courses:
Web design and programming, Advanced Web technologies and services, Design patterns, E-
learning systems.

Mike Joy is a professor in the Department of Computer Science at the University of Warwick.
His research interests focus on educational technology and computer science education, and he
is the author or co-author of over 200 journal and conference papers. His current research
topics include source-code plagiarism and mobile learning. Professor Joy has master degrees in
Mathematics from Cambridge University and in Post-Compulsory Education from the University
of Warwick, and a PhD in Computer Science from the University of East Anglia. He is a
Chartered Engineer, a Chartered Scientist, a Chartered Fellow of the British Computer Society,
a Senior Member of the ACM and a Senior Fellow of the UK Higher Education Academy.
Having recently worked on European Union funded projects “BlogForever” and “MALog”, he
is currently leading the Erasmus+ project “CONSTRUIT!” which is investigating new principles
and tools to facilitate collaboration between educators and learners.

I

ACKNOWLEDGMENTS

I must admit, the most difficult part of this thesis was to write this page.
Well, where to start? Maybe the best would be to start at the beginning, but the big question

is where is the real beginning? Is it the when I enrolled my PhD in November 2013 or is it
in July 2013 when my wife (at that point she was not my wife, but you get the point) told me
I should apply for a teaching assistant position which also meant to do the PhD. Who knows
maybe all started even before.

Looking at the whole PhD journey (a long, sometimes tiring, but joyful journey), there were
many people from whom I got help and support. If I would mention everybody, I believe it
wouldn’t fit on this page. But one thing is sure, without the help and support from my family
and friends I wouldn’t have made it.

First, I wanna thank my wife for encouraging me to start and helping me go through it. Thank
you Maja, without your support I would not have done it. Also, thank you for taking care of the
children while I was working, and for listening to my complaints when I needed to talk. You are
the one that is keeping this family together. You are a wonderful wife and mother, I love you.
I wanna thank my children Helena and Viktor for distracting me in important moments and in
this way helping me to relax and then to continue with a fresh mind to work. I apologize for
every moment when I was grumpy or angry and not the best version of myself and thank you for
keeping up with me.

I am extremely grateful to my parents for their love, patience and help for educating and
preparing me for the future. You have supported me since first grade. Thank you for being there
for me. Also, I express my thanks to my younger brother who I teased since we were kids but
who showed me that I can always trust him that he will help me when it is important.

A big thank you to my supervisors prof. Dragutin Kermek and prof. Mike Joy who have
provided invaluable guidance through this research and followed the wise words of Yoda “Always
pass on what you have learned.” Special mention goes to prof. Kornelije Rabuzin who helped
me write my first article back in 2010 and from whom I learned a lot, and my first informatics
teacher Dejan Drabić who thought me my first programming language and showed me the beauty
of programming.

My special thanks goes to all of my lunch buddies Jelena, Ana, Dijana, Irena, Martina, and
Barbara – thank you for bringing the fun to this journey. I want to also mention people from
Warwick University – Ayman, Ade, Dimah, and Olfat, it was a real pleasure to meet you and I
hope we have a chance to meet again sometimes. Thanks to Ladislav who was the best roommate
that one can wish for.

At last, my gratitude goes to everybody else who directly or indirectly helped me to complete
this thesis.

II

ABSTRACT

Plagiarism is a serious problem in academia and students cheat for various reasons, but
whatever the reason such behaviour should not be accepted. While it is easy to control plagiarism
in classrooms with few students it can be a challenge to do it in a classroom with one hundred
students or more. To help teacher detect plagiarism similarity detection tools are built, usually
called plagiarism detection tools. While in academia plagiarism can be done in many areas the
two most common are textual and programming assignments. In this thesis, the focus is on
detecting plagiarism in student programming assignments. Since the tools are not perfect there
is always room for improvement and one possibility to improve the plagiarism detection quality
is the usage of preprocessing techniques.

Preprocessing techniques have been used in many plagiarism detection tools but there is
not much research focusing on the effects of such techniques. To investigate the effect of
preprocessing techniques on plagiarism detection tools an experiment was conducted on six
tools using five techniques on two different datasets, whereby one dataset is publicly available.
To be more precise the six tools were actually three tools whereby each tool had two modes to
operate the specialized mode which is specially developed to perform a source-code comparison
and textual mode developed for normal text comparison.

In this experiment two hypotheses were stated, one focusing on the differences between
the preprocessing techniques and when no preprocessing technique is used and other focusing
on differences between two different techniques. In addition to the hypothesis one research
question was stated to give more insight into the effects of the preprocessing techniques.

Results of the experiment were analysed quantitatively using the multifactor analysis of vari-
ance and qualitatively by analysing the most interesting cases. The whole process of detection
and statistical analysis was automated using the newly developed system called Multiple Plagia-
rism Checker and the system R. The experimental results confirmed both hypotheses showing
that using preprocessing has a positive effect on the quality of plagiarism detection and that
some techniques gave better results than others. The most interesting result of this research is
that by using preprocessing techniques textual versions of the tools outperformed in some cases
the specialized version of the tool developed specifically for source-code similarity detection.

Keywords: plagiarsim detection; high education; source-code; programming assignements;
preprocessing tehniques; comparison; program similarity

III

PROŠIRENI SAŽETAK

Velik broj ljudi upisuje se svake godine na razna sveučilišta diljem svijeta što ukazuje da
ljudi prepoznaju važnost edukacije, a istraživanja poput „Income and happiness: Towards a
unified theory” [42] potvrd̄uju da su educirani ljudi u prosjeku i sretniji. Glavni razlog upisa na
sveučilište jest ili bi trebao biti stjecanje znanja koja se mogu iskoristiti kasnije u životu. Iako je
stjecanje znanja najvažniji dio studiranja dogad̄a se da studenti pokušavaju varati na ispitima, u
zadaćama i sl. kako bi dobili potvrdu za znanje koje nisu stekli, zato nastavnici traže načine za
sprečavanje varanja, odnosno načine pronalaženja studenata koji su varali. Postoje razni oblici
varanja, a posebna vrsta jest plagiranje. Pojam plagiranje definira se kao [43] „čin preuzimanja
pisanog dijela drugih osoba i predstavljanje istog kao vlastitog”.

Fokus ovog rada jest otkrivanje plagijata, preciznije otkrivanje plagijata u programskim
zadacima odnosno otkrivanje plagijata izvornog koda. Motivacija za ovo istraživanje proizlazi
iz činjenice da je teško otkriti plagijate u velikim grupama sa 100 ili više studenata. Takod̄er,
studenti koriste različite metode prikrivanja (eng. obfuscation methods) kako bi sakrili plagiranje
što otežava otkrivanje. Takve metode variraju u svojoj složenosti (prema Faidhi i Robinson [44])
i mogu se podijeliti u dvije grupe [38, 85]: strukturne i leksičke. Osim navedenog, sam autor je
nastavnik na predmetima koji se bave podučavanjem programiranja te je zato primarni interes
otkrivanje plagijata u programskim zadacima, a ne u nekim drugim oblicima zadataka poput
eseja i sl.

Kako bi varali studenti prilikom izrade programskih zadataka „kopiraju dijelove izvornog
koda ili cijeli kod od svojih kolega ili pronalaze sličan izvorni kod na Internetu i koriste ga
bez navod̄enja izvora.” [85] Kako bi otkrili plagijate na velikom broju predanih rješenja koriste
se razni alati za automatsko otkrivanje plagijata (u daljnjem tekstu alati). Ottenstein se već
1976. godine bavio tim problemom u svom članku [146] „Algoritamski pristup otkrivanju i
sprečavanju plagijata”.

Potrebno je napomenuti da je fraza otkrivanje plagijata neprecizna [132] jer opisuje primarnu
primjenu alata, a ne stvarnu mogućnost alata koja je otkrivanje sličnosti. Alati koji danas postoje
ne mogu se koristiti za izricanje optužbi za plagiranje [139] jer nijedan alat ne može razlikovati
stvarni plagijat od sličnosti koja je nastala slučajno. Alati vrše automatsko pronalaženje sličnosti
u rješenjima zadataka i predlažu potencijalne plagirane parove, a nastavnik je zadužen da donese
finalnu odluku o tome radi li se o stvarnom plagijatu ili ne.

U kontekstu izvornog programskog koda Parker i Hamblen definiraju plagirani program

kao [147] „. . . program koji je nastao iz nekog drugog programa s malim brojem rutinskih
transformacija. Rutinske transformacije obično su tekstualne promjene koje ne zahtijevaju
detaljno razumijevanje samog programa. Nažalost, plagiranje u programskim zadacima je
olakšano studentima u predmetima s velikim brojem studenata te pojavom osobnih računala,

IV

Prošireni sažetak

računalnih mreža i ured̄ivača teksta jednostavnih za korištenje.”
Kako ne postoji jedinstveni dogovor o tome što se smatra plagijatom, u ovom istraživanju

definicija plagiranja u programskim zadacima je sljedeća:

Plagiranje u programskim zadacima je čin preuzimanja značajnog dijela izvornog

koda (pa i cijelog izvornog koda) od drugih studenata ili s Interneta i korištenje

istog bez navod̄enja izvora. Pod ’značajnim dijelom’ smatra se da je sličnost izmed̄u

dva rješenja programskog zadatka dovoljno velika da ekspert (nastavnik, etičko

povjerenstvo i sl.) odred̄eni studentski rad smatra dovoljno „stvarnim“ plagijatom

te optuži studenta za plagiranje.

Kao što je već rečeno postoje razni alati za otkrivanje sličnosti. Prema članku „Source-code
Similarity Detection and Detection Tools Used in Academia: A Systematic Review” [140],
samo iz domene otkrivanja plagijata izvornog koda postoji 120 članaka koji se bave razvojem
novog alata. Nažalost većina nije dostupna iako su razvijeni nakon 2010. godine. Kako se alati
razlikuju u mnogo elemenata prilikom odabira alata korisno je što postoje članci koji se bave
pregledom i usporedbom svojstava alata [101, 116, 126, 139, 167] i/ili koji provode eksperimente
s alatima [52, 63, 71, 157, 178, 183, 185]. Prema saznanju autora najveći eksperiment koji vrši
statističku usporedbu alata proveli su Ragkhitwetsagul i ostali 2016. godine [157] gdje su
testirali 30 alata.

Za ovo istraživanje odabrana su tri alata (JPlag [154], SIM [61] i Sherlock [85])1 koja se
nalaze u top 5 najboljih alata prema postojećim istraživanjima i koji imaju potrebne osobine kao
što je podržani programski jezik (koristit će se samo alati koji podržavaju Java programski jezik),
mogućnost korištenja izvan mreže (eng. offline) i sl. Mrežni (eng. online) alati su isključeni jer
su studenska rješenja obično povjerljiva i ne smiju se dijeliti. Detaljan opis postupka odabira
alata dan je u poglavlju 4. Kako svaki od alata ima dva načina rada, tekstualni (označavan sa
sufiksom -text) i specijalizirani za detekciju izvornog koda (označavan sa sufiksom -java), oni
su testirani u oba načina i promatrani su kao zaseban alat. Zbog toga se može reći da je u
eksperimentu korišteno šest alata (svaki alat u dva načina rada).

Različiti alati koriste različite pristupe i implementiraju različite algoritme za izračun sličnosti
izmed̄u dokumenata. U početku su znanstvenici poput Ottensteina [146], Donaldsona i ostalih
[41] koristili Halstead metrike [65] za otkrivanje plagijata, no ubrzo se taj pristup otkrivanja
plagijata počeo smatrati slabim. Drugim riječima, točnost otkrivanja (dalje u tekstu točnost)
nije bila dobra. U idealnoj situaciji alat bi imao savršenu točnost kada ne bi bilo lažno pozi-
tivnih parova (eng. false positives) i kada bi bili pronad̄eni svi plagirani parovi. Znanstvenici
su od tada pokušali unaprijediti točnost otkrivanja plagijata koristeći nove pristupe [31, 143,

1Napomena, postoji SIM alat od autora Githcel i Tran iz 1999. godine [59] (koji se u ovom radu označava
kao SIM-GT) i SIM čiji je autor Grune iz 1989. godine [61] (koji se u ovom radu označava SIM), takod̄er postoji
Sherlock sa Sveučilišta Warwick (koji se u ovom radu označava Sherlock) [85] i Sherlock sa Sveučilišta Sydney
(koji se u ovom radu označava Sherlock-Sydney) [176].

V

Prošireni sažetak

201], razvijajući nove tehnike za izračun sličnosti [151, 155, 170], kreirajući nove tehnike za
otkrivanje plagijata [81, 125, 165], poboljšavajući prezentaciju rezultata [56, 123, 127] i sl.

Jedan način da se poboljša točnost otkrivanja plagijata jest primjena tehnika predobrade [6,
38, 95]. Neki autori [38] definiraju predobradu kao prvi korak u procesu otkrivanja plagijata,
što je ujedno i fokus ovog istraživanja. U ovom istraživanju pod tehnikom predobrade smatra se
tehnika koja rezultira promjenom izvornog koda i sl., a koja se može koristiti u različitim alatima

za otkrivanje plagijata, dakle bez ograničenja na samo jedan alat. Za predobradu izvornog koda
mogu se koristiti različite tehnike predobrade [6, 30, 38, 95], uključujući: izbacivanja praznih
znakova i komentara, izbacivanje uvoznih (eng. import) i uobičajenih deklaracijskih naredbi,
izbacivanje pristupnih naredbi (eng. access specifiers), promjena tipova podatka u sinonime,
promjena sinonima s generičkim konstruktima, promjena redoslijeda izvornog koda, izbacivanje
predložaka, izbacivanje izvornog koda dobivenog od nastavnika i sl.

Odabir tehnika za ovo istraživanje baziran je na dostupnosti trenutno relevantnih tehnika
prema znanstvenoj literaturi. Pošto nije dostupna direktna usporedba tehnika, odabrane tehnike
možda nisu najbolje u području otkirvanja plagijata. Odabrane tehnike su: uklanjanje komen-
tara (eng. Remove Comments - RC) — brisanje svih komentara iz izvornog koda; uklanjanje
predloška (eng. Template Exclusion - TE) — brisanje koda koji je nastavnik dao studentima
na korištenje; uklanjanje uobičajenog koda (eng. Common Code Remove - CCR) — brisanje
koda koji je toliko učestali da ne može pomoći pri donošenju ikakvih odluka (npr. jednostavni
konstruktor, anotacije i sl.). Dodatno korištene su i dvije kombinacije tehnika. Prva kombi-
nacija je ona gdje se sve tri tehnike koriste zajedno (eng. All techniques without Normalisation

- AllnoNOR), i druga kombinacija (eng. All techniques with Normalisation - AllNOR) kojoj
se dodaje još tehnika normalizacije koda (eng. Normalisation - NOR) koja se koristi u alatu
Sherlock. Detaljan opis tehnika dan je u poglavlju 7.

Kako bi se mogla evaluirati i usporediti točnost otkrivanja, potrebne su neke metrike. Moz-
govoy [131] je opisao dva principa evaluacije. Prvi je izračun preciznosti (eng. precision) i
odaziva (eng. recall), kao što je koristio Whale [185]. Drugi je izračun najvećeg lažnog rezultata
(eng. highest false match – HFM) i razmaka (eng. separation), što je razlika izmed̄u najmanjeg
ispravnog rezultata (eng. lowest correct result) i HFM-a, kao što su koristili Hoad and Zobel [74].
Mjere koje će se koristiti u ovom istraživanju su preciznost, odaziv i F-beta (koja se izračunava
na temelju preciznosti i odaziva), pošto su one korištene u raznim postojećim istraživanjima [31,
134, 154, 157, 170]. Detaljan opis metrika nalazi se u poglavlju 5. Potrebno je napomenuti da su
rezultati različitih istraživanja [139] „usporedivi do neke mjere, ali potrebno ih je uspored̄ivati s
oprezom jer su istraživanja provedena nad različitim skupovima podataka.”

U ovom istraživanju koriste se stvarni podaci studentskih rješenja i podaci otvorenog skupa
SOCO (SOurce COde Reuse) skupa podataka opisanog u članku „On the Detection of SOurce
COde Re-use” [52], s PAN@FIRE2014 natjecanja. SOCO skup je podijeljen na kolekciju za

treniranje i kolekciju za testiranje. Za obje kolekcije poznat je broj stvarnih plagijata, no pos-
toji razlika u načinu provjere stvarnih plagijata. Kolekcija za treniranje provjerila su ručno tri

VI

Prošireni sažetak

eksperta, dok su kolekciju za testiranje provjerili sami alati gdje se “par mora pojaviti u barem

66% testiranih alata kako bi se smatrao relevantnim” [52]. Kolekcija za treniranje kreirana je
na skupu prezentiranog u članku „Plagiarism detection across programming languages” [5], a
sastoji se od “zadataka studenata koji sadrže primjene ponovo korištenog koda koji je profe-

sor ručno pronašao i prijavio.” [51]. Kolekcija za testiranje kreirana je iz Google Code Jam
natjecanja (ista kolekcija korištena je u članku „Uncovering source code reuse in large-scale
academic environments” [50]), a podijeljena je na šest zadataka [52] različitih scenarija i težina s
različitim odnosom broja plagiranih i neplagiranih datoteka. Iako se u ovom istraživanju koristi
svih 7 zadataka (1 iz kolekcije za treniranje i 6 iz kolekcije za testiranje) statistički su analizirana
četiri zadatka iz kolekcije za testiranje.

Stvarni podaci studentskih rješenja (eng. Real Student Solution - RSS) koji su korišteni
preuzeti su iz jednog predmeta na sveučilišnom diplomskom studiju. Predmet koristi Java-u
kao glavni programski jezik. U eksperimentu se koriste dva zadatka iz predmeta od kojih se
jedan analizira statistički. Predana rješenja mogu osim datoteka Java izvornog koda sadržavati
i druge tipove datoteka poput slika, tekstualnih datoteka, XML datoteka, PDF datoteka i SQL
datoteka. Takod̄er su mogući razni dodatni jezici u predanim rješenjima kao što su: HTML, CSS,
JavaScript i sl. Svi zadaci su veliki, s jednom ili više datoteka, a sadrže od 400 linija izvornog
koda (eng. lines of source-code – LOC) pa do 4000 linija koda, a iznimno i više. Prosječno je
51 predano studentsko rješenje po zadatku. U ostatku dokumenta pod jednim skupom rješenja
(ili samo skupom podataka) smatra se jedan zadatak iz predmeta iz jedne akademske godine
(dalje u tekstu godine). Znanstvenici koji se bave područjem otkrivanja plagijata izvornog koda
u akademskoj sredini uglavnom rade s uvodnim predmetima iz programiranja i s rješenjima
koja imaju u prosjeku 300 linija koda. Ovo istraživanje bavi se datotekama izvornog koda koje
u prosjeku imaju 1800 linija koda. Muddu i ostali [134] koriste datoteke izvornog koda koje
imaju veći broj linija koda, no one ne potječu iz akademskog okruženja. Detaljniji opis skupova
podataka moguće je pročitati u poglavlju 6.

Kao što je već spomenuto fokus ovog istraživanja su tehnike predobrade izvornog koda.
Kako postoje različite tehnike predobrade, opravdano je pitanje utječu li one stvarno na točnost
alata. Pregled literature ukazuje na to da tehnike predobrade utječu na točnost (kao primjer
pogledati [6]). Iako se pretpostavlja da postoji razlika u točnosti, potrebno je razmotriti jesu
li sve tehnike predobrade jednako dobre ili postoje razlike izmed̄u njih i ako da, koliko su te
razlike velike. Osim toga, još uvijek nije utvrd̄eno daju li te tehnike uvijek identične rezultate
ili njihov utjecaj ovisi o programskom jeziku ili tipu zadatka ili o nečem drugom. Takod̄er,
postavlja se pitanje kada je i zašto neka tehnika bolja od neke druge. Prema saznanju autora,
do sad nije proveden nijedan eksperimentalni dizajn koji testira tehnike predobrade pa sva ta
otvorena pitanja i problemi čine motivaciju za ovim istraživanjem.

Sveobuhvatni cilj ovog istraživanja je identificirati utjecaj tehnika predobrade (eng. PrePro-

cessing Technique - PPT) na točnost otkrivanja plagijata u studentskim zadacima iz programi-

ranja. Sveobuhvatni cilj podijeljen je na dva manja cilja:

VII

Prošireni sažetak

• C1: Ispitati ima li primjena PPT-a utjecaj na točnost otkrivanja plagijata.

• C2: Ispitati kako, kada i zašto različite PPT-e utječu na točnost otkrivanja plagijata.

Iz ciljeva proizlaze sljedeće hipoteze:

• H1: Za testirane alate i zadatke postoji razlika u točnosti otkrivanja plagijata izmed̄u

barem jedne PPT-e i kad nijedna PPT-a nije korištena.

• H2: Za testirane alate i zadatke postoji razlika u točnosti otkrivanja plagijata izmed̄u

barem dvije različite PPT-e.

Kako bi se cilj C2 trebao djelomično ostvariti hipotezom H2, ostatak će biti pokriven sa sljedećim
istraživačkim pitanjem:

• IP1: Kako različite PPT-e utječu na točnost otkrivanja plagijata pomoću testiranih alata i

zadataka?

Korištena metodologija (više detalja u poglavlju 3) sastoji se od dva dijela: kvantitativne
analize i kvalitativne analize. Za kvantitativnu analizu koristi se eksperimentalni dizajn [46, 124].
Kako bi se obavile usporedbe, ostvario prvi cilj (C1) i testirala prva hipoteza (H1), korištena je
višefaktorska analize varijance [46, 124] (ANOVA) uz korištenje bootstrap metode [46, 87] zbog
problema vezanih za ispunjenje pretpostavaka za testiranje korištenjem višefaktorske ANOVE.
Varijable u analizi za RSS su: alat za otkrivanje plagijata (dalje u tekstu alat), tehnika predobrade
(dalje u tekstu tehnika) i točnost (F-beta – izračunata na temelju preciznosti i odaziva) koja je
ujedno i zavisna varijabla. Različite godine koriste se kao replikacije kod RSS skupa. Iste
godine koriste se za svaku kombinaciju tehnike i alata.

Kako bi se testirala hipoteza H2 i djelomično odgovorilo na istraživačko pitanje IP1, ANOVA
nije dovoljna jer testira samo cjelokupni utjecaj i ne daje specifične informacije o utjecaju
pojedinih grupa. Kako bi se to riješilo, korištena je analiza kontrasta i metoda jednostavnih
efekata (eng. simple effect analysis).

Kao kvalitativna analiza napravljena je varijanta analize sadržaja [166] kako bi se ostvario cilj
C2 i dao kompletan odgovor na istraživačko pitanje IP1. Pronad̄eni parovi su ručno analizirani
s ciljem otkrivanja uzoraka koji ukazuju na to zašto je neki par bio ili nije bio pronad̄en. To će
biti izvedeno za interesantne kombinacije alata, zadatka i tehnike koje je dala statistička analiza.

Za potrebe ovog istraživanja dizajniran je i djelomično izrad̄en alat za višestruku provjeru
plagijata (eng. multiple plagiarsim checker – MPC). Točnost je izračunata pomoću MPC alata i
bazirana je na prikupljenim podacima. Svi statistički izračuni su automatizirani pomoću sustava
R na temelju izlaza iz MPC alata (više u poglavlju 3.4). Kako bi se alati za otkrivanje plagijata
postavili u jednaku poziciju, oni su kalibrirani (postavljanje njihovih parametara) korištenjem
metode opisane u [138], a svi detalji kalibracije dani su u poglavlju 4.3. Kako se F-beta koristi
kao mjera za točnost potrebno je izračunati preciznost i odaziv za koje je potrebno poznavati

VIII

Prošireni sažetak

točan broj stvarnih plagiranih parova, no kod RSS-a to nije moguće znati sa stopostotnom
sigurnošću. Zbog toga je broj stvarnih plagiranih slučajeva zapravo procjena (slično kao u [178])
kao unija plagiranih slučajeva pronad̄enih pomoću svakog korištenog alata. Pronad̄ene parove
provjerio je ekspert (odgovorni nastavnik na kolegiju) koji je označio stvarne plagijate. Točna
procedura za pronalazak plagiranih parova prikazana je u obliku dijagrama toka i opisana u
poglavlju 6.3.1.

Analizom rezultata zadataka dobivenih iz SOCO skupa i zadatka iz RSS skupa potvrd̄ena je
hipoteza H1 i H2, što znači da tehnike predobrade imaju utjecaj na točnost detekcije plagijata
i da različite tehnike imaju različite učinke. Podaci su prvo analizirani statistički nad četiri
različita zadatka SOCO skupa. Tablica 8.17 daje pregled svih statistički značajnih rezultata za
ta četiri zadatka. Plus i minus simbol označavaju smjer efekta, tj. pokazuje imaju li tehnike
pozitivan ili negativan utjecaj. Sve usporedbe i nazivi rad̄eni su tako da se očekuje pozitivan
utjecaj, na primjer kod usporedbe bez tehnika predobrade i s tehnikama predobrade očekuje
se da usporedba s tehnikama predobrade daje pozitivan efekt. Ono što je vidljivo iz rezultata
SOCO skupa je da su rezultati svih četiriju zadataka uglavnom usklad̄eni. Ti rezultati dodatno
su potvrd̄eni sa ostalim zadacima iz SOCO skupa.

Može se reći da na temelju SOCO skupa efekt PPT-a nije značajan za SIM-java alat kod svih
zadatka, dok su za ostale alate neki rezultati bili značajni. Za JPlag-java i Sherlock-text efekt
je bio značajan no nažalost negativan, što znači da su se korištenjem tehnike predobrade dobili
lošiji rezultati nego bez korištenja tehnika predobrade. S druge strane za alate Sherlock-java,
SIM-text i JPlag-text dobiven je pozitivan efekt, što znači da su se rezultati značajno poboljšali
korištenjem tehnika predobrade. Odgovor na pitanje o razlogu tog negativnog učinka kod nekih
alata leži u preciznosti i odazivu. Iz preciznosti i odaziva se vidi da je primjerice za JPlag-java
odaziv konstantan, što znači da se korištenjem tehnika predobrade uključuje sve više parova (tj.
sve više parova se smatra plagijatom), a već je na početku većina stvarnih plagiranih parova bila
uključena. Može se reći da preciznost brže pada nego odaziv raste ili drugim riječima sve je
više lažno pozitivnih parova, dok broj lažno negativih ostaje isti. S druge strane, za alate koji
imaju pozitivan efekt dešava se upravo suprotno: preciznost raste, dok odaziv ostaje uglavnom
konstantan. Nadalje, tu se javlja pitanje o tome zašto tehnike kod nekih alata spuštaju, a kod
nekih dižu preciznost. Odgovor na to pitanje je trenutno izvan fokusa ovog rada te je to tema
nekih budućih istraživanja no sumnja je da odgovor leži u različitim algoritmima koje alati
koriste.

Na pitanje o tome zašto različite tehnike različito utječu na točnost može se ugrubo odgovoriti
da tehnike procesiraju (npr. brišu, mijenjaju i sl.) različite elemente koda. Na primjer RC tehnika
miče komentare, dok CCR tehnika ne miče komentare, ali miče neke druge elemente te nije
čudno da su rezultati različiti. Naravno ovisno o alatu postavlja se pitanje o tome koja će imati
bolji učinak, pa ako alat već u svom algoritmu ne uzima u obzir komentare kod usporedbe, tada
naravno RC tehnika neće imati nikakav učinak. Ono što je zanimljivo jest da kompleksnost
programa izgleda nema nekakvi značajan utjecaj na krajnje rezultate.

IX

Prošireni sažetak

Kod RSS skupa podataka dobiveni su slični rezultati, a najbolji rezultati dobiveni su za
SIM-text i JPlag-text kao i kod SOCO skupa. Generalno, može se reći da na temelju rezultata
zadataka iz oba skupa tehnike predobrade uglavnom imaju pozitivan utjecaj, kao u slučaju alata
JPlag-text, SIM-text i Sherlock-java, ali mogu imati i negativan učinak kao što je to slučaj kod
Sherlock-text alata. Naravno u nekim situacijama nije bilo učinka koji bi bio dovoljno jak da
bude značajan kao što je to slučaj kod SIM-java i JPlag-java alata. Prema rezultatima najbolji
učinak kod alata SIM-text i JPlag-text postignut je korištenjem tehnike AllnoNOR, dok je kod
Sherlock-java alata najbolji učinak postignut AllNOR tehnikom. Važno je napomenuti da iako
u nekim situacijama nije bilo statistički značajnog učinka, ne znači da ga nema, a jedan razlog
je taj da su primjerice kod usporedbi bez tehnika i s tehnikama sve tehnike stavljene u jednu
grupu, što znači da nije svaka tehnika zasebno uspored̄ivana s rezultatima kada se tehnike ne
primjenjuju.

Kako statistička analiza ne uzima u obzir pojedine parove, rezultati jednog zadatka RSS
skupa analizirani su kvalitativno na razini parova. Ono što je uočeno jest da su kod svih alata
nekorištenjem ijedne tehnike neki parovi imali 90% sličnosti, no primjenom tehnike TE ona
je pala na manje od 30%, a primjenom tehnike AllNOR ili AllnoNOR na 0%. Razlog toga je
činjenica da je u tim zadacima bilo puno koda koji je studentima na korištenje dao nastavnik, a
sve dok se on nije maknuo, sličnost je bila jako visoka. Kroz više godina pronad̄en je isti uzorak
u situacijama s puno nastavničkog koda, što ne znači da tehnike ne mogu imati pozitivan utjecaj
unatoč nedostatku statistički značajnog rezultata. U ovom konkretnom primjeru 19 parova se
maknulo, što znači da je nastavniku ušted̄eno puno vremena. Korist nije med̄utim samo u
vremenu, već i u tome da takvi parovi onda prikrivaju stvarne plagijate, pa je tako u jednom
primjeru jedan par stvarnog plagijata koji je imao 72% sličnosti kada se ne koriste nikakve
tehnike rangiran na 392. mjesto, no kad se primijenila tehnika AllnoNOR, on je pozicioniran na
prvo mjesto.

Najzanimljiviji rezultat ovog istraživanja jest da je učinak bio najbolji kod tekstualnih alata,
štoviše upotrebom tehnika u nekim situacijama točnost tekstualne varijante alata je nadmašila
specijaliziranu varijantu. Zbog toga se postavlja pitanje o mogućnosti korištenja isključivo
tehnika predobrade umjesto specijaliziranih alata. Naravno, odgovor na to pitanje je takod̄er
tema budućih istraživanja. Detaljniji raspis analize rezultata nalazi se u poglavlju 8.

Ukratko u sklopu ovog istraživanja dani su sljedeći doprinosi:

• Detaljan pregled područja otkrivanja plagijata izvornog koda u akademiji. U kombinaciji
s rezultatima prezentiranim u članku „Source-code Similarity Detection and Detection
Tools Used in Academia: A Systematic Review” [140] ovo istraživanje daje najveći i
kompletan pregled literature tog područja od 1980 do 2018 godine.

• Dana je nova definicija plagijata u programskim zadacima.

• Kreirana je nova metoda kalibracije alata za otkrivanje plagijata. Zajedno sa rezultatima
prezentiranim u članku „Calibration of source-code similarity detection tools for objec-

X

Prošireni sažetak

tive comparisons” [138] ovo istraživanje daje kompletan opis i demonstraciju korištenja
kalibracijske metode i daje razloge njezine važnosti. Takod̄er ta metoda se može koristiti
i u drugim istraživanjima poput detekcije duplikata, otkrivanja autorstva i sl.

• Kreirane su i evaluirane dvije nove tehnike predobrade: uklanjanje uobičajenog koda i
uklanjanje predloška. Ovo istraživanje u kombinaciji s rezultatima članka „Process Model
Improvement for Source Code Plagiarism Detection in Student Programming Assign-
ments” [95] daje puni opis tehnike uklanjanja predloška. Takod̄er, kreirane i evaluirane su
dvije nove kombinacije tehnika AllNOR i AllnoNOR.

• Identificirane su razlike i dato je objašnjenje razloga pojave razlika u točnosti otkrivanja
plagijata pomoću testiranih alata i zadataka, i to u slučajevima kad se koriste tehnike
predobrade i kad tehnike predobrade nisu korištene.

• Identificirane su razlike i dato je objašnjenje razloga pojave razlika u točnosti otkrivanja
plagijata pomoću testiranih alata i zadataka kad su korištene različite tehnike predobrade.

• Utvrd̄eno je kako tehnike predobrade utječu na točnost otkrivanja plagijata testiranih alata
u različitim studentskim zadacima. Ovo istraživanje prikazuje da se značajan napredak u
točnosti otkrivanja plagijata može postići korištenjem tehnika predobrade nad nekim ala-
tima i objašnjava to na primjeru otvorenog SOCO skupa i privatnog RSS skupa podataka.

• Napravljena je studija slučaja nad stvarnim studentskim radovima koja pokazuje pred-
nosti korištenja tehnika predobrade (posebno tehnika uklanjanja predloška). Analiziran-
jem jednog zadatka tijekom šest godina, ovo istraživanje većih je razmjera nego većina
dosadašnjih istraživanja koja se provode nad stvarnim studentskim radovima.

• Napravljena je analiza rezultata na velikim datotekama stvarnih studentskih rješenja, a
pod velikim misli se na rješenja s 500-3900 linija koda.

• Napravljena je studija slučaja usporedbe alata bez korištenja tehnika predobrade na novom
skupu stvarnih studentskih radova. Ovo istraživanje pokazuje interesantne rezultate gdje
su tekstualne varijante alata bile bolje od specijalizirane varijante za Java programski
jezik.

• Primijenjen je dizajn eksperimenta u području otkrivanja plagijata uz korištenje više za-
dataka i više alata kroz više godina.

• Kreirana je nova metoda za odred̄ivanje praga pozitivih i negativnih parova (median +-
2/3 IQR) bazirano na sličnosti izmed̄u parova.

• Kreiran je novi okvir za provod̄enje eksperimentalnih usporedbi alata za otkrivanje plag-
ijata koji koristi statističke metode kako bi se dobili objektivni rezultati. Iako okvir nije

XI

Prošireni sažetak

formalno evaluiran on daje niz koraka koji se mogu pratiti u provod̄enju budućih istraži-
vanja i daje opis za rješavanje problema normalnosti (bootstrap metoda) i slične probleme.

Osim znanstvenih doprinosa u ovom radu dani su i praktični doprinosi:

• Implementiran je MPC sustav koji se može koristiti za testiranje i uspored̄ivanje alata za
otkrivanje plagijata. Sustav trenutno podržava alate SIM, JPlag i Sherlock, no moguće ga
je proširiti da radi i s drugim alatima. Dodatno, sustav omogućava korištenje različitih
tehnika predobrade i njihovo kombiniranje s alatima, a moguće ga je proširiti i s drugim
tehnikama.

• Sustav MPC može se koristiti kao alat za detekciju plagijata koji korisniku omogućuje
da bira alate koje želi, a može odabrati da želi provjeru sličnosti sa svim alatima istovre-
meno. Dodatno, razvijeno je grafičko sučelje i konzolna varijata kako bi se omogućilo što
jednostavnije korištenje MPC sustava na dnevnoj bazi.

• Kalibracijski modul integriran je u sam MPC sustav koji omogućuje kalibriranje alata SIM,
JPlag i Sherlock što omogućuje da se svi alati postave u jednake pozicije prije provod̄enja
usporedbi.

• Dane su upute za korištenje odred̄enih tehnika predobrade s odred̄enim alatima (SIM,
JPlag i Sherlock) za otkrivanje plagijata.

• Dane su R skripte koje su korištene za provod̄enje statističkih analiza kod usporedbe alata
kako bi se mogle koristiti u budućim istraživanjima.

• Dan je kompletan izvorni kod ovog rada koji sadrži R skripte, Latex i Sweave datoteke i
koji se može koristiti kao primjer za buduća istraživanja za generiranje grafova, tablica ili
čak cijelog rada u pdf formatu pomoću R studio alata.

Iako je tema ovog istraživanja bila otkrivanje plagijata, važno je naglasiti da je otkrivanje
plagijata samo liječenje simptoma, a pravi je problem činjenica da je uopće došlo do plagijata.
Zbog toga je važno prije svega primjenjivati tehnike sprečavanja plagijata, a u slučaju da one ne
uspiju dobro je poznavati i tehnike otkrivanja plagijata.

XII

CONTENTS

List of Figures XVI

List of Tables XVIII

List of Abbreviations XX

1 Introduction 1

2 Related work 5
2.1 Definition of plagiarism . 6
2.2 Plagiarism prevention . 8
2.3 Differences between source-code and textual plagiarism . 10
2.4 Plagiarism detection . 11
2.5 Obfuscation methods . 12

3 Methodology 15
3.1 Systematic literature review . 16

3.1.1 Top authors . 18
3.2 Research constraints . 19

3.2.1 Detection tools . 19
3.2.2 Preprocessing techniques . 20
3.2.3 Evaluation measures . 20
3.2.4 Datasets . 21
3.2.5 Ethical issues . 22

3.3 Plagiarism detection process . 22
3.4 Process automation . 24

3.4.1 Isabella cluster . 26
3.4.2 Automation of analysis phase . 27

4 Similarity detection tools 28
4.1 Related work . 28

4.1.1 Related areas to source-code plagiarism detection . 29
4.1.2 Comparison of plagiarism detection tools . 31

4.2 Selection of tools . 33
4.2.1 Changes on selected similarity detection tools . 35
4.2.2 Problems with JPlag-java and Sherlock . 36

4.3 Configuration parameters of similarity detection tools . 38
4.4 Calibration of similarity detection tools . 39

4.4.1 Comparison of SIM and JPlag . 41
4.4.2 Calibration of SIM and JPlag . 44
4.4.3 Calibration of Sherlock . 48

5 Evaluation measures 54
5.1 Related work . 54

5.1.1 Sensitivity . 55
5.1.2 Performance Index . 56

5.2 Precision, Recall and F-beta . 57

XIII

CONTENTS

6 Experimental datasets 60
6.1 Related work . 60
6.2 Source Code Reuse dataset . 62
6.3 Real student solutions datasets . 63

6.3.1 Procedure for analysing student solutions . 65

7 Preprocessing techniques 67
7.1 Related work . 67
7.2 Selection of preprocessing techniques . 70
7.3 Remove comments technique . 72
7.4 Common code remove technique . 72
7.5 Template exclusion technique . 73
7.6 Technique selection test . 75

8 Result analysis 80
8.1 Preparation for analysis . 80

8.1.1 Threshold level selection . 80
8.1.2 Planned comparisons . 83

8.2 SOCO dataset analysis . 85
8.2.1 SOCO dataset preparation for analysis . 85
8.2.2 Results for D1 assignments . 89
8.2.3 Results for D2 assignments . 98
8.2.4 Results for D3 assignments . 105
8.2.5 Results for D4 assignments . 112
8.2.6 Discussion . 119
8.2.7 Guidelines verification . 122

8.3 RSS dataset analysis . 124
8.3.1 Results for A1 assignments . 125
8.3.2 Discussion . 132
8.3.3 Limitation of statistical analysis . 134

8.4 Java or Textual version . 135
8.5 Contributions . 136

9 Future work 139

10 Conclusion 140

Appendix A Example of calibration report 144

Appendix B SIM’s Licence 148

Appendix C MPC system architecture details 149

Appendix D MPC system coverage report 157

Appendix E Contrast codings 160

Appendix F Contrast codings for the simple effecs analysis 161

Appendix G Shapiro-Wilk normality test 168

Appendix H Model comparisons 173

Appendix I Constrast effect sizes 176

XIV

CONTENTS

Appendix J Interaction graphs 186

Appendix K Precision and Recall for RSS dataset 196

Appendix L List of used packages in R 199

Bibliography 202

Curriculum Vitae 221
Published Research . 221

XV

LIST OF FIGURES

3.1 Number of articles in databases per year . 17
3.2 Citation rate per year . 18
3.3 High level architecture of MPC system . 25

6.1 Number of articles in databases per year . 61
6.2 Procedure for confirming plagiarised matches 66

8.1 F1 score for SOCO T1 assignment . 82
8.2 F1 score for SOCO C2 assignment . 82
8.3 F1 score for SOCO D1 assignment with 3*IQR 90
8.4 D1 assignments - residuals . 90
8.5 F1 mean comparison for SOCO D1 . 92
8.6 F1 score for SOCO D2 assignment with 3*IQR 99
8.7 D2 assignments - residuals . 99
8.8 F1 mean comparison for SOCO D2 . 101
8.9 F1 score for SOCO D3 assignment with 3*IQR 106
8.10 D3 assignments - residuals . 106
8.11 F1 mean comparison for SOCO D3 . 107
8.12 F1 score for SOCO D4 assignment with 3*IQR 113
8.13 D4 assignments - residuals . 113
8.14 F1 mean comparison for SOCO D4 . 114
8.15 False positives for SOCO C1 assignment with 3*IQR 124
8.16 F1 score for RSS A1 assignment with 3*IQR 126
8.17 A1 assignments - residuals . 126
8.18 F1 mean comparison for RSS A1 . 128
8.19 False positives for RSS A1 assignment in 2015-2016 with 3*IQR 133
8.20 False positives for RSS A1 assignment in 2016-2017 with 3*IQR 134

C.1 Summary report main input interface . 149
C.2 Summary report table . 150
C.3 Match side by side comparison . 150
C.4 Summary report class diagram - Web GUI module 151
C.5 Summary report class diagram - core module 151
C.6 Phase creation class diagram . 153
C.7 Prepare tools creation class diagram . 154
C.8 Detection tools creation class diagram . 155

XVI

List of Figures

C.9 Preprocessing techniques creation class diagram 156

D.1 Coverage report summary . 157

J.1 Interaction graphs for SOCO D1 - part 1 . 186
J.2 Interaction graphs for SOCO D1 - part 2 . 187
J.3 Interaction graphs for SOCO D2 - part 1 . 188
J.4 Interaction graphs for SOCO D2 - part 2 . 189
J.5 Interaction graphs for SOCO D3 - part 1 . 190
J.6 Interaction graphs for SOCO D3 - part 2 . 191
J.7 Interaction graphs for SOCO D4 - part 1 . 192
J.8 Interaction graphs for SOCO D4 - part 2 . 193
J.9 Interaction graphs for RSS A1 - part 1 . 194
J.10 Interaction graphs for RSS A1 - part 2 . 195

K.1 Precision and Recall for RSS A1 assigment in academic year 2012-2013 196
K.2 Precision and Recall for RSS A1 assigment in academic year 2013-2014 197
K.3 Precision and Recall for RSS A1 assigment in academic year 2014-2015 197
K.4 Precision and Recall for RSS A1 assigment in academic year 2017-2018 198

XVII

LIST OF TABLES

2.1 Similaritites between textual and source-coude detection metrics [100] 10

3.1 Authors with most articles in SLR and most citations 19

4.1 Overview of plagiarism detection tools . 32
4.2 Tools calibrated configuration . 41
4.3 JPlag-java and SIM-java calibration dataset similarities 42
4.4 JPlag false similarity examples in SOCO 8 case 43
4.5 SIM-java calibrated with JPlag-java as base tool a 45
4.6 JPlag-java calibrated with SIM-java as base tool a 46
4.7 SIM-text calibrated with JPlag-text and SIM-java as base tools 47
4.8 JPlag-text calibrated with SIM-text and SIM-java as base tools 48
4.9 Sherlock default parameter values . 49
4.10 Sherlock-java’s first calibration with SIM-java and JPlag-java 51
4.11 Sherlock-java’s second calibration SIM-java and JPlag-java 52
4.12 Sherlock-text’s calibration with SIM-text and JPlag-text 53

6.1 SOCO dataset structure . 63
6.2 Real Student Solution dataset structure . 64

7.1 Mentioned preprocessing techniques in reviewed articles 68
7.2 Configuration comparison based on removed lines of code for template exclusion

technique . 74
7.3 PPTest similarities for JPlag-java and SIM-java 76
7.4 PPTest similarities for JPlag-text and SIM-text 77
7.5 PPTest similarities for Sherlock . 77
7.6 Similarities for Sherlock’s favour test . 78

8.1 Example of SOCO T1 similarities near threshold based on number of plagiarised
matches . 81

8.2 Planed comparisons for tool factor . 83
8.3 Planed comparisons for technique factor . 84
8.4 SOCO dataset structure for experiment . 86
8.5 ANOVA results for SOCO D1 . 91
8.6 Contrasts results for SOCO D1 . 94
8.7 Simple effect analysis result for SOCO D1 . 95
8.8 ANOVA results for SOCO D2 . 100

XVIII

List of Tables

8.9 Contrasts results for SOCO D2 . 102
8.10 Simple effects analysis result for SOCO D2 103
8.11 ANOVA results for SOCO D3 . 107
8.12 Contrasts results for SOCO D3 . 109
8.13 Simple effect analysis result for SOCO D3 . 110
8.14 ANOVA results for SOCO D4 . 113
8.15 Contrasts results for SOCO D4 . 116
8.16 Simple effects analysis result for SOCO D4 117
8.17 Summary of SOCO assignements significant comparisons 120
8.18 ANOVA results for RSS A1 . 127
8.19 Contrasts results for RSS A1 . 129
8.20 Simple effects analysis result for RSS A1 . 130

E.1 Tool contrast codings . 160
E.2 SOCO technique contrast codings . 160
E.3 Student technique contrast codings . 160

F.1 Simple effects analysis contrast codings - SOCO dataset - part1 162
F.2 Simple effects analysis contrast codings - SOCO dataset - part2 163
F.3 Simple effects analysis contrast codings - SOCO dataset - part3 164
F.4 Simple effects analysis contrast codings - student dataset - part1 165
F.5 Simple effects analysis contrast codings - student dataset - part2 166
F.6 Simple effects analysis contrast codings - student dataset - part3 167

H.1 MLM comparison for SOCO D1 . 174
H.2 MLM comparison for SOCO D2 . 174
H.3 MLM comparison for SOCO D3 . 174
H.4 MLM comparison for SOCO D4 . 175
H.5 Multi level linear model (MLM) comparison for RSS A1 175

I.1 Contrasts effect sizes for SOCO D1 . 176
I.2 Simple effect analysis effect sizes for SOCO D1 177
I.3 Contrasts effect sizes for SOCO D2 . 178
I.4 Simple effect analysis effect sizes for SOCO D2 179
I.5 Contrasts effect sizes for SOCO D3 . 180
I.6 Simple effect analysis effect sizes for SOCO D3 181
I.7 Contrasts effect sizes for SOCO D4 . 182
I.8 Simple effect analysis effect sizes for SOCO D4 183
I.9 Contrasts effect sizes for RSS A1 . 184
I.10 Simple effect analysis effect sizes for RSS A1 185

XIX

LIST OF ABBREVIATIONS

AllnoNOR All techniques without Normalisation.

AllNOR All techniques with Normalisation.

ANOVA Analysis of variance.

CCR Common Code Remove.

CD Calibration Dataset.

CDS Calibration Difference Sum.

GUI Graphical User Interface.

IDE Integrated Development Environment.

IQR inter-quartiles.

JSF Java Server Faces.

LOC Lines of code.

MBJ Maximum Backward Jump.

MFJ Maximum Forward Jump.

MJD Maximum Jump Difference.

MLM Multi level linear model.

MPC Multiple Plagiarism Checker.

MRL Minimum Run Length to Store.

MSL Minimum String Length to Store.

NOR Normalisation.

PPT PreProcessing Technique.

RC Remove Comments.

XX

List of Abbreviations

RSS Real Student Solution.

RWS Remove white spaces.

SLR Systematic Literature Review.

SOCO SOurce COde Reuse.

STR Strictness.

TDD Test Driven Development.

TE Template Exclusion.

XXI

CHAPTER 1

INTRODUCTION

Education enables a happier life, and according to [42] educated people are, on average,
happier. So it is no wonder that concepts such as life long learning have emerged. “But education

can be seen as being also the means of establishing a protective social environment in which

emotional stability is possible.” [148, p. 57] [70, p. 766]. Young people recognize the importance
of education, and this is visible from a large number of students that enrol in universities all over
the world. Higher education helps them to get (hopefully) a better job and ensure a good life.
There are other factors, except for education, that account for a good life but these are out of the
scope of this thesis (a useful discussion on how to have a meaningful life is available in [149]).

It is the responsibility of universities and other educational institutions to provide students
with knowledge, skills and competencies which they can use later in life. Companies acquire
good students very fast and they expect that a person with a certain diploma has certain knowl-
edge. But the diploma, unfortunately, does not state what exact knowledge was acquired. It
is hard (or maybe impossible) to specify the exact amount of knowledge that one student has
after finishing a particular course or university program. To solve that, learning outcomes are
defined, which enable comparison of acquired knowledge between students after finishing a
similar course and/or university program. That this is important is evident from the existence of
qualification frameworks such as: The Croatian Qualifications Framework1 on a national level
or the European Qualifications Framework2 on the European Union level.

But there is a problem, even with the qualification frameworks in place. It is possible that
a student deceives a teacher by doing something that they did not really do (commonly known
as cheating), and therefore did not achieve the expected learning outcome(s). During their study
students must submit assignments and pass exams to pass a course, and the teacher’s role is to
evaluate the assignments and/or exams and grade them. Also, teachers should be capable and
ready to find students that are cheating. For example, if a student “copies from someone else

and the teacher does not found that out, the student ends the course with insufficient knowledge

and can later in life have problems because of that. More worrisome, studies show that students

not only plagiarize regularly but also believe that it is okay to do so.” [171] Various sessions
held on the topic of academic dishonesty like [152] discuss ways students can cheat in exams
and assignments, and one special form of cheating is plagiarism. The term plagiarism is usually
defined as [43]: “the act of taking the writings of another person and passing them off as one’s

own”.
The problem of plagiarism is very well known and many studies have been conducted on

1https://www.azvo.hr/en/enic-naric-office/the-croatian-qualifications-framework-croqf
2http://www.cedefop.europa.eu/cs/events-and-projects/projects/

european-qualifications-framework-eqf

1

https://www.azvo.hr/en/enic-naric-office/the-croatian-qualifications-framework-croqf
http://www.cedefop.europa.eu/cs/events-and-projects/projects/european-qualifications-framework-eqf
http://www.cedefop.europa.eu/cs/events-and-projects/projects/european-qualifications-framework-eqf

Chapter 1. Introduction

how to deal with it, as presented in Chapter 2. There are two main approaches to deal with the
problem: plagiarism prevention and plagiarism detection. Although the focus of this thesis is
on plagiarism detection, one should always try to prevent plagiarism in the first place. Since
prevention does not exclude detection, it is best to use both. In case prevention measures fail,
detection techniques may indicate students who try to plagiarise. As the saying goes: “Trust,

but verify”3.
As already stated the focus of this thesis is plagiarism detection, more specifically source-

code plagiarism detection in academia. The motivation for this comes from the fact that in large
classrooms (with around 50 students or more) and various obfuscation methods it is hard to
check and find plagiarized cases manually. In other words, it is hard to identify if some student
has plagiarised his/her homework assignment. As a teacher, teaching programming courses, the
author’s interest is in detecting plagiarism in programming assignments (further referred to as
assignments) which contain source-code, rather than any other kind of assignments, for example
essays. To perform plagiarism detection on a large number of submitted assignments (further
referred to as submissions) plagiarism detection engines (further referred to as tools) are used.

Note that the terms ’plagiarism detection engine’ or ’plagiarism detection system’ are im-
precise [132] since they focus on the primary application rather than the real capabilities of the
tool, which is similarity checking. Such “simplification that is done literally by all plagiarism

detection systems – reducing plagiarism to similarity – is usually not stated explicitly, though

there is an obvious difference.” [132] Tools that are available today are not able to distinguish
between real plagiarism and coincidental similarity, and maybe never will. Because of this, it is
important to remember [139] that tools only suggest potential plagiarism and that they can not
be used to accuse somebody of plagiarism. It is up to the teacher to make the final decision as
to whether it is a case of real plagiarism or not.

Plagiarism detection tools4 usually rank pairs, consisting of two submissions (further referred
to as pairs or matches), based on similarity (usually displayed in percentages 0% - 100%) and
mark every pair with similarity above a predefined percentage (called threshold) as plagiarized.
To be able to do that a detection tool needs to calculate the similarity first. Different tools
are based on different approaches and implement different algorithms After that, the similarity
between submissions. Differences in similarity calculations cause differences in rankings which
leads to differences in indicated plagiarized matches and therefore a different detection accuracy
(further referred to as accuracy). In an ideal situation, a tool would have perfect accuracy,
meaning finding all plagiarized pairs and finding only plagiarized pairs.

Numerous researchers have attempted to improve the accuracy of plagiarism detection tools
using new approaches [143], creating new methods for similarity calculation [170], building
new techniques for plagiarism detection [134], and so on. One way of improving the accuracy is

3https://www.leadergrow.com/articles/443-trust-but-verify
4Although it is a convention in the literature to use the term plagiarism detection tool the term similarity

detection tool is more accurate; in this research both terms are used as synonyms.

2

https://www.leadergrow.com/articles/443-trust-but-verify

Chapter 1. Introduction

by using preprocessing techniques [6, 38, 95]. Some authors like to define preprocessing as the
first step in the process of plagiarism detection [38]. In this research, a PreProcessing Technique

(PPT) is understood as a technique which results in modified source-code or similar that can be

used with different detection tools instead of being limited to only one tool.
This research focuses on the preprocessing step, more precisely on the effect of PPTs on

the accuracy of plagiarism detection used in the preprocessing step. To preprocess source-code,
various PPTs can be used, including [6, 30, 38, 95]: removal of white space and comments,
removal of imports and common declaration statements, removal of access specifiers, changing
data types to synonyms, changing synonym constructs with generic ones, source-code resort,
exclusion of template code, exclusion of source-code given by teachers, etc.

Since there are various preprocessing techniques, it is worthwhile asking whether they really
make any difference. The literature review seems to indicate that preprocessing techniques do
make a difference (see [6, 96] for an example). But even if it is presumed that there is a difference,
it has to be considered whether all preprocessing techniques are equally good, or whether some
differences exist between them, and, if so, how large those differences are. Furthermore, it
still needs to be established whether those techniques always yield identical results, or whether
their effect depends on the programming language or the type of assignment, or something else.
Also, the question arises of “when” or “why” some technique is better than another. These open
problems and questions constitute the motivation for this research.

The overall goal of this research is to identify the effect of PPTs on plagiarism detection

accuracy in student programming assignments. The overall goal is divided into two subgoals:

G1 : Find out5 whether the application of PPTs has an effect on plagiarism detection accu-

racy.

G2 : Find out how, when and why different PPTs affect plagiarism detection accuracy.

From the goals the following hypotheses emerge:

H1 : For tested tools and assignments there exists a difference in plagiarism detection accu-

racy between at least one PPT and when no PPT is used.

H2 : For tested tools and assignments there exists a difference in plagiarism detection accu-

racy between at least two different PPTs.

Since G2 is partially fulfilled by H2 the rest is covered by the following research question:

Q1 : How do different PPTs affect the plagiarism detection accuracy for tested tools and

assignments?

5In the original proposal the word ‘Investigate’ was used in the goals, which is replaced with ‘Find out’. The
reason is only to improve the language.

3

Chapter 1. Introduction

The rest of the thesis is structured as follows. In Chapter 2, related work is described includ-
ing short sections describing plagiarism prevention, definitions of plagiarism, and obfuscation
methods. Chapter 3 outlines the methodology and describes the used datasets, metrics, tools and
techniques. A more detailed description of the metrics is given in Chapter 5, of the datasets in
Chapter 6 and of the techniques in Chapter 7. To objectively compare the results from different
tools calibration of the tools was performed and is outlined in Chapter 4. Chapter 8 describes
and discusses the results of the main experiment, Chapter 9 presents future work and Chapter 10
concludes.

4

CHAPTER 2

RELATED WORK

Academic dishonesty is a substantial problem in high education which has been present for a
long time, and one which can be present in any course. The earliest work dates back to 1904 [10].
Academic dishonesty “typically includes acts of plagiarism, using concealed notes to cheat on

tests, exchanging work with other students, buying essays or, in some extreme and notorious

cases, asking others to sit examinations for you.”[175]
With the increasing popularity of the Internet and advances in technology, this problem has

been growing since it makes cheating easier [175]. That technology, like personal computers or
computer networks, makes cheating easier, was already noticed in 1989 by Parker and Hamblen
[147]. So, today there are various interesting ways how students can cheat. One categorization of
cheating methods is LowTech cheating methods and HighTech cheating methods, as presented
in [92]. LowTech methods are, for example, hiding notes inside a pencil or switching a test with
another student. HighTech methods, on the other hand, are more sophisticated methods using
technology, such as sending text messages during an exam using mobile phones or using small
wireless earbuds with a microphone so another person can talk to the student during the exam.

A lot of responsibility lies on universities to ensure academic honesty [7] since students still
have a lot to learn about what actions are appropriate in society. By taking a strong stand for
honesty, universities can point students in the right direction while determining their values.

Two of the major issues in academic dishonesty are plagiarism and collusion [168], and
definitions are presented in Section 2.1. What constitutes plagiarism / collusion is difficult to
answer as different research studies have indicated [11, 34, 167, 168]. The issue with that is, as
Lancaster stated in his PhD “why students are expected to be able to understand what plagiarism

is, if academics will not or cannot define it explicitly” [100]. Also, as presented in [27, 86, 196],
another problem is that students do not recognize some cases as plagiarism / collusion while
the teacher does, for example, students working in teams exchange parts of the work with other
teams, or students working on individual assignments collaborate and that results in similar
solutions. A good overview of various research with students regarding plagiarism/collusion can
be found in [167].

A further problem is that similarity can occur for various reasons. For example, in program-
ming assignments, some similarity might come from the syntax dictated by the programming
language or from reusing source-code [110], which is actively promoted in various program-
ming languages. Another problem [167] with programming assignments is the missing standard
that describes how to reference source-code parts which are not the authors’. In visual arts, for
example, “there are no clear guidelines to help distinguish between plagiarism on the one hand

and homage, parody, visual referencing, and related practices on the other. Academics and

5

Chapter 2. Related work

students alike have difficulty knowing what is academically legitimate and what is not. Further,

it is not possible to reference an external source in a way that makes the reference visible to all

viewers of the work.” [167] Because of all that it is important that teachers clearly define what is
considered plagiarism / collusion in their course, otherwise students might not even realize that
they have plagiarized / colluded.

2.1 Definition of plagiarism
Various definitions of plagiarism exist in the literature. In [140] an extensive review was

performed analysing 150 papers dealing with source-code code plagiarism detection tools used
in academia and one of the questions was [140]: “What is meant by source-code plagiarism

in academia?”. In [140] three categories of plagiarism are analysed: the general definition of
plagiarism, the definition of source-code (program) plagiarism, and the definition of source-code
plagiarism in academia.

The general definition of plagiarism is already given in the introduction cited from En-
cyclopaedia Britannica. In [140] the four definitions for the word plagiarism from Merriam
Webster On-line Dictionary1 are found as the most comprehensive. But the essence of all gen-
eral definitions is presenting someone else’s work (which includes writing, ideas or similar) as

one’s own.
More precise definitions of source-code plagiarism are more of interest to this research.

According to [140] the most used definition is the one from Parker and Hamblen [147]: “A

plagiarized program can be defined as a program which has been produced from another pro-

gram with a small number of routine transformations. Routine transformations, typically text

substitutions, do not require a detailed understanding of the program.” Other definitions are
more or less variations of this definition.

The most valuable definitions found in the literature for this research are definitions fo-
cusing on source-code plagiarism in academia. According to [140] the most used and best
suitable definition is the one from Cosma and Joy [34]: “Source-code plagiarism in program-

ming assignments can occur when a student reuses . . . source-code authored by someone else

and, intentionally or unintentionally, fails to acknowledge it adequately . . . , thus submitting it

as his/her own work. This involves obtaining . . . the source-code, either with or without the

permission of the original author, and reusing . . . source-code produced as part of another

assessment (in which academic credit was gained) without adequate acknowledgement The

latter practice, self-plagiarism, may constitute another academic offense.”.
In [168] it is noted that some writers use the term plagiarism to mean both plagiarism

and collusion. In this research this is also the case, but before the reason for that is stated,
the difference between plagiarism and collusion needs to be clarified. “Both plagiarism and

collusion entail using the work of others without properly attributing that work.” [168] The

1https://www.merriam-webster.com/dictionary/plagiarize

6

https://www.merriam-webster.com/dictionary/plagiarize

Chapter 2. Related work

difference is that collusion can only occur when there is forbidden collaboration between two or
more people.

Collusion happens when “working together to produce assessed work in circumstances where

this is forbidden.”[11], on the other hand, plagiarism is “representing another person’s work as

being your own, or the use of another person’s work without acknowledgement.” [11] In other
words collusion addresses issues when work is taken from a person (or persons) known to the
author and the other person is involved. Plagiarism occurs when the work is taken either from
an author or from a public domain such as the web without the knowledge and involvement of
the original author.

Some research [54] indicates that plagiarism is in general looked at as a bigger problem
than collusion, but this can be open to debate, at least from a teacher’s standpoint. Suppose
students are given an assignment that they need to solve individually but two students cooperate
and produce a solution together and one student plagiarises by taking the solution from some
random student. Here is a brief discussion presenting four examples:

1. Suppose all of them are clever enough to modify the solution so they don’t get caught. Why
would the student who plagiarised be more of a problem than the two who collaborated,
since all three have cheated and got a grade they did not deserve?

2. Suppose students get caught but they are honest and admit what they did. Should the
student who plagiarised be punished more than the other two who colluded?

3. Here are three scenarios where the students get caught and do not admit what they did:
scenario one – they claim that the similarity is all purely coincidental, scenario two –
the student who plagiarised states he has collaborated with the innocent student, but the
innocent student denies it, and scenario three – the students who colluded stated they don’t
know each other and that the other has plagiarised.

The first and second scenario are different than the third since an innocent student is
involved, but in all three scenarios the teacher has the same problem to determine who
is lying and it might happen that they can’t expose the liars. From the standpoint of the
innocent student it is clear that plagiarism is worse than collusion, but from the teacher’s
standpoint he/she has the same problem of determining the liars in all three scenarios. In
such scenarios is the problem plagiarism/collusion or is the lying the main problem?

4. Suppose that collusion is treated more lightly than plagiarism and then two students
plagiarise from the web and they state they colluded and maybe even did. Is it okay that
they get a softer punishment?

Analysing the stated questions is out of the scope of this research, but teachers should take their
time to think about such things.

With the difference between plagiarism and conclusion in mind, it is clear that the definitions
from Parker and Hamblen, and from Cosma and Joy, cover both collusion and plagiarism.

7

Chapter 2. Related work

There are two reasons why also in this research plagiarism is used to mean both collusion
and plagiarism. Firstly, since the focus of the research is on programming assignments, when a
teacher finds a similarity between two submissions that are suspicious they do not know whether
it is a case of collusion or plagiarism. It could be that those two have taken the same code
part from the web without collaborating with each other. This would mean that it is a case of
plagiarism but since the only comparison that was done was comparing one student submission
to another it may look like collusion. The second reason, in the course on which this research is
preliminarily based on, the punishment is the same regardless of the type of cheating (plagiarism
or collusion). It makes no difference to the teacher if a student copies something from the web
(plagiarism) or from another student (collusion). Note that copying from another student can be
plagiarism or collusion. Which one it is depends whether the other student participated in the
process (for example by giving their solution to the first student) or not. Since there is always the
problem of lying as described above, only if one student admits plagiarism from another student
the innocent student is not punished on the same level as the one who admitted plagiarising, but
the student who plagiarised is punished the same as the once that colluded.

The definition from Cosma and Joy is good, but to be used in this research it is missing
information about how it is decided if something is or is not plagiarism. As there is no unique
agreement on what constitutes plagiarism, in this research plagiarism in programming assign-
ments in academia is defined as follows. Note that the word ‘real’ is quoted, since there is always
a small possibility, even with high similarity, that the similarity is coincidental.

Plagiarism, in programming assignments, is the act of taking a significant amount

of source-code parts (up to the entire source-code) from other students or from the

Internet and using it without noting its origin. A ‘significant amount’ means that the

similarity between two solutions of a programming assignment is high enough that

an expert (teacher, ethical board, etc.) considers specific student work as sufficiently

‘real’ plagiarism to accuse the student of plagiarism.

2.2 Plagiarism prevention
To efficiently prevent plagiarism one should know why students cheat. There are various

reasons why students plagiarise [27, 85, 171, 180]: time pressure, an uninteresting course, a
poor attitude from the teacher, poor motivation, lack of knowledge, fear of failure, perceived
irrelevance of assignments, inadequate resources, procrastination, underestimation of required
time and effort, etc. In [180] it was found out that “the most probable reason for plagiarising,

from a student’s point of view, is not being able to successfully complete an assignment.”
Some of the reasons to plagiarise can relatively easy be reduced, or maybe even eliminated,

by teachers and/or universities. For example, to reduce the lack of motivation and deal with
an uninteresting course, a teacher can try to use gamification methods [93, 94] as one way of
making the course more appealing to students. Maybe gamification will not work for everyone

8

Chapter 2. Related work

and some may think it is childish, but if it helps some of the students it is worth trying.
Another problem like time pressure may be caused by the amount of work that a student

needs to do in one term. To evaluate and control the amount of work that needs to be done is
partially controlled through systems like the European Credit Transfer System (ECTS). In short,
the idea of ECTS is to have each course assign ECTS points which reflect how much time does
it should take an average student to complete the course. For example, if one course has 6 ECTS
points it means that to complete the course a students needs to work approximately 180h (1
ECTS = 30 hours). But when using systems like ECTS, the teachers define how hard one course
is and how many ECTS points it should have. From the student’s point of view this might not be
correct. Because of that, every few years the ECTS points are re-evaluated to make them more
precise. But universities can use other ways “for calculating course difficulty and producing

appropriate learning strategies for students” [142].
As can be seen from the above examples some cases of plagiarism can be prevented relatively

easy. There are other methods that can be tried to prevent plagiarism that has been reported in the
literature: generating a unique assignment for each student, and making students evaluate each
other’s work [195], creating new assignments every year to prevent plagiarism across generations
[171], requesting students to make a statement (like a formal cover sheet) that the work is their
own [72], requesting incremental submissions [177], reducing class sizes [88], using assignments
where students need to reuse already written code in a controlled environment [161], tracking
students’ input while developing assignments with systems like the APE (anti plagiarism editor)
or Gorilla software [177], offering many tutoring or help sessions [88], introducing a mandatory
ethics course [88], developing dishonesty policies [132], and similar methods.

For some of the mentioned prevention methods there is no assurance how effective they are
and if they will work at all in a specific situation, so additional research is required. In addition
to the above mentioned methods, educating students and teachers about plagiarism and other
related elements [171], like authorship, intellectual rights, proper referencing and similar, is a
crucial factor.

As already stated in Section 2.1, students can cheat by plagiarising or colluding, but it is also
possible that a student hires a professional programmer to do his/her assignment. This kind of
cheating is not usually possible to detect by any tool, but it can be found out by questioning the
student about their source-code. From personal experience, usually a student that did not write
the program hirself/herself will have problems answering questions about the source code they
wrote, even the most trivial matters like where some variable is initialized or questions where
the answer is already on the screen. This is a good example why plagiarism prevention should
be used together with plagiarism detection.

Results from [4] “suggest that preventing may be more effective than detecting at dealing

with the problem of plagiarism. Although detection is an important issue, the use of care-

fully designed teaching methodologies and assessment strategies may make it unnecessary. In

particular, assessment techniques that indirectly reward individual contributions and naturally

9

Chapter 2. Related work

avoid plagiarism constitute an interesting alternative to others that simply control and punish

plagiarism.”
Because prevention can eliminate plagiarism and make detection unnecessary, and because

in some cases the detection is not possible, prevention should always be used together with
detection when dealing with plagiarism. As indicated in [89] sometimes just the fact that the
students are told that plagiarism detection is performed already prevents some plagiarism. In
some sense, plagiarism detection is then used as a prevention method.

2.3 Differences between source-code and textual plagiarism
Many things can be plagiarised: music, visual art, source-code, literature text, etc. Each

plagiarism type has its own problems and different methods are used to prevent and detect it.
Plagiarism analysed in this research is source-code plagiarism and since source-code is basically
text there is a logical question: can the same principles and methods be applied to source-code

plagiarism as for textual plagiarism? To answer that question one needs to look at similarities
and differences between source-code and text.

Similarities between text and source regarding metrics that can be used to detect similarity
in assignments written in source-code vs. assignments written in text according to [100] are
presented in Table 2.1.

Table 2.1: Similaritites between textual and source-coude detection metrics [100]

Source-code Text
the number of lines that contain com-
ments

the number of nouns used in the free
text submission

the proportion of ‘while’ loops to ‘for’
loops

the proportion of uses of ‘their’ com-
pared with ‘there’

the number of compilation errors when
the code is compiled

the proportion of words that are not
found in a dictionary

the number of keywords that occur in
both source code submissions

the number of capitalised words that oc-
cur in both free text submissions

the number of functions in the first sub-
mission that can be paired with a func-
tion with the same number of lines in
the second

the number of paragraphs in the first
submission that can be paired with a
paragraph with the same number of sen-
tences in the second

Regardless of the similarities, some studies indicate that [30] there are clear differences
between textual plagiarism and source-code plagiarism and that academic integrity issues [168]
differ between text based and computing assessments. “Probably the most important difference

is that source-code is more structured than natural language, which makes it more likely that

two lines are similar.”[139]. Some other differences in the nature and perception of source-code
and textual plagiarism are:

• In source-code there is no standard for referencing [139, 167];

10

Chapter 2. Related work

• Discussing details of work in progress is found more problematic in source code [1, 168];

• “Plagiarism and collusion are more difficult to define in computing and the boundaries

between acceptable and unacceptable practices are more blurred than with text.” [168];

• It is less acceptable to copy part of a textual assignment like an essay than it is in a
programming assignment. [1];

• Writing computer programs is more difficult than writing text [167] and the reason for
that is that, even if someone is bad at writing, they can produce something that makes
sense, on the other hand, if you are a bad programmer it is much more difficult to write a
program that works.

Because of the differences, specialized tools have been built to detect source-code plagiarism.
This does not mean that detection tools built for textual plagiarism can not be used, especially
with the mentioned similarities in possible metrics, but it is expected that a specialized source-
code plagiarism detection tool is better to detect source-code plagiarism. This is supported by
[157] where “experimental results show that highly specialised source code similarity detection

techniques and tools can perform better than more general, textual similarity measures.” Be-
cause of this, the research focus here is on those specialized source-code plagiarism detection
tools, but since there are similarities between source-code and text in the experiment the textual
version of the chosen tools are also compared and discussed.

2.4 Plagiarism detection
When plagiarism prevention methods fail, plagiarism detection methods can be helpful to

find those students who have plagiarised. Detecting plagiarism is not an easy task, especially
when the number of students in a classroom goes above 100. Also, students use different
obfuscation methods to hide plagiarism, which makes detection more difficult (more details in
Section 2.5). There are two approaches to detecting plagiarism: manually or with the use of
similarity detection tools.

One approach to detect plagiarism manually is presented in [128], where it was “found that

plagiarized groups score higher in programming and spend less time in developing programs

compare to non-plagiarized group.” This indicates that examining times spent on program
development can help detect plagiarism. For homework assignments, systems like Git or SVN
can maybe do the same trick.

Sometimes plagiarism can be detected manually just by monitoring a student’s development
across time [182]. Any rapid improvements in submitted assignments may be an indication that
plagiarism might be taking place. The teacher can question such a student about the assignment
and find out if this is really the case.

Few prevention methods, like tracking students’ input while developing assignments with

11

Chapter 2. Related work

systems like APE/Gorilla software [177], can also be used to detect plagiarism. This method
can be combined with the method that suggests examining development times.

Students sometimes plagiarise with the help of Google [174], they search for the solution
and then they copy-paste the found solution or part of the solution into their work. Teachers, on
the other hand, can use Google as a method to find plagiarism. The idea is just to copy a small
suspicious part of the assignment at paste it into Google and see if something suspicious comes
up. [8]. This method is more suitable for text with no obfuscation attempts, but it is worth a try
in other cases too since it is very easy to perform the method.

When the classrooms are small (with around 10 students) a teacher can find plagiarism just
by remembering the previous assignments that they graded. There is a high probability that
he/she will remember if two students have submitted a similar solution. But as the number
of students grows this becomes more difficult. Usually, when the number of students grows,
multiple teachers are involved, each teaching different groups of students, and this makes it even
more difficult to detect plagiarism manually.

To overcome these problems similarity detection tools have been built. The basic idea behind
such tools is to compare student submissions, calculate the similarity between each pair of
students, and rank the pairs by descending similarities, which presents the most suspicious pairs
on the top. All pairs with similarity above some predefined threshold are marked as plagiarised.
Detection would be quite easy if students would just copy-paste when they plagiarise, but
usually they use obfuscation methods to hide plagiarism. With obfuscation methods present,
some detection tools might calculate a lower similarity between two submissions than it actually
is, this can lead that some pairs not marked as plagiarised even though they are. Because of that,
detection tools are constantly improved and new tools have been built to improve the accuracy
of the detection. A review of detection tools is given in Chapter 4.

2.5 Obfuscation methods
Obfuscation methods are modifications of the assignment solution with the intention to hide

plagiarism. Different obfuscation methods are used for text than for source-code. In this research
only source-code obfuscation methods are discussed, although some of them can be used for
text.

These obfuscation methods vary in complexity as stated in [44] whereby “novice, student

plagiarism mainly utilizes certain stylistic and syntactic changes, while expert programmers

may introduce semantic changes (e.g. changing the data structures used, changing an iterative

process to a recursive process, etc.) as well”. Faidhi and Robinson [44] introduce six levels
representing different obfuscation methods. Each level represents obfuscation methods from all
previous levels and adds one new obfuscation method. For example, level 1 represents changes
in comments and indentation while level 6 includes the changes of previous levels and changes
in the decision logic (i.e., changes in expressions). There is also level zero which represents no

12

Chapter 2. Related work

change. In [23] an improvement variation of the Faidhi and Robinson classification is presented
called “Pyramid of Program Modification Levels” which has eight levels.

Another more common classification introduced by Joy and Luck [85] is to divide the meth-
ods into two categories [38, 85]: structural and lexical. According to [139] all methods from
Faidhi and Robinson’s classification can be mapped to the Joy and Luck classification which
was first done by Lancaster [100, p. 27]. The lower level methods up to level three are classified
as lexical, representing simpler ways of obfuscation, and the methods from level three are classi-
fied as structural, representing the more sophisticated ways of obfuscation. However, Lancaster
states that level three is questionable in which category it should go.

The review in [140] analysed 72 papers that mention some kind of obfuscation methods
(OM) from which 16 distinct obfuscation methods where identified and described. According to
[140] by looking at [5, 38, 44, 60, 185] all methods can be found. In [140] obfuscation methods
are classified into four categories extending the classification of Joy and Luck. The categories
are [140]:

• Lexical changes (label L) are “changes which could, in principle, be performed by a text

editor. They do not require knowledge of the language sufficient to parse a program.”[85]
This category includes the following methods [140]: Visual code formatting, Comments

modification, Translation of program parts, Modifying program output, Identifier rename,
and Changing constant values.

• Structural changes (label S) are changes that “require the sort of knowledge of a program

that would be necessary to parse it. It is highly language-dependent.”[85]
This category includes the flowing methods [140]: Reordering independent lines of code,
Adding redundant lines of code, Splitting up lines of code, and Merging lines of code

(includes: Merging lines of code and Replacing the procedure call by the procedure body).

• Advanced structural changes (label AS) are defined as “a subcategory of structural changes

that require more knowledge of program possibilities and relations between equivalent

statements in a specific programming language.”[140]
This category includes the flowing methods: [140] Changing of statement specification

(includes: Changing the operations and operand, Altering modifiers, Datatype changes)
and Replacing control structures with equivalents.

• Logical changes (label LG) are defined as “changes that except for structural changes also

change the logic (flow) of a program and require a certain amount of programming skills

and knowledge about the application being developed to be performed correctly. They are

very unlikely to be performed by total beginners.”[140]
This category includes the flowing methods [140]: Simplifying the code, Translation of

program from other programming language, Changing the logic, and Combining copied

and original code.

13

Chapter 2. Related work

From all of the aforementioned methods, according to [140] the most researched are: Identi-

fier rename, Reordering independent lines of code and Comments modification. “When looking

at the aforementioned modifications to the different obfuscation methods one can say that many

of them are actually code refactoring methods. Experienced programmers could use the knowl-

edge about refactoring to help them hide plagiarism.”[140] Students can also plagiarize without
using any obfuscation method (simple copy-paste), so one special category No changes can be
added to those four mentioned.

With the obfuscation methods identified, one can start improving detection tools so that
obfuscations will have no effect. It is no easy task to reduce or eliminate the effect of some
obfuscation methods. For some obfuscation methods it might be even impossible. The fact that
new researches are constantly being carried out trying to improve the accuracy of detection tools,
shows how difficult it is to break the various obfuscation methods.

14

CHAPTER 3

METHODOLOGY

In this research the overall goal, as stated in the introduction, is to identify the effect of
PreProcessing Techniques (PPTs) on plagiarism detection accuracy in student programming
assignments. In other words, the idea is to reduce or eliminate the effect of obfuscation methods
by using PPTs. As a consequence, an increase in the accuracy of detection tools should be
observed. In order to achieve that goal, and test the hypothesis given in the introduction, a
methodology is used which consists of two parts: quantitative and qualitative analyses.

The quantitative analysis uses experimental design [46, 124] to test the stated hypotheses
statistically. To do the comparison, fulfil the first goal (G1) and test the first hypothesis (H1),
multifactor Analysis of variance (ANOVA) [46, 124] was planned, or if this was not possible
a suitable non-parametric test was used instead. Variables in the analysis for the Real Student
Solution (RSS) dataset are: tool, preprocessing technique (further referred to as a technique or
PPTs), assignment solutions (further referred as assignment) and accuracy (F-beta calculated
from precision and recall) which is the dependent variable. Different academic years (further
refereed as year) were used as replications for the RSS dataset. The same years were used for
each combination of technique, tool and assignment.

To test the second hypotheses (H2) and partially answer the research question (RQ1), ANOVA
is not enough since it tests for overall effect and does not provide specific information about
affected groups. To solve that, post-hoc tests or contrasts (for greater test strength) were planned
to be used. During the design of contrasts, they were designed as orthogonal contrasts if neces-
sary (more details in Chapter 8). As a qualitative analysis, a version of content analysis [166]
was planned to fulfil the second goal (G2) and complete the answer to the first research question
(RQ1). Found pairs were analysed manually for patterns indicating why some pairs were or
weren’t found. This was performed for interesting combinations of the tool, assignment and
technique based on the result of the statistical analysis and the top ranked matches.

To the author’s knowledge, no experimental design has been previously performed to test the
effect of preprocessing techniques, so every aspect needs to be documented. There are studies
that use preprocessing techniques (Chapter 7), studies that compare tools (Chapter 4) and studies
that use quantitative measures for comparisons (Chapter 5), but in most cases no statistical test
was used to see if there was any statistically significant difference between the compared groups.
Papers that were found, while analysing 150 papers during Systematic Literature Review (SLR),
that use any statistical evaluation are: [32] where multivariate ANOVA was used, [2] where a
Wilcoxon rank sum test was applied, [36, 38, 91] where a simple t-test was used, and [40] where
Pearson’s chi-square test was used. During the SLR outside of the 150 papers there were two
papers [18, 69] found from the related domain of authorship attribution where ANOVA was

15

Chapter 3. Methodology

used, but the focus was different than in the plagiarism detection domain.
There are four main components used in this research: detection tools, preprocessing tech-

niques, datasets and evaluation measures. Each component is described in a separate chapter and
has its own related work section and detailed descriptions of how elements of the components
are selected. To extract all of the relevant related work SLR was performed as described in
Section 3.1. In Section 3.2 for each component the research constraints are described and a short
description of the ethical issues for this research. Section 3.3 presents the plagiarism detection
process that was used and Section 3.4 describes how the process was automated.

3.1 Systematic literature review
SLR was performed to analyse the related work for this research and answer ten questions.

Eight questions, with detailed analysis and answers, are presented in [140], together with a
detailed description of SLR protocol. The eight questions are: “What is meant by source-code

plagiarism in academia?, What is meant by source-code plagiarism detection in academia?,

What obfuscation methods do students use to hide source-code plagiarism?, What detection

tools are used and which are the best?, What algorithms are used in these detection tools?, What

measures are used to compare the tools?, What datasets are used to compare the tools?, Where

should one search for articles dealing with source-code plagiarism detection in academia?”.
Two other questions are: Which are the most used preprocessing techniques? answered

in Chapter 7 and Who are the top authors in the field of source-code plagiarism detection in

academia? answered in Section 3.1.1. The reason why SLR is published as a separate paper is
because it goes beyond the scope of this study. Only the most related findings to the topic of this
research are presented across the related work sections.

Articles that were extracted in SLR are the primary but not exclusive basis for the related
work sections of each component. These sections include papers that were extracted from the
searched databases for the purpose of SLR but also papers that were found ad-hoc over Google
Scholar 1, Research Gate 2 and other sources at different dates.

SLR was performed on four databases: Scopus3, ACM Digital Library4, IEEE Xplore5,
ScienceDirect6 and ISI Web of Science7. Databases were queried on three dates: 28.2.2015,
20.8.2015 and 29.8.2016. In Figure 3.1 number of articles found in each database per year is
presented. In total 3069 distinct articles where extracted, after filtering the number of papers
was reduced to the final 150 articles which were then analysed to answer the research questions
as part of the SLR. For the purpose of this research, an additional 152 papers were analysed

1https://scholar.google.hr/
2https://www.researchgate.net
3http://www.scopus.com
4http://portal.acm.org
5http://ieeexplore.ieee.org/
6http://www.sciencedirect.com
7http://www.isiknowledge.com/WOS

16

https://scholar.google.hr/
https://www.researchgate.net
http://www.scopus.com
http://portal.acm.org
http://ieeexplore.ieee.org/
http://www.sciencedirect.com
http://www.isiknowledge.com/WOS

Chapter 3. Methodology

Figure 3.1: Number of articles in databases per year

from the 3069 which were extracted during SLR.
In the SLR part where the bibliographic analysis was performed, it was found that there

were only 12 articles [24, 41, 44, 59, 60, 85, 147, 154, 178, 185, 187, 188] which had over 100
citations in Google Scholar. In Figure 3.2 the citation rate per year is presented, whereby each
dot presents one article. Note that the y-axis in Figure 3.2 has a logarithmic scale. From Figure
3.2 one can see that real interest in the field of source-code plagiarism detection in academia
started in 2005 and increased in 2010, but all 12 top cited papers where published before 2005,
so it can be stated these are the ground papers for this field. More details are available in [140].

To have a good overview of the field for this research, in addition to the papers extracted
during SLR a search was performed for top papers (citation rate above 100 in Google Scholar and
in the top 5 at Google Scholar) which cite the 12 papers mentioned above. With this approach
interesting papers with high citations (above 100) were found like [15, 30, 146, 163, 179] and
some interesting PhD theses like [33, 100].

17

Chapter 3. Methodology

Figure 3.2: Citation rate per year

3.1.1 Top authors

Another way of finding relevant papers was to search for the main authors in the field. As
part of the SLR the question was stated: “Who are the top authors in the selected articles?” In
Table 3.1 the authors that have more than 2 articles published in the final 150 analysed articles
are listed, with the corresponding articles and how many of those are the top cited with more
than 50 citations.

The top three authors that have most articles are Joy, Cosma and Liu, but none of the articles
of Liu has more than 6 citations. The same is for Wang, while Cho and Woo have only 1 article
with more than 50 citations. Based on citation rate, the top authors are Wise and Joy followed
by Cosma and Tahaghoghi. Based on both criteria and the citation sum for all articles listed in
Table 3.1 it can be concluded that the top three authors are Joy, Cosma and Wise followed by
Tahaghoghi. Although Wise has the most citations all three articles listed are before 1997, in
comparison, the latest articles from Cosma and Joy are from 2015 and 2014.

18

Chapter 3. Methodology

Table 3.1: Authors with most articles in SLR and most citations

Number of Number of top
Author articles cited articles Articles

Joy, Mike 7 3 [31, 32, 34, 85, 86, 133, 196]
Cosma, Georgina 6 2 [2, 31, 32, 34, 86, 196]
Liu, DongSheng 5 0 [81, 120, 121, 182, 197]
Wang, Xin 3 0 [23, 192, 193]
Woo, Gyun 3 1 [79, 80, 102]
Wise, Michael 3 3 [178, 187, 188]
Tahaghoghi, Seyed 3 2 [5, 20, 28]
Cho, Hwan-Gue 3 1 [79, 80, 102]

3.2 Research constraints
Since there are four main components to this research constraints are also divided into four

categories: detection tools, preprocessing techniques, evaluation measures and datasets.

3.2.1 Detection tools

There are many available detection tools as described in Chapter 4. To be able to use them
as planned the tools must be open source or free tools that can be downloaded and used offline.
Tools that operate as on-line services are excluded since the student solutions are confidential
and cannot be shared according to our university’s data protection regulations. This is more
rigorous with the European data protection legislation8 in place.

The criteria for selecting the tools is that they are commonly used and considered successful
based on the results in the scientific literature. This kind of selection excludes some new tools
like Spector [117] which are open source but have not yet been compared much to other tools,
so the quality is questionable.

All internal preprocessing steps in a tool are disabled if possible, and if not, tools are tested
with them. In such a case, this preprocessing technique is considered to be part of the tool. No
changes to the tool are allowed that would change the algorithm or in some other way improve
or reduce the quality of the tools. It is the point of preprocessing techniques to improve the tools
so tools need to be in their original state.

To put all plagiarism detection tools in an equal position they are calibrated (by setting
their parameters) according to a calibration test (described in Section 4.4 using the calibration
method described in [138]) on a manually prepared dataset consisting of pairs extracted from
a standardized dataset and manually created pairs for which similarity is approximately known.
Also, to eliminate the effect of visualization, since different tools have different visualizations
possibilities, all results need to be presented in a unified form for all used tools.

Because similarities between source-code and text exist, as noted in Section 2.3, and since
8https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en

19

https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en

Chapter 3. Methodology

evidence exists in [157] that textual comparison can outperform specialized source-code com-
parison, in the experiment the textual versions of the tools are also compared and discussed.
Because of that, tools that have the possibility to run textual comparisons are desirable.

Only tools that support the Java programming language are used because RSS dataset con-
tains programs written in Java. Another reason is that Java is one of the most supported languages
by detection tools, as it was found out in the SLR according to [140].

3.2.2 Preprocessing techniques

Preprocessing is recognized as an important step done before the actual detection. There
are various preprocessing techniques, but there is very little research that would focus on the
preprocessing itself (more details in Chapter 7). Because of that, selection is based on the
availability of the currently most relevant techniques according to the scientific literature (Section
7.1).

Since no direct comparison of techniques is available it may be possible that the selected
techniques are not the best in the field.

3.2.3 Evaluation measures

Evaluation measures are discussed in detail in Chapter 5 and the selected measure is F-
beta. The F-beta measure is used as the accuracy measure since it is commonly used in other
quantitative research. In this research F-beta measure is used to do comparisons of tools and
techniques, because of that the term comparison measures is used as a synonym for the term
evaluation measures.

F-beta is based on Precision and Recall, but to calculate Precision and Recall the exact
knowledge of real plagiarized pairs is needed, but the nature of RSS dataset is such that this
cannot be known with 100% certainty. Because of that, the number of real plagiarized cases
will be estimated (similar to [178]) as the union of plagiarism cases found by at least one tool
used in combination with every tested technique. This union of found plagiarized pairs will
be examined by an expert (responsible teacher of the course) who will tell which ones are
considered plagiarism. Also, since the expert examined all the assignment solutions before, all
manually found plagiarised matches will be added to the union.

The exact procedure for finding plagiarized cases is defined in a flow chart diagram form in
Chapter 6 under Section 6.3.1.

Threshold level

Another issue regarding F-beta is how to decide where to draw the threshold line (also known
as a threshold level, cut-off threshold or threshold), some studies take the top n matches, others
use all matches with similarities above some percentage (for example everything above 90%).
Using a fixed number, whether it is the top n matches or a percentage, is not the best solution.

20

Chapter 3. Methodology

The problem with fixed top n matches is that the number of plagiarised matches varies from
assignment to assignment which makes it difficult to decide what number to chose. Also, using
a fixed top n matches could cause that, for some assignments, the perfect F-beta can not be
reached, not even theoretically. Instead of using fixed top n matches for all assignments, it
would be better to use flexible top n matches where n is the number of plagiarised matches in
one assignment. In this way there is no bias in choosing the number, also theoretically it is
possible for every tool to reach a perfect F-beta.

The problem with a fixed percentage number is that tools sometimes report quite different
percentages for the matches over the whole dataset, which again makes it difficult to decide what
number to chose. Choosing the percentage is even more difficult since it depends not only on
the assignment but also on the tools that are used. The difference is especially big between the
textual versions of the tool and the version of the tool that was primarily built for source-code
detection. Because of that if a low percentage is chosen the tools that report higher percentages
(source-code version) are at a disadvantage, if a high percentage is chosen it puts tools that report
lower percentages (textual version) at a disadvantage.

The solution to that problem is to use a flexible threshold. The idea is based on the statement
of suspects given by Brixtel et al. [17]: “We consider two or more documents to be suspects if

they are much more similar than the average similarity between documents.” The same idea was
also used by Freire [56] where the AntiCopias (AC) system was built and the plagiarised cases
were marked based on the position on a histogram representing all matches. The underlying idea
is the same, it is not important how high the similarity of a match is, but how it is in relation to
the rest of the matches.

Following these ideas, a new method for determining the threshold level is created. The
method does not use a fixed percentage rather it looks at all pairs, calculates the mean similarity
and then takes all matches for which the similarity percentage is (for example) 3 standard
deviations from the mean. Since there is a high chance that the data are not normally distributed
it would be better to use 3 inter-quartiles (IQR) from the median, since it eliminates the extremes
in the threshold percentage calculation. This method would make the threshold level flexible not
only for each assignment but also for each combination of tool and technique in one assignment.

3.2.4 Datasets

In this research real data from student solutions alongside some available open source-code
dataset were tested. As the standard open dataset, the SOurce COde Reuse (SOCO) dataset from
the PAN@FIRE2014 competition described in [52] is used. The RSS dataset, a collection of
personal students’ solutions gathered over several years, is used. More details about datasets are
given in Chapter 6.

The amount of data in the RSS dataset that needs to be analysed must be limited since the
marking of plagiarised matches must be checked and confirmed manually. This must be done
for each combination of tool, technique, year and assignment in the RSS dataset. So restrictions

21

Chapter 3. Methodology

on RSS are: Java programming language, assignments from three academic years up to six
academic years, minimum of two assignments and maximum of four assignments per year. In
addition, a maximum four tools and up to six preprocessing techniques (or combinations of
techniques) were used. The author manually examined the pairs in the qualitative analysis
and to ensure objectivity, an expert (as stated in Section 3.2.3), was included to mark the real
plagiarized matches.

Since the RSS datasets is a collection containing solutions of assignments for multiple years,
in the rest of this document the individual groups are marked as ‘year-assignment’ (for example
2013-2014-A1). The main difference between the RSS dataset and datasets in other studies,
in the area of source-code plagiarism detection in academia, is that they use solutions which
have an average with up to 500 Lines of code (LOC) from introductory programming courses.
This research deals with source-code files with an average larger than 1,000 LOC and up to
6,000 LOC. In [134] the authors used source-code files with many LOC that, however, were not
obtained in the ‘academic’ environment.

3.2.5 Ethical issues

In the research data preparation process, anonymization was performed on real student
assignments with intent to protect all personal information. During publication only summary
data are presented. When it is necessary to show specific similarity cases which include source-
code parts from individuals one should not be able to identify the author.

3.3 Plagiarism detection process
Plagiarism detection can be performed using four steps [139]: 1. Preprocessing of input data,

2. Similarity detection, 3. Visualization of results, and 4. Confirmation of plagiarized cases. To
get to the fourth step where the calculation of F-beta is possible in this research, a process is
used which is based on the twelve step process described in [95].

Since the process in [95] was made for one tool, focusing only on the template exclusion
preprocessing technique it was necessary to make some changes. The detection process that was
used in this research has seven phases (some containing several steps) and goes beyond simple
confirmation of plagiarized cases. Each phase is described below with one sentence stating the
overall goal of the phase followed by a description of how the phase is used in the context of
this research. The first six phases are part of the general plagiarism detection process, meaning
they can be used by teachers to find plagiarism, while the last phase is specific for this research.
The phases of this research are:

1. Download phase — The goal of this phase is to download and create the datasets.

• For the RSS datasets the submissions were downloaded as zip archives form the
learning management system Moodle. The submissions are grouped by assignment,
and assignments are grouped by years.

22

Chapter 3. Methodology

• The SOCO dataset was downloaded from the official website of PAN@FIRE2014
competition 9 together with the files that contain information which matches are real
plagiarised matches. 10 Detailed information about the SOCO dataset was extracted
from [52]. The SOCO dataset contains files which are grouped into assignments,
and assignments are grouped into collections. One file in the SOCO dataset is the
same as one submission in the RSS dataset.

2. Preparation phase — The goal of this phase is to prepare the datasets so that they can be
preprocessed. In the case of SOCO datasets the whole preparation is a simple extraction of
two archives, one for each collection. In the case of the RSS dataset this phase is divided
into three steps:

(a) Archive extract — All archives are extracted and as a result one directory is created
for each student submission containing all files and directories of the submission;

(b) Directory rename — Each submission directory is renamed so that it contains the id
of the student who submitted the solution;

(c) File merge — All files of one submission are merged into one file, at this point files
which were not of interest like images are deleted.

3. Preprocessing phase — The goal of this phase is to run the preprocessing techniques, but
it can be skipped if no preprocessing is performed. In this phase selected preprocessing
techniques are executed on each merged file for every assignment in the RSS dataset and
SOCO dataset. In case of the template exclusion technique multiple steps are involved as
described in Section 7.5 based on the process described in [95]. This phase at the end has,
as a result, multiple instances of each assignment whereby each instance contains files
processed by one technique.

4. Detection phase — The goal of this phase is to calculate the similarities between each file
in one assignment instance. Detection is performed on each instance of the preprocessed
assignment with each selected tool. At the end of this phase the number of instances of
the preprocessed assignments is multiplied by the number of tools which are used.

5. Visualization phase — The goal of this phase is to visualize the data in a unified way
regardless of the tool or technique used. The research data are presented in table format
and with all necessary information needed in the following phases, but it is possible to
present the data in graph format. Since presenting the data as a graph and discussing the
possibilities of such visualization is out of the scope of this research.

6. Confirmation phase — The goal of this phase is to confirm the real plagiarised matches,
and in this research to have the possibility of calculating F-beta. For the SOCO dataset this

9http://users.dsic.upv.es/grupos/nle/soco/
10Thanks to Paolo Rosso (prosso@dsic.upv.es) for sharing the password for the datasets.

23

http://users.dsic.upv.es/grupos/nle/soco/

Chapter 3. Methodology

was already done and as stated in download phase this information was downloaded from
the official website. For the RSS dataset this phase was done by an expert as explained in
Section 3.2.3.

7. Analysis phase — The goal of this phase is to analyse in depth the results quantitatively
and/or qualitatively to find new things. The results of this phase are described in Chapter
8.

From the phase descriptions, it is evident that performing such research takes a lot of time
if performed manually. Because of that a system was developed, called Multiple Plagiarism
Checker (MPC), to help automate a bigger part of the process. While the download and confirma-
tion phases were explicitly performed manually, other phases were fully or partially automated.
Because an automated system was used in the preparation phase a set-up step was needed where
the configuration files for the system were prepared and the individual collections were put in
corresponding directories as needed by the system. Except for the MPC system, a smaller part
of the process was automated using the system ‘R’. The MPC and ‘R’ systems 11 are described
in more detail in Section 3.4.

3.4 Process automation
The idea of automating the process for the evaluation of detection tools is not new. Cebrian

et al. [22] created a benchmarking procedure for plagiarism detection engines. They presented a
procedure where the test cases are automatically generated for the programming language APL2.
They tested their procedure on the AC tool [56]. While the idea is interesting the tool that they
built is not very useful because of the choice of the programming language. Most detection tools
are made for Java of C language so it would be better to have this kind of benchmarking tool for
these languages.

With the same basic purpose, to ease the evaluation of detection tools, the MPC system was
built. The main difference between the tool described in [22] and the MPC system, is that the
MPC system does not generate the test cases automatically, but it has other benefits. The MPC
system eases the evaluation of detection tools so that it automates the underlying process of
plagiarism detection.

The MPC system supports the process by preparing the data for the detection, giving the
possibility to use preprocessing techniques, enabling the usage of multiple tools, visualizing the
results in a unified form for all tools, and calculating the F-beta and other statistics needed for
analysis phase based on the detection results. In addition, the MPC system has integrated the
calibration method, described in detail in Section 4.4, it supports the process of manual marking
of plagiarised matches, enables the creation of new combinations of preprocessing techniques,
and it has the possibility for simple evaluation of preprocessing techniques. The MPC system

11The complete source-code of the MPC system and all used R scripts are available at
https://github.com/matnovak-foi

24

https://github.com/matnovak-foi

Chapter 3. Methodology

Figure 3.3: High level architecture of MPC system

can also be used as a simple plagiarism detection system by teachers which will run the detection
on multiple tools and perform the desired preprocessing techniques.

The MPC system has four working modes where the main mode is the detection mode which
goes through all phases of the plagiarism detection process. The other three modes are: 1)
calibration mode – used for calibration in Section 4.4, 2) technique selection mode – used for
technique selection test in Section 7.6, 3) statistics mode – used for calculating statistics that are
input for the analysis phase (Chapter 8). The overall architecture of the system is presented in
Figure 3.3, and in Appendix C a detailed description of the architecture is given.

The MPC system has been developed in the programming language Java 12 using NetBeans
13 and ItelliJ IDEA 14 Integrated Development Environment (IDE). The main mode can be run
as a command line application or as a web application. Calibration mode can only be run over
the command line, while the other two modes can only be run over the web interface. The web
interface was designed using the PrimeFaces 15 framework on top of basic Java Server Faces
(JSF). An Apache Tomcat server 16 was used to run the web application.

12https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.
html - used version jdk1.8.0u144

13https://netbeans.org/ - used version 8.2
14https://www.jetbrains.com/idea/ - used versions from 2017.2.5 to version 2018.2.4
15https://www.primefaces.org/ - used version 6.1
16http://tomcat.apache.org/ - used version 8.0.27

25

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://netbeans.org/
https://www.jetbrains.com/idea/
https://www.primefaces.org/
http://tomcat.apache.org/

Chapter 3. Methodology

To ensure validity of the MPC system, Test Driven Development (TDD) was used [13, 55],
as invented by Kent Beck. TDD consists of three steps where in the first step a test is written
until it fails, in the second production code is written only to pass the failing tests, and thirdly
code is refactored to keep it flexible. The three steps are repeated which ensures that every part
of the code works as it is supposed to. That TDD works is confirmed by various research like
[25]. Also during development of the MPC system there were many occasions where tests broke
and prevented a potentially big bug which probably would be gone unnoticed. To refactor the
code guidelines described by Fowler et al. [53] were followed. To keep the code clean and
easy to maintain principles described in [113, 114], this includes using best practices and design
patterns [57]. The basis of TDD are unit tests, and to keep the tests clean and to get ideas for
writing tests the suggestions presented by Meszaros in [122] are used.

Except for unit tests, to test larger parts of the system acceptance tests were written which
once a module was completed served as regression tests. With tests it was ensured that the
system will not have bugs which would influence the outcome of the research results, at least
the probability of such case is minimized since the majority of the production code lines have at
least one test to ensure it works as expected. The code coverage based on the Clover’s coverage
report is presented in Appendix D. The Graphical User Interface (GUI) was tested manually and
finally several test runs were performed before the application was put into production, in other
words before the main experiment was executed.

One factor while developing a larger system like MPC is the developer itself, and to keep
focus the Pomodoro Technique was used [29] and also principles of professional programmers
were followed described in [77, 115, 141]. Since the chosen programming language to develop
the MPC system was Java, coding conventions and ideas for Java where used as suggestion from
books like [16, 45].

3.4.1 Isabella cluster

Automation of the detection process using the MPC system saves a lot of time, but in this
research to run all combinations of techniques, tools and assignments only for RSS dataset still
takes a long time. To save time the various detections and preprocessing were run using an
Isabella Cluster 17. The Isabella Cluster consists of 104 computer nodes which contain 208 CPU
processors with 2496 processing cores, 12,5TB of RAM and 200TB of disk space.

The benefit of using a cluster is twofold. First, the execution time is reduced compared to a
laptop or classic server, and secondly, some processes can be run in parallel. The preprocessing
of source-code was run first, and since every preprocessing technique operates on a different
directory they can be run in parallel. Once all preprocessing is done the detections can be run.
Detections with different tools on assignment instances, preprocessed with different techniques,
also operate on different directories so detections can be run in parallel.

To give an example, the detection for SIM and JPlag on the Isabella Cluster took up to 4

17https://www.srce.unizg.hr/isabella/

26

https://www.srce.unizg.hr/isabella/

Chapter 3. Methodology

minutes. On average the execution was 1 minute, in comparison on a laptop of 8GB RAM with
Intel Core i5 CPU at 2.6GHz the average execution time for several test runs was approximately
10 minutes. This is already 10 times faster, but since there were 144 runs that needed to be done
with one tool (6 techniques * 4 assignments * 6 years), which on a normal laptop can not be
executed in parallel, is an even bigger time save. On the cluster on average up to 20 of these runs
were run in parallel, so instead of 200 minutes (20 runs * 10 minutes per run), the execution time
was 1 minute (20 parallel runs, 1 minute per run). The biggest save was with the tool Sherlock,
where an average run took from a few hours up to 14 days on the cluster.

Detailed analysis of the runs is out of the scope of this thesis but one is for sure that Sherlock
is definitely less optimized in terms of speed in comparison to SIM and JPlag.

3.4.2 Automation of analysis phase

All statistical calculations were performed automatically using open-source system R 18

based on the MPC output. The development environment RStudio 19 was used. Since R is a
programming language there is the possibility to use TDD by installing the testthat package
20. Using unit tests, the most newly created functions for processing the quantitative data (like
creating frequency tables) were checked for correctness. Graphs, as the interfaces in the MPC
system, were examined manually and checked for correctness. In addition to the R system,
Microsoft Excel was used to do some simple calculations or to prepare tables that were input to
the R system. Full list of packages in R used for statistical analysis is presented in Appendix L.

Since the analysis phase was also automated, it could be easily checked against what would
happen if there were, for example, ten more false negative pairs as discussed in Section 5.2.
Suppose ten plagiarized pairs were not found using all combinations of tested tools and tech-
niques, then the Recall can be easy recalculated with ten more pairs added to the total number
of plagiarized pairs. Finally, the whole calculation can be repeated and results compared with
the previous results.

18https://www.r-project.org/ - used version 3.3.3
19https://www.rstudio.com/ - used version 1.1.453
20http://testthat.r-lib.org/

27

https://www.r-project.org/
https://www.rstudio.com/
http://testthat.r-lib.org/

CHAPTER 4

SIMILARITY DETECTION TOOLS

The first components needed to perform this research were similarity detection tools. To
select detection tools that matched the mentioned research constraints (Section 3.2) the literature
was consulted, and related work is presented in Section 4.1. Once the tools were selected
(Section 4.2), in order to have an objective comparison of the tools, the tools’ parameters were
calibrated (Section 4.4).

4.1 Related work
Using software to automatically detect plagiarism1 in student programming assignments is

not a new idea, and already in 1976 Ottenstein [146] dealt with this problem in his article “An

algorithmic approach to the detection and prevention of plagiarism.” To calculate similarities,
Ottenstein used Halstead’s metrics [65] which are based on counting operands and operators. For
each submission four numbers are calculated (unlike the single number usually used today): the
number of unique operators, the number of unique operands, the total number of occurrences of
operators, and the total number of occurrences of operands. Those four numbers present a single
vector describing one code document. To get a feeling for similarity and to identify potential
plagiarism he compared a submission vector to a mean vector (containing mean values of all
submissions) using a multivariate normal density function and covariance matrix. Halstead’s
metrics [65], described in detail in the book “Elements of software science”[66], were not
invented for similarity detection, rather they were software metrics to be used to predict durations
and error rates of computer programs.

It was not long after that the first plagiarism detection systems where built. In 1980 a system
called Instructional Tool for Program ADvising (ITPAD) was developed [158] to detect plagia-
rism in programs written in FORTRAN. ITPAD extended the four metrics used by Ottenstein
with 10 new metrics. In 1981 Donaldson et al. published an article [41] describing a system
which was able to detect plagiarism in programs written in FORTRAN, COBOL and BASIC.
Donaldson also pointed out the main problem with plagiarism detection tools [41]: “It is cer-

tainly safe to say that neither the detection system described in this paper nor any other detection

system will find all occurrences of plagiarism. There is an inherent tradeoff between a highly

discriminatory system, which overlooks some instances of cheating, and a less discriminatory

one which flags many dissimilar programs.” In the same year, Grier published his paper [60]
about a system called Accuse developed for plagiarism detection in programs written in Pascal.
These first programs used algorithms that are today known as attribute counting (or fingerprint)

1for reminder, more accurate it would be to say detect similarity

28

Chapter 4. Similarity detection tools

algorithms, because they count the various occurrences of variables, loops, etc.
Already in these early days of automatic plagiarism detection various obfuscation methods

were identified [41]. Because the systems were fingerprint based one can easily think of how
they can be tricked. Researchers started to compare the tools [147, 185] to see how good they
are performing and how they deal with the obfuscation methods.

Since then, numerous researchers have attempted to improve the accuracy of plagiarism
detection using new approaches [31, 143, 201], creating new methods for similarity calcula-
tion [151, 155, 170], building new techniques for plagiarism detection [81, 125, 165], using
preprocessing techniques [6, 38, 95], improving presentation of the data [56, 123, 127], and so
on.

Classification of the various algorithms used in the tools is presented in [140], identifying 16
categories. What stands out is that old algorithms like attribute counting methods were mostly
used at the beginning but can still be found in new tools, usually in combination with algorithms
from other categories. Another interesting thing is that most algorithms use tokenization. To be
more precise, 53 articles from 120 articles which report developing a new tool use tokenization.
Tokenization is a way of converting source-code into predefined tokens to represent some con-
struct of the programming language like a variable. The idea is that in such a way the simple
obfuscation methods like renaming will have no effect since all variables are replaced with a
token (for example int a=10; would be converted to something like varType varName = var-

Value;). While tokenization can be seen as a preprocessing technique [132], in this research it is
viewed as a part of an algorithm inside of a tool because it is common in many tools.

Some source-code plagiarism detection tools that have been developed include YAP3 [188],
MOSS [163], JPlag [154], and Sherlock Warwick [85]. There are many tools not directly built
for source-code plagiarism detection in academia but that could eventually be used, such as tools
built for textual plagiarism.

4.1.1 Related areas to source-code plagiarism detection

Because of a missing standard for referencing in source code, among other reasons, most
tools or services built to find plagiarism in text do poorly on source-code. For example, an
experiment described in [183] shows that the popular Turnitin system which works well with
text (as shown in [184]) performs poorly on code. On the other hand, the same experiment
[183] also shows that the SIM tool [61] textual version did a good job. Similarly, experimental
results from Ragkhitwetsagul et al. [157] show that textual plagiarism detection can outperform
some specialized source-code detection. Note that in the same way some tools built primarily
for source-code have an option to detect textual plagiarism, such as [186], but the comparison
is needed to see how well they perform in comparison to tools primarily built for identifying
textual plagiarism.

Apart for tools from the area of textual plagiarism, there are other related areas which produce
tools that could be used for source-code plagiarism detection. Some of the related areas are:

29

Chapter 4. Similarity detection tools

• Authorship attribution — The idea of authorship attribution [172] is to determine whether
two unrelated programs are written by the same author. This is done by checking the
similarity usually in a stylistic sense. Authorship attribution and plagiarism detection areas
overlap [19] in some points, but primarily authorship attribution has a different focus to
plagiarism detection. Authorship attribution complements [19] plagiarism detection well.
“Plagiarism detection software is good at identifying works with matching parts . . . but

they are not suited to discovering the true author of works.” [19] Combining plagiarism
detection and authorship attribution has been done for example in [144, 199].

• Code clone detection — Code clone detection is very similar to plagiarism detection since
it also searches for copied code, but there are major differences in perspectives. According
to [134] in clone detection the focus is to find clones inside of a single system to improve
the system’s maintainability, while in plagiarism detection, multiple systems are compared
to find copied code between them to avoid legal issues. Also, in clone detection the copied
code is slightly changed or not changed at all, while in plagiarism detection, the copied
code is modified and refactored to hide the copied parts. That clone detection techniques
can be used for plagiarism detection is presented in [17], and an experiment that compared
6 systems for clone detection on industrial programs was reported in [15].

• Code reuse detection — Programmers are often encouraged to reuse code for multiple
purposes. The idea of code reuse similarity calculation is to find similar code that was used
in different situations primarily for the purpose of improving the program and removing
redundant code (for example [103]). The biggest difference between plagiarism detection
and code reuse detection is that in code reuse there is no intention to hide the copying.
However, it must be stated that some techniques from code reuse could be used to hide
plagiarism and therefore some detection techniques to find code reuse can be useful for
plagiarism detection like [48, 75]. Specifically in [48] cross-language source code re-use
detection is described which could be very useful for plagiarism detection.

• Industrial plagiarism detection — There is a difference between detecting plagiarism in
the academic environment and in industry. The main difference is that programs in the
industry are much larger than student assignments so the techniques could be different.
Also in industry the issues are more about copyright, and finding stolen code and prov-
ing its provenance. In academia source-code from a student’s homework is available to
teachers, who know exactly who submitted what. As stated by Whale [185]: “Commercial

plagiarism detection is largely a matter of establishing a link between a pair of products

that perform identically. Similarity detection amongst student programs compounds this

problem with the more difficult task of firstly identifying the dependent pairs or groups

from a population of several hundred.” For example, tools like Code Plagiarism Detection
Tool (CPDP) [134], CodeMatch [194] or GPLAG [106] were tested in an industrial envi-

30

Chapter 4. Similarity detection tools

ronment but, as with every other related field, there is a certain probability that these tools
could be effective in an academic environment.

• Assignment evaluation — There are tools which are built for automatic evaluation of
assignments but sometimes they integrate plagiarism detection mechanisms. For example
in [160] the main focus is on the automatic assessment of programming exercises but the
paper mentioned that the tool can be used also for plagiarism detection.

Another related plagiarism detection area is the area dealing with specialized tools that try to
detect plagiarism in software from compiled code. Some of them have been used in an academic
environment like [5, 80, 145, 155]. Also, there are specialized tools for plagiarism detection in
Microsoft Access [119], Excel [169], SQL [191], and similar software packages.

4.1.2 Comparison of plagiarism detection tools

According to [140], from the domain of source-code plagiarism detection in the academic
environment, there are 120 articles describing the development of a new tool. Unfortunately,
most tools are not available even though most of them were developed after 2010. These tools
differ in many elements like availability off-line or on-line, generic or programming language
specific, open-source or commercial, etc. Articles that review and compare the tools by features
[101, 116, 126, 139, 167] and/or perform experiments [52, 63, 71, 157, 178, 183, 185] are a
big help when looking for a tool. To the author’s knowledge, the largest experimental statistical
comparison of detection tools was done by Ragkhitwetsagul et al. in 2016 [157], who compared
30 tools which they divided into four areas: clone detection tools, plagiarism detection tools,
compression tools and other tools. They did pervasive modifications in code using tools for
source code bytecode obfuscation and source code normalisation using decompilers.

To decide which tools to use one can first look at the feature comparisons that are gathered
from the literature. One such feature comparison is presented in Table 4.1. Such comparisons are
good to quickly filter the tools by some feature, for example, if looking for a tool that supports
Java programming language then a quick look at such a table can eliminate some of them. Next,
one can look at other features that might be of interest, but once all tools have been filtered based
on features it can happen that multiple tools are left over.

More precise statistical or qualitative comparisons using experiments can help to make a
final decision. The problem as identified in [140] is that out of 120 articles describing a new tool
only 55 compared the tool to others, and of those 55 only 27 were compared using some kind
of quantitative measure. The quality of such tools is therefore questionable. Another problem
is that two tools can have the same name, for example, SIM from Githcel and Tran from 1999
[59] (further refereed as SIM-GT) and SIM from Grune 1989 [61] (further refereed as SIM), or
Sherlock from the University of Warwick (further refereed as Sherlock) [85] and Sherlock from
the University of Sydney (further refereed as Sherlock-Sydney) [176], which can be confusing
and lead to using a wrong reference.

31

Chapter 4. Similarity detection tools

Table 4.1: Overview of plagiarism detection tools

Tool Open Source Year Supported Languages Local/Web

Code Match [194] 2004 36 languages supported:
Java, C++, Python, etc.

Local

GATE [135] Yes 2009 Java, UML Local
GPlag [106] 2006 C, C++, Java Local
JPlag [154] Yes 1996 Java, C, C++,

Scheme, text
Local

Marble [62] 2007 Java, C# Local
MOSS [163] 1994 23 languages supported:

C++, Java, JavaScript,
Python, etc.

Web

PDE4Java [78] 2007 Java Local
PIY [143] 2015 Visual Basic tested Local
PlaGATE [33] 2008 All Local
Plaggie [3] Yes 2002 Java Local
SCSDS [38] 2013 C#, C++, Java Local
SIM Grune [61] Yes 1989 C, Java, Pascal,

Modula-2, Miranda, text
Local

Sherlock
Warwick[85]

Yes 1999 All, specialized for
Java & C++

Local

Sherlock
Sydney [176]

Yes text Local

Spector [118] Yes 2015 Java Local
SSID [150] Yes 2012 C, Java Local
YAP3 [188] 1996 Pascal, C, LISP Local

When analysing Table 4.1 it can be noticed that most source-code plagiarism detection tools
are built for specific programming languages. This is confirmed by the Systematic Literature
Review (SLR) [140] were from 150 analysed articles most subsequent research deals with only
three programming languages: C (49 articles), Java (48 articles) and C++ (33 articles). Other
languages have been present in 5 or fewer articles, except for Pascal which was used in 12
articles but mostly in articles before 2000, while the top three languages are in articles after
2000. Interestingly, only four articles use PHP or the .NET/C# programming language. These
numbers show that for most languages there is only a limited number of tools available, but new
research is constantly being undertaken. For example, in 2017 there was at least one research
paper dealing specifically with PHP [181] and one with .NET [156], and similar observations
can be made about other popular programming languages.

Tools can be also be classified based on where they search for plagiarism [100]: intra-
corporal or extra-corporal (corpora is the plural of corpus, which represents the set of all student
submissions). In this research, a corpus refers to a dataset. Most tools found in the literature
regarding source-code plagiarism detection work are intra-corporal, which means they search
for plagiarism between submissions in the same dataset. Some tools have the ability for extra-

32

Chapter 4. Similarity detection tools

corporal searches like [143], where a large repository of previous submissions was used. This
extra-corporal search is not the same as searching the Internet for textual plagiarism [21, 108]
but it is going in that direction.

4.2 Selection of tools
When doing research which measures the effect of preprocessing on detection tools, it makes

sense to use the best tools in the comparison. The problem is that it is difficult to say which
tools are best since there has been no research comparing all tools. This is not surprising since
most tools are not available for researchers (excluding the original authors) to be analysed. The
next best thing is to use tools that are available and that were mostly compared. From the most
compared tools the idea is to select tools which have the best ranking.

The top five tools which were compared most according to SLR presented in [140], also
which where most mentioned in the 150 articles analysed in the SLR are: JPlag2 – 37 compar-
isons and mentioned 43 times, MOSS3 – 29 comparisons and mentioned 37 times, Plaggie4 – 6
comparisons and mentioned 7 times, SIM5 – 4 comparisons and mentioned 6 times, Sherlock6

– 4 comparisons and mentioned 9 times. That those tools are the most compared is expected
since when looking at Table 4.1 one can see that all of them except for MOSS are open-source
and available for off-line usage, and MOSS is free to use as a web service. Some of the tools
have the possibility to work in two modes (subsequently referred to as versions) — specialized
source-code comparison or textual comparison. In this research, each version of a tool is viewed
as a separate tool. Since in this thesis the focus is on the Java programming language the spe-
cialized source-code comparison mode is referred to as the java version or source-code version7

and the textual comparison is referred to as the textual version8.
All five mentioned tools appear to be good choices in experimental comparisons, whereby

Sherlock is the least compared experimentally from those five. In [157] the SIM Java version
ranks second and the JPlag textual version ranks fifth out of 30 compared tools. More importantly,
both are the top two in the category of plagiarism detection tools, and after that come Sherlock-
Sydney (rank eight), Plaggie (rank twelve), JPlag Java version (rank twenty one), and last the
SIM textual version (rank thirty). MOSS and Sherlock were not compared in this research. On
the other hand, in [183] JPlag ranked first, SIM second and MOSS third out of 18 compared tools,
although Sherlock and Plaggie were not compared, and it is not clearly stated which version of
SIM and JPlag was used. In [71] MOSS was marked as the top tool outperforming JPlag, SIM,
Plaggie and five other tools while Sherlock was not compared. In [33] Sherlock outperformed

2https://jplag.ipd.kit.edu
3http://theory.stanford.edu/~aiken/moss
4https://www.cs.hut.fi/Software/Plaggie
5https://dickgrune.com/Programs/similarity_tester
6http://warwick.ac.uk/iasgroup/software/sherlock
7To recognize the source-code version of the tool, the label .java is added to the tool name.
8To recognize the textual version of the tool the label .text is added.

33

https://jplag.ipd.kit.edu
http://theory.stanford.edu/~aiken/moss
https://www.cs.hut.fi/Software/Plaggie
https://dickgrune.com/Programs/similarity_tester
http://warwick.ac.uk/iasgroup/software/sherlock

Chapter 4. Similarity detection tools

JPlag.
These research results can not be compared exactly since they used different datasets (more

details in chapter 6) and it is possible that they used different parameter configurations (more
details in section 4.3) of the tools and so on. The only thing they have in common is the statistical
F-beta measure (details available in Chapter 5) that they used. Although the research results are
not comparable, it can be concluded that each tool is a good choice and that, depending on the
dataset and the situation, one tool can outperform another.

Those five tools all meet the most research constraints mentioned in Section 3.2. In this
research, unfortunately, MOSS is not an option since according to our university’s data protection
regulations it is not allowed to upload student submissions to a third party public server. Since
experimental evidence exists [157] that textual versions can outperform the Java version it was
decided to use only tools that have the Java version and textual version according to the research
constraints. Because of that, Plaggie needs to be excluded. This is not a big issue since Plaggie
is based on a similar algorithm to JPlag so it does not make sense to use two quite similar
tools. Since JPlag is better developed, has been the subject of more comparative studies, and
outperforms Plaggie, it was decided to use JPlag.

To limit the number of runs, and since also textual versions are used in the experiment, it
was decided to use only three tools. Since the three tools JPlag9, SIM10, and Sherlock11 meet
the research criteria and have the appropriate licence, they were selected for the experiment
in this research. In the rest of the text, if a specific version of the tool needs to be discussed
the appropriate label is added (java or text) otherwise the discussion is generally about the tool
regardless the version.

It can be difficult to compare three tools where every tool has its own way of running with
a different interface. To have a unified interface for all tools, and to eliminate the impact of
the interface on the results and decision making, also to ease the process of running multiple
tools, the Multiple Plagiarism Checker (MPC) system was built (described in Section 3.4). The
MPC system is used to run the detection on all tools, or to perform detection with multiple tools,
with one click. That handling of multiple tools is a problem was also noticed in [153] where
the authors built a system called LOUPE that “manages the execution of different plagiarism

tools and generates a consolidated comparative visualization of their results”. LOUPE as MPC
system supports three tools: JPlag, SIM and Sherlock. Unfortunately, the LOUPE system was
not available for use at the beginning of performing this research, and LOUPE did not support
the different preprocessing techniques, even though it had the preprocessing stage but with a
different focus.

9Version 2.11.9 with GPL v3 licence
10Version 3.0.1 with specific licence given in appendix B
11Sherlock 2003 V5 with GPL v2 licence

34

Chapter 4. Similarity detection tools

4.2.1 Changes on selected similarity detection tools

As already stated the selected tools were all integrated into the MPC system. To be able
to integrate the tools it was necessary to make some changes to the tools themselves. The
changes were not allowed to improve or decrease the tools’ capability of detection, or to cause
any modifications on the original algorithm. When changing the tool it was important to keep
the tool’s capabilities as is. The reason for that is if one tool is changed and this improves the
tool’s capabilities, then it is necessary to ask why the other tools were not changed also. These
tools are treated as black boxes which get an input and give an output which is then analysed.
The changes that were done on the tools are as follows.

• No changes were made to SIM, except that it needed to be compiled for Linux and that
it needed to be run twice. SIM has two modes of running, one gives the side by side
comparison and one gives the percentages. Since both items of information were needed
SIM was always executed in both modes sequentially.

• Two changes were made to JPlag.

– First, the access to classes, functions and variables was changed from private to
public. JPlag has a very complicated report in HTML format which was hard to
parse and it does not give all the needed information about one match, so the method
for generating the report was overridden so that the MPC system was able to get the
raw results.

– Second, JPlag initially generated only results for the top 1000 matches, but to have
the complete set of matches that JPlag finds this number was set to the maximum
integer value that is possible. Usually, in the experiment, there were up to 2000
matches. This change is not a problem since the algorithm already finds this matches
anyway, the lowest similarities were just pushed down once 1000 matches were
reached.

• Multiple changes were made to Sherlock.

– The most changes were related to changing the access to classes, functions and
variables from private to public to be able to read configuration values used in testing
to ensure everything was set up correctly, and to use some functions to ease the
preparation of configuration files.

– The second change was done because Sherlock had the tendency to break down
when operating on comparisons with around 50 files. The reason for that was some
statements were missing in the code to close the used files, so this was added but this
did not change the algorithm at all.

35

Chapter 4. Similarity detection tools

– The third change was regarding the preprocessing possibilities of Sherlock. To be
able to test the effect of preprocessing, Sherlock needs to run without any preprocess-
ing. This was not a problem for the textual version but for the Java version Sherlock
always runs normalisation before the actual detection so this was turned off (more
precisely, it was changed to use the original file rather than the normalised file), again
this did not change the detection algorithm. More details about the preprocessing
options of Sherlock are given is given in Chapter 7.

– The fourth change was to remove ‘#Line’ printing in the report. ‘#Line’ was a mark
from Sherlock when it removed a part of code when preprocessing. This has nothing
to do with the detection itself but with Sherlock’s preprocessing techniques which
were used. This line would cause problems for other tools to parse the code with that
line. Sherlock had in the detection algorithm specified to ignore such lines, but the
other tools didn’t and because of that this ‘#Line’ printing was disabled.

– The fifth change was to add to Sherlock the ability to process files that have exten-
sions different than .java like .txt. This change has no effect on this research since
only Java files are used, but it is mentioned to cover all changes made in Sherlock’s
source-code.

4.2.2 Problems with JPlag-java and Sherlock

Whilst using JPlag and Sherlock some problems were noticed in their functionality. This is
not a big issue since the tools are treated as black boxes and no improvement is allowed. Also,
the literature suggests that the tools are successful even with these problems, but it is for sure
that these problems can help or hinder the tools in their work and therefore have some hidden
impact on the experimental results. In this section, these problems are presented and the possible
impact on the results of the experiment discussed.

The JPlag Java version has the problem of not supporting features of Java 8 and later, meaning
JPlag-java just skipped these lines and did not parse them, although an in depth analysis of JPlag-
java code was not done, so it might have other influences. But one should notice that if a correct
parser for Java 8 would be implemented for JPlag-java, probably the results when Java 8 is used
would be better. The problems with JPlag-java were:

• lambda expressions — which may cause errors on some lines after the lambda expression
if they are closed on a new line like in the next example:

p a r k i n g . f o r E a c h ((p) −> {

L i s t <MeteoData > meteoData = A r r ay s . a s L i s t (

m e t e o C l i e n t B e a n . ge tMeteoData (p . g e t I d () , p . g e t A d r e s s ()

)) ;

meteoData . s t r e a m () . f o r E a c h ((mp) −> t h i s . m e t e o D a t a L i s t .

add (new Park ingMeteoDa ta (p , mp))) ;

36

Chapter 4. Similarity detection tools

}) ; / / t h i s c a u s e s t h e e r r o r t o c o n t i n u e

• static imports ;

• annotations inside a function the argument definition for params with Java 8 ;

• lines that include the ‘::’ operator like: Arrays.stream(args).anyMatch("–kreni"::equals);

• annotations and functions that define the method with @interface and the default state for
columns.

These problems with Java 8 are not a big concern because this issue was not present in
most years (mainly for 2016/2017 (caused 284 errors) and 2017/2018 (caused 403 errors)). This
number of errors might seem big but if we suppose that this represents the number of Lines of
code (LOC) affected (although it is not a number of lines because sometimes one line causes up to
10 errors) and in 2016/2017 there were 4 assignments with 44 submissions and every submission
had more than 800 LOC, this makes then 140,800 lines, which means the error appears in only
0.2% of the lines. This percentage is a big overestimate since most submissions have on average
1500 LOC which makes this percentage drop to 0.1%. The same percentage comes out for
2017/2018, even though there are more errors, since there were also more submissions. Another
reason why this issue is not much of a problem for this research is that most students did not
use the Java 8 features, so it is a small probability that plagiarism was present between two
solutions that used the Java 8 features. Also, even if the Java 8 parts of code are not detected as
similar there is a high probability, if this is a case of plagiarism, that the rest of the code is also
plagiarised and this is then detected by JPlag-java.

In some rare cases, errors occur, because of the preprocessing technique which removed the
finally statement and leaves only the try statement. This caused JPlag-java to report a problem
that the catch statement is missing. Whether this has some effect on the similarity is unknown
but since it happened rarely it is not investigated further. To be more concrete, the problem with
missing catch statement occurred only 37 times in all the detections, when looking by year it
was caused mostly in: 2016-2017 (10 errors) and 2017-2018 (10 errors). If the same estimation
is done as before, supposing a submission has 800 LOC, this is then 0.007% of the LOC.

Similarly, it happened with another preprocessing technique where some leftover annota-
tions or catch statements were present and sometimes an expression was partially deleted, like
‘Message message = new Message(messId,.’, which was an expression in two lines and the
second part was removed. But also this is not a concern since for all years and all assignments it
happened only 20 times.

The biggest issue with JPlag-java is the problem with import statements or package state-
ments which are not at the beginning of the file. This is caused by merging all files of a sub-
mission before the detection. This problem gives JPlag-java an advantage on the detections in
cases where these lines are not removed previously by preprocessing techniques, in comparison

37

Chapter 4. Similarity detection tools

to the other tools which in some cases indicate some of these lines as similar. Such lines make
up around 17% of the code, if calculated with 800 LOC per submission, but a more realistic
approximation would be 9% since there are on average 1500 LOC in one submission. How big
this impact is it is hard to tell since it is unknown if JPlag-java would have found these lines as
similar if it didn’t have the parsing problem. This issue should be taken into account if JPlag-java
would perform much better than other tools in cases when such statements are not removed in
preprocessing.

Sherlock has only one problem with the calculation of similarity whereby it may mark
two files with a similarity larger than 100%. This problem is caused by the fact that Sherlock
calculates the similarity for parts of code, called a match, and then some lines appear in two (or
in some rare cases in more) matches. Sherlock then just sums up all the similarities as found
matches. Since Sherlock is not using LOC as a basis for the calculation of similarity there is
no way of correcting that without modifying the calculation algorithm. Since changing this
would mean improving Sherlock it is not allowed, also as stated before Sherlock as is can be
considered a successful tool even with this problem. But if this would be corrected Sherlock
probably would report other similarities which then would change the configuration parameters
during calibration and the detections would also report different similarities. Analysing this is
out of the scope of this research but it is an interesting question for the future.

From the analysis, one can say that most of the mentioned issues probably do not have a big
impact on the experimental results, but regardless of that one should keep them in mind when
reading the final analysis of the experiment.

4.3 Configuration parameters of similarity detection tools
Most detection tools have configuration parameters which can be set before the detection.

The idea is to give the user the possibility to configure how strict (or sensitive) a tool is when
calculating similarity. By changing the configuration the tool one can go from considering
everything as similar, to marking nothing as similar. To objectively compare tools they need to
be executed with their best parameter configuration to eliminate the effect of the parameters. It
would be biased to compare tools where one has the best parameter configuration and the other
has the worst parameter configuration. The problem is that the best parameter configuration for
each tool is not known and depends to some extent on the dataset used. Because of that, finding
the best parameter configuration could take too much time or it might be impossible to find in
some cases.

One way of solving this problem is to look at existing research and see what parameter
configuration was used. Ragkhitwetsagul et al. [157] gave a useful overview of 30 tools and
what was the best configuration in each case. But often configuration is not reported like in [26,
40], which brings into question whether the results are credible, but even when the configuration
is known, as in [157], this does not guarantee that such configuration will be good for other

38

Chapter 4. Similarity detection tools

research. It can happen that on a different dataset another configuration is better.
The solution to the configuration problem is to perform a calibration of the tools using the

calibration method which was developed as part of this research and presented in [138]. Instead
of searching for the best parameter configuration for each tool, the idea is to find an optimal

configuration which puts all tools in an equal position, as much as possible. This approach
then ensures that the chosen configuration is not biased. Even though the calibration method is
presented in [138] it does not give all details about the calibration of the selected tools which
are used in the experiment, so more details are given in Section 4.4.

4.4 Calibration of similarity detection tools
When comparing tools it is expected that the similarities they report are as close as possible

to the real similarity. For example, if there are two files which have 50% similarity it is expected
that all tools report 50% similarity. In reality, often these similarities differ and since the real
similarity is not known one can only relay the similarity that the tools report. If all tools report
approximately the same similarity we can trust to a certain degree that this reflects the real
similarity. However, if all tools differ, the problem is which one to trust.

In addition to this, as already stated, most tools have some configuration parameters which
can be changed and this changes the similarity. Now the question is what parameter combination
to choose to put them in a fair position for comparisons. Since the best parameter combination is
not known, and since the real similarity is not known, the idea is to calibrate the tools. In the best
case scenario, all tools will report the same similarity after calibration. In this way even though
the real similarity is still unknown at least all tools are equally off from the real similarity.

The calibration method described in [138] uses the tools to calibrate each other using a
Calibration Dataset (CD) and allows that the CD can be any dataset for which the similarities
don’t need to be known, which is a big benefit since the similarities vary from tool to tool and it
is difficult or maybe impossible to establish what the exact similarity is. Another benefit is that
the calibration can be done by one person without including experts and still have an objective
calibration of the configuration parameters. It is important to note that this method, even though
it puts tools in an equal position, is never 100% fair.

The primary component to enable such calibration is the metric called Calibration Difference
Sum (CDS) described in detail in [138]. The formal specification of the CDS metric is [138]:

CDSAB
ab =

n

∑
i=1
|sim(ci, tA

a)− sim(ci, tB
b)|,a = pA1...pAn,b = pB1...pBn (4.1)

where ‘A’ is the base tool used to calibrate tool ‘B’ (called the calibrated tool), ‘tA
a ’ and ‘tB

b ’
represent one configuration parameter combination of the tools, ‘a’ and ‘b’ are sets of allowed
parameter values ‘p’ in the tools, and ‘ci’ is one case in the CD representing a pair of files for
which similarity is calculated. So, sim(ci, tA

a) is the similarity of tool ‘A’ with configuration ‘a’

39

Chapter 4. Similarity detection tools

on case ‘i’. The CDS is therefore a sum of absolute differences in similarity for each case in the
calibration dataset for one configuration of tool A and tool B.

The idea of the method is to find a parameter combination where CDS is minimal. In an ideal
situation CDS would be 0, which means all tools report exactly the same similarities. But one
needs to be careful since it is possible to configure a tool to not find any similarity and always
report 0%. Because of this, a CDS value of 0 is suspicious and one should always perform the
calibration on a CD where at least for some cases the approximate similarity is known.

In this research mutual calibration is used, meaning each tool is used to calibrate the other, so
the goal is to find the optimal CDS value (CDSopt). Optimal CDS is achieved when calibrating
tool B with tool A and calibrating tool A with tool B gives the minimal CDS for the same
parameter configuration. Sometimes the optimal CDS value cannot be found, as happened when
textual versions of SIM and JPlag were configured. In such situation one can use another tool
to settle the argument, or look which configuration suggests the minimal CDS, or summing the
CDS values in both directions and look which configuration has a minimal CDS total, or find
some other way make a decision.

Since from three selected tools most information about parameter configuration exists for
SIM and JPlag they were calibrated first. Once this was done Sherlock was calibrated with SIM
and JPlag as base tools. The calibration dataset that was used consisted of 10 cases extracted
from the SOurce COde Reuse (SOCO) training dataset (details about the dataset are presented
in Section 6.2.) for which it was known if the case was plagiarised or not and 8 manually created
cases (with different obfuscations) for which the similarity was approximately known to control
the problem if CDS value would be 0. Each case had only two files which were compared. The
description of the 8 manual cases can be found in [138].

To automatize the calibration, or rather to automatize the calculations for the CDS values
for different configurations for each tool, a command line tool called MPC Calibrator was
developed. MPC Calibrator is part of the MPC System and was designed to generate a textual
report as shown in Appendix A. Input data for the MPC calibrator were: name of the base tool,
configuration for the base tool, name of the configured tool and the path to a directory containing
the calibration dataset. MPC Calibrator calculates CDS values for the given configuration of
the base tool and the different configurations of the calibrated tool. In the report (Appendix
A) the MPC Calibrator marks the optimal configuration and for this configuration it gives the
corresponding similarities and absolute similarity differences between the base tool and the
calibrated tool for all cases. Also, it states the best configuration and the corresponding similarity
for a specific case. In the second part of the report, MPC Calibrator presents the total difference
of similarities between the base tool and the calibrated tool (known as the CDS value) for each
tested configuration of the calibrated tool.

The calibrated configuration is presented in Table 4.2. The detailed description of the indi-
vidual calibrations is given in Section 4.4.2 and Section 4.4.3.

40

Chapter 4. Similarity detection tools

Table 4.2: Tools calibrated configuration

Tool Name Java Text

SIM-Grune r=22 r=10
JPlag t=9 t=7

Sherlock*
MFJ = 10, MRL = 13,
MBJ = 1, MJD = 2,
MSL = 1, STR = 1

MFJ = 10, MRL = 5,
MBJ = 1, MJD = 1,
MSL = 1, STR = 1

Note:
r - minimum run length of tokens
t - minimum token length
* - parameters explained in Section 4.4.3

4.4.1 Comparison of SIM and JPlag

SIM and JPlag have only one parameter that can be modified that influences the detection
outcome. For SIM this is parameter minimum run length of tokens (r)), for JPlag this is parameter
minimum token length (t). In the article [157] the authors tested 30 similarity detection tools
among which were SIM and JPlag. They found out the optimal parameters (in their scenario)
for SIM and JPlag for both text and Java versions of the tools.

According to [157] the optimal parameter value for SIM is r=22 for the Java version and r=4
for the text version. For JPlag the optimal parameter value is t=3 for the Java version and t=8 for
the text version. One could ask why these configuration parameters should not be used, and the
answer is that, as explained before in Section 4.4, there is no guarantee that such configuration
will be good for this research.

Before the actual calibration was done, a simple test was performed using the optimal con-
figuration reported by [157]. It was expected that JPlag and SIM with their optimal parameters
would give approximately equal similarities for each case. But this did not happen — in fact,
there were big differences between similarities for some cases in the Java version (for example
SOCO 8 case) and for some cases in the text version (for example SOCO 4 case) as shown in
Table 4.3.

After qualitatively examining the results in the Java version it became clear that JPlag-java
recognized non-similar parts as similar. For example, in SOCO 8 case (Table 4.4), one can see
some lines (File 144 - A vs. File 192 - A and File 144 - B vs. File 192 - B) that JPlag-java
matched as similar were at all similar (numbers 144 and 192 are the names of the files in the
SOCO dataset). The reason why JPlag matched those lines is because the t value was too small
and made JPlag very sensitive to small similarities. SIM-java did a better job of not identifying
such lines. This is not a surprise since in [157] SIM-java ranked second while JPlag-java ranked
twenty-first.

In the text version the situation was a bit more complicated. In SOCO 4 case, which is an
exact copy with few slight changes, both SIM and JPlag in the text version gave worse results

41

Chapter 4. Similarity detection tools

Table 4.3: JPlag-java and SIM-java calibration dataset similarities

Similarity

Java version Text version

JPlag SIM JPlag SIM
Case name (t=3) (r=22) (t=8) (r=4)

manual - 0% example A 10.0 0.0 0.0 6.0
manual - 0% example B 11.4 0.0 0.0 2.3
manual - 50% Copy 64.1 58.5 40.7 56.5
manual - 50% Simple Obfuscation 67.5 67.0 48.8 64.0
manual - 50% Complex Obfuscation 64.1 58.0 39.9 57.0
manual - 100% Copy 100.0 100.0 99.7 100.0
manual - 100% Simple Obfuscation 98.3 100.0 96.7 100.0
manual - 100% Complex Obfuscation 84.8 92.5 79.1 98.5
SOCO 0 - N - (084-258) 45.7 14.5 0.0 4.7
SOCO 1 - N - (000-001) 22.1 7.5 4.1 30.6
SOCO 2 - N - (002-003) 28.9 0.0 4.0 10.2
SOCO 3 - P - (003-004) 77.6 54.0 49.6 61.5
SOCO 4 - P - (107-112) 100.0 100.0 33.3 75.0
SOCO 5 - N - (052-077) 50.0 0.0 4.2 17.5
SOCO 6 - N - (011-037) 38.5 0.0 0.0 3.0
SOCO 7 - P - (062-064) 87.4 85.5 77.7 85.5
SOCO 8 - N - (144-192) 57.1 1.0 0.0 15.3
SOCO 9 - N - (037-093) 41.4 0.0 0.0 12.0
Note:
N in the case name marks a non-plagiarised case
P in the case name marks a plagiarised case

than with the Java version. This is not unexpected since the Java versions are much better for
source-code similarity detection than textual versions. But what is interesting is that JPlag-text
tends to be more confused than SIM-text for SOCO 4 case. On the other hand, in the SOCO 1
case SIM-text identifies too much as similar because of the low r value, so only 1 line with 4
identical words is needed to be matched as equal. An example of one such matched line is in
SOCO 1 case: “BufferedReader bf = new BufferedReader(new InputStreamReader(is));”. But
the similarity is purely coincidental through common code and usage of convenient variable
names. Because of the SOCO 1 case JPlag-text does a better job not identifying the line as
similar since it is in isolation.

Based on the results it is evident that both tools are more strict if the value of their configura-
tion parameter is lowered and more liberal if the value is increased. Also, from the results, it is
clear that the tools are not configured to be in a fair position for the experiment, so calibration
must be performed.

42

Chapter 4. Similarity detection tools

Table 4.4: JPlag false similarity examples in SOCO 8 case

Example Code
File 144-A

i f (imageFileName . c ha r At (0) != ' / ') {
imageFileName . i n s e r t (0 , URLName . c o n c a t (" / ")) ;

}
e l s e {

imageFileName . i n s e r t (0 , HostName) ;
}}

File 192-A
i f (g e t F i l e S i z e (s t r W a t c h D o g D i f f F i l e _ 0 1 _ 0 2) > 0)
{

sendMai lWi thDe tec t edChanges () ;
System . o u t . p r i n t l n (" Text d i f f ma i l has been s e n t t h e ' '

e m a i l a d d r e s s . ") ;
}
e l s e
{

System . o u t . p r i n t l n (" The DIFF f i l e has z e r o l e n g t h −
t e x t d i f f ma i l has NOT been s e n t . ") ;

}}

File 144-B
genera teChecksum (t e m p 0 0 0 0 F i l e . getName () , c h e c k s u m F i l e) ;
}
e l s e i f (! d i f f I m a g e s . i sEmpty ()) {
r e p o r t D i f f e r e n c e s (f a l s e , nul l , nul l , d i f f I m a g e s) ;
}

File 192-B
(i n p u t F i l e . e q u a l s (s t r W e b P a g e O u t p u t F i l e 0 1))
{

w r i t e T e x t A r r a y T o F i l e (s t r I m a g e A r r a y ,
s t r I m a g e O u t p u t F i l e 0 1 ,
i n t I m a g e C o u n t e r) ;

}
e l s e i f (i n p u t F i l e . e q u a l s (s t r W e b P a g e O u t p u t F i l e 0 2))
{

w r i t e T e x t A r r a y T o F i l e (s t r I m a g e A r r a y ,
s t r I m a g e O u t p u t F i l e 0 2 ,
i n t I m a g e C o u n t e r) ;

}
}
}

43

Chapter 4. Similarity detection tools

4.4.2 Calibration of SIM and JPlag

One could argue about which tool to choose to calibrate the other. Based on the results from
Section 4.4.1, SIM-java (with r=22) could be selected as the base tool to configure JPlag-java,
but since JPlag-java is the most widely used tool based on the literature review, it would make
sense to select JPlag-java as a base tool even though it ranked worse in [157]. Because of this
problem the decision taken to do a mutual calibration of SIM and JPlag so no tool is preferred.

The calibration was done separately for the textual versions and for the Java versions since
the two versions use different approaches and have different success rates, as noted in Section
4.1. Also, to be able to analyse in the experiment the difference between the text and Java
approaches they need to be kept independent from each other as much as possible.

Calibration of SIM and JPlag java version

The calibration of SIM-java and JPlag-java was done by calculating CDS values for all
variations of parameters of SIM-java and JPlag-java in the range from 1 to 30. The range 1-30
was selected based on some simple tests on a few cases and observing how the parameter affects
the similarities. It was noticed that after parameter values reached 30 the tools tended to find
only obvious cases of plagiarism and mostly reported only 0% similarity.

As already explained, for each case in the calibration dataset the difference between sim-
ilarities that SIM-java and JPlag-java reported were calculated. For example, SOCO 8 case
in Table 4.3 SIM-java reported 1% similarity while JPlag-java reported 57.1% similarity this
makes an absolute difference of 56.1%. Differences for all 18 case are then summed up and
this represents the CDS value. For example, in the report presented in Appendix A the minimal
value for JPlag-java was t=9 when calibrated with SIM-java (r=22) with the minimal CDS of
84.1.

Table 4.5 shows JPlag-java parameter ‘t’ in the range 1 to 15 and the corresponding optimal
value of parameter ‘r’ from SIM-java which gives the lowest CDS value. The range from 16–30
for parameter ‘t’ is not presented since the CDS value is only increasing. SIM-java was searched
for the optimal parameter value with minimum CDS in the range 1 to 30. From Table 4.5 it is
visible that the lowest CDS with the value 84.1 is achieved with configuration: JPlag-java t=9

and SIM-java r=22.
In Table 4.6 results are presented where SIM-java is the base tool to calibrate JPlag-java.

The range for JPlag-java is 1 to 30 as it was for SIM-java. The only difference in Table 4.6
in comparison to Table 4.5 is that it shows the whole range for ‘r’ with some values excluded.
Some parameter values are excluded because the parameter values of SIM-java give no new
information and they follow nicely the trend of the presented data in Table 4.5. The data in Table
4.6 indicate that the best combination of parameters is r=22 and t=9 with lowest CDS value of
84.1, which is the same parameter combination as indicated in Table 4.5. It should be mentioned
that theoretically it is possible that some untested combination with values above 30 may give

44

Chapter 4. Similarity detection tools

Table 4.5: SIM-java calibrated with JPlag-java as base tool a

JPlag-java (t) SIM -java (r - best) CDS

1 5 170.1
2 6 126.2
3 9 158.7
4 9 143.4
5 11 121.6
6 14 106.0
7 21 105.5
8 22 93.5
9 22 84.1

10 26 89.8
11 26 95.4
12 26 112.6
13 29 118.4
14 29 118.4
15 29 125.2

a Part of the table was presented in [138]

better results, but this is very unlikely and according to the noticed trend the CDS values are
probably only growing.

With the configuration for SIM-java (r=22) and JPlag-java (t=9) the calibration of Sherlock-
java is performed. This result can be considered good since it matches SIM-java parameter value
22 in the article [157] which indicates that the calibrated data is valid. But calibration shows
that the reported value t=3 in [157] is not optimal when talking about fair comparisons and
confirms the suspicion that there can be a better option for other datasets that have been reported
elsewhere. Also, one needs to remember that SIM-java ranked second and JPlag-java ranked
twenty-first so it was expected that the calibration would align more with the better ranked tool.
Another important note is that these results and the results in [157] suggest that using the default
configuration is not always good. For example, the SIM-java default configuration is r=24 which
is different than the calibrated value and the value reported in [157], for JPlag-java, on the other
hand, the default value is t=9 which is the same as value obtained by the calibration.

45

Chapter 4. Similarity detection tools

Table 4.6: JPlag-java calibrated with SIM-java as base tool a

SIM-java (r) JPlag-java (t - best) CDS

3 2 328.1
5 2 170.0
7 2 147.2
9 4 143.4

11 5 121.6
13 6 107.5
15 7 108.2
17 7 108.2
18 9 106.8
19 9 106.5
20 9 102.1
21 9 94.6
22 9 84.1
23 9 86.4
24 9 86.4
25 9 86.4
26 9 84.9
27 9 84.9
28 9 87.5
29 9 92.0

a Part of the table was presented in [138]

Calibration of SIM and JPlag text version

For calibrating the text versions of SIM and JPlag the same approach with the same range
was used as in the calibration of the Java versions. Table 4.7 presents the CDS values for SIM-
text as the base tool and Table 4.8 presents the CDS values for JPlag-text as the base tool. The
main problem when calibrating text versions is that the CDS value constantly gets lower as the
values for the ‘t’ and ‘r’ parameters rise. From this it can be concluded that CDS would get to
zero at a point when both parameters (‘r’ and ‘t’) are so large that they would give for all cases
zero similarity. Such parameters are of no use, so to solve the problem the SIM-java version was
used to help stabilize the CDS values. The idea was to calibrate SIM-text using JPlag-text and
SIM-java with r=22, and to calibrate JPlag-text using SIM-text and SIM-java with r=22.

In Table 4.7 and Table 4.8 there is a column showing ‘CDS to SIM-java’ which shows the
CDS value of SIM-java (r=22) for the best corresponding parameter value of SIM-text (Table
4.7) or JPlag-text (Table 4.8). Since the idea was to keep the CDS between SIM-text and JPlag-
text as close as possible, but also to eliminate the continuous decrease of CDS values with every
increase of the parameter values, a CDS total was calculated summing up the CDS value to the
base tool and the CDS value to SIM-java (r=22).

In Table 4.7 the smallest CDS total is 174.4 for SIM-text r=10 in combination with JPlag-text

46

Chapter 4. Similarity detection tools

Table 4.7: SIM-text calibrated with JPlag-text and SIM-java as base tools

JPlag-text (t) SIM-text (r - best) CDS CDS to SIM-java (r=22) CDS TOTAL

1 2 137.3 282.6 420.0
2 4 119.8 250.8 370.7
3 4 112.0 250.8 362.9
4 10 97.4 98.6 196.1
5 10 92.2 98.6 190.8
6 10 91.8 98.6 190.4
7 10 75.8 98.6 174.4
8 11 77.6 109.1 186.7
9 15 68.4 135.6 204.0

10 19 76.9 186.6 263.5
11 19 69.3 186.6 255.9
12 19 64.7 186.6 251.3
13 19 65.9 186.6 252.5
14 19 64.7 186.6 251.3
15 19 65.7 186.6 252.3
16 19 65.0 186.6 251.6
17 19 62.7 186.6 249.3
18 26 60.5 203.5 264.0
19 27 45.8 237.5 283.3
20 27 45.8 237.5 283.3

t=7. In Table 4.8 the smallest CDS total value is 247.8 for JPlag-text t=7 in combination with
SIM-text r=10. Since in both directions the same parameter combination was suggested these
were the values to be used in the experiment. Note that in Table (Table 4.7) the ‘CDS to SIM-
java’ is not the smallest value, so if only SIM-java (r=22) would be used to calibrate the textual
version of JPlag-text it would choose t=4, but this would mean a higher difference between
SIM-text and JPlag-text. Similarly, with SIM-text the best value is r=7 when calibrated with
SIM-java (r=22), which also has the same effect of increasing the difference between SIM-text
and JPlag text.

With the configuration for SIM-text (r=10) and JPlag-text (t=7) the calibration of Sherlock-
text was performed. The calibrated configuration can be considered good since the optimal
value for JPlag-text in the article [157] is t=8 and which is just one value higher than calibrated.
For SIM-text the difference is higher but this is not unexpected since SIM-text ranked last (rank
thirty) and JPlag-text ranked fifth. As with the Java versions it was expected to more align with
the better ranked tool. Regarding the default configuration, one can conclude the same as with
Java version, that it is not a good choice to use the default values. For example, the default value
for SIM-text is r=8 and for JPlag-text is t=5 which is different from the calibrated values and the
values reported in [157].

47

Chapter 4. Similarity detection tools

Table 4.8: JPlag-text calibrated with SIM-text and SIM-java as base tools

SIM-text (r) JPlag-text(t - best) CDS CDS to SIM-java (r=22) CDS TOTAL

2 1 137.3 276.9 414.2
4 3 112.0 170.5 282.5
5 4 99.7 164.7 264.4
6 4 105.3 164.7 270.0
7 4 101.0 164.7 265.7
8 7 96.2 172.0 268.2
9 7 89.7 172.0 261.7

10 7 75.8 172.0 247.8
11 9 75.0 184.1 259.1
12 9 74.9 184.1 259.0
13 9 72.2 184.1 256.2
14 9 73.2 184.1 257.2
15 9 68.4 184.1 252.5
17 9 76.4 184.1 260.5
19 17 62.7 232.8 295.5
21 18 64.5 235.3 299.7
22 18 64.0 235.3 299.3
23 18 63.5 235.3 298.8
26 18 60.5 235.3 295.8
29 29 47.3 298.1 345.4

4.4.3 Calibration of Sherlock

The calibration of SIM and JPlag is easy in comparison to Sherlock, and the reason is that
Sherlock has six parameters that can be configured. Let suppose that those parameter values
range from 1 to 10 this gives 1,000,000 variations 12, so to calibrate Sherlock a limit needs to be
placed on the number of parameter variations. The six parameters are [68]:

• Minimum String Length to Store (MSL): lines which have fewer characters than this
number will be ignored;

• Minimum Run Length to Store (MRL): runs shorter than this number will be ignored;

• Maximum Forward Jump (MFJ): how far to look forward for a matching line when one
pair of lines has matched;

• Maximum Backward Jump (MBJ): how far to look backward for a matching line when
one pair of lines has matched;

• Maximum Jump Difference (MJD): how much the jumps in the two different files can
vary in length;

12Statistically these are variations with repetition, but to simplify the discussion in this Section they are just
called variations.

48

Chapter 4. Similarity detection tools

• Strictness (STR): how strict the algorithm is.

Sherlock has two more parameters which can have the values true or false. First is Amalga-

mate Nearby Runs which tells whether overlapping runs should be made into one bigger run.
Second is Concatenate Nearby Runs which tells whether runs which are close together should
be concatenated. In all experiments Concatenate was set to false, and Amalgamate was set to
true. The default values of the six parameters that needed to be calibrated are presented in Table
4.9. Also, Sherlock can be used in Java mode or C++ mode, but since in this research only Java
is used, only the Java mode in Sherlock was used.

Table 4.9: Sherlock default parameter values

Parameter Value

MSL 8
MRL 6
MFJ 3
MBJ 1
MJD 3
STR 2

Calibration of Sherlock’s Java version

Based on four manually created cases for which the similarity was approximately known,
Sherlock’s configuration parameters were tested for their effect on the similarity in four steps.
The reason was to limit the number of parameter variations to a reasonable value of around 500
variations. The four steps were the following.

Step 1 Each parameter was tested alone in the value range from 1 to 20 while others were on
default values (Table 4.9). The results were:

– MRL (interesting range [1-20]) - lowers the similarity with higher value;

– MFJ (interesting range [1-20]) - increases the similarity with higher value;

– MBJ (interesting value [1]) - made no changes in similarity;

– MJD (interesting range [2-4]) - values 1 and 2 gave the same similarity, values 4 and
higher gave the same similarity;

– MSL (interesting range 1-2) - value 2 and higher gave the same similarity;

– STR (interesting range [2-3]) - values 1 and 2 gave the same similarity, values 3 and
higher gave the same similarity.

Step 2 Since MRL and MFJ had the highest impact they were tested together in combination with
others at the default value (Table 4.9). For both the range was from 1 to 20, which gives
400 variations. After analysing the results manually, the results were:

49

Chapter 4. Similarity detection tools

– MRL (interesting range [3-9,10,14]) - Similar similarities were for values [10-13]
and [14-20]; MRL with value 1 or 2 is very small so it was decided to exclude them
in this step;

– MFJ (interesting range [3,4,11,12,15,17,18,19]) - Similar similarities were for values
[4-10] and [12-14], and equal similarities for values [15,16] and [19,20], while values
1 and 2 gave small similarities (20% or less) for cases where the similarity should
have been approximately 50%.

Step 3 Step 2 left 9 MRL values and 8 MFJ values in a total of 72 variations. In this step, those
two were combined with others in the range from 1 to 5 (since step 1 indicated that for
the four parameters this covers all had interesting values) one at a time, and others were
kept default (Table 4.9):

– MBJ (interesting value [1])- gave no changes, as already indicated in step 1, so it
was fixed at 1 as it was in the default settings;

– MJD (interesting range [1-5])- there were slight differences in similarity over all five
values;

– MSL (interesting range [1-2])- value 2 and higher gave the same similarity as indi-
cated in step 1;

– STR (interesting range 1-2)- there were slight differences in similarity over all five
values but strictness with value 3 or more gave low similarities (20% or less) on
cases where the similarity was approximately 50%.

Step 4 Step 3 gives a total of 1440 variations, which is still a bit too many. Since most values
contain MFJ and MRL they were further limited to 5 values. For MFJ the values [12,17,19]
were removed since there was a ‘representative’ value close by. For MRL the values
[4,6,8,10] were removed which left a nice range of ‘representative’ values. Once the best
variations were known after the first calibration, the calibration was repeated with a new
set of values including the removed ones.

Based on the results in the simple test the parameter values for the first calibration were
(500 variations): MFJ - [3, 4, 11, 15, 18], MRL - [3, 5, 7, 9, 14], MBJ - [1], MJD - [1,2,3,4,5],
MSL - [1,2], STR - [1,2]. The calibration was done on the same calibration dataset as it was
done for SIM and JPlag. First Sherlock-java was calibrated with JPlag-java as the base tool and
then with SIM-java as the base tool. The optimal configuration for base tool JPlag-java (t=9)
with CDS=133,2 is: MFJ = 4, MRL = 7, MBJ = 1, MJD = 2, MSL = 2, STR = 1. The optimal
configuration for base tool SIM(r=22) with CDS=164,5 is: MFJ = 11, MRL = 14, MBJ = 1,
MJD = 2, MSL = 5, STR = 1.

Since the two configurations differed, the top six configurations from each calibration were
taken and mapped together. These top six configurations from both calibrations are presented

50

Chapter 4. Similarity detection tools

Table 4.10: Sherlock-java’s first calibration with SIM-java and JPlag-java

CDS CDS CDS

MBJ MFJ MRL MSL MJD STR SIM-java JPlag-java Total

1 11 7 2 1 1 184.5 140.0 324.5
1 4 7 1 2 1 197.5 139.2 336.7
1 4 7 2 2 1 205.5 133.2 338.7
1 11 14 2 5 1 164.5 182.6 347.1
1 4 9 1 2 1 210.5 144.2 354.7
1 4 7 2 2 2 214.5 142.2 356.7
1 4 9 2 2 1 219.5 143.1 362.6
1 4 9 2 2 2 220.5 144.1 364.6
1 11 9 2 2 2 205.5 166.4 371.9
1 11 14 2 2 2 205.5 166.4 371.9
1 15 14 2 5 1 186.5 202.6 389.1

in Table 4.10, together with the CDS value between SIM-java and Sherlock-java (marked CDS
SIM-java) and the CDS value between JPlag-java and Sherlock-java (marked CDS JPlag-java).
Those two CDS values were summed up (marked CDS Total) which ensured that Sherlock-java
had minimal differences from JPlag-java and SIM-java.

Now since some of the configuration values were excluded in Step 4, the idea was to repeat
the calibration and see whether the CDS total can get even smaller. From Table 4.10 the pa-
rameter values from the top four combinations were taken for the second calibration since they
included the top configurations got with SIM-java and JPlag-java. For MRL and MFJ parameters,
the removed values from Step 4 were used for the second calibration, also values +/- 1 from the
current top values were used if they were not included in the first calibration. This gives the
following values for parameters (640 variations): MFJ [4, 5, 7, 10, 11, 12, 17, 19], MRL [4, 6,
7, 8, 10, 13, 14, 15], MBJ [1], MJD [1, 2, 5, 6, 7], MSL [1,2], STR [1].

In the second calibration, configuration with the minimal CDS=120.8 for base tool JPlag-
java(t=9) is: MFJ = 10, MRL = 13, MBJ = 1, MJD = 2, MSL = 1, STR = 1. The configuration
with the minimal CDS=146,5 for base tool SIM-java (r=22) is: MFJ = 11, MRL = 15, MBJ
= 1, MJD = 5, MSL = 2, STR = 1. Since again the optimal Sherlock-java variations got with
SIM-java and JPlag-java did not match, the top six variations were taken from each and mapped
together as for the first calibration. The results are presented in Table 4.11. From this the chosen
configuration parameter combination for Sherlock’s Java version is therefore: MFJ = 10, MRL

= 13, MBJ = 1, MJD = 2, MSL = 1, STR = 1.
The calibration could be repeated a few more times, but since the CDS total value did not

decrease drastically in the second run there is reason to believe that further runs would not make
much of a difference. Also, since the calibration is just a way to ensure an objective selection of
parameters for the main experiment, the top configuration from the second calibration was not
used.

51

Chapter 4. Similarity detection tools

Table 4.11: Sherlock-java’s second calibration SIM-java and JPlag-java

CDS CDS CDS

MBJ MFJ MRL MSL MJD STR JPlag-java SIM-java Total

1 10 13 1 2 1 120.8 178.5 299.3
1 10 15 2 5 1 153.6 150.5 304.1
1 11 15 2 5 1 164.6 146.5 311.1
1 7 15 2 6 1 162.5 152.5 315.0
1 7 13 2 6 1 162.5 152.5 315.0
1 7 14 2 6 1 162.5 152.5 315.0
1 4 6 2 2 1 129.3 190.5 319.8
1 10 13 2 5 1 165.5 158.5 324.0
1 10 14 2 5 1 165.5 158.5 324.0
1 10 14 1 2 1 133.8 191.5 325.3
1 7 6 2 1 1 134.4 192.5 326.9
1 4 7 2 2 1 133.2 205.5 338.7
1 4 8 2 2 1 133.2 205.5 338.7

Calibration of Sherlock’s text version

The calibration of Sherlock-text was done in the same way as the calibration of Sherlock-
java. Again, the four manually created cases were used to limit the parameter variations. But
the difference was that for the textual version already at the first step very small changes of
similarity were observed. In the first step, as for Sherlock-java, each parameter was tested alone
in the value range from 1 to 20, while others were set to default values. Default values for the
textual version were the same as for the Java version (Table 4.9). The results of step one were:

• MRL (interesting range [1,3,4,8,10])- lowers the similarity with higher value but with less
effect than in Java version values; equal similarities were got for parameter values: [1,2],
[4-7], [8,9], and [10-20];

• MFJ (interesting range [1,2,3,5,8,14])- increases the similarity with higher values but with
less effect than in the Java version; equal similarities were obtained for parameter values:
[3,4],[5-7],[8-13],[14-20];

• MBJ (interesting value [1]) - made no changes in similarity;

• MJD (interesting range [1,2]) - values 2 and higher gave the same similarities;

• MSL (interesting range [1,14,17]) - values [1-13],[14-16], and [17-20] gave the same
similarities;

• STR (interesting range [1,3,7]) - values [1,2],[3-6], and [7-20] gave the same similarities.

In comparison to the Java version the number of variations was not too big (540 variations)
so all could be run at once. But since MRL and MFJ made the most changes they were run

52

Chapter 4. Similarity detection tools

Table 4.12: Sherlock-text’s calibration with SIM-text and JPlag-text

CDS CDS CDS

MBJ MFJ MRL MSL MJD STR SIM-text JPlag-text Total

1 10 5 1 1 1 160.9 149.9 310.8
1 10 1 1 1 3 163.9 156.9 320.8
1 10 2 1 1 3 163.9 159.9 323.8
1 8 2 1 1 3 166.9 159.9 326.8
1 8 1 1 1 3 166.9 159.9 326.8

together in variations to see are there any other parameter values that would make a difference.
Since no such value was found the ranges from step one were used.

Calibration was run on the calibration dataset as all the other tools with the ranges for
parameter values: MFJ - [1,3,4,8,10], MRL - [1,2,3,5,8,14], MBJ - [1], MJD - [1,2], MSL -
[1,14,17], STR - [1,3,7]. The results are presented in Table 4.12. CDS values for Sherlock-text
were calibrated with SIM-text (r=10) are marked as CDS SIM-text and CDS values for Sherlock-
text calibrated with JPlag-text (r=7) are marked as CDS JPlag-text. Again the sum is marked as
CDS Total and the lowest CDS total was for the configuration: MFJ = 10, MRL = 5, MBJ = 1,
MJD = 1, MSL = 1, STR = 1.

The most interesting thing in this calibration is that the same configuration was indicated by
the calibration with SIM-text and JPlag-text. Since the configuration matched up, the configura-
tion that will be used for all further experiments for Sherlock’s text version is therefore: MFJ =

10, MRL = 5, MBJ = 1, MJD = 1, MSL = 1, STR = 1.

53

CHAPTER 5

EVALUATION MEASURES

In Chapter 4 it was mentioned that there are many tools available that can help find plagiarism
in source-code programming assignments. In order to find out which tool to use, researchers
compare the tools. Feature comparisons are a good way to make an initial selection, but to
find out which tool is better experiments and qualitative analysis are performed. When doing
experiments, various metrics are used to do the comparisons and the statistical analysis.

In this Chapter these metrics that are used for comparisons are analysed. To find out which
metrics are used literature is reviewed in Section 5.1. After that the metrics which are used in
this research are discussed in more detail in Section 5.2.

5.1 Related work
One of the first comparisons of algorithms used for plagiarism detection was done in 1989

by Parker and Hamblen and presented in “Computer algorithms for plagiarism detection”[147].
Soon after that in 1990 Whale published “Identification of program similarity in large pop-

ulations”[185] comparing tools that had been developed at that time. Whale calculated the
Performance Index and used it as a comparison metric, later on Verco and Wise used the same
metric in [178]. More detailed explanation of the metric is given in Section 5.1.2.

The Performance Index metric depends on two measures called Precision and Recall. That
this is an important fact becomes evident from Mozgovoy’s article [131] where he declares that
using Precision and Recall for evaluation is one of two main principles. The second principle that
Mozgovoy describes is the evaluation based on Highest False Match and Separation (difference
between the Lowest Correct Result and the Highest False Match) metrics used by Hoad and
Zobel in [74].

The first approach using Precision and Recall is used more often than the second approach,
in fact Precision and Recall are the two most used metrics for comparisons according to the SLR
[140]. Precision was used 23 times for comparisons and Recall 24 times according to [140].
The next in line is F-beta which is a metric calculated based on Precision and Recall and was
used 12 times. If one would count articles that use this metric for evaluation of their tool without
comparison these numbers would be slightly higher.

As already stated in Chapter 4 in the performed SLR [140] from 120 developed tools only
55 were compared, and from those only 27 used a quantitative approach. For comparison, a
qualitative approach was used 47 times. In the 27 articles that use a quantitative approach only 6
different measures are used, that are mentioned in at least two articles. Next to Precision, Recall
and F-beta the other three measures are: Performance Index (used 2 times), Sensitivity (used

54

Chapter 5. Evaluation measures

5 times), and speed (used 5 times). There are some other measures but conclusions in these
articles are primarily based on one of the six mentioned measures.

From the six measures, speed is the least interesting since it is not a direct measure of quality.
While speed is important it is not a primary concern. Most tools are able to produce results in a
few minutes which will satisfy most users. Once it is known that a tool has good Precision and
Recall does it make sense talking about speed as done in [143].

In order to explain the other five measures, one needs to establish some basic terminology.
In Chapter 1 it was stated that match or pair represents two submissions which were compared.
If a match is a case of real plagiarism it is referred to as plagiarized match and if a match
is not plagiarised it referred to as non-plagiarized match. Tools mark matches as potentially
plagiarized if the similarity of the match is higher than some threshold (sometimes also called
cut-off threshold). Based on that, if a plagiarized match is also marked by a tool it is categorized
as true positive (tp) otherwise it is categorized as false negative (fn). If a non-plagiarized match
is marked by a tool as potentially plagiarised it is categorized as false positive (fp) otherwise it
is categorized as true negative (tn).

Basically, every match can be classified into one of the four categories. Some combinations
of these categories are known under specific names. Three terms for these combinations were
already mentioned, but here they are explained in a different context: plagiarized match – which
represents true positives and false negatives, non-plagiarized match – which represents false
positives and true negatives and match – which covers all four categories. Except for those there
is the term indicated match which represents true positives and false positives, or in other words
everything that a tool marks as potential plagiarism.

Different measures, simply formulated, present different ratios of these categories using the
number of elements in some category. Measures that will be used in this research (Section 5.2)
are Precision, Recall and F-beta (which is calculated based on Precision and Recall) since they
have been used in various existing studies [31, 134, 154, 157, 170].

5.1.1 Sensitivity

Sensitivity can mean three things, first as stated in [2] it can mean Recall, and the term
Sensitivity for Recall was used by Lee at al. 2012 [102]. But Sensitivity mentioned previously
actually represents two different measures and not Recall.

First, Sensitivity (further referred to as Sensitivity-A) as used in [63, 98, 130] presents
how the system will react if more and more obfuscation is done. Example of that was done
in [63] where one program is put through a series of refactoring modifications (simulating
obfuscation methods) and if it gives 100% similarity then it is insensitive to modifications. If
the modifications lower the similarity of a tool the tool, is considered sensitive, and the more
modifications lower the similarity the more sensitive a tool is. The idea is to modify the program
bit by bit and see how the system becomes more sensitive. For example in [98] lines of code are
inserted to see how the similarity will lower. Sensitivity-A is easier presented with a line graph

55

Chapter 5. Evaluation measures

where on the y axis is the similarity and on the x axis the obfuscations starting from the simplest
to the most complicated. The line in the graph usually starts at 100% similarity for the original
program (at least that is expected) and then lowers towards 0% similarity.

Second, Sensitivity that is used by [185] and [178] where it is explained in detail, is further
referred to as Sensitivity-B. To explain Sensitivity-B, even in short, the terms redundant matches

and essential matches are needed. Redundant matches are matches that already have another
match where the two submissions exist. So if submissions A, B and C exist and there are three
matches A-B, B-C, A-C then one of them is redundant and the others are essential matches. The
redundant match is the one that has the lowest similarity. Sensitivity-B, as explained in [185],
tells us how many of the possible redundant matches are found in a group of n submissions
(calculated by 0.5∗ (n−1)∗ (n−2)). Sensitivity-B increases if the threshold increases. Since
Sensitivity-B can be modified by changing the threshold it is normally not used directly, instead,
it is used to calculate Performance Index at a constant value of Sensitivity-B. There is also
the term Limiting Sensitivity which represents the Sensitivity-B that will include at least all
true positive essential matches, at this point there is little sense to change Sensitivity-B since
Precision is the maximum it can be.

One can see that the term Sensitivity in both cases means the same thing, the only difference
is how it is measured. In general Sensitivity means if a system is more sensitive it introduces
more matches that are not plagiarized matches.

5.1.2 Performance Index

The Performance Index metric depends on three measures: Sensitivity-B (explained in 5.1.1),
Selectivity and Excess Detection. All are introduced by Whale in [185] and were used by [178]
where detailed descriptions can be found and how to calculate them. Sensitivity-B was already
explained in the previous Section so here is a short explanation of the other two dependent
measures [178, 185]:

• Selectivity – is the ability of a plagiarism detection tool to have high Precision with
increasing Sensitivity-B. Zero Selectivity is present when true positive essential matches
are equally spread throughout the Sensitivity-B range. The Precision at such a linear
response is always constant. Since the true number of plagiarized matches is not known
this Precision is calculated with estimated parameters. Precision of the linear response
(PL) based on estimated parameters is calculated as a number of plagiarized essential
matches found by all systems compared divided by half the number of submissions (N)),
Although in [178] authors use N number instead of N/2. The formula to calculate PL is:
PL = (t p+ f n)/(N/2)

• Excess-detections (D) - “are detections made by a real system over an idealized system

with maximum Recall and zero Selectivity.”[185] “It represents the Excess Detection made

by the detector over pure chance.” [178] Maximum D is needed to calculate the Per-

56

Chapter 5. Evaluation measures

formance Index and it is measured only when Precision is high enough, usually 60%.
To calculate D the theoretical number of true positive essential matches of the linear re-
sponse is subtracted from the measured number of true positive essential matches at the
same number of essential matches (esm). This is done for all values of essential matches
from 1 to n where Precision is above 60% (or 0.6). Then the maximum D needs to be
found to calculate Performance Index. The formula to find maximum excess-detections is:
Dmax =

n
max

esm=1
(t p@esm− esm∗PL) where: t p@esm are the true positives essential matches

at the number of essential matches, esm is the number of essential matches, PL is the
precision of the linear response and n is the number of checked essential matches usually
estimated as the number of submissions divided by two according to [185].

Now that it has been explained what excess-detections are, one can define Performance Index.
Performance Index is the normalized maximum Excess Detection. It is calculated by multiplying
maximum Excess Detection by the normalization value (also called normalization factor). The
normalization value is the reciprocal value of the number of real plagiarized matches multiplied
by 1−PL. The Performance Index is calculated as

Per f ormance_index = Dmax ∗
1

(t p+ f n)∗ (1−PL)
(5.1)

or

Per f ormance_Index =
n

max
esm=1

(
t p@esm− esm∗ t p+ f n

N
2

)
∗ 1

(t p+ f n)∗ (1− t p+ f n
N
2

)
(5.2)

where: N is number of submissions; t p – true positive essential matches, f n – false negative es-
sential matches; esm is number of essential matches; t p@esm – true positives essential matches
at the number of essential matches; n is the number of checked essential matches usually esti-
mated as n = N/2.

Usually, in a real case scenario, the number of real plagiarised matches is not known so the
fn value is actually an estimated value, mostly consisting of marked real plagiarised matches by
multiple tools. While Performance Index seems to be a very good measure for comparison it is
difficult for calculation since it uses only essential matches for calculation. Probably because of
this reason today a more acceptable measure is F-beta.

5.2 Precision, Recall and F-beta
In an ideal situation, everything that a tool marks as plagiarized is really plagiarized and all

plagiarized cases are marked. But this is in most situations impossible, so two measures called
Precision (P) and Recall (R) are used to describe how good a tool is.

Precision and Recall are two measures that are very dependent ranging from 0 to 1. Usually
one can not increase one without decreasing the other. Recall shows how many plagiarised
cases a tool has marked, while Precision shows from the matches that are marked as potentially

57

Chapter 5. Evaluation measures

plagiarized how many matches are really plagiarized. Because the tools are not perfect, to find
more plagiarized matches (higher Recall) one will also have more false positive matches (lower
Precision). Precision and Recall are calculated as follows:

P =
t p

t p+ f p
,∈ [0,1] R =

t p
t p+ f n

,∈ [0,1] (5.3)

Since the real plagiarized matches need to be known, as stated before, the number of false
negatives is usually estimated. This has the implication that Recall is also an estimated value. To
estimate the false negatives in this research the number of real plagiarized matches is a union of
real plagiarized matches that were marked by every tested tool, the same approach was used by
Verco and Wise in [178]. In this way, if there is a plagiarized match that is not found by any tool
it has the same impact on all tools. Meaning, if an extra false negative would be added it would
be added to all calculations for every tool, this would change the Recall, but the ratio would still
be the same and that is more important when doing comparisons.

To be able to calculate Precision and Recall one needs to set the cut-off threshold. The
threshold can be fixed or optimal as stated in [154]. The fixed threshold is chosen in advance and
it is the same for all tools and datasets. The fixed threshold is usually set to a certain percentage
as done in [154] or it can be set to the first n matches as explained in [63]. The optimal cut-off
threshold is a threshold where the sum of Precision and Recall is maximal, whereby one sets
the importance of Recall in comparison to Precision. This can be represented [130] as P+mR

where m is the importance of Recall. If m is less then 1 it gives more importance to Precision
and if m is bigger than 1 it gives more importance to Recall.

Sometimes interesting information can be obtained when presenting Precision and Recall in
a graph form. For example, in [154] graphs presenting Precision or Recall at different thresholds
show how fast the two values change with a lower threshold. With a lower threshold Precision
decreases but the Recall increases. Similar information can be obtained with a graph presenting
Precision at different levels of Recall as used in [5, 31]. Such a graph shows how Precision
lowers as the Recall increases. An overview of other graphs and other measures that can be used
for comparisons is presented in [140].

Based on Precision and Recall the measure F-beta can be calculated. F-beta (more formal
representation is Fβ) is a unified number of quality taking into account both Precision and Recall.
F-beta is calculated as follows:

Fβ =
(β 2 +1)∗P∗R
(β 2 ∗P)+R

,∈ [0,1] (5.4)

The beta value has the same function as the m value in the optimal cut-off threshold. If beta
is less then 1 (usually 0.5) it gives more importance to Precision and if beta is bigger than 1
(usually 2) it gives more importance to Recall. In most cases beta is set to 1 so it gives equal
importance to Precision and Recall, this measure is called F1 measure (or F1 score or balanced

58

Chapter 5. Evaluation measures

F-score). F1 is the harmonic mean of Precision and Recall. To calculate F1 measure the formula
can be simplified to:

F1 = 2∗ P∗R
P+R

,∈ [0,1] (5.5)

In this research, the term accuracy is used to describe quantitatively and qualitatively how well
a tool performs. Quantitatively it is represented using the average measure F1 or the individual
measures Precision and Recall. Note that the term accuracy can also mean a metric, as presented
in [2], which tells us the rate number of true positives and false negatives divided by the number
of matches.

59

CHAPTER 6

EXPERIMENTAL DATASETS

In [139] it is noted that often results from different studies are not completely comparable,
even when the same metrics are used, because these studies use different datasets. Similarly, it
was noted in [100] where a quote from Saxon was used [162]: “it is difficult to compare detection

engines in the same way since there are no standard source code corpora available”.
In this Chapter a literature review was performed to determine whether there are some

standardized datasets which could be used for comparison of detection tools. In Section 6.1 the
results of the literature review are presented, and in the rest of the sections the description of
datasets that will be used in this research are given.

6.1 Related work
In the literature there seems to be an agreement that the F1 measure together with Precision

and Recall is a standard measure to be used for detection tool comparisons. On the other hand,
the same research does not use a standardized dataset. From the 24 articles that use Recall
as a comparisons metric, in 19 of them, datasets were used that consist of personal students’
datasets or datasets that were specifically generated for that research. Using personal datasets
is important, especially when these datasets consists of real student solutions. For example,
using real personal students’ datasets has the advantage of showing how tools operate in a real
environment, and since most of these studies use JPlag for comparisons these studies show how
JPlag performs on different datasets.

The problem with using personal datasets in research is that results for tools which were
used in only one study are not directly comparable to other studies. For example, in [38] a tool
called source code similarity detector system (SCSDS) was developed and compared to JPlag.
In the execution, the F1 measure was used with a personal dataset. The study showed how
SCSDS performed better on different levels of cut-off thresholds than JPlag. The research itself
is relevant, well executed, and published in a credible journal. The only problem is that, since
a personal dataset was used, a direct comparison of SCSDS to tools reported in other studies is
not possible, especially since SCSDS is not a publicly available tool.

To have the possibility of direct comparisons, standardized datasets need to be created and
used in the studies. This does not mean that personal datasets containing real data should not
be used, rather it means that standardized datasets should be used along with personal datasets.
Until today according to the Systematic Literature Review (SLR) performed in [140] only two
datasets were used at least two times in 150 analysed articles. To visualize, datasets types that
are discovered in [140] are presented in Figure 6.1.

60

Chapter 6. Experimental datasets

Figure 6.1: Number of articles in databases per year

There are six dataset types in studies as presented in [140], three types are personal dataset
types and three are standardized dataset types. The personal dataset types are: datasets that use
real student data (PersonalStudent), datasets that were manually generated for the purpose of
the study (PersonalGenerated) and datasets in studies that use both real and generated datasets
(PersonalGenOrStud). There are 6 standardized datasets but only two are used more than 2
times in the analysed articles (more details later in this Section), the other three are grouped
into one category (Other) and are the least interesting. Figure 6.1 divides the number of articles
per dataset type into four areas, which include articles that: 1) compare tools, 2) develop a new
tool, 3) use a tool in their study which includes comparison and development of tools, and 4) all
articles that were analysed in the SLR. Figure 6.1 clearly shows how personal datasets are used
mostly in comparison to the standardized datasets in all four areas.

These standardized datasets are the SOurce COde Reuse (SOCO) dataset 1 and the ICPC
(ACM International Collegiate Programming Contest) dataset 2. The SOCO dataset was used 5
times in [35, 40, 52, 58, 164] and the ICPC dataset was used 2 times in [79, 102]. In articles that
do comparisons, SOCO was used 4 times and ICPC only once. Of course, if one looks beyond
the 150 articles there are other studies that also use these datasets like [71] or [157] as reported
on their web page 3.

While both datasets are available to the public the SOCO dataset is more practical for de-
tection tool comparisons in the domain of source-code plagiarism, and the reason is that SOCO

1http://users.dsic.upv.es/grupos/nle/soco/
2https://icpc.baylor.edu/worldfnals/problems
3http://crest.cs.ucl.ac.uk/resources/cloplag/

61

http://users.dsic.upv.es/grupos/nle/soco/
https://icpc.baylor.edu/worldfnals/problems
http://crest.cs.ucl.ac.uk/resources/cloplag/

Chapter 6. Experimental datasets

has reported the real plagiarised matches which are necessary to calculate Precision and Recall.
There are also other datasets that are available and are used in the source-code plagiarism domain
like the Google Code Jam Contest 4 in [50] or the BlueJ BlackBox dataset 5 in [125].

While these datasets are useful in some cases, for example in [125] authors report that the
BlueJ BlackBox dataset is suitable for applying code style based plagiarism detection techniques,
there is still the problem of knowing which are the real plagiarised cases. Because of that
issue, and based on the usage of the dataset in the source-code plagiarism domain, one can
conclude that the SOCO dataset is currently the dataset that has the best probability of becoming
a standardized dataset to be used in detection tool comparisons in the source-code plagiarism
domain. More details about the SOCO dataset are given Section 6.2. If one is interested in cross
language plagiarism detection there is a different dataset called CL-SOCO 6 which is described
in detail in [49].

6.2 Source Code Reuse dataset
The SOCO dataset has been created for the international PAN@FIRE 2014 competition,

which is a competition that “focuses on the detection of source codes that have been re-used

in a monolingual context”[52]. The dataset is first divided into Java and C collections. Since
in this research Java is used when referring to the SOCO dataset, only the Java collection is
used. The Java collection is further divided into a training collection and a test collection. Both
collections have reported the real plagiarised cases 7 but there is a difference how they were
labelled. The training collection was labelled manually by three experts and the test collection
was labelled using tools whereby a “pair needs to appear at least in 66% of the competition runs

to be considered as a relevant judgement” as reported in [52].
In Table 6.1 the structure of the SOCO dataset is given. The SOCO training collection

was made from the corpus used in [5]. The training collection consists “of university student

assignments that contain source code re-use cases that were manually detected and reported by

the professors. [51].”
The test collection has been created from the Google Code Jam Contest source-codes (same

collection as used in [50]) and marked automatically as explained before. The SOCO test
collection is divided into 6 assignments containing different files. The main difference between
the assignments is that they represent different scenarios (i.e., different themes/problems are
considered) [52], other than that the differences between the assignments are the average line
counts and the differences in the number of reused files and the total number of files.

The A assignments are solutions from Problem B (Dancing With the Googlers), the B

4https://code.google.com/codejam/contest/1460488/dashboard
5https://bluej.org/blackbox/
6http://users.dsic.upv.es/grupos/nle/clsoco/
7In the context of SOCO they call it re-use rather than plagiarism since the decision whether it is plagiarism

depends on how much re-use is acceptable.

62

https://code.google.com/codejam/contest/1460488/dashboard
https://bluej.org/blackbox/
http://users.dsic.upv.es/grupos/nle/clsoco/

Chapter 6. Experimental datasets

Table 6.1: SOCO dataset structure

Number of
Collection Assignment Files Plagiarized files Plagiarised matches Matches

Test A1 3,241 86 54 5,250,420
Test A2 3,093 75 47 4,781,778
Test B1 3,268 124 73 5,338,278
Test B2 2,266 62 34 2,566,245
Test C1 124 0 0 7,626
Test C2 88 28 14 3,828

Training T1 259 115 84 33,411

assignments are solutions from Problem C (Recycled Numbers) and the C assignments are
solutions from Problem D (Hall of Mirrors). Descriptions of the problems are available at the
Google Code Jam Contest website mentioned before. “Problems B and C are considered of

medium difficulty, whereas problem D is the most difficult.”[50] In the Google Code Jam Contest
the problems B, C and D have two complexity levels — small and large — as noted in [50].
While it is not clearly stated in [52] it is suspected that the distinction between A1-A2, B1-B2,
and C1-C2, represents the solutions submitted to solve the smaller or larger complexity of the
corresponding problem the same as was done in [50]. If this is true then the A1, A2, and B1
problems had an 89–95% success rate (the number of correct solutions divided by the number of
submitted solutions) and the B2, C1, and C2 problems had only 63–71% success rate as stated
in [50].

In this research, the most interesting is the training collection (assignment T1) which has
been manually labelled by experts so it was selected to be used in the experiment. Since in this
research six tools are used in combination with preprocessing techniques it was decided to use
the C1 and C2 assignments from the test collection “as is” and to create subsets of the other four
assignments in the test collection for the analysis. The reason why only C assignments are used
as provided is that the number of files in the A and B assignments is large and would take too
long to process, and the number of files in a group is much larger in comparison to the dataset
containing real student solutions. Additionally, the C1 assignment has no plagiarized matches
which makes it impossible to calculate Precision and Recall so for C1 only a qualitative analysis
can be performed. In summary, for the research assignments, T1, C1 and C2 are used “as is”,
where C2 is not part of the experiment that is verified using F1 measure and the A1, A2, B1 and
B2 are used partially. More details about how the datasets are used are given in Chapter 8.

6.3 Real student solutions datasets
Why it is important to use datasets containing real data is evident from SLR [140], where

from 150 papers 96 papers use in their studies real personal datasets, and that from 55 papers
that do comparisons 41 are using real personal datasets. Most research projects working with

63

Chapter 6. Experimental datasets

such datasets have created the datasets from solutions of one course at an undergraduate level
according to [140]. Also, most research has on average up to 6 assignments, from 50 to 300
submissions per assignment and with solutions of 50 to 500 Lines of code (LOC). There are
some articles that have a large number of submission [20, 36], or assignments [190] gathered
from multiple years, but they are rare.

In this research, a Real Student Solution (RSS) dataset was created which contains submis-
sions gathered in one course over six years. The course is teaching web programming using
the programming language Java on the first year of a university graduate study program. In
all six years, students have to submit four assignments which differ in complexity. While the
first two assignments are relatively simple by using more basic Java, the last two assignments
are more complex and use all sorts of features like web services, JSF, ORM, web filters, EJB
and similar. Submissions can contain, in addition to Java source files, other files types such as
pictures, text documents, XML files, PDF files, and SQL files. Also, submissions supporting
different languages like HMTL, CSS, JavaScript, etc. are possible. In Table 6.2 the structure of
the RSS dataset is presented. On average there are 50 submissions per one assignment and each
submission ranges from 400 LOC to 6,000 LOC which makes 11.8KB file size up to 155KB file
size.

In comparison to a typical study, this study has a larger dataset than most other studies,
but since only the first assignment is verified by the experts and therefore only for the first
assignment can the calculations be made, can one say that this study has the average number
of assignments (6 assignments, one in each year). Since it was performed at the graduate level
(which is relatively rare) it has larger solutions which mostly have more than 500 LOC. It has
the average submission size of 50 submissions for one assignment and like most studies, it is
performed on one course. In summary, this research is in some sense performed on a larger scale
of real data than most of the previous studies.

Table 6.2: Real Student Solution dataset structure

Assignment

A1 A2 A3 A4

Year T P T P T P T P

2012-2013 61 8 59 NA 60 NA 61 NA
2013-2014 47 2 47 NA 49 NA 50 NA
2014-2015 50 9 52 NA 49 NA 47 NA
2015-2016 41 0 43 NA 43 NA 42 NA
2016-2017 44 0 44 NA 45 NA 44 NA
2017-2018 56 4 58 NA 58 NA 55 NA
Note:
T - Total number of submissions
P - Plagiarised number of submissions

64

Chapter 6. Experimental datasets

The evaluation (described in Section 6.3.1) of which matches are cases of real plagiarism
was done by an expert, more specifically the teacher who is responsible for the course. The
rule to decide what is considered plagiarism (according to the definition in Chapter 2) was
simple, if the teacher is ready to accuse the student of plagiarism it is considered a real case
of plagiarism. Note that students who have been accused of plagiarism by this teacher have
always admitted that this is the case. Note that in Table 6.2 for A2, A3 and A4 the number of
plagiarised submissions is marked NA. This is because the number is not known. Because of the
large number of manual checks that need to be made by the expert it was not possible to include
all four assignments in this research and therefore only the first assignment A1 is used and the
others are left out for future work.

In the course there is a clear statement that everything that is reused that was not given by
the teacher is restricted. If a student takes something from the web or other students he/she can
report it by filling out a word form which he needs to submit together with the solution. In this
case when it is reported this part is not considered plagiarism. Students are also notified it makes
no difference to the teacher if the student copies something from the web (plagiarism) or from
another student (collusion). If a student gives their solution to another student they are punished
the same as the student who copied, meaning their work is also considered plagiarism.

6.3.1 Procedure for analysing student solutions

A problem with analysing matches manually is that there are many of them. In this research
on average there were approximately 1,800 matches per assignment in one year. One option
would be to look at the top n matches, but this could lead to missing some if n is small, and
maybe too much to analyse if n is big, also there is the problem to decide what number n should
be. Another possibility is to analyse matches above a certain percentage, but this again leads to
a high number of matches since the tools in combination with different techniques report quite
different similarities.

The solution to this problem is the idea that it is not important how high the similarity of a
match is, but how it is in relation to the rest of the matches. The same idea was used to solve
the problem of selecting the threshold level needed for the calculation of F-beta, presented in
Section 3.2.3. With this idea in mind, the matches were ranked by similarity and then marked in
three colours. First are matches with a similarity that is 3*inter-quartiles (IQR) from the median,
these are considered critical and must be analysed and are marked red. Second are matches with
a similarity between 3*IQR and 2.5*IQR from the median, marked orange. Third are matches
between 2.5*IQR and 2*IQR from the median, marked yellow. The procedure is presented in
Figure 6.2.

65

Chapter 6. Experimental datasets

Figure 6.2: Procedure for confirming plagiarised matches

66

CHAPTER 7

PREPROCESSING TECHNIQUES

The main goal of this research is to analyse the effect of preprocessing so it is logical that
preprocessing techniques are one of the main components for the experiment. In Section 7.1
previous researches that were done is analysed and discussed using Systematic Literature Review
(SLR). The main reason for the SLR was to answer the question: “Which are the most used

preprocessing techniques?”. Answering this question is important to find out what techniques
exist and to filter out the ones that are considered useful. After the review of related work in this
Chapter the selected techniques are described together with a simple test that was performed to
decide which techniques to use in the experiment.

7.1 Related work
As already noted in Chapter 1 researchers try constantly to improve the detection qual-

ity, and one way of doing so is to use the PreProcessing Techniques (PPTs). Sometimes the
preprocessing techniques are called a different name for example in [159] they are called the
Transformation Rules but the idea is the same as in preprocessing techniques. An indication that
preprocessing is important is available in [96] where it was concluded that “pre-processing may

be more important than the comparison algorithm itself ”. In [96] it was stated that the goal of
preprocessing is “to reduce the ‘noise’ in a given set of programs” and it was indicated that their
system which uses preprocessing can give better results in comparison to other systems.

To analyse which preprocessing techniques exist the same articles will be analysed that were
used in the SLR [140]. From 150 processed articles there are 42 articles [2, 3, 6, 12, 14, 24,
26, 31, 32, 38, 40, 50, 59, 64, 67, 76, 82–85, 88, 90, 95, 97, 99, 104, 105, 107, 111, 112, 120,
136, 137, 143, 147, 154, 159, 174, 187, 188, 198, 200] describing some kind of preprocessing
technique. In Table 7.1 the identified categories of preprocessing techniques are presented with
the count of how many articles where mentioning them. PPT categories listed unify different
techniques under the same name, this is especially true for the Change Code Parts and Reorder

Code categories. These categories can be seen as one bigger technique, so further the categories
are refereed to as technique.

PPTs can be divided into two categories according to how they can be used [139]: “indepen-

dent preprocessing – wherein results can be used with different tools or algorithms like removal

of comments, and dependent preprocessing – wherein results can be used only on some tools like

tokenization. Dependent preprocessing could be considered as a part of a new tool or algorithm.”
In this research the focus is on the independent techniques. The techniques listed in Table 7.1
are all considered independent, but this must not mean that the individual articles that mention

67

Chapter 7. Preprocessing techniques

Table 7.1: Mentioned preprocessing techniques in reviewed articles

Preprocessing Technique Article count

Remove comments 28
Remove white spaces 20
Remove code parts 13
Change code parts 11
Template exclusion 10
Reorder code 6
String to Upper/Lover case 6
Other PP techniques 3

some technique use them as independent. It is possible that a PPT was used as part of some al-
gorithm, but it would be possible to extract or reimplement the technique to run it separately and
combine it with other plagiarism detection tools. On the other hand, the tokenisation technique
is a very specific one, even though it can be extracted and run separately, it is seen as dependent
processing. This is because “every tool has its own variation of tokenisation. As a result, it is

not possible to use the tokenisation process results obtained by one tool in another tool.” [139]
To make it clear what each PPT in table 7.1 represents here is a short description of each

one:

• Remove Comments (RC) - PPT which will remove comments from the code. This includes:
single line comments, block comments, trailing comments and end-of-line comments.
This PPT is mentioned in [2, 12, 32, 38, 59, 67, 76, 82–85, 88, 90, 95, 105, 107, 111, 120,
136, 137, 143, 147, 154, 174, 187, 188, 198, 200].

• Remove white spaces (RWS) - PPT includes removal of redundant white spaces. This
could be a new line, new line with carriage return or just multiple sequence of space or
similar chars. This PPT is mentioned in [12, 50, 59, 67, 82, 83, 85, 90, 95, 97, 99, 105,
107, 120, 136, 137, 143, 147, 154, 200].

• Remove Code Parts - PPT which removes some code parts that are not needed for the logic,
that are complicating the detection since the code part is too generic, or that in some other
way obfuscates the detection. The articles that are mentioning some kind of a PPT that is
removing code parts are [2, 31, 32, 38, 76, 88, 90, 97, 105, 112, 120, 187, 188]. Some
examples of the techniques that are mentioned in this articles are: removing all tokens that
are not from the lexicon of the target language [188], removing package declarations and
import statements from the original source code [38], remove access specifiers (public,
private, protected) [38], remove all declarations of variables or functions [97], removing
the input and output statements and header file on the premise of not affecting the program
semantics [120].

68

Chapter 7. Preprocessing techniques

• Change Code Parts - PPT which changes the code to improve the detection. The tech-
niques that are counted here are mentioned in [12, 26, 32, 38, 50, 97, 107, 111, 120, 159,
174]. Change code parts PPT includes: removal of symbols that are duplicated more than
six times [50], extract reserved words and user definition symbols [174], stripping variable
names and formatting [111], selection and iteration statements are transformed to standard
forms [159], replace all variable names with a constant name and replace all function
names with a constant name [97], renaming variables [26], unifying programming style
[120], extract reserved words and user definition symbols [174], treat identifiers which
consist of multiple terms separated by underscores as single terms [32], applying the
same indentation style [12], normalize the statements and function names in the source
code [107], and split of combined variable declarations into a sequence of individual
declarations [38].

• Template Exclusion (TE) - or sometimes referred to as removal of professors code is a
PPT which tries to remove all code that is given to students and which usage should not
be considered plagiarism. This technique is mentioned in [3, 24, 32, 38, 40, 64, 95, 111,
112, 154].

• Reorder Code - PPT which performs code reorder to improve the detection. The techniques
that are counted here are mentioned in [38, 97, 107, 120, 137, 188]. Reorder code PPT
includes: reordering the functions into their calling order [188], ignoring order of the
fields [137], divide program code into parts where one part is one function [97], unifying
programming style [120], changing the order of variables in statements, according to the
alphabetical order [38], and sort the user-defined functions so that the entry functions (e.g.
main) are first, then the rest of the functions in calling ordered and last all functions that
have never been called [107].

• String to Upper/Lover Case - a simple technique to change the whole code or parts of
code from upper case to lower case letters or vice versa. The technique is mentioned in
[2, 26, 32, 99, 187, 188].

• Other PPTs - The techniques that are counted under others are only mentioned in one
article and could not be grouped in any of the previous categories. The techniques counted
here are: integration of files into one file [26], ignoring programs with syntax error [137],
and preprocessing based on design patterns (de-patterning) [6].

The techniques RC, RWS and TE could be seen as special cases of the PPT ‘Remove Code
Parts’, but since many articles are mentioning the first two techniques and since some articles
are mentioning explicitly the third one, the three techniques are separated. Similarly ‘String to
Upper/Lover Case’ technique could be seen as special case of ‘Change Code Parts’ but again
since multiple articles explicitly mention the ‘String to Upper/Lover Case’ it is listed separately.

69

Chapter 7. Preprocessing techniques

The mentioned techniques can be divided into two groups according to how they operate:
removal techniques and modifier techniques. Removal techniques try to remove code that com-
plicates in some way the detection, while modifier techniques try to modify the code (with or
without changing the logic) to get better performance.

When looking for ideas for new preprocessing techniques one should look at obfuscation
methods and descriptions of to what some tools are resistant. For example, in the article [154]
authors describe the successful and non-successful plagiarized attacks (like insertion, modifica-
tion, or deletion of comments or change names of variables, methods, or classes) and from those,
one can get ideas for new or recognize existing PPTs. Similarly, in [173] the list of redundant
statements (like unreachable code, uncalled procedures and functions, extra semicolons, unused
variables or parameters) which one could add to hide plagiarism can be used to get ideas for the
PPTs.

The usefulness of some technique depends among other things on the tool and its underlying
algorithm that the tool is using. This raises the question what is the effect of such techniques and
should they be performed? For example, since most tools use tokenization the ‘Change Code
Parts’ techniques that do renaming of variables or functions will be ineffective since tokenization
transforms the code into a set of tokens which should ensure that modifications like renaming
have no effect. Therefore the technique is unnecessary in combination with such tool.

7.2 Selection of preprocessing techniques
For the experiment, it was decided to use no more than six different techniques to limit the

amount of analysis, as stated in Chapter 3. This number includes also combinations of techniques.
During the literature review, there was no article that would compare the effectiveness of different
preprocessing, and because of that, it is not possible to select the techniques based on their quality.
The decision was to first select the techniques based on how often some technique is mentioned
to be used in the literature. If a technique is used by more tools it is more probable that it has
some effect on improving the detection, otherwise, why use the technique.

From the review, in Table 7.1, one can see that the two most used techniques are RC and
RWS. Followed by ‘Remove code parts’, ‘Change Code Parts’ and TE. While multiple imple-
mentations exist all off them have the same goal and it is decided to use the most convenient
one. Most implementations are integrated inside of a tool and it is difficult or impossible to
extract the preprocessing technique. From the top rated systems (presented in Section 4.1) only
Sherlock has explicit possibility to perform preprocessing without the detection. Sherlock offers
implementations for the following PPTs: Remove White Spaces, Normalisation, and Remove
Comments.

Based on the names one can conclude what RWS and RC do, also they are described in
Section 7.1. On the other hand, the name Normalisation (NOR) does not say much. NOR
technique in Sherlock does among others the following: removes redundant spaces in one line

70

Chapter 7. Preprocessing techniques

between keywords and signs, splits every if statement in separate line on every ‘&&’ or ‘||’
character, it removes all indentation, etc. NOR technique includes in some way RWS technique
and adds the mentioned modifications. In general, it changes the code so that it unifies the style
to a single format and therefore it would go into the category ‘Change code parts’. The three
implementations can be used, but unfortunately the technique RC in Sherlock has a bug, so new
implementation of the technique is developed described in Section 7.3.

No ready to use implementation was found for the ‘Remove Code Parts’ technique so it was
decided to develop a new technique and use the suggestions from [38] with some additional re-
movals. The new technique is called Common Code Remove (CCR), further sometimes refereed
to as Remove Common Code. A detailed description of the technique is given in Section 7.4.

TE is one technique that has most available implementations, it is implemented for example
in JPlag as well in Sherlock. Problem is that even though the implementations exists it is not con-
venient to extract them for independent preprocessing technique and since the implementation
differs it is not an option that each tool uses its own implementation. Therefore a new version
of the template exclusion was implemented and presented in [95]. Results in [95] indicate that
template exclusion has some positive effect on the detection at least in combination with the tool
Sherlock. Since in [95] the focus was on the process model and not on the technique a detailed
description is given in Section 7.5.

Regarding the combination of techniques, Sherlock offers combinations of Remove Com-
ments with Remove White Spaces, Remove Comments with Normalisation. But since the
Multiple Plagiarism Checker (MPC) system allows combining any techniques and allows to
specify the order of execution, MPC is a better option. Since the individual effect of a technique
is unknown it is hard to choose the combinations, so only one combination that will include
all of the chosen techniques is considered useful to be used in the experiment. The reason
why combining all techniques is considered useful is the following. If every technique has a
positive effect, combining all of them should then have an even better effect than each of them
individually. To not jump into conclusions to fast more inside will be given with the following
tests.

In summary, to have a representative from each of the top five PPT categories the following
techniques are selected: RC, RWS, NOR, CCR, and TE. These techniques are further analysed
in a simple effect test (further referred to as PPTest) in Section 7.6. The reason for this PPTest
is the following. From Table 7.1 one can see that remove comments and remove white spaces
techniques are used most of the time. At the same time, these are also most primitive ones and
the effect is questionable, so it is the idea of the PPTest to remove techniques that show no effect
on a small dataset to lower the number of combinations in the main experiment.

71

Chapter 7. Preprocessing techniques

7.3 Remove comments technique
RC is the most popular technique which is available in tool Sherlock, but as noted before

it has a bug. The bug manifest itself by not removing only comments. For example, if there
is a line like “System.out.println("http://www.somepage.com");” Sherlock’s RC technique will
delete it and this will cause some problems in the parsing of JPlag-java tool. Because of that, a
new implantation of RC technique was developed.

The goal of the technique is simple, remove all comments from source-code. This includes
multi line comments and single line comments. In Java multi line comments begins with slash
sign followed by star sign and ends with start sign followed by slash sign (/* multi line comment

*/), and single line comments begins with two slash signs and ends with a new line (// single

line comment).
Implementation of the technique is very simple the characters of the files are read one by

one and if a beginning of a comment is recognized (single or multi line) the flowing chars are
skipped until the end of the comment is reached.

7.4 Common code remove technique
CCR technique is a preprocessing technique to remove code that is common and usually

can not be used to identify plagiarism. Common code mostly gives higher percentage rate and
enforces false positives. The CCR technique includes in its implementation of multiple actions
which can be seen as individual techniques. CCR is, therefore, a technique which combines
multiple techniques. Elements that the CCR technique removes are:

• package and import statements;

• annotations - remove all annotations that exist with or without parameters, and with or
without sub annotations;

• setter methods - methods that only set one variable and have no other logic, this includes
all forms of spaces between words and parenthesise, and with or without keyword ‘this’;

• simple ‘setter’ methods - it is a ‘setter’ method which does not have the word set but the
only thing the method does is to set a field. This method must use the word ‘this’ for
setting up a field otherwise it is not removed, also if any statement is there that does not
set a field the whole method is not removed;

• getter methods - methods that only get one variable and have no other logic, this includes
all forms of spaces between words and parenthesise, and with or without keyword ‘this’;

• empty constructors - including constructors which only call the super method with or
without parameters;

72

Chapter 7. Preprocessing techniques

• simple constructors - constructors that only set up fields by assigning a value to the fields,
the constructor must have a ‘this’ keyword, if the constructor has one element without
‘this’ keyword or does something else, it is not removed. The only exception is the call of
the ‘super’ method;

• empty functions - functions that do nothing and which have any number of input arguments,
but they have no statements or just have an empty return statement;

• empty classes - classes with no fields and methods. If the class has implement or extend
statement is not important, this also includes classes which will become empty because of
using the techniques described here;

• non initialized class fields - removing all fields that are not statically initialized and have
specified access modifier. Fields that don’t have access modifiers or are statically initial-
ized are not removed. Although fields can have some value for the detection they are in
most cases more misleading and don’t implement real functionality;

• empty blocks - removes empty loops (like while loop, for loop, or do-while loop) blocks,
empty if-else blocks or just else blocks, empty switch blocks, empty try-catch or try-catch-
finally or finally blocks;

• leftover white spaces - removes all double white spaces. This is necessary because by
removing all of the mentioned, big blocks of white space are generated. These white
spaces are removed at the end which has the effect that the output for the analysis is nicer.

7.5 Template exclusion technique
TE is, as already stated, based on the implementation described in [95]. The technique

uses Sherlock-text in the background where it performs similarity detection for every student
submission to the template code. The template code can be any code that is given to the students
by the teachers and that can be used in the assignments without considering it plagiarism.

TE technique from [95] can work with multiple templates. The technique first searches for
the best suitable template, which means it has the most similarity with the submission. Once the
best suitable template is found it removes the similar part from the submission. The detection
is repeated until the similarity between the submission and the template is at zero percentage.
The possibility of working with multiple templates is important since sometimes there are more
teachers in one course and every teacher can give to his group modified versions of the examples.
Combining all examples could lead to a huge template slowing down the detection, so it is more
efficient to create multiple templates. For more detailed explanation read [95].

The TE technique [95] uses Sherlock-text so it is dependent on Sherlock’s configuration
parameters. For the experiment the same parameters are used which were found during the
calibration (Section 4.4.3). A simple test was performed to see how calibrated configuration

73

Chapter 7. Preprocessing techniques

Table 7.2: Configuration comparison based on removed lines of code for template exclusion
technique

Submission Calibrated Default Differance

Calibrated configuration is better
S4 455 11 444
S8 289 19 270
S3 226 46 180
S1 191 53 138
S5 147 125 22

Default configuration is better
S6 19 52 -33
S2 53 89 -36
S7 0 57 -57

performs in comparison to the default configuration used in [95]. The test was to count how
many lines of the template code were removed.

On eight randomly selected student submissions from the Real Student Solution (RSS)
dataset the calibrated configuration removed on average more Lines of code (LOC). Table
7.2 presents the result of the test, whereby the first two numeric columns present the number
of removed LOC that were not removed with the other configuration. The last column presents
the difference of removed LOC, if the number is positive the calibrated configuration performed
better, if the number is negative the default configuration performed better. One can see that
only on 3 submissions the default configuration was better removing on average 42 LOC more
than the calibrated configuration, while the calibrated configuration was better on 5 submissions
removing on average 211 LOC more than the default configuration.

The TE technique in the article [95] is based on Sherlock text and Java version. Since in this
research the technique needs to be the same for text and Java version, only the text version is
used. This is necessary to be able to compare later the effect of the technique between Java and
textual detection. The Java version is not an option since it produces an output that can not be
used with other tools except Sherlock.

Problem with the implementation of the TE technique described in [95] is that it does not
take care of keeping the code parsable. This is not a problem for Sherlock since it does not parse
the code that is compared, but for JPlag-java that uses a parser, this means that most submissions
are not ok. To solve that the implementation was modified so that only complete blocks can
be removed. For example, if during detection some segment of a function needs to be deleted
and if this segment contains an open or closed bracket of the function that bracket must not be
deleted. Deleting this bracket would mean that the function would at the end miss the closing or
the open bracket causing parse error in JPlag-java.

Because of that problem, the new implementation of the TE removes a bit less template code
that the original implementation and it is more complicated since it takes care that nothing is

74

Chapter 7. Preprocessing techniques

deleted that could cause parse problem. Otherwise, the new implementation flows the same
process and idea as described in [95].

7.6 Technique selection test
In Section 7.2 five techniques were selected based on the literature and it was stated that

one combination of the techniques should be added to the list. Just to clarify why doing all
possible combinations is unrealistic let us suppose that five techniques are used, this makes 10
combinations of 2 techniques, 10 combinations of 3 techniques, 5 combinations of 4 techniques
and one combination with all techniques. Doing all 31 combinations is not possible, especially
when this is combined with 6 tools, 3 academic years (at least) and 2 assignments in a year this
leaves 1116 results which need to be analysed by an expert. In addition, each result has multiple
individual pairs that need to be examined. Because of that, the limit of maximum six techniques
or their combinations is chosen.

On the five selected techniques, a PPTest of effectiveness was performed. This PPTest should
help to select, for the main experiment, techniques which have the best predispositions to give
interesting results. The PPTest was done on a dataset containing four randomly selected pairs
from the RSS dataset. It was expected that the similarity should differ in comparison when no
technique is used. It is not important at this point how big the difference is and if the change is
positive or negative.

The PPTest was done on all three tools on both versions, in total six tools. All tools were
configured with values selected in the calibration phase (Section 4.4).

The results are presented in three tables, for JPlag and SIM Java versions in Table 7.3, for
JPlag and SIM text versions in Table 7.4, and for Sherlock in Table 7.5. From Table 7.3 it is
visible that RC, RWS and NOR techniques have the same similarity for SIM and JPlag Java
versions. For the textual versions of SIM and JPlag the situation is similar, with the difference
that RC technique causes differences in similarity. Because of this, some combinations RC,
RWS and NOR techniques where tried out.

The three tested combinations have no effect on Java versions of SIM and JPlag while there
is some difference in similarity for the textual version, but the similarity is the same as with
the RC technique. The reason for these results is that SIM and JPlag ignore comments in Java
version and are already immune to some simple stylistic changes like adding white spaces and
ignore them in textual and Java version.

The techniques CCR, TE and combinations of TE with CCR and combination of all tech-
niques make some changes in similarity in comparison to when no preprocessing is used. The
combination with all techniques and the combination of TE with CCR has the same effect in
Java version while in the text version there is some difference.

For Sherlock, on the other hand, every technique and every combination that has been tested
causes a difference in similarity in comparison to no preprocessing. This is no surprise since

75

Chapter 7. Preprocessing techniques

Table 7.3: PPTest similarities for JPlag-java and SIM-java

JPlag Java SIM Java

Technique Name E1. E2. E3. E4. E1. E2. E3. E4.

No Preprocessing 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5

Techniques
Remove Comments (RC) 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5
Remove White Spaces (RWS) 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5
Normalise (NOR) 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5
Common Code Remove (CCR) 81.5 61.2 17.9 36.6 85.0 61.5 16.0 39.5
Template Exlusion (TE) 72.7 18.5 9.1 18.4 78.5 20.5 4.5 19.0

Combinations
All (TE-RC-CCR-NOR-RWS) 74.2 17.2 8.8 21.0 79.5 19.5 5.5 19.5
RC-NOR-RWS 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5
NOR-RC 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5
RC-NOR 83.0 77.2 25.7 47.7 86.0 78.5 26.0 50.5
TE-CCR 74.2 17.2 8.8 21.0 79.5 19.5 5.5 19.5

Note:
All values that are different than the values when no PPT is used are bolded.

Sherlock was implemented to use the preprocessing to be more efficient. One unexpected result
was that the combinations RC-NOR and NOR-RC gave different results, which shows that the
order in which techniques are executed makes a difference for Sherlock. Another thing that was
unexpected that combination RC-NOR and RC-NOR-RWS have the same effect. This indicates
that RWS technique is unnecessary if NOR technique was used before. Also, it shows that NOR
technique already removes all unnecessary white spaces.

Based on the results for all six tools it can be concluded that RWS technique is not a useful
technique to be used and that it is covered by the NOR technique. Also, the results suggest that
NOR technique is of no use for other tools except for Sherlock.

To be even more confident what techniques to chose another from the ones that had a low
effect in the PPTest (RC, RWS, and NOR), a test was done to favour some technique (referred
to as favour test). For favour test, four cases which are 100% plagiarised were created manually
and some simple modifications were made to favour some technique. The four cases are: a case
of plain copy, a case where only comments were removed (favour RC technique), a case where
only new white spaces where added (favour RWS technique), and a case where modifications
were made to favour NOR technique. All combinations with two of these techniques in both
orders were also tested in the favour test.

Favour test confirmed that for JPlag and SIM Java versions there is no need for RC, RWS
and NOR techniques. The textual versions, as before, only RC technique makes a difference in
comparison to no technique. For JPlag-text the similarity jumps from 63,1% with no technique
to 99,6% with RC technique, and for SIM-text the similarity jumps from 60% with not technique

76

Chapter 7. Preprocessing techniques

Table 7.4: PPTest similarities for JPlag-text and SIM-text

JPlag Text SIM Text

Technique Name E1. E2. E3. E4. E1. E2. E3. E4.

No Preprocessing 62.7 73.0 24.5 22.0 64.5 72.0 30.5 18.5

Techniques
Remove Comments (RC) 61.9 74.7 19.5 35.9 63.0 73.5 22.4 37.0
Remove White Spaces (RWS) 62.7 73.0 24.5 22.0 64.5 72.0 30.5 18.5
Normalise (NOR) 62.7 73.0 24.5 22.0 64.5 72.0 30.5 18.5
Common Code Remove (CCR) 60.0 47.0 19.1 11.7 62.0 61.0 27.0 12.1
Template Exlusion (TE) 47.3 9.0 12.3 7.5 52.5 8.5 26.5 7.7

Combinations
All (TE-RC-CCR-NOR-RWS) 50.1 14.2 2.3 2.8 51.0 12.0 1.3 2.6
RC-NOR-RWS 61.9 74.7 19.5 35.9 63.0 73.5 22.4 37.0
NOR-RC 61.9 74.7 19.5 35.9 63.0 73.5 22.4 37.0
RC-NOR 61.9 74.7 19.5 35.9 63.0 73.5 22.4 37.0
TE-CCR 53.1 13.6 13.3 2.2 53.0 14.5 25.9 1.6

Note:
All values that are different than the values when no PPT is used are bolded.

Table 7.5: PPTest similarities for Sherlock

Sherlock Java Sherlock Text

Technique E1. E2. E3. E4. E1. E2. E3. E4.

No Preprocessing 47 87 15 19 37 60 3 6

Techniques
Remove Comments (RC) 54 82 15 47 29 62 3 6
Remove White Spaces (RWS) 66 69 16 10 36 60 3 3
Normalise (NOR) 58 71 7 13 43 56 6 3
Common Code Remove (CCR) 62 59 22 26 25 31 6 4
Template Exlusion (TE) 48 22 9 3 20 6 1 0

Combinations
All (TE-RC-CCR-NOR-RWS) 36 23 7 5 41 5 3 1
RC-NOR-RWS 63 82 19 31 52 55 10 29
NOR-RC 73 75 18 32 36 55 6 6
RC-NOR 63 82 19 31 52 55 10 29
TE-CCR 41 21 11 7 18 3 1 0

77

Chapter 7. Preprocessing techniques

Table 7.6: Similarities for Sherlock’s favour test

Sherlock

PlainCopy Favour RC Favour NOR Favour RWS

Technique name Java. Text. Java. Text. Java. Text. Java. Text.

No Preprocessing 100 100 55 19 57 5 83 14

Techniques
Normalise (NOR) 100 100 0 18 100 98 100 100
Remove White
Spaces (RWS) 100 100 0 11 100 34 100 100

Remove Comments (RC) 100 100 69 50 57 5 83 14

Combinations
RC-NOR 100 100 98 98 100 98 100 100
RC-RWS 100 100 38 79 100 34 100 100
NOR-RC 100 100 91 25 100 98 100 100

to 100% with RC technique.
Favour test on Sherlock gives the following results: for plain copy case no technique is

needed, for favour RC case the remove comments gives better results than no technique but it
is best when also NOR technique is used after RC technique, for favour NOR case the NOR
technique is best option and combinations with this technique, and for favour RWS case the NOR
and RWS techniques give the best results. In Table 7.6 the results for Sherlock are presented,
only three combinations are presented the other are removed since they gave the same results as
one of the presented combinations. For a remainder, the goal was that the technique should rise
the similarity to 100%.

Based on the PPTest and the favour test it was decided to remove RWS technique from the
experiment since it is covered by NOR technique. RC technique will be used since it shows
some effect on textual versions of for all three tools. CCR technique and TE technique will be
kept since they gave the biggest effect. The NOR technique gave only some effect on Sherlock
so it was decided to use it only in a combination.

Most combinations are giving the same results as the individual techniques so they are
not used. The TE-CCR combination gave some results but it was in some cases equal to the
combination when all techniques are used and for others the numbers did not differ too much
either form TE technique, CCR technique or the combination when all techniques where used
so it was decided to not use it in the experiment.

The combination using all techniques is selected for the experiment but without the RWS
technique. In addition, another combination technique which will use all techniques except for
RWS and NOR is also selected for the experiment. The reason why these two combinations are
chosen is that NOR technique is not tested alone but it is important for Sherlock it is included in
the first combination. On the other hand, the technique did not affect JPlag and SIM so another

78

Chapter 7. Preprocessing techniques

combination is used to have the possibility of comparison.
In summary, the following individual techniques are selected for the experiment: TE, CCR,

and RC. In addition to the individual techniques two combinations are selected: combination
including the TE, RC, CCR and NOR techniques (referred to as All techniques with Normal-
isation (AllNOR) technique or AllNOR combination) and combination including the TE, RC,
and CCR techniques (referred to as All techniques without Normalisation (AllnoNOR) tech-
nique or AllnoNOR combination). The order of execution of the individual techniques in the
combinations is as listed.

The order is important and it is probable that another order would give different results.
The reason why this particular order is chosen is the following. TE technique needs to be first
since the templates itself are not preprocessed in any way, so the exclusion of template needs to
happen on the original file to have the best effect. RC technique and CCR technique should be
independent, meaning they remove completely different things so the order should not make a
difference, but since CCR technique has at the end removal of leftover white space it is put after
RC technique. In this way if RC technique leaves some empty lines CCR technique can clear it
up.

NOR technique is executed at last since it is only necessary for Sherlock. Also, in the
favour test (favour RC case) it showed better results when it was put after RC technique. First
reason why NOR technique was chosen to be after CCR technique is that CCR uses the regular
expression in some parts of the implementation and NOR technique could make CCR technique
less efficient. The second reason is that NOR technique reformats the code to have a unified
style, so it is best to be used last after all removals are performed. A third reason is that NOR
technique clears all white spaces and it makes sense to do that at the end.

In total there are five techniques with three selected individual techniques and two combina-
tions of the techniques. Since the SOurce COde Reuse (SOCO) dataset does not have templates
the TE technique was excluded and the selected combinations were used without TE technique.

79

CHAPTER 8

RESULT ANALYSIS

This Chapter provides the complete results of this research. Before the results are presented
there is a description of some preparations that are important for the analysis.

The results are divided into two sections. First, the results from the SOurce COde Reuse
(SOCO) dataset are described and then the results from the Real Student Solution (RSS) dataset
are described. Next, a Section is given which describes the interesting findings regarding the
textual versions of the tools. The Chapter finishes with a Section summarizing the contributions
of this research which are based on the results from both datasets.

8.1 Preparation for analysis
This Section describes the selection of the threshold level (which is used to calculate the

Precision, Recall and F1 measure) and the contrasts that are used in the statistical analysis.

8.1.1 Threshold level selection

In Chapter 5 it was stated that to calculate the F1 value one needs to set a threshold level,
and in Section 3.2 it was discussed why using a flexible threshold level is better than using a
fixed threshold level.

There are two main reasons for using the second option over the first option. The first reason
is that it is more useful in practice, since one needs to know the exact number of plagiarised
matches for the usage of the first option, while in the second option one has the possibility to
calculate the threshold without knowing that number. Every time a teacher uses a similarity
detection tool the exact number of plagiarised matches is not known but a tool needs to decide
which cases it will mark as potentially plagiarised, in other words, it needs to set the threshold
level. Because of this, it makes more sense to test the tools with the calculated threshold rather
than base it on the number of plagiarised matches.

The second reason for choosing the calculated threshold is that it takes into account the
similarity when calculating the threshold and therefore it can not happen that the similarity of
the last marked match is the same as the similarity of the next match (the first match which
is not marked as plagiarised). For example, in the T1 assignments in the SOCO dataset the
number of plagiarised matches is 84, which means the cut-off is at the 84th match. In Table
8.1 the similarities for the six tested tools are given when no technique is used for the 84th
and 85th match. One can see that the similarity is the same at 84th and 85th match for four
tools, which makes it unreasonable to set the threshold at the 84th element. Sometimes only one
match, but several matches (which are not marked as plagiarised) have the same similarity as the

80

Chapter 8. Result analysis

Table 8.1: Example of SOCO T1 similarities near threshold based on number of plagiarised
matches

Match

Tool 1st 84th 85th diff

JPlag-java 100 47.4 47.2 0.2
JPlag-text 100 46.0 45.5 0.5
SIM-java 100 56.5 56.5 0.0
SIM-text 100 50.0 50.0 0.0
Sherlock-java 100 56.0 56.0 0.0
Sherlock-text 97 27.0 27.0 0.0

last marked match. This problem could be solved by including all matches that have the same
similarity as the last marked match, but (for the first reason above) the decision remains to use
the calculated threshold.

Similarity based threshold level calculation

To calculate the threshold level based on similarities one needs to calculate the median and
the inter-quartiles (IQR), and this raises the question as to what number to multiply the IQR by
in the threshold level calculation. There is no universal answer to this question since it depends
on the data distribution in the dataset. In the context of comparisons for some tools, 2*IQR
would be better, and for other tools, 3*IQR would be better. The idea of using a calculated
threshold based on similarities is to look for matches that come out as outliers in the distribution.
From this perspective, 3*IQR is better than 2*IQR. This means the match is more suspicious
when its similarity is 3*IQR from the median than 2*IQR. On the other hand, it could happen
that there are no matches which have a similarity larger than 3*IQR from the median. It is out
of the scope of this research to test the differences on various IQR multipliers, so a decision
needed to be made.

To decide, a simple test on the T1 and C2 assignments from the SOCO dataset was performed
where the F1 measure was calculated for 3*IQR, 2.5*IQR and 2*IQR. In Figure 8.1 presents
the F1 values for all techniques and tools for the T1 assignments when 3*IQR and 2*IQR were
used. Similarly, Figure 8.2 presents the F1 values for the C2 assignments when 3*IQR and
2*IQR were used. One can observe that the F1 value always increases with the higher multiplier
with two exceptions. The first exception is for Sherlock-java in combination with All techniques
with Normalisation (AllNOR) in the T1 assignment when the F1 value slightly decreases. The
second exception is for SIM-text in combination with Common Code Remove (CCR) in the C2
assignments when it is at maximum value and cannot increase any more.

This simple test showed that if a lower IQR multiplier is chosen then F1 is also lower in most
cases. The reason for that is simple, with a lower IQR multiplier more matches are included
which then increase Recall but decrease Precision more. Since in every combination 3*IQR gave

81

Chapter 8. Result analysis

(a) with 2*IQR (b) with 3*IQR

Figure 8.1: F1 score for SOCO T1 assignment

(a) with 2*IQR (b) with 3*IQR

Figure 8.2: F1 score for SOCO C2 assignment

82

Chapter 8. Result analysis

no zero F1 values (meaning all calculations had matches with similarity above 3*IQR larger
than the median), and since 3*IQR almost always gave a better F1 result than the 2.5*IQR and
2*IQR, it was decided to use 3*IQR to calculate the threshold.

Note that, while the increase is present in almost all F1 values, the increase for various com-
binations of tools and techniques is not constant. For example, for Sherlock-text in combination
with CCR, the increase was 0.04 while for SIM-text in combination with CCR it was 0.13. For
Sherlock-text in combination with AllNOR the increase was 0.3 and for SIM-text in combination
with the same technique it was 0.09. This means that by choosing 3*IQR some combinations of
the tools and techniques might have been put in a privileged position in comparison to others. In
other words, different IQR multiplier could influence the final results. For this reason, the con-
clusions that follow are valid only when F1 is calculated using 3*IQR to calculate the threshold.
While Figures 8.1 and 8.2 suggest that the conclusions might be valid for other multipliers of
IQR, more research is needed to confirm that.

After calculating all F1 values for the SOCO dataset, in total 3780 calculations for all assign-
ments with all combinations of tools and techniques, there were six zero values. The six values
had F1=0 because there were no matches above 3*IQR larger than the median. Since there were
only six such values it is confirmed that 3*IQR was a valid choice.

8.1.2 Planned comparisons

In Chapter 3 it was stated that Analysis of variance (ANOVA) would be used followed by
planned comparisons (contrasts). To perform contrasts they need to be defined upfront. The
contrasts are defined for each independent variable (factor). The contrasts for the tool factor are
presented in Table 8.2 and for the technique factor in Table 8.3.

The first contrast for tool compares textual tools with Java tools. The second ‘level’ contrasts
(contrasts 2 and 3) compare SIM and JPlag combined with Sherlock. The reason why SIM and
JPlag were put together is that Sherlock is the only tool of the three that depends on preprocessing
in the original implementation, and because the Normalisation (NOR) technique comes from
Sherlock. The third level contrasts (3 and 4) compare SIM and JPlag.

The first contrast for the technique is comparing all techniques to when no PPT is used. The

Table 8.2: Planed comparisons for tool factor

Contrast

Number Name Partition 1 Partition 2

1 TextvsJava Sherlock-text, SIM-text,
JPlag-java

Sherlock-java, SIM-java,
JPlag-java

2 Text.SherlockvsOthers Sherlock-text SIM-text, JPlag-text
3 Java.SherlockvsOthers Sherlock-java SIM-java, JPlag-java
4 Text.SIMvsJPlag SIM-text JPlag-text
5 Java.SIMvsJPlag SIM-java JPlag-java

83

Chapter 8. Result analysis

Table 8.3: Planed comparisons for technique factor

Contrast

Number Name Partition 1 Partition 2

1 NoPPTvsPPT No PreProcessing
Technique (PPT)

Template Exclusion (TE), Remove
Comments (RC), Common Code
Remove (CCR), All techniques
without Normalisation (AllnoNOR),
All techniques with Normalisation
(AllNOR)

2 SinglevsCombo RC, CCR, TE AllnoNOR, AllNOR
3 RCvsCCRandTE RC CCR, TE
4 CCRvsTE CCR TE
5 AllnoNORvsAllNOR AllnoNOR AllNOR

second contrast is comparing single techniques to combo techniques (techniques that consist of
two or more techniques). Contrasts 3 and 4 compare the single techniques (i.e.,RC, CCR and
TE), and contrast 5 compares the combo techniques (i.e.,AllnoNOR with AllNOR). Since the
SOCO dataset does not have templates the TE technique was not used, so contrasts 3 and 4 are
merged to just compare RC with CCR.

The first contrast in technique is very important since it is used to test the first hypothesis
(H1) and the other contrasts are important to check the second hypothesis (H2) and partially
answer the first research question (RQ1). While the contrasts for the tool factor are important,
the contrasts for the technique variable are more important since they are directly used to answer
the question of this research and confirm the hypothesis.

The coding of the contrasts for tools and techniques is presented in Appendix E from which
one can see that they are all coded as orthogonal contrasts, in accordance with the suggestions
in [46, pp. 414-425]. Making the contrasts orthogonal it is easier to interpret the results since
the comparisons are not correlated and the p-values are also not correlated [46, p. 426]. In
addition, by using contrasts (and not post-hoc tests) the family wise error rate is controlled [46,
p. 423-424], meaning rather than using the absolute difference (for the number of the regression
coefficient) of the means, the absolute difference is divided by the number of groups used in the
contrast.

Simple effects analysis

While the planned contrasts yield good statistics they are not enough to check the hypothesis.
Planned contrasts give the possibility to analyse and truly understand the effects that are obtained.
They are stated in such a way that, if an interaction is present, they enable an analysis of the
nature of the interaction. For example, if the interaction is present, the contrast Textvs.Java
and NoPPTvs.PPT give the possibility to answer the question: “Do the changes in accuracy

84

Chapter 8. Result analysis

when using PPTs (in comparison to when no technique is used) differ between textual and Java

tools?”
The limitation of such contrasts is that they do not tell anything about the differences between

the individual levels. To elaborate, for the above example it might be that the changes in accuracy
found when PPTs are used (in comparison when no PPT is used) are significantly different
between textual tools and the Java tools, but this does not say anything about the significance of
the individual change in accuracy when PPTs are used (in comparison when no PPT is used) for
the Java tools or the textual tools.

To solve that problem, a simple effects analysis is used (as described in [46, pp. 525-528])
to break down an interaction term. “The analysis looks at the effect of one independent variable

at individual levels of the other independent variables” [46, p. 525]. In this research, the simple
effects analysis looking at the effect of techniques at each level of tool is performed. The reason
for why we should analyse the effect of techniques at each level is that in the primary interest of
this research is the effect of techniques and therefore this set-up enables the testing of the stated
hypotheses (H1 and H2).

To perform simple effects analysis a new variable must be created which combines all levels
of the tool variable and the technique variable (called ToolTechniqueCombo). Contrasts that
were created for this new variable are the same as described above, with the difference that since
the tool and technique are now combined, first the tool contrasts described in Table 8.2 are used
and then contrasts for the technique are used on each individual tool (Table 8.3). In Appendix F
the coding of these contrasts is presented.

8.2 SOCO dataset analysis
In this section, the results based on the SOCO dataset are described. As already stated,

data are analysed qualitatively and quantitatively, and to ensure objectivity, statistical tests are
performed. Before the SOCO dataset was ready to be used and analysed statistically some
preparations were needed which are described first, after that for each assignment of the SOCO
dataset is analysed individually and then an overall discussion is given which ends with a set of
guidelines. The last part of this Section is the qualitative verification of the guidelines.

8.2.1 SOCO dataset preparation for analysis

Before the analysis on the SOCO dataset could be performed some preparation was needed
that is described in three subsections. First, there is an inability to process four SOCO assign-
ments, and there is the problem that all assignments of the SOCO dataset need to be equalized
in the ratio of plagiarised to non-plagiarised matches. Second, to have a good statistical analysis,
assignments need to be analysed separately, since there are variances between them which could
lead to wrong conclusions if they were treated as equal. Third, solutions to the violation of the
assumptions required to perform ANOVA need to be found.

85

Chapter 8. Result analysis

Equalization of the ratio of plagiarised to non-plagiarised matches

It was already stated (Section 6.2) that the results from the T1, C1 and C2 assignments are
used as is, and that the results from the A1, A2, B1 and B2 assignments are used partially. The
reason for using the A and B assignments partially is that they are too large to be used for this
experiment, the calculations would take too long.

Since there is a big difference in the ratio of plagiarised and non-plagiarised matches between
the first group of assignments (T1, C1, C2) and the second group of assignments (A1, A2, B1,
B2) it was decided to use a subset of the second group of assignments where the ratio is more
equal to the first group.

In Table 6.1 the SOCO dataset structure is presented and from it one can easily calculate
that the ratio of plagiarised matches to non-plagiarised matches for T1 is 0.25% and for C2 it
is 0.37%, while the ratio for the A and B assignments is approximately 0.001%. To put the
ratios of the A and B assignments closer to the T1 and C2 datasets, a subset of the A and B
assignments was created so that the ratio is 0.31%, which is the average of the ratios for the T1
and C2 assignments.

To create a subset of assignments called D1 the following process was used. From the A1
assignment all plagiarised files were taken (86 files) and it was calculated that to have a ratio
of approximately 0.31% 102 non-plagiarised files were needed. The 102 non-plagiarised files
were then selected at random from the original assignment. The same procedure was used to
create the subset of the A2, B1 and B2 assignments. These subsets were named from D1 to D4
to make a clear distinction from the original assignments. The complete structure of the SOCO
dataset, and how it was used in the experiment, is presented in Table 8.4 in the same format as in
6.1 with the additional column Original name which is the name of the assignment from which
the new assignment was created.

Table 8.4: SOCO dataset structure for experiment

Assignment Number of

Collection original new Files Plagiarized files Matches Plagiarised matches

Test A1 D1 188 86 17,578 54
Test A2 D2 175 75 15,225 47
Test B1 D3 218 124 23,653 73
Test B2 D4 149 62 11,026 34
Test C1 C1 124 0 7,626 0
Test C2 C2 88 28 3,828 14

Training T1 T1 259 115 33,411 84

86

Chapter 8. Result analysis

Preparation for statistical analysis

To perform a statistical analysis on the SOCO dataset the assignments are seen as partici-
pants on which the statistical analysis is performed using the various tools and techniques. The
problem is that there are only six assignments which are different enough to create large vari-
ances, and this gives low power to the statistical test. In addition, it is hard to get any statistically
significant results. To solve that problem subsets of the assignments were created from the larger
assignments (A1, A2, B1, B2), an idea taken from the information retrieval area (e.g., [39])

Since the D1 to D4 assignments are subsets generated from the A and B assignments, it is
possible to generate more subsets which come from the same original source. For this research,
31 subset assignments were generated from each of the original A and B assignments. The
subset assignments were marked as D1-n where n is a number from 1 to 31. In this context,
D1 represents a group of subset assignments marked from D1-1 to D1-31 whereby each of
these is generated from the same original source and using the same generation process, so the
ratios and numbers from Table 8.4 remain. One subset assignment is seen as one participant
on which the statistical analysis is performed using the various tools and techniques. The only
difference between assignments in the D1 group are the randomly selected non-plagiarised files.
This means that all assignments in the same group have the same characteristics (i.e., problem
scenario and complexity mentioned in Section 6.2).

To do a statistical test, only assignments from one group are tested together to control the
variability. This means that at the end four separate case studies are done one for each group
(D1, D2, D3 and D4). Because of this design, T1 and C2 — although they have the F1 measure
calculated — were not tested statistically. However, they are analysed manually and used to
verify the guidelines generated based on the comparisons done with the D1, D2, D3 and D4
groups of subset assignments. In the rest of the thesis, D1, D2, D3 and D4 are referred to as
assignments rather than groups of subset assignments.

Overcoming assumption violations

To see if observed differences are significant it was planned to use ANOVA as stated in
Chapter 3. To use ANOVA one assumption is that the data within groups are normally distributed
[46], in other words, that the residuals are normally distributed. In addition, since this is a
repeated measures design there is the assumption of sphericity [46, p. 551]. Sphericity is not a
problem if ANOVA is performed using Multi level linear model (MLM) [46, p. 576], sometimes
referred to as mixed-effects model.

In Figure 8.4, the residuals histogram and Q-Q plot are presented for the D1 assignments
where the data look more or less normal. A similar observation was made for the D2 assignments,
as shown in Figure 8.7. To be sure, a Shapiro-Wilk test of normality was done on each level of
the tools and techniques, and it was established that for some combinations of technique and
tool the data are not normally distributed (Appendix G). Regarding the D3 and D4 assignments,

87

Chapter 8. Result analysis

it is already clear from Figure 8.10 and Figure 8.13 that the data are not normally distributed.
All results of the Shapiro-Wilk tests are presented in Appendix G.

Since there is a clear problem of normality in all of the datasets it was decided to use the
bootstrap method [46, 87] to overcome this problem. The bootstrap method enables us “to

generate confidence intervals and test statistical hypotheses without having to assume a specific

underlying theoretical distribution”[87, p. 309]. In addition, the bootstrap method can be used
if outliers are a problem [87, p. 304] or if there is a problem with heteroscedasticity [46, p. 298].
Figures 8.4, 8.7, 8.10 and 8.13 present the scatter plot of residuals against predicted values to
check for heteroscedasticity.

According to [46, 189], repeated measures ANOVA can be performed using MLM rather
than using the classic ANOVA approach based on linear regression. Since in this research there
are multiple factors and the repeated measures design is used, the MLM approach is used as done
in [46]. The only difference to [46] is that instead of using the lme function from package nlme

the function lmer from package lme4 is used. That both functions can be used is demonstrated
in [189]. The reason why lmer is chosen over lme is because lmer is faster in execution and it
has some other functions like bootMer from the lme4 package or PBmodcomp function from the
pbkrtest package. The main reasons to use MLM are that it is easier to add multiple factors to the
model and that it is easy to model the variance (in this case the variance within one assignments
subset) by using random intercepts [46]. In addition, as already mentioned, MLM does not have
the assumption of sphericity.

Since bootstraps are used, all p-values are approximated for all relevant statistics (like F 1

or t). Since the MLM approach is used, to calculate the bootstrapped statistics for hypothesis
testing the non-parametric model based bootstrap [109] is used. The null-model that is used is the
intercept only model with included random intercepts [73]. In cases where confidence intervals
are needed (i.e., effects sizes [9]), the parametric bootstrap is used, based on the full-model
instead on the null-model to get more precise confidence intervals [73, 109]. The randomization
while creating bootstraps is based on randomization of the residuals rather than the original data,
as suggested in [87, 129].

The full model used was:

lmer(F1∼ Tool +Technique+Tool : Technique+

(1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (8.1)

1There are two F statistics in this research — one is F1 which, is the measure calculated from Precision and
Recall, and the other is the F statistic used to do hypothesis testing in ANOVA. In this thesis the first F statistic
(calculated from Precision and Recall) is always referred to as F1 and the other is referred to as just F and it is often
followed by brackets with two numbers which represent the degrees of freedom.

88

Chapter 8. Result analysis

The null model was:

lmer(F1∼ (1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (8.2)

The full model for the simple effects analysis was:

lmer(F1∼ ToolTechniqueCombo+

(1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (8.3)

and the null model was the same as written above. Recall that the term Participant represents
one subset assignment (e.g., Dn-1, Dn-2, Dn-3, etc.) from the D1, D2, D3 or D4 group of
assignments.

To perform the bootstrap hypothesis testing the function boot from package boot was used,
and to get confidence intervals the function boot.ci from package boot was used or function
bootMer from the lme4 package. Models were compared using the PBmodcomp function from
the pbkrtest package. The full list of packages used in R is presented in Appendix L.

8.2.2 Results for D1 assignments

D1 assignments are created from the A1 assignment in the SOCO dataset. The A1 assign-
ment is a medium difficulty problem with small complexity. On average, files in A1 have 99.26
Lines of code (LOC). In Figure 8.3 the boxplot for the F1 scores is presented at each level of
tool and technique in the D1 assignments. It can be observed that preprocessing techniques
seem to have a stronger effect on textual versions of the tools than on the Java versions. For the
Java version there is an indication that PPTs have some effect on Sherlock-java while they do
not affect SIM-java and JPlag-java. The effect of PPTs on the textual versions is strongest on
Sherlock-text but, rather than increasing the accuracy, the accuracy decreases, especially with
the AllNOR technique. On the other hand, for JPlag-text and SIM-text the effect is positive, but
it seems to be slightly stronger for SIM-text.

To confirm that there is an overall difference, ANOVA with bootstrap was performed. As
explained in Section 8.2.1, the bootstrap method is used because the residuals are not normally
distributed (Figure 8.4). The results of ANOVA with the F statistic and the p-values (original
(column Pr(>|t|)) and bootstrapped (column p.boot)) are presented in Table 8.5. The result shows
that the bootstrapped p-value (pb) is less than 0.01 for the main effects (tool and technique) and
for the interaction effect (tool × technique), which means that there is an overall difference.
A significant interaction effect indicates that for some techniques there was a different effect
depending on which tool was used alongside. That the interaction effect is significant is also
confirmed by comparing interaction model and the model using only the main effects (i.e., tool

89

Chapter 8. Result analysis

Figure 8.3: F1 score for SOCO D1 assignment with 3*IQR

Figure 8.4: D1 assignments - residuals

90

Chapter 8. Result analysis

Table 8.5: ANOVA results for SOCO D1

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) p.boot

Tool 4.07 0.814 5 155 818.0 0.0000 0.0001
Technique 0.34 0.085 4 124 85.9 0.0000 0.0001
Tool:Technique 3.95 0.198 20 620 198.7 0.0000 0.0001

and technique) whereby χ2(20) = 1367.779, pb < 0.01 (more details are available in Table H.1).
Since the overall difference was confirmed, planned comparisons (contrasts) were performed.

Table 8.6 presents the results for the defined contrasts. Since there is a difference in interaction
it does not make sense to analyse the main effects, since they are suppressed by the interaction,
but it is interesting to note that, if the interaction is ignored, there is still a difference for all
stated contrasts in tool and technique factors except for the contrast measuring the difference
between single and combo techniques. Although this information is not strictly valid, since
there is an interaction between tool and techniques, it still gives an indication that the differences
hypothesised in H1 and H2 might be significant.

To visually display the interaction, the mean comparison graph is presented in Figure 8.5.
Although the interaction can be seen in Figure 8.3 it is more clear in Figure 8.5, since all values
are presented on the same graph. In Figure 8.5 one can clearly see that the lines are not parallel,
which is an indication that an interaction effect exists, of course the objective confirmation that
the observed interaction is significant is done by using statistical tests (Table 8.5).

Figure 8.5 indicates that techniques have an effect on accuracy for all textual tools and for
the tool Sherlock-java, while there is no change in accuracy for JPlag-java and SIM-java. The
change, when present, is mostly positive, which means that using a PPT increases the accuracy.
Although the effect is mostly positive there is a high negative effect on accuracy when techniques
are used with Sherlock-text.

By looking at Figure 8.5 it can be observed that some techniques have a reverse effect
depending on which tool they are used and/or to what technique they are compared. For example,
CCR (compared to when no technique is used) has a negative effect on Sherlock-java while there
is a positive effect on JPlag-text and SIM-text. At the same time, when CCR is combined with
the RC and the NOR techniques (in the AllNOR) the effect is positive in comparison to when
no technique is used for Sherlock-java.

Similarly, while the AllNOR technique has a positive effect (in comparison when no tech-
nique is used) for JPlag-text and SIM-text, it has a negative effect when compared to the CCR
technique for JPlag-text. When the AllNOR technique is compared to the CCR technique for
SIM-text this has a positive effect, but for JPlag-text this has a negative effect. This means that
when using JPlag-text it would be better to just use the CCR technique rather than the AllNOR
combination technique, at least on the SOCO D1 assignment.

Analysing the graphs only visually can be informative, but it can also be misleading. Thus,

91

Chapter 8. Result analysis

Figure 8.5: F1 mean comparison for SOCO D1

92

Chapter 8. Result analysis

some differences might seem important when inspected visually but are not in the end significant
when tested statistically (or vice versa). To verify the differences and to interpret the graph
correctly the interaction effect is analysed further using planned contrasts and simple effects
analysis (as mentioned in Section 8.1.2).

The results of the planned comparison is presented in Table 8.6 and the corresponding effect
sizes are presented in Table I.1. The results of the simple effects analysis are presented in Table
8.7 and the corresponding effect sizes are presented in Table I.2. From 20 interaction contrasts,
14 contrasts have a significant difference with pb < 0.01, although most pb values were less than
0.0001, the result are considered significant if pb is less or equal to 0.01. From 24 comparisons
in the simple effects analysis, 11 comparisons had a significant result with pb < 0.01. Note, there
are 29 comparisons in the simple effects analysis, but only comparisons including techniques at
each level of tool are counted.

Although using planned comparisons and the simple effects analysis limits the number of
comparisons, it is out of the scope of this research to do the individual interpretation for all of
the comparisons. Instead, interpretation is done in groups and only for comparisons that are
most interesting for this research, which means that comparisons that help answer the research
question and help confirm the stated hypothesis are the priority.

93

Chapter 8. Result analysis

Table 8.6: Contrasts results for SOCO D1

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.667 0 31 228.7363 0.0000 0.0001
Tool.TextvsJava -0.062 0 155 -23.7553 0.0000 0.0001
TT.SHvsOthers -0.054 0 155 -20.6218 0.0000 0.0001
TJ.SHvsOthers -0.094 0 155 -35.9487 0.0000 0.0001
TT.SIMvsJPlag -0.178 0 155 -39.1278 0.0000 0.0001
TJ.SIMvsJPlag -0.076 0 155 -16.6443 0.0000 0.0001

NoPPTvsPPT 0.005 0 124 8.8276 0.0000 0.0001
SinglevsCombo 0.001 0 124 0.5975 0.5513 0.8008

RCvsCCR 0.018 0 124 10.8250 0.0000 0.0001
AnoNvsAN -0.020 0 124 -11.6699 0.0000 0.0001

Tool.TextvsJava:NoPPTvsPPT -0.003 0 620 -5.4427 0.0000 0.0001
TT.SHvsOthers:NoPPTvsPPT 0.013 0 620 25.1444 0.0000 0.0001
TJ.SHvsOthers:NoPPTvsPPT -0.001 0 620 -2.5992 0.0096 0.0073
TT.SIMvsJPlag:NoPPTvsPPT -0.008 0 620 -9.1208 0.0000 0.0001

TJ.SIMvsJPlag:NoPPTvsPPT 0.000 0 620 0.1080 0.9140 0.5662
Tool.TextvsJava:SinglevsCombo 0.005 0 620 4.0800 0.0001 0.0221

TT.SHvsOthers:SinglevsCombo 0.041 0 620 35.5109 0.0000 0.0001
TJ.SHvsOthers:SinglevsCombo -0.004 0 620 -3.8591 0.0001 0.0004
TT.SIMvsJPlag:SinglevsCombo -0.027 0 620 -13.2677 0.0000 0.0001

TJ.SIMvsJPlag:SinglevsCombo 0.000 0 620 0.1611 0.8721 0.5987
Tool.TextvsJava:RCvsCCR -0.030 0 620 -18.3619 0.0000 0.0001
TT.SHvsOthers:RCvsCCR 0.031 0 620 19.1510 0.0000 0.0001
TJ.SHvsOthers:RCvsCCR 0.014 0 620 8.3837 0.0000 0.0001
TT.SIMvsJPlag:RCvsCCR -0.014 0 620 -4.8688 0.0000 0.0001

TJ.SIMvsJPlag:RCvsCCR 0.000 0 620 0.0000 1.0000 0.5130
Tool.TextvsJava:AnoNvsAN 0.024 0 620 14.8934 0.0000 0.0001
TT.SHvsOthers:AnoNvsAN 0.044 0 620 26.9264 0.0000 0.0001
TJ.SHvsOthers:AnoNvsAN -0.005 0 620 -2.8603 0.0044 0.0034
TT.SIMvsJPlag:AnoNvsAN 0.000 0 620 0.0000 1.0000 0.5259
TJ.SIMvsJPlag:AnoNvsAN 0.000 0 620 0.0000 1.0000 0.5265

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR, AN - AllNOR

94

Chapter 8. Result analysis

Table 8.7: Simple effect analysis result for SOCO D1

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.667 0 31.0 228.7363 0.0000 0.0001
TextvsJava -0.062 0 155.0 -23.7553 0.0000 0.0001

TT.SHvsOthers -0.054 0 155.0 -20.6218 0.0000 0.0001
TT.SIMvsJPlag -0.178 0 155.0 -39.1278 0.0000 0.0001
TJ.SHvsOthers -0.094 0 155.0 -35.9487 0.0000 0.0001
TJ.SIMvsJPlag -0.076 0 155.0 -16.6443 0.0000 0.0001

TT.SH.NoPPTvsPPT -0.018 0 743.6 -14.5161 0.0000 0.0001
TT.SH.SinglevsCombo -0.086 0 743.6 -30.2497 0.0000 0.0001

TT.SH.RCvsCCR -0.014 0 743.6 -3.5650 0.0004 0.0003
TT.SH.AllnoNORvsAllNOR -0.132 0 743.6 -32.8057 0.0000 0.0001

TT.JPlag.NoPPTvsPPT 0.012 0 743.6 9.7027 0.0000 0.0001
TT.JPlag.SinglevsCombo 0.010 0 743.6 3.6821 0.0002 0.0453

TT.JPlag.RCvsCCR 0.066 0 743.6 16.3428 0.0000 0.0001
TT.JPlag.AllnoNORvsAllNOR 0.000 0 743.6 0.0000 1.0000 0.5204

TT.SIM.NoPPTvsPPT 0.029 0 743.6 22.5342 0.0000 0.0001
TT.SIM.SinglevsCombo 0.064 0 743.6 22.3474 0.0000 0.0001

TT.SIM.RCvsCCR 0.093 0 743.6 23.1923 0.0000 0.0001
TT.SIM.AllnoNORvsAllNOR 0.000 0 743.6 0.0000 1.0000 0.5241

TJ.SH.NoPPTvsPPT 0.005 0 743.6 3.5974 0.0003 0.0580
TJ.SH.SinglevsCombo 0.014 0 743.6 5.0416 0.0000 0.0018

TJ.SH.RCvsCCR -0.039 0 743.6 -9.7336 0.0000 0.0001
TJ.SH.AllnoNORvsAllNOR 0.014 0 743.6 3.4849 0.0005 0.0699

TJ.JPlag.NoPPTvsPPT 0.001 0 743.6 0.5067 0.6125 0.7739
TJ.JPlag.SinglevsCombo 0.001 0 743.6 0.4532 0.6506 0.7326

TJ.JPlag.RCvsCCR 0.002 0 743.6 0.4807 0.6309 0.7469
TJ.JPlag.AllnoNORvsAllNOR 0.000 0 743.6 0.0000 1.0000 0.5271

TJ.SIM.NoPPTvsPPT 0.000 0 743.6 0.3547 0.7229 0.7017
TJ.SIM.SinglevsCombo 0.001 0 743.6 0.2266 0.8208 0.6289

TJ.SIM.RCvsCCR 0.002 0 743.6 0.4807 0.6309 0.7522
TJ.SIM.AllnoNORvsAllNOR 0.000 0 743.6 0.0000 1.0000 0.5198

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

95

Chapter 8. Result analysis

Differences between no preprocessing and preprocessing

The first interaction term looks at the effect of techniques (i.e., all PPTs combined) relative to
when no PPT is used when comparing textual (i.e., all textual tools combined) and Java versions
(i.e., all Java tools combined) of the tools. This contrast is significant and this result tells us that
the change in accuracy found when the PPT technique is used (compared to when no technique
is used) is different for Java and textual tools. In other words, Java and textual tools respond
significantly different from using PPTs.

The next four contrasts look at the effect of techniques (i.e., all PPTs combined) relative to
when no PPT is used comparing: Sherlock-text vs. other text tools (i.e., SIM-text and JPlag-
text combined); Sherlock-java vs. other Java tools (i.e., SIM-java and JPlag-java combined);
SIM-text vs. JPlag-text, and SIM-java vs. JPlag-java.

For the four contrasts the interaction difference was significant except for SIM-java vs. JPlag-
java. This means that using PPTs (in comparison to when no technique is used) effects the
SIM-java and JPlag-java tools in the same way.

Based on the four contrasts it is safe to say that in most cases the tools’ accuracy changes
differently when PPTs is used in comparison when no technique is used. This indicates, but
does not confirm, that using PPTs makes a difference to an individual tool. By examining the
interaction graphs (Figure J.1) it is visible that the accuracy increases except for Sherlock-text.

To check H1, if there exists a difference in plagiarism detection accuracy between at least one
PPT and when no PPT is used, a simple effects analysis was performed. The results of the simple
effects analysis for SOCO D1 are presented in Table 8.7 and the corresponding effect sizes in
Table I.2. The analysis confirmed that using PPTs made a significant difference (at pb < 0.01)
in comparison when no PPT is used for textual versions of the three tools. On the other hand, for
JPlag-java (pb = 0.78), SIM-java (pb = 0.70) and Sherlock-java (pb = 0.05), the difference is
not big enough to be considered significant, although it can not be said that there is no difference
and there is always the possibility of a type 2 error (the difference is there but the test was not
able to detect the difference). For tools where the difference was significant, techniques have a
positive effect on SIM-text and JPlag-text but a negative effect on Sherlock-text.

Based on the presented results it can be stated that the H1 hypothesis is confirmed on the
SOCO D1 assignments.

Differences between different preprocessing techniques

In the previous analysis it was confirmed that using PPTs significantly increases the accuracy
for most tools and that the increase is different between most tools. The problem with the
previous analysis is that all techniques were put together, and if one technique had a positive
effect and another technique a negative effect the effects could cancel each other. To overcome
the problem, the PPTs were analysed further in comparison to each other. Since contrasts were

96

Chapter 8. Result analysis

used and not post-hoc tests 2 not every technique was compared to every other technique, rather
first the single techniques (i.e., RC and CCR combined) were compared to combo techniques
(i.e., AllnoNOR and AllNOR combined) and then the two single techniques were compared to
each other and the two combo techniques to each other. The contrasts of the tools are the same
as before.

Regarding the interaction contrasts, as can be seen from Table 8.6 10 contrasts showed
significant differences at pb < 0.01, and 5 did not. It is no surprise that every contrast where
SIM-java and JPlag-java were compared was non-significant, as the means of those tools across
different techniques are parallel (Figure 8.5). Also for both tools the means are more or less the
same (Figure 8.5). This leads to the conclusion that using PPTs has no effect on SIM-java or
JPlag-java.

The contrasts that compare single and combo techniques show a significant result (pb < 0.01)
except for SIM-java vs. JPlag-java and Text vs. Java. The contrast that compared together all
textual and all Java tools had pb = 0.02, which is considered non-significant, meaning text and
Java tools respond the same when single techniques are compared to combo techniques. But by
looking at the interaction graph (Figure J.1 and Figure J.2) one can see that the lines go in the
opposite direction and by looking at 8.5 it is more likely that there is a difference but that the
test was too weak to consider it significant. In addition, significance can be looked at p-value is
less than 0.05. and in this case this interaction is significant. Because of all of this, it is open to
debate whether the comparison should be considered significant or not.

The 10 comparisons that compare single techniques (RC vs. CCR) and the comparisons that
compare combo techniques (AllnoNOR vs. AllNOR) are mostly significant, pb < 0.01. Non-
significant results were only for contrasts comparing SIM-java vs. JPlag-java for both single and
combo comparisons, and for SIM-text vs. JPlag-text when comparing combo techniques.

From the 10 contrasts that compare different techniques and that are significant it can be
concluded that accuracy changes are different for different tools when comparing different
techniques in most cases. Again, as with the previous analysis (no PPT vs. PPT), this indicates
(but does not confirm) that there is a difference in using different techniques with a specific tool.
To check H2, if there exists a difference in plagiarism detection accuracy between at least two
different PPTs, a simple effects analysis was used.

The simple effects analysis of single techniques compared to combo techniques showed a
significant difference in accuracy with pb < 0.01 for Sherlock-text, SIM-text and Sherlock-java.
The difference was not significant for SIM-java (pb = 0.63), JPlag-java (pb = 0.74) and JPlag-
text (pb = 0.05). The result for JPlag-text could be debated if this is considered significant for
the same reasons as the result before (text vs. Java), but since all other results had a much
lower p-value, the result for JPlag-text can be considered correct. From the interaction graphs
(Figure J.1 and Figure J.2) it can be seen that combo techniques show an increase in accuracy

2Contrasts and simple effects analysis were chosen over post-hoc because of the greater test strengths, since
fewer comparisons are made, as described in 8.1.2. Also, the analysis is more focused and faster in execution in R.

97

Chapter 8. Result analysis

in comparison to single techniques for all tools except Sherlock-text where a strong decrease is
observed.

A simple effects analysis of RC vs. CCR techniques shows that the CCR technique increases
the accuracy except in the cases of Sherlock-text and Sherlock-java. The simple effects analysis
for the combo techniques (AllnoNOR vs. AllNOR) showed that there is no difference between
the two techniques for SIM and JPlag tools (both versions had pb = 0.5) and for Sherlock-java
(pb = 0.07) but there is a significant difference for Sherlock-text (pb < 0.01).

It is interesting that, although Sherlock-java, SIM-java and JPlag-java have not a signif-
icant difference between the combo techniques, there is a significant interaction (pb < 0.01
for ‘TJ.SHvs.Others:AnoNvs.AN’) between Sherlock-java and the other Java tools (i.e., SIM-
java and JPlag-java combined) when the combo techniques are compared. This means that
Sherlock-java responded significantly different than the other two tools when comparing combo
techniques, although Sherlock-java individually has no significant change in accuracy when
comparing combo techniques. In this case, adding the NOR technique in the combination All-
NOR has a positive effect on Sherlock-java while SIM-java and JPlag-java were not affected at
all. This situation shows how techniques can make a distinction between the tools even though
at first glance everything seems to be the same and that jumping to the conclusion that adding

NOR technique to Sherlock-java makes no sense is wrong.
Based on the presented results it can be stated that the H2 hypothesis is confirmed for the

SOCO D1 assignments.

8.2.3 Results for D2 assignments

The D2 assignments are created from the A2 assignments in the SOCO dataset. The A2
assignments are considered a medium difficulty problem with large complexity, as explained
in Section 6.2. On average, files in A2 have 107.87 LOC. In Figure 8.6 the box-plot for the
F1 scores is presented at each level of tool and technique for the D2 assignments. It can be
observed that preprocessing techniques seem to have a stronger effect on textual versions of the
tools than on the Java versions, which is the same as for D1. For the Java version, it seems that
the techniques have no effect on any Java tool. The effect of PPTs on the textual versions is
strongest on Sherlock-text, and again, as for D1, there is a decrease rather than an increase in
accuracy. JPlag-text and SIM-text have (as in D1) a positive effect with a slightly stronger effect
for SIM-text.

To confirm that there is an overall difference ANOVA with bootstrap was performed for the
same reasons as for D1. In Figure 8.7, a histogram, Q-Q plot and scatter plot of the residuals are
presented. The results of ANOVA with the F statistic and the p-values (original and bootstrapped)
are presented in Table 8.8. The result shows that the pb value is less than 0.01 for the main
effects (tool and technique) and for the interaction effect. The model comparison is presented
in Figure H.2 where for this dataset χ2(20) = 1272.371, pb < 0.01. To follow up, contrast
comparisons and simple effects analysis was performed as it was done for the D1 assignments.

98

Chapter 8. Result analysis

Figure 8.6: F1 score for SOCO D2 assignment with 3*IQR

Figure 8.7: D2 assignments - residuals

99

Chapter 8. Result analysis

Table 8.8: ANOVA results for SOCO D2

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) p.boot

Tool 3.40 0.679 5 155 675.5 0.0000 0.0001
Technique 0.23 0.059 4 744 58.2 0.0000 0.0001
Tool:Technique 3.39 0.169 20 744 168.5 0.0000 0.0001

The visual representation of the means in the form of a comparison graph is presented in Figure
8.8.

Figure 8.8 indicates that techniques have an effect on accuracy for all textual tools and the
Sherlock-java tool while there is a small change in accuracy for JPlag-java and SIM-java. The
change is positive for SIM-text and JPlag-text and negative for the other tools, especially for
Sherlock-text. By looking at Figure 8.8 it can be observed that some techniques have a reverse
effect, depending on which tool they are using and/or to what technique they are compared.
An interesting observation in this graph is that the CCR technique has such a negative effect
on Sherlock-java that when combined with RC the accuracy is lower than without techniques
even though there is a positive effect of RC. In general, Figure 8.8 looks a lot like the mean
comparison graph for the D1 assignment. This is not unexpected since D1 and D2 are both
based on the A assignments from the SOCO dataset which represent the same problem only
with different complexity.

Analysing the graphs only visually, as stated when the D1 assignment was analysed, can
be informative but it can also be misleading. Therefore, the results of the planned comparison
are presented in Table 8.9 and the corresponding effect sizes are presented in Table I.3. The
results of the simple effects analysis are presented in Table 8.10 and the corresponding effect
sizes are presented in Table I.4. From 20 interaction contrasts, 12 have a significant difference
with pb < 0.01, and although most pb values were less than 0.0001 the result is considered
significant if the pb is less or equal to 0.01. From 24 comparisons in the simple effects analysis
14 comparisons had a significant result with pb < 0.01.

100

Chapter 8. Result analysis

Figure 8.8: F1 mean comparison for SOCO D2

101

Chapter 8. Result analysis

Table 8.9: Contrasts results for SOCO D2

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.676 0 31 192.3335 0.0000 0.0395
Tool.TextvsJava -0.047 0 155 -18.1540 0.0000 0.0001
TT.SHvsOthers -0.044 0 155 -16.7051 0.0000 0.0001
TJ.SHvsOthers -0.080 0 155 -30.8469 0.0000 0.0001
TT.SIMvsJPlag -0.179 0 155 -39.7728 0.0000 0.0001
TJ.SIMvsJPlag -0.069 0 155 -15.3500 0.0000 0.0001

NoPPTvsPPT 0.002 0 744 3.8630 0.0001 0.0284
SinglevsCombo -0.003 0 744 -2.4399 0.0149 0.0072

RCvsCCR 0.017 0 744 10.5152 0.0000 0.0001
AnoNvsAN -0.017 0 744 -10.0737 0.0000 0.0001

Tool.TextvsJava:NoPPTvsPPT -0.004 0 744 -7.6175 0.0000 0.0001
TT.SHvsOthers:NoPPTvsPPT 0.013 0 744 25.4588 0.0000 0.0001

TJ.SHvsOthers:NoPPTvsPPT -0.001 0 744 -2.4202 0.0157 0.0101
TT.SIMvsJPlag:NoPPTvsPPT -0.004 0 744 -4.7742 0.0000 0.0001

TJ.SIMvsJPlag:NoPPTvsPPT -0.001 0 744 -1.2719 0.2038 0.1027
Tool.TextvsJava:SinglevsCombo 0.000 0 744 0.1966 0.8442 0.6193

TT.SHvsOthers:SinglevsCombo 0.039 0 744 33.4073 0.0000 0.0001
TJ.SHvsOthers:SinglevsCombo -0.003 0 744 -2.4052 0.0164 0.0087
TT.SIMvsJPlag:SinglevsCombo -0.016 0 744 -7.8312 0.0000 0.0001

TJ.SIMvsJPlag:SinglevsCombo -0.002 0 744 -0.9213 0.3572 0.1851
Tool.TextvsJava:RCvsCCR -0.032 0 744 -19.6404 0.0000 0.0001
TT.SHvsOthers:RCvsCCR 0.035 0 744 21.1123 0.0000 0.0001

TJ.SHvsOthers:RCvsCCR 0.004 0 744 2.6493 0.0082 0.2721
TT.SIMvsJPlag:RCvsCCR -0.010 0 744 -3.6539 0.0003 0.0007

TJ.SIMvsJPlag:RCvsCCR -0.004 0 744 -1.3596 0.1744 0.0955
Tool.TextvsJava:AnoNvsAN 0.019 0 744 11.4474 0.0000 0.0001
TT.SHvsOthers:AnoNvsAN 0.035 0 744 21.5211 0.0000 0.0001

TJ.SHvsOthers:AnoNvsAN -0.002 0 744 -1.3737 0.1700 0.0945
TT.SIMvsJPlag:AnoNvsAN 0.000 0 744 0.0000 1.0000 0.5284
TJ.SIMvsJPlag:AnoNvsAN 0.000 0 744 0.0000 1.0000 0.5209

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR, AN - AllNOR

102

Chapter 8. Result analysis

Table 8.10: Simple effects analysis result for SOCO D2

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.676 0 31 192.3335 0.0000 0.0437
TextvsJava -0.047 0 155 -18.1540 0.0000 0.0001

TT.SHvsOthers -0.044 0 155 -16.7051 0.0000 0.0001
TT.SIMvsJPlag -0.179 0 155 -39.7728 0.0000 0.0001
TJ.SHvsOthers -0.080 0 155 -30.8469 0.0000 0.0001
TJ.SIMvsJPlag -0.069 0 155 -15.3500 0.0000 0.0001

TT.SH.NoPPTvsPPT -0.020 0 744 -16.1001 0.0000 0.0001
TT.SH.SinglevsCombo -0.081 0 744 -28.3533 0.0000 0.0001

TT.SH.RCvsCCR -0.020 0 744 -4.9271 0.0000 0.0001
TT.SH.AllnoNORvsAllNOR -0.106 0 744 -26.3578 0.0000 0.0001

TT.JPlag.NoPPTvsPPT 0.015 0 744 11.7046 0.0000 0.0001
TT.JPlag.SinglevsCombo 0.020 0 744 7.0246 0.0000 0.0001

TT.JPlag.RCvsCCR 0.074 0 744 18.3463 0.0000 0.0001
TT.JPlag.AllnoNORvsAllNOR 0.000 0 744 0.0000 1.0000 0.5334

TT.SIM.NoPPTvsPPT 0.024 0 744 18.4563 0.0000 0.0001
TT.SIM.SinglevsCombo 0.052 0 744 18.0996 0.0000 0.0001

TT.SIM.RCvsCCR 0.095 0 744 23.5138 0.0000 0.0001
TT.SIM.AllnoNORvsAllNOR 0.000 0 744 0.0000 1.0000 0.5267

TJ.SH.NoPPTvsPPT 0.001 0 744 0.4434 0.6576 0.7419
TJ.SH.SinglevsCombo 0.003 0 744 1.0480 0.2950 0.9747

TJ.SH.RCvsCCR -0.024 0 744 -5.8885 0.0000 0.0001
TJ.SH.AllnoNORvsAllNOR 0.007 0 744 1.6824 0.0929 0.6666

TJ.JPlag.NoPPTvsPPT -0.004 0 744 -3.4202 0.0007 0.0002
TJ.JPlag.SinglevsCombo -0.007 0 744 -2.5492 0.0110 0.0053

TJ.JPlag.RCvsCCR -0.015 0 744 -3.6052 0.0003 0.0004
TJ.JPlag.AllnoNORvsAllNOR 0.000 0 744 0.0000 1.0000 0.5146

TJ.SIM.NoPPTvsPPT -0.002 0 744 -1.6214 0.1054 0.0547
TJ.SIM.SinglevsCombo -0.004 0 744 -1.2463 0.2130 0.1107

TJ.SIM.RCvsCCR -0.007 0 744 -1.6824 0.0929 0.0509
TJ.SIM.AllnoNORvsAllNOR 0.000 0 744 0.0000 1.0000 0.5269

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

103

Chapter 8. Result analysis

Differences between no preprocessing and preprocessing

The first five interaction terms look at the effects of techniques (i.e., all PPTs combined)
relative to when no PPT is used when comparing textual (i.e., all textual tools combined) vs. Java
versions (i.e., all Java tools combined) of the tools, Sherlock-text vs. other text tools (i.e., SIM-
text and JPlag-text combined), Sherlock-java vs. other Java tools (i.e., SIM-java and JPlag-java
combined), SIM-text vs. JPlag-text, and SIM-java vs. JPlag-java.

For the five contrasts the interaction differences are significant except for SIM-java vs. JPlag-
java. This means that using PPTs (in comparison to when no technique is used) affects the
SIM-java and JPlag-java tools in the same way.

Based on the five contrasts it is safe to say that in most cases the tool accuracy changes
differently when PPTs is used in comparison to when no technique is used. This indicates
but does not confirm that using PPTs makes a difference to an individual tool. By examining
the interaction graphs (Figure J.3) it is apparent that the accuracy increases for Sherlock-java,
SIM-text, JPlag-text, and decreases for Sherlock-text, SIM-java, and JPlag-java.

To check H1, if there exists a difference in plagiarism detection accuracy between at least
one PPT and when no PPT is used, a simple effects analysis was performed. The results of
the simple effects analysis for SOCO D2 are presented in Table 8.10 and the corresponding
effect sizes in Table I.4. The analysis confirmed that using PPTs made a significant difference
(at pb < 0.01) in comparison to when no PPT is used for Sherlock-text, JPlag-text, SIM-text,
and JPlag-java. On the other hand, for Sherlock-java (pb = 0.74) and SIM-java (pb = 0.05)
the difference is not big enough to be considered significant. For tools where the difference is
significant, techniques have a positive effect on all tools except JPlag-java.

Based on the presented results it can be stated that the H1 hypothesis is confirmed for the
SOCO D2 assignments.

Differences between different preprocessing techniques

In the previous analysis of the SOCO D2 assignments it was confirmed that using PPTs
significantly changes the accuracy for most tools and that the change is different between most
tools. The problem with the previous analysis, as for the D1 assignments, is that all techniques
were put together and if one technique had a positive effect and another technique a negative
effect the effects could cancel each other. To overcome the problem the PPTs were analysed
further in comparison to each other in the same way as for the D1 assignments.

Regarding the interaction contrasts, as can be seen from Table 8.9, 8 contrasts showed
significant differences at pb < 0.01 and 7 did not. It is no surprise that every contrast where
SIM-java and JPlag-java were compared was non-significant as the means of those tools across
different techniques are parallel (Figure 8.8). Also, for both tools the means are more or less
the same (Figure 8.8). This leads to a conclusion that using PPTs has no effect on SIM-java or
JPlag-java.

104

Chapter 8. Result analysis

The contrasts that compare single and combo technique do not show a significant result (at
pb < 0.01) for SIM-java vs. JPlag-java (pb = 0.19) and Text vs. Java (pb = 0.62). The 10
comparisons that compare single techniques (RC vs. CCR) and the comparisons that compare
combo techniques (AllnoNOR vs. AllNOR) are significant pb < 0.01for 5 contrasts. Non-
significant results are for contrasts comparing SIM-java vs. JPlag-java and Sherlock-java vs.
other Java tools for both single and combo comparisons, and for SIM-text vs. JPlag-text when
comparing combo techniques.

From the 8 contrasts that compare different techniques and that are significant it can be
concluded that accuracy changes are different for different tools when comparing different
techniques mostly for textual versions of the tools. Again, as with the previous analysis (no
PPT vs. PPT) this indicates but does not confirm that there is a difference in using different
techniques on an individual tool. To check H2, if there exists a difference in plagiarism detection
accuracy between at least two different PPTs, a simple effects analysis was used.

The simple effects analysis of single techniques compared to combo techniques showed a
significant difference in accuracy with pb < 0.01 for Sherlock-text, SIM-text, JPlag-text, and
JPlag-java. The difference was not significant for SIM-java (pb = 0.11) and Sherlock-java
(pb = 0.97). From the interaction graphs (Figure J.3 and Figure J.4) it can be seen that combo
techniques show an increase in accuracy in comparison to single techniques for SIM-text, JPlag-
text and Sherlock-java and a decrease for the others, which means that using combo techniques
was successful 50% of the time.

A simple effects analysis of RC vs. CCR techniques shows that the CCR technique decreases
the accuracy for all tools except in case of SIM-text and JPlag-text. The simple effects analysis
for the combo techniques (AllnoNOR vs. AllNOR) shows that there is no difference between the
two techniques for the SIM and JPlag tools (both versions had pb = 0.5) and for Sherlock-java
(pb = 0.66), but that there is a significant difference for Sherlock-text (pb < 0.01).

Based on the presented results it can be stated that the H2 hypothesis is confirmed for the
SOCO D2 assignments.

8.2.4 Results for D3 assignments

D3 assignments are created from the B1 assignments in the SOCO dataset. B1 assignments
relate to a medium difficulty problem with small complexity as did the A1 assignment. On
average, files in B1 have 90.86 LOC, which is 9 lines fewer than the A1 assignments. In Figure
8.9 the boxplot for the F1 scores is presented at each level of tool and technique for the D3
assignments. It can be observed that preprocessing techniques seem to have a stronger effect on
textual versions of the tools than on the Java versions, which is the same as for the D1 and D2
assignments. For the Java version there seems to be a small negative effect for SIM-java and
JPlag-java and a positive effect for Sherlock-java. For the textual versions, the effect of PPTs
was negative for Sherlock-text although it is not so strong as for the D1 and D2 assignments.
JPlag-text and SIM-text have again a positive effect (as it was for D1 and D2) with a slightly

105

Chapter 8. Result analysis

Figure 8.9: F1 score for SOCO D3 assignment with 3*IQR

Figure 8.10: D3 assignments - residuals

stronger effect for JPlag-text which is different than for the D1 and D2 assignments.
To confirm that there is an overall difference, as with the first two assignments ANOVA

with bootstrap was performed. In Figure 8.10, a histogram, Q-Q plot and scatter plot of the
residuals are presented. The results of the ANOVA with the F statistic and the p-values (original
and bootstrapped) are presented in Table 8.11. The result shows that pb value is less than 0.01
for the main effects (tool and technique) and for the interaction effect. The model comparison
is presented in Table H.3 where for this dataset χ2(20) = 959.451, pb < 0.01. Next, contrast
comparisons and a simple effects analysis were performed as for the D1 and D2 assignments. A
visual representation of the means for the D3 assignments is presented in Figure 8.11.

Figure 8.11 indicates that techniques have an effect on accuracy for all tools except SIM-java,
where the change is very small. The change is positive for SIM-text, JPlag-text, Sherlock-java,
but negative for the other tools, especially for Sherlock-text. By looking at Figure 8.11, as it
was for the first two assignments it can be observed that some techniques have a reverse effect
depending on which tool they used and/or with what technique they are compared. In general,
Figure 8.11 looks different from the mean comparison graph for the D1 and D2 assignments and

106

Chapter 8. Result analysis

Table 8.11: ANOVA results for SOCO D3

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) p.boot

Tool 7.53 1.506 5 177 1636.9 0.0000 0.0001
Technique 0.07 0.017 4 122 18.4 0.0000 0.0001
Tool:Technique 1.91 0.095 20 601 103.6 0.0000 0.0001

Figure 8.11: F1 mean comparison for SOCO D3

107

Chapter 8. Result analysis

quite similar to the D4 assignment (described later). This is not unexpected since D1 and D2 are
both based on the A assignments from the SOCO dataset and D3 and D4 are both based on the
B assignments from the SOCO dataset.

Analysing the graphs only visually, as it was stated before, can be informative but it can
also be misleading. Therefore, the results of the planned comparison for this assignment are
presented in Table 8.12 and the corresponding effect sizes are presented in Table I.5. The
results of the simple effects analysis for the D3 assignments are presented in Table 8.13 and the
corresponding effect sizes are presented in Table I.6. From 20 interaction contrasts, 15 have a
significant difference with pb < 0.01, although for most the pb values were less than 0.0001,
and the result is considered significant if pb is less or equal to 0.01 (as it was done for the D1
and D2 assignments). From 24 comparisons in the simple effects analysis, 16 comparisons have
significant result with pb < 0.01.

108

Chapter 8. Result analysis

Table 8.12: Contrasts results for SOCO D3

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.686 0 179.80 304.4271 0.0000 0.0001
Tool.TextvsJava -0.081 0 177.07 -36.7241 0.0000 0.0001
TT.SHvsOthers -0.066 0 177.07 -29.8239 0.0000 0.0001
TJ.SHvsOthers -0.100 0 177.07 -45.5599 0.0000 0.0001
TT.SIMvsJPlag -0.234 0 177.07 -61.2247 0.0000 0.0001
TJ.SIMvsJPlag -0.042 0 177.07 -11.0611 0.0000 0.0004

NoPPTvsPPT 0.003 0 121.62 6.2394 0.0000 0.0001
SinglevsCombo 0.001 0 121.62 0.9822 0.3280 0.9919

RCvsCCR 0.004 0 121.62 2.1309 0.0351 0.4618
AnoNvsAN -0.010 0 121.62 -5.4141 0.0000 0.0001

Tool.TextvsJava:NoPPTvsPPT -0.002 0 600.89 -3.6599 0.0003 0.0003
TT.SHvsOthers:NoPPTvsPPT 0.007 0 600.89 12.9306 0.0000 0.0001
TJ.SHvsOthers:NoPPTvsPPT -0.007 0 600.89 -14.0077 0.0000 0.0001

TT.SIMvsJPlag:NoPPTvsPPT 0.002 0 600.89 2.3510 0.0190 0.3766
TJ.SIMvsJPlag:NoPPTvsPPT -0.003 0 600.89 -3.2077 0.0014 0.0007

Tool.TextvsJava:SinglevsCombo 0.006 0 600.89 4.9152 0.0000 0.0019
TT.SHvsOthers:SinglevsCombo 0.024 0 600.89 21.4181 0.0000 0.0001
TJ.SHvsOthers:SinglevsCombo -0.016 0 600.89 -14.1435 0.0000 0.0001

TT.SIMvsJPlag:SinglevsCombo 0.000 0 600.89 0.1064 0.9153 0.5689
TJ.SIMvsJPlag:SinglevsCombo -0.005 0 600.89 -2.4476 0.0147 0.0086

Tool.TextvsJava:RCvsCCR -0.031 0 600.89 -19.3069 0.0000 0.0001
TT.SHvsOthers:RCvsCCR 0.010 0 600.89 6.3429 0.0000 0.0001
TJ.SHvsOthers:RCvsCCR 0.009 0 600.89 5.6478 0.0000 0.0003

TT.SIMvsJPlag:RCvsCCR 0.009 0 600.89 3.1604 0.0017 0.1366
TJ.SIMvsJPlag:RCvsCCR -0.009 0 600.89 -3.3410 0.0009 0.0008

Tool.TextvsJava:AnoNvsAN 0.020 0 600.89 12.2862 0.0000 0.0001
TT.SHvsOthers:AnoNvsAN 0.029 0 600.89 18.2468 0.0000 0.0001
TJ.SHvsOthers:AnoNvsAN -0.010 0 600.89 -6.4298 0.0000 0.0001
TT.SIMvsJPlag:AnoNvsAN 0.000 0 600.89 0.0000 1.0000 0.5384
TJ.SIMvsJPlag:AnoNvsAN 0.000 0 600.89 -0.0602 0.9520 0.4950

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR, AN - AllNOR

109

Chapter 8. Result analysis

Table 8.13: Simple effect analysis result for SOCO D3

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.686 0 179.80 304.4271 0.0000 0.0001
TextvsJava -0.081 0 177.07 -36.7241 0.0000 0.0001

TT.SHvsOthers -0.066 0 177.07 -29.8239 0.0000 0.0001
TT.SIMvsJPlag -0.234 0 177.07 -61.2247 0.0000 0.0001
TJ.SHvsOthers -0.100 0 177.07 -45.5599 0.0000 0.0001
TJ.SIMvsJPlag -0.042 0 177.07 -11.0611 0.0000 0.0005

TT.SH.NoPPTvsPPT -0.008 0 716.11 -6.1515 0.0000 0.0001
TT.SH.SinglevsCombo -0.053 0 716.11 -18.7249 0.0000 0.0001

TT.SH.RCvsCCR 0.014 0 716.11 3.5977 0.0003 0.0573
TT.SH.AllnoNORvsAllNOR -0.087 0 716.11 -21.9629 0.0000 0.0001

TT.JPlag.NoPPTvsPPT 0.014 0 716.11 11.0463 0.0000 0.0001
TT.JPlag.SinglevsCombo 0.020 0 716.11 7.1291 0.0000 0.0001

TT.JPlag.RCvsCCR 0.053 0 716.11 13.4288 0.0000 0.0001
TT.JPlag.AllnoNORvsAllNOR 0.000 0 716.11 0.0000 1.0000 0.5304

TT.SIM.NoPPTvsPPT 0.010 0 716.11 7.7787 0.0000 0.0001
TT.SIM.SinglevsCombo 0.020 0 716.11 6.9812 0.0000 0.0001

TT.SIM.RCvsCCR 0.036 0 716.11 9.0362 0.0000 0.0001
TT.SIM.AllnoNORvsAllNOR 0.000 0 716.11 0.0000 1.0000 0.5268

TJ.SH.NoPPTvsPPT 0.016 0 716.11 12.5280 0.0000 0.0001
TJ.SH.SinglevsCombo 0.039 0 716.11 13.7553 0.0000 0.0001

TJ.SH.RCvsCCR -0.045 0 716.11 -11.3371 0.0000 0.0001
TJ.SH.AllnoNORvsAllNOR 0.031 0 716.11 7.6975 0.0000 0.0001

TJ.JPlag.NoPPTvsPPT -0.008 0 716.11 -6.5616 0.0000 0.0001
TJ.JPlag.SinglevsCombo -0.014 0 716.11 -4.9696 0.0000 0.0001

TJ.JPlag.RCvsCCR -0.027 0 716.11 -6.8608 0.0000 0.0001
TJ.JPlag.AllnoNORvsAllNOR 0.000 0 716.11 -0.0837 0.9333 0.4874

TJ.SIM.NoPPTvsPPT -0.003 0 716.11 -2.1034 0.0358 0.0152
TJ.SIM.SinglevsCombo -0.004 0 716.11 -1.5678 0.1174 0.0595

TJ.SIM.RCvsCCR -0.009 0 716.11 -2.2172 0.0269 0.0131
TJ.SIM.AllnoNORvsAllNOR 0.000 0 716.11 0.0000 1.0000 0.5240

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

110

Chapter 8. Result analysis

Differences between no preprocessing and preprocessing

The first five interaction terms look at the effect of techniques (i.e., all PPTs combined)
relative to when no PPT is used when comparing the same tools, as was done for assignments
D1 and D2. For the five contrasts the interaction differences are significant except for SIM-text
vs. JPlag-text. This means that using PPTs (in comparison to when no technique is used) affects
SIM-text and JPlag-text tool in the same way.

Based on the five contrasts it is safe to say that in most cases the tool accuracy changes
differently when PPTs is used in comparison when no technique is used. This indicates but
does not confirm that using PPTs makes a difference for an individual tool used on the D3
assignments. By examining the interaction graphs (Figure J.5) it is apparent that the accuracy
increases for SIM-text, JPlag-text and Sherlock-java but decreases for the other three tools.

To check H1, if there exists a difference in plagiarism detection accuracy between at least
one PPT and when no PPT is used, a simple effects analysis was performed. The results of
the simple effects analysis for SOCO D3 are presented in Table 8.13 and the corresponding
effect sizes in Table I.6. The analysis confirms that using PPTs makes significant difference (at
pb < 0.01) in comparison to when no PPT is used for all tools except SIM-java (pb = 0.02).
For tools where the difference was significant, techniques have a positive effect on SIM-text,
JPlag-text and Sherlock-java and a negative effect on the other three tools.

Based on the presented results it can be stated that the H1 hypothesis is confirmed for the
SOCO D3 assignments.

Differences between different preprocessing techniques

In the previous analysis of the SOCO D3 assignments it was confirmed that using PPTs
significantly changes the accuracy for most tools and that the change is different between most
tools. The problem with the previous analysis, is that all techniques were put together and if one
technique had a positive effect and another technique a negative effect the effects could cancel
each other. To overcome the problem the PPTs were analysed further in comparison to each
other in the same way as for the D1 and D2 assignments.

Regarding the interaction contrasts, as can be seen from Table 8.12 11 contrasts show sig-
nificant differences at pb < 0.01 and 4 did not. The contrasts that compare single and combo
technique do not show a significant result (at pb < 0.01) for SIM-text vs. JPlag-text (pb = 0.56).
The 10 comparisons that compare single techniques (RC vs. CCR) and the comparisons that
compare combo techniques (AllnoNOR vs. AllNOR) are significant pb < 0.01 for 7 contrasts.
Non-significant results are for contrasts comparing SIM-text vs. JPlag-text for both single and
combo comparisons, and for SIM-java vs. JPlag-java when comparing combo techniques. In
comparison to the first two assignments (D1 and D2) there is no more similarity between SIM-
text and JPlag-text and not between SIM-java and JPlag-java.

From the 11 contrasts that compare different techniques and that are significant it can be

111

Chapter 8. Result analysis

concluded that accuracy changes are different for different tools when comparing different
techniques mostly for textual versions of the tools. Again, as with the previous analysis (no
PPT vs. PPT), this indicates but does not confirm that there is a difference in using different
techniques on an individual tool. To check H2, if there exists a difference in plagiarism detection
accuracy between at least two different PPTs, a simple effects analysis was used.

The simple effects analysis of single techniques compared to combo techniques showed a
significant difference in accuracy with pb < 0.01 for all tools except SIM-java (pb = 0.06). From
the interaction graphs (Figure J.3 and Figure J.4) it can be seen that combo techniques show an
increase in accuracy in comparison to single techniques for SIM-text, JPlag-text and Sherlock-
java and a decrease for the others. This means that using combo techniques was successful 50%
of the time, and this is the same as for the D2 assignment.

A simple effects analysis of RC vs. CCR techniques shows that the CCR technique decreases
the accuracy for all Java versions of the tools and an increase for the textual versions of the tools.
The simple effects analysis for the combo techniques (AllnoNOR vs. AllNOR) shows that there
is no difference between the two techniques for SIM and JPlag tools (both versions had pb = 0.5)
and but there is a significant difference for Sherlock tool (both versions pb < 0.01).

Based on the presented results it can be stated that the H2 hypothesis is confirmed for the
SOCO D3 assignments.

8.2.5 Results for D4 assignments

D4 assignments are created from the B2 assignments in the SOCO dataset. The B2 assign-
ments are of medium difficulty but with high complexity, as are the A2 assignments. On average
files in B2 have 102.46 LOC, which is 6 lines fewer than the A2 assignments. In Figure 8.12 the
boxplot for F1 scores is presented at each level of tool and technique for the D4 assignments. It
can be observed that preprocessing techniques seem to have a stronger effect on textual versions
of the tools than on the Java versions, which is the same as for the other three assignments. For
the Java version, there seems to be a small positive effect on Sherlock-java and small negative
effect on JPlag-java, while for SIM-java there is no effect. The effect of PPTs on the textual
versions is again strongest for Sherlock-text and again as for the other three assignments, there
is a decrease rather than an increase of the accuracy. SIM-text has again (as in D1, D2 and D3)
a positive effect but for JPlag-text there seems to be a small negative effect.

To confirm that there is an overall difference, as before ANOVA with bootstrap was per-
formed. In Figure 8.13 a histogram, Q-Q plot and scatter plot of the residuals are presented.
The results of the ANOVA with the F statistic and the p-values (original and bootstrapped) are
presented in Table 8.14. The result shows that the pb value is less than 0.01 for the main effects
(tool and technique) and for the interaction effect. The model comparison is presented in Table
H.4 where for this dataset χ2(20) = 99.504, pb < 0.01. Next, contrast comparisons and a simple
effects analysis were performed as for the D1 to D3 assignments. The visual representation of
the means is presented in Figure 8.14.

112

Chapter 8. Result analysis

Figure 8.12: F1 score for SOCO D4 assignment with 3*IQR

Figure 8.13: D4 assignments - residuals

Table 8.14: ANOVA results for SOCO D4

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) p.boot

Tool 12.66 2.533 5 155 436.2 0e+00 0.0001
Technique 0.13 0.034 4 124 5.8 3e-04 0.0003
Tool:Technique 0.62 0.031 20 620 5.4 0e+00 0.0001

113

Chapter 8. Result analysis

Figure 8.14: F1 mean comparison for SOCO D4

114

Chapter 8. Result analysis

Figure 8.14 indicates that techniques have an effect on accuracy for all tools except SIM-java.
The change is positive for SIM-text and Sherlock-java and negative for the other tools, especially
for Sherlock-text. By looking at Figure 8.8, as for the three previous assignments, it can be
observed that some techniques have a reverse effect depending on which tool is used and/or to
what technique they are compared.

In general, Figure 8.8 looks a lot like the mean comparison graph for the D3 assignment and
differs from D1 and D2. As it seems from the mean comparison graph, the difference between
D3 and D4 is greater than that between D2 and D1. A detailed comparison of the results for all
four assignments is given in the Discussion Section.

Analysing the graphs only visually, as stated before, can be informative but it can also
be misleading. Therefore, the results of the planned comparison for the D4 assignments are
presented in Table 8.15 and the corresponding effect sizes are presented in Table I.7. The results
of the simple effects analysis are presented in Table 8.16 and the corresponding effect sizes
are presented in Table I.8. From 20 interaction contrasts only 3 have a significant difference
with pb < 0.01. From 24 comparisons in the simple effects analysis only 9 had a significant
result with pb < 0.01. In comparison to the other three assignments, for this assignment the
preprocessing techniques had the least effect.

115

Chapter 8. Result analysis

Table 8.15: Contrasts results for SOCO D4

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.675 0 31 137.8302 0.0000 0.0924
Tool.TextvsJava -0.087 0 155 -20.6044 0.0000 0.0003
TT.SHvsOthers -0.073 0 155 -17.2757 0.0000 0.0010
TJ.SHvsOthers -0.111 0 155 -26.2041 0.0000 0.0005
TT.SIMvsJPlag -0.195 0 155 -26.7350 0.0000 0.0007

TJ.SIMvsJPlag -0.055 0 155 -7.5269 0.0000 0.0290
NoPPTvsPPT -0.002 0 124 -1.4921 0.1382 0.0836

SinglevsCombo -0.013 0 124 -4.5237 0.0000 0.0001
RCvsCCR -0.003 0 124 -0.6443 0.5206 0.2760

AnoNvsAN 0.000 0 124 0.0390 0.9689 0.5356
Tool.TextvsJava:NoPPTvsPPT 0.000 0 620 0.2604 0.7947 0.6365
TT.SHvsOthers:NoPPTvsPPT 0.003 0 620 2.3497 0.0191 0.3657
TJ.SHvsOthers:NoPPTvsPPT -0.002 0 620 -1.3470 0.1785 0.0908
TT.SIMvsJPlag:NoPPTvsPPT -0.003 0 620 -1.2522 0.2110 0.1099
TJ.SIMvsJPlag:NoPPTvsPPT -0.004 0 620 -1.9007 0.0578 0.0324

Tool.TextvsJava:SinglevsCombo 0.014 0 620 5.0761 0.0000 0.0008
TT.SHvsOthers:SinglevsCombo 0.007 0 620 2.6174 0.0091 0.2843
TJ.SHvsOthers:SinglevsCombo -0.006 0 620 -2.2518 0.0247 0.0169
TT.SIMvsJPlag:SinglevsCombo 0.000 0 620 -0.0667 0.9469 0.4954
TJ.SIMvsJPlag:SinglevsCombo -0.007 0 620 -1.4001 0.1620 0.0864

Tool.TextvsJava:RCvsCCR -0.015 0 620 -3.9125 0.0001 0.0001
TT.SHvsOthers:RCvsCCR 0.008 0 620 2.0685 0.0390 0.4980
TJ.SHvsOthers:RCvsCCR 0.007 0 620 1.7487 0.0808 0.6470

TT.SIMvsJPlag:RCvsCCR -0.023 0 620 -3.3707 0.0008 0.0008
TJ.SIMvsJPlag:RCvsCCR -0.014 0 620 -2.0153 0.0443 0.0265

Tool.TextvsJava:AnoNvsAN 0.010 0 620 2.4768 0.0135 0.3335
TT.SHvsOthers:AnoNvsAN 0.010 0 620 2.4360 0.0151 0.3347
TJ.SHvsOthers:AnoNvsAN -0.009 0 620 -2.2931 0.0222 0.0128
TT.SIMvsJPlag:AnoNvsAN 0.000 0 620 0.0000 1.0000 0.5327
TJ.SIMvsJPlag:AnoNvsAN 0.000 0 620 0.0354 0.9718 0.5430

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR, AN - AllNOR

116

Chapter 8. Result analysis

Table 8.16: Simple effects analysis result for SOCO D4

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.675 0 31.00 137.8302 0.0000 0.0976
TextvsJava -0.087 0 155.00 -20.6044 0.0000 0.0004

TT.SHvsOthers -0.073 0 155.00 -17.2757 0.0000 0.0014
TT.SIMvsJPlag -0.195 0 155.00 -26.7350 0.0000 0.0003
TJ.SHvsOthers -0.111 0 155.00 -26.2041 0.0000 0.0002
TJ.SIMvsJPlag -0.055 0 155.00 -7.5269 0.0000 0.0292

TT.SH.NoPPTvsPPT -0.008 0 743.13 -2.6413 0.0084 0.0046
TT.SH.SinglevsCombo -0.042 0 743.13 -6.0932 0.0000 0.0001

TT.SH.RCvsCCR -0.004 0 743.13 -0.3639 0.7161 0.3755
TT.SH.AllnoNORvsAllNOR -0.029 0 743.13 -2.9606 0.0032 0.0030

TT.JPlag.NoPPTvsPPT -0.002 0 743.13 -0.6642 0.5067 0.2739
TT.JPlag.SinglevsCombo -0.020 0 743.13 -2.9589 0.0032 0.0035

TT.JPlag.RCvsCCR -0.002 0 743.13 -0.2150 0.8298 0.4367
TT.JPlag.AllnoNORvsAllNOR 0.000 0 743.13 0.0000 1.0000 0.5279

TT.SIM.NoPPTvsPPT 0.003 0 743.13 1.0931 0.2747 0.9574
TT.SIM.SinglevsCombo -0.020 0 743.13 -2.8653 0.0043 0.0057

TT.SIM.RCvsCCR 0.044 0 743.13 4.5153 0.0000 0.0079
TT.SIM.AllnoNORvsAllNOR 0.000 0 743.13 0.0000 1.0000 0.5305

TJ.SH.NoPPTvsPPT 0.002 0 743.13 0.5649 0.5723 0.8215
TJ.SH.SinglevsCombo 0.014 0 743.13 1.9648 0.0498 0.5899

TJ.SH.RCvsCCR -0.032 0 743.13 -3.2748 0.0011 0.0022
TJ.SH.AllnoNORvsAllNOR 0.028 0 743.13 2.8779 0.0041 0.1938

TJ.JPlag.NoPPTvsPPT -0.007 0 743.13 -2.4059 0.0164 0.0095
TJ.JPlag.SinglevsCombo -0.012 0 743.13 -1.7543 0.0798 0.0571

TJ.JPlag.RCvsCCR -0.025 0 743.13 -2.5636 0.0106 0.0072
TJ.JPlag.AllnoNORvsAllNOR 0.001 0 743.13 0.1158 0.9079 0.5761

TJ.SIM.NoPPTvsPPT 0.001 0 743.13 0.2615 0.7938 0.6870
TJ.SIM.SinglevsCombo 0.001 0 743.13 0.2105 0.8333 0.6850

TJ.SIM.RCvsCCR 0.003 0 743.13 0.2646 0.7914 0.6559
TJ.SIM.AllnoNORvsAllNOR 0.001 0 743.13 0.0662 0.9473 0.5584

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

117

Chapter 8. Result analysis

Differences between no preprocessing and preprocessing

The first five interaction terms look at the effect of techniques (i.e., all PPTs combined) rela-
tive to when no PPT is used when comparing the same tools, as was done in other assignments.
For the five contrasts the interaction difference was not significant for any of the comparisons.
This means that using PPTs (compared to when no technique is used) affects all tested tool
comparisons in the same way.

Based on the five contrasts the question arises as to whether the tool accuracy changes the
same way when PPTs are used in comparison to when no technique is used. This indicates but
does not confirm that using PPTs makes no difference. By examining the interaction graphs
(Figure J.7) it is apparent that the accuracy increases for Sherlock-java, SIM-text, SIM-java, and
decreases for Sherlock-text, JPlag-text, and JPlag-java.

To check H1, if there exists a difference in plagiarism detection accuracy between at least one
PPT and when no PPT is used, a simple effects analysis was performed. The results of the simple
effects analysis for SOCO D4 are presented in Table 8.16 and the corresponding effect sizes in
Table I.8. The analysis confirmed that using PPTs made a significant difference (at pb < 0.01)
compared with when no PPT is used for Sherlock-text and JPlag-java. On the other hand, for
the other tools the difference was not big enough to be considered significant. For tools where
the difference was significant, techniques had a negative effect. Although this fact is concerning,
one should take into account that all techniques were looked together (i.e., techniques were not
individually compared to when no technique is used) and that the differences that are visible in
Figure 8.14 are masked.

Based on the presented results, although with a negative effect, it can still be stated that the
H1 hypothesis is confirmed for the SOCO D4 assignments.

Differences between different preprocessing techniques

In the previous analysis of the SOCO D4 assignments it was confirmed that using PPTs
significantly decreases the accuracy for two tools and that the decrease is different between the
two tools. The problem with the previous analysis is that all techniques were put together and
if one technique had a positive effect and another technique a negative effect the effects could
cancel each other. To overcome the problem the PPTs were analysed further in comparison to
each other in the same way as for the other assignments.

Regarding the interaction contrasts, as can be seen from Table 8.15 3 contrasts showed
significant differences at pb < 0.01 and others did not. The contrasts that compare single and
combo techniques only showed significant results (pb < 0.01) for text vs. Java tools. The 10
comparisons that compare single techniques (RC vs. CCR) and the comparisons that compare
combo techniques (AllnoNOR vs. AllNOR) are significant pb < 0.01 for 2 contrasts. Significant
results were also obtained for contrasts comparing single techniques for text vs. Java and SIM-
text vs. JPlag-text.

118

Chapter 8. Result analysis

Since there were only 3 contrasts that compare different techniques and that are significant,
it can be concluded that accuracy changes for most tools are similar when comparing different
techniques. To check H2, if there exists a difference in plagiarism detection accuracy between
at least two different PPTs, a simple effects analysis was used.

The simple effects analysis of single techniques compared to combo techniques showed a
significant difference in accuracy with pb < 0.01 for all textual versions of the tools. From the
interaction graphs (Figure J.7 and Figure J.8) it can be seen that combo techniques show an
increase in accuracy in comparison to single techniques for Sherlock-java and JPlag-java and
a decrease for the others. This means that using combo techniques was unsuccessful in this
assignment since the positive effects of a PPTs were not significant, only negative effects were
significant.

A simple effects analysis of RC vs. CCR techniques shows that the CCR technique increases
the accuracy for SIM-text and SIM-java but only for SIM-text was this significant. There was
a decrease for other tools which was significant for Sherlock-java and JPlag-java. The simple
effects analysis for the combo techniques (AllnoNOR vs. AllNOR) showed that there is no
difference between the two techniques for the SIM and JPlag tools (both versions had pb = 0.5)
and Sherlock-java (pb = 0.19) but there is a significant difference for Sherlock-text (pb < 0.01)
which was negative.

Based on the presented results it can be stated that the H2 hypothesis is confirmed on the
SOCO D3 assignments, but as previously (no PPT vs. PPT) most significant changes are negative.
Even though most significant changes are negative some positive effects can be observed (Figure
8.14) for SIM-text and Sherlock-java.

8.2.6 Discussion

In the previous four sections, the H1 and H2 hypotheses were confirmed for the SOCO
dataset using the statistical analysis. To answer the research question Q1 and fulfil the second
goal G2, the results of the statistical tests for the four assignments are organized and qualitatively
examined. The qualitative examination should help identify any patterns that are repeated on all
four assignments.

In Table 8.17 the summary of the results is presented which is, in essence, the answer to
the research question (Q1): “How do different PPTs affect the plagiarism detection accuracy?”.
Table 8.17 gives an overview of all statistically significant results for the four assignments (D1,
D2, D3 and D4). If the comparison was not statistically significant for some assignment it is not
listed. The plus and minus symbol present in which direction was the effect of the preprocessing
techniques. Each contrast was stated in the way that the second part in the contrast name was
expected to improve the accuracy in contrast to the first part and therefore the effect should
have been positive. For example, when comparing no PPT vs. PPT it was expected that using
PPT should have a positive effect, similarity if comparing Single vs. Combo it was expected
that, when using a combination of techniques, the combination should have a positive effect in

119

Chapter 8. Result analysis

comparison to when only one single technique is used.
From Table 8.17 it can be seen that throughout the four assignments that were statistically

tested, similar conclusions can be drawn. Overall we can state the following, the effect of PPT is
not significant for SIM-java for all tested assignments on all comparisons. This means using PPT
when SIM-java is used makes no difference at all. If we take into account that preprocessing
takes time, the best suggestion is to not use PPT with SIM-java. For JPlag-java and Sherlock-text
there were some significant results but with a negative effect. This means that if PPTs are used
in combination with JPlag-java and Sherlock-java they gave worse results than when no PPTs
were used. The suggestion is therefore as for SIM-java not to use PPT in combination with
JPlag-java and Sherlock-text.

To answer why this happens one needs to look at the Precision and Recall and from this it
can be seen that for JPlag-java the Recall is constant, which means that using PPT includes more
matches but most of the plagiarised matches were already included (Recall > 0.9). Similarly,
for Sherlock-text the Recall increases slightly but the Precision decreases a lot. So in the case
of JPlag-java and Sherlock-text the techniques increase the number of potentially plagiarised
matches without including any new (or just a small number of) plagiarised matches. This
decreases Precision, and since Recall is constant it decreases also the F1 value. Now it is
a logical follow up question as to why a technique lowers the Precision, but to answer that
question is out of the scope of this research. To answer such questions one needs to analyse in
detail how the JPlag-java or the Sherlock-text algorithms work, to understand why code parts
removal or reordering would cause a match to be suspicious that was not suspicious before using
a PPT.

A positive effect of the techniques was found for Sherlock-java, SIM-text and JPlag-text.
Sherlock-java as presented in Table 8.17 had a positive effect when PPTs were used, it had a
positive effect with combo techniques but a negative effect with single techniques. From this it
can be stated that it makes sense to use PPTs with Sherlock-java, but one needs to be careful

Table 8.17: Summary of SOCO assignements significant comparisons

NoPPT vs Single vs RC vs AllnoNOR vs

Tool PPT Combo CCR AllNOR

SIM-java
JPlag-java -D2 -D3 -D4 -D2 -D3 -D2 -D3 -D4
SH-java +D3 +D1 +D3 -D1 -D2 -D3 -D4 +D3
SIM-text +D1 +D2 +D3 +D1 +D2 +D3 -D4 +D1 +D2 +D3 +D4
JPlag-text +D1 +D2 +D3 +D2 +D3 -D4 +D1 +D2 +D3
SH-text -D1 -D2 -D3 -D4 -D1 -D2 -D3 -D4 -D1 -D2 -D1 -D2 -D3 -D4

Note:
Symbol + means effect was positive and - means effect was negative.
SH - Sherlock

120

Chapter 8. Result analysis

which to choose. To be more precise, it is not advisable to use the CCR technique, rather it is
better to use the simpler RC technique. Since combinations had a positive effect in comparison
to single technique, it would be good to use them but without the CCR technique meaning using
only the RC technique in combination with the NOR technique. Note that the combination of
RC and NOR was not tested directly in this research, and the conclusion is based on the fact
that there is a negative effect of the CCR technique and a positive impact of the NOR technique
when RC is combined with CCR.

Regarding SIM-text and Jplag-text, it is clear that PPTs have with those tools the most
positive impact. When using both tools it is advisable to use the CCR technique over RC,
but even better it is advisable to combine those two techniques. Since there is no significant
difference between the combo techniques it is better to use the AllnoNOR combination which
does not include the NOR technique. There is a small chance that combo will have a negative
effect in comparison to single techniques, so when doing the analysis it would be good to run
both the CCR and the AllnoNOR techniques. Since there is the same influence of techniques
on SIM-text and Jplag-text, it is reasonable to ask if the influence has the same magnitude. The
answer to that question is obtained by the planned contrasts (Tables 8.6, 8.9, 8.12, and 8.15) and
it can be stated that there is a difference in magnitude and that the increase in accuracy is overall
significantly larger for SIM-text that it is for JPlag-text. In short, SIM-text responds better to
PPTs than JPlag-text.

Based on the previous analysis it can be concluded that PPTs have a bigger impact on textual
tools than on Java tools, but the effect is not always positive (i.e., Sherlock-text). Although
it was not explicitly tested there is a good indication (number of assignments with significant
positive effect) that SIM-text and JPlag-text have a bigger positive impact than Sherlock-java. If
the results of Sherlock-java are compared to SIM-text and JPlag-text there is a positive effect
of the CCR technique (over RC technique) on SIM-text and JPlag-text, while for Sherlock-java
CCR the technique has a negative effect. Similarly, the AllNOR technique has no significant
effect (in comparison to the AllnoNOR technique) for SIM-text and JPlag-text, but it has for
Sherlock-java. The fact that the NOR technique did not impact SIM-text and JPlag-text indicates
that those tools have some prevention of simple code reformatting implemented in the algorithm,
while Sherlock-java does not have that initially. Another interesting conclusion that can be
drawn from that is although Sherlock-java has not integrated the NOR technique it is mostly not
a problem since only one of four assignments showed a significant change.

The reason why the positive effect happens on the three tools is the same reason as to why
the negative effect happens for JPlag-java and Sherlock-text, and this is that the Precision was
increased while the Recall remains more or less constant. For Sherlock-java there is some
decrease in Recall but the increase of Precision is larger. Again, the logical follow up question
would be why a technique increases the Precision, but as stated before to answer that question is
currently out of the scope of this research.

From a high level view it can be stated that the reason why different techniques have different

121

Chapter 8. Result analysis

effects on the accuracy is that techniques try to process different elements of the code. For
example RC only removes comments while CCR does not remove comments but removes many
other elements. So it is no surprise that the effects were different, although (as visible from the
discussion) it depends on the tool and to some extent on the assignments whether the effect is
positive or negative, or if there is no effect. The reason why the effect of the same technique
is different for different tools is that the underlying algorithms in the tools are different, so if a
tool’s algorithm ignores comments it is natural that the RC technique has no effect. It seems the
complexity of the programs appears not to have any major impact on the final result.

In summary, from the statistical tests throughout the SOCO dataset it is clear that using PPTs
makes a difference (H1 confirmed) and that different techniques have different impacts (H2
confirmed). The discussion above gave the answer to how do different techniques impact the
accuracy of the individual tools (Q1). Based on the results here is a short guideline on which
techniques to use on which tools:

• SIM-java — no PPT should be used;

• JPlag-java — no PPT should be used;

• Sherlock-java — RC technique or combination of RC and NOR techqniue should be used;

• SIM-text — CCR technique or AllnoNOR technique should be used;

• JPlag-text — CCR technique or AllnoNOR technique should be used;

• Sherlock-text — no PPT should be used.

Note that the guidelines are only based on the significant results obtained in the statistical
analyses. This means that only comparisons that are used in the statistical analyses are used
to create the guidelines. Different guidelines might be created if they would be based only on
the mean comparison graphs or if every individual technique would be compared to when no
technique is used.

8.2.7 Guidelines verification

To verify if the created guidelines would be good to make decisions about which technique
to use or not use, they were tested on T1, C1, and C2 assignments. The test was simple, namely
whether the overall result is better by following the guidelines or if the result is better by doing
something else (usually the opposite).

In Figure 8.1b the results for the SOCO T1 assignment were presented and in Figure 8.2b
the results for the SOCO C2 assignment were presented with the same configuration as it was
for the D1 to D4 assignments and with the same threshold level. For C1, since there are no
plagiarised cases, the analysis is done simply on the number of false positives. The results are
presented in Figure 8.15, note that a smaller number is better in this case.

122

Chapter 8. Result analysis

For JPlag-java and SIM-java the guidelines say not to use PPTs, and this would be a good
decision for 3 of 4 cases in the T1 and C2 assignments. Only for JPlag-java in T1 would it be
better to use some technique which could get an F1 increase for 0.05. On C1 for JPlag-java there
is an increase of 8 false positive matches when using PPTs, so not using PPT is a good decision,
on the other hand, for SIM-java there is a decrease of 4 false positive matches so the decision
is not good. In general, following the guidelines for SIM-java and JPlag-java is good for 4 of 6
times, and the 2 times when it would be better to use PPTs does not make a big difference in
comparison to when the techniques are not used.

For Sherlock-java the guidelines say to use RC or combination of RC and NOR. For T1
this is good advice while for C2 it is not. For C1 the guidelines are good since the use of RC
decreases for 6 false positives and the mentioned combination for approximately 7 false positives,
but it must be stated that using CCR would make an even better decease of an additional 10
cases. In general, the guidelines for Sherlock-java can be considered good for 2 of 3 cases. They
lead to an increase in accuracy for T1 and C1 on the other hand for C2 they lead to a decrease in
accuracy.

For Sherlock-text the guidelines say to not use PPT. Such a decision would not be good
for T1 or for C2 since better results could be achieved by using PPTs except for the AllNOR
technique. For C1 also it would be better to use PPTs, but the best is AllnoNOR which would
make a decrease of 14 false positives, on the other hand, AllNOR would increase the false
positives for 16 matches. Overall, the guidelines can be considered bad for Sherlock-text since
for 3 cases the results were worse than when PPTs were used.

For SIM-text and JPlag-text the guidelines say to use CCR or AllnoNOR. This advice would
be good for C2 while for T1 the techniques would make no difference for JPlag-text (decrease
is only 0.005) and a small decrease of F1 value for 0.02 for SIM-text. Regarding C1, using
AllnoNOR decreases the false positives for 43 matches for SIM-text and 133 matches for JPlag-
text which makes a huge difference. In general, one can conclude the guidelines are good for
5 of 6 cases, and the only time when it would be better to use PPTs it does not make a big
difference in comparison to when the techniques are not used.

In summary, the guidelines are considered good for both versions of SIM and JPlag, where
the guidelines are better for the textual versions of the two tools (SIM-text and Jplag-text) and are
considered neutral for Sherlock-java, meaning following the guidelines or not would probably
lead to similar results. As for Sherlock-text, the guidelines are considered bad, meaning better
results can be achieved doing the opposite.

This short verification is by no means precise and it is prone to be biased. This is especially
true for the cases where the differences are small like 0.05 or 0.02 in the F1 value. In addi-
tion, there is no evidence that the differences seen are statistically significant, but regardless of
these limitations to the verification it is plausible to say that the obtained guidelines are a step
in the right direction, at least for assignments similar to SOCO and of course with the same
configuration of the tools and the same calculation of the threshold level.

123

Chapter 8. Result analysis

Figure 8.15: False positives for SOCO C1 assignment with 3*IQR

8.3 RSS dataset analysis
In this Section the results based on the RSS dataset are described. As already stated, data are

analysed qualitatively and quantitatively, and to ensure objectivity statistical tests are performed.
The RSS dataset has the same issues as the SOCO dataset regarding the violations of assumptions
so they are solved in the same way as before (Section 8.2.1).

In comparison to the SOCO dataset the RSS dataset has one more issue and that is the
number of participants. In the RSS dataset the “Participants” are academic years, this means
there are only six participants available, additionally two are not valid since in two academic
years there were no plagiarised matches which means there are only four “Participants” for the
statistical analysis. According to [87] there is no simple answer to the number of participants
and some say that a sample size of 20-30 is needed for good results. The problem with the RSS
dataset is that it is not easy to increase the number of participants since an expert is needed to
identify real plagiarised matches. This means that statistical tests will have small strength so it
is expected that the results will be non significant because of the small number of participants
and not because there is no effect. Because of this issue, there is a separate Section 8.3.3 which
shows some benefits of using preprocessing techniques regardless of the statistical results.

The MLM equations that are used for the RSS dataset look also the same as they were
for the SOCO datasets (Section 8.2.1) the only difference is that for the RSS dataset the term
“Participant” represents one academic year. Assignments in the RSS dataset are therefore a
group of assignments from different academic years. In this context, A1 then represents a group
of the first assignment from different academic years. As in the SOCO dataset one group has
the same characteristics like the complexity of the problem, type of the problem, what Java
technologies were or were not used (JSF, ORM, web filters, EJB), etc.

To do a statistical test only assignments from one group should be tested together to control

124

Chapter 8. Result analysis

the variability. This means that with the RSS dataset four case studies can be done, one for each
group (A1, A2, A3 and A4). In the rest of the Section, A1, A2, A3 and A4 will be referred
to as assignments rather than a group of assignments from different academic years. Note that
only A1 assignments are analysed in this research, and the reason is that the time required to
confirm real plagiarised matches was long (several weeks of work) and the expert managed to
confirm only one assignment group in six academic years. The A4 assignments are only be used
in Section 8.3.3 to display some effects of the preprocessing techniques regardless of the fact is
the match plagiarised or not. The assignments A2 and A3 are not used at all and will be analysed
in future work.

In the rest of this Section assignment A1 of the RSS dataset is analysed and then an overall
discussion is given. In the last part of this Section the limitations of the statistical analysis
are given, together with a description of some other benefits of using preprocessing techniques
whereby the data from the A4 assignments will be used.

8.3.1 Results for A1 assignments

A1 assignments are the first assignments given in each academic year. The first assignment
uses only standard Java, meaning there are no enterprise or web technologies (e.g., JSF, JSP),
frameworks (e.g., ORM) and similar. In this assignment, students must usually implement their
own server using SocketServer class and a client application which can communicate with this
server using a unique protocol (defined by the teacher). In the implementation it is expected
that the students use regular expressions and threads, and that they create unit tests for some
classes. To help the students they can use all the code that has been implemented during the lab
sessions or presented in the lectures. Also, for some parts of the assignments they have to use
external libraries, for example, to work with JSON the students can use the Gson library 3. On
average one submission has 1800 LOC whereby the smallest was 422 LOC and largest 3872
LOC. Usually a submission with less than 500 LOC means the student submitted just the code
given by the teacher. In comparison to the SOCO dataset, but also to other studies, these are
much longer solutions, which is normal considering this is a course in the first year of graduate
studies.

In Figure 8.16 the boxplots for F1 scores are presented at each level of tool and technique for
the A1 assignments. It can be observed that preprocessing techniques seem to have a stronger
effect on textual versions of the tools (especially JPlag-text and SIM-text) than on the Java
versions, which is consistent with the results from the SOCO dataset. For the Java version, there
seems to be a positive effect which varies from PPT to PPT. The effect of PPTs on the textual
versions is strongest for JPlag-text which is consistent with D3 in the SOCO dataset. From
Figure 8.16 one can see that TE technique was added which requires a template to be excluded
form the solution and was therefore not used in the SOCO dataset. Also, in the AllNOR and
AllnoNOR techniques the TE technique is included.

3https://github.com/google/gson

125

https://github.com/google/gson

Chapter 8. Result analysis

Figure 8.16: F1 score for RSS A1 assignment with 3*IQR

Figure 8.17: A1 assignments - residuals

Since there is a small number of “Participants” it is not expected to see any statistically
significant differences, and because of that, instead of using p-value of 0.01 as a reference, the p
value of 0.05 will be used. To improve a bit the strength but to not modify the experiment design
it was decided to remove the RC technique from any statistical analysis. The reason why the RC
technique was removed is that it showed poor results in the SOCO dataset and as it can be seen
in Figure 8.16 it does not look promising in this dataset. In addition, the idea was to remove a
single technique to again have two single techniques and two combo techniques as in the SOCO
dataset. Note that the AllNOR and AllnoNOR techniques still include the RC technique.

To confirm that there is an overall difference, as before ANOVA with bootstrap was per-
formed. In Figure 8.17 a histogram, Q-Q plot and scatter plot of the residuals are presented.
The results of the ANOVA with the F statistic and the p-values (original and bootstrapped) are
presented in Table 8.18. The result shows that the pb value is larger than 0.05 for the main
effects (tool and technique) but for the interaction effect it is less than 0.05. The model compar-
ison is presented in Table H.5 where for this dataset χ2(20) = 37.9, pb < 0.05. Next, contrast
comparisons and a simple effects analysis were performed as for the SOCO dataset. The visual

126

Chapter 8. Result analysis

Table 8.18: ANOVA results for RSS A1

Sum Sq Mean Sq NumDF DenDF F value Pr(>F) p.boot

Tool 0.19 0.037 5 20 4.3 0.0080 0.3467
Technique 0.14 0.034 4 16 4.0 0.0199 0.3383
Tool:Technique 0.42 0.021 20 80 2.4 0.0029 0.0406

representation of the means is presented in Figure 8.18.
Figure 8.18 indicates that techniques have an effect on accuracy for all tools. The change

is mostly positive for all tools. By looking at Figure 8.18, as for the SOCO dataset, it can be
observed that some techniques have a reverse effect depending on which tool is used and/or to
what technique they are compared.

Analysing the graphs only visually, as stated before, can be informative but it can also
be misleading. Therefore, the results of the planned comparison for the A1 assignments are
presented in Table 8.19 and the corresponding effect sizes are presented in Table I.9. The results
of the simple effects analysis are presented in Table 8.20 and the corresponding effect sizes
are presented in Table I.10. From 20 interaction contrasts only 1 has a significant difference
with pb < 0.05 and one is close with pb = 0.0647. From 24 comparisons in the simple effects
analysis only 3 had a significant result with pb < 0.05. In comparison to the SOCO dataset these
are the worst results, but then one has to keep in mind the issue with the number of participants.

127

Chapter 8. Result analysis

Figure 8.18: F1 mean comparison for RSS A1

128

Chapter 8. Result analysis

Table 8.19: Contrasts results for RSS A1

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.301 0 4 3.9898 0.0163 0.5994
Tool.TextvsJava 0.034 0 20 1.3740 0.1846 0.4879
TT.SHvsOthers 0.062 0 20 2.4745 0.0224 0.3616
TJ.SHvsOthers 0.067 0 20 2.6980 0.0138 0.3515
TT.SIMvsJPlag 0.100 0 20 2.3105 0.0316 0.3743
TJ.SIMvsJPlag 0.042 0 20 0.9646 0.3462 0.9392

NoPPTvsPPT 0.027 0 16 2.7730 0.0136 0.3202
SinglevsCombo 0.051 0 16 2.3324 0.0331 0.3386

CCRvsTE 0.051 0 16 1.6358 0.1214 0.4034
AnoNvsAN 0.010 0 16 0.3218 0.7518 0.5443

Tool.TextvsJava:NoPPTvsPPT -0.006 0 80 -1.4607 0.1480 0.1098
TT.SHvsOthers:NoPPTvsPPT 0.010 0 80 2.4361 0.0171 0.3742
TJ.SHvsOthers:NoPPTvsPPT 0.004 0 80 0.9019 0.3698 0.9530
TT.SIMvsJPlag:NoPPTvsPPT 0.012 0 80 1.5706 0.1202 0.7263
TJ.SIMvsJPlag:NoPPTvsPPT 0.015 0 80 2.0546 0.0432 0.5330

Tool.TextvsJava:SinglevsCombo -0.009 0 80 -0.8988 0.3715 0.2321
TT.SHvsOthers:SinglevsCombo 0.016 0 80 1.6989 0.0932 0.6754
TJ.SHvsOthers:SinglevsCombo -0.011 0 80 -1.1399 0.2577 0.1746
TT.SIMvsJPlag:SinglevsCombo -0.018 0 80 -1.0821 0.2825 0.1758
TJ.SIMvsJPlag:SinglevsCombo 0.008 0 80 0.4936 0.6230 0.7668

Tool.TextvsJava:CCRvsTE -0.031 0 80 -2.2941 0.0244 0.0237
TT.SHvsOthers:CCRvsTE 0.039 0 80 2.8986 0.0048 0.2261
TJ.SHvsOthers:CCRvsTE 0.014 0 80 1.0230 0.3094 0.9894
TT.SIMvsJPlag:CCRvsTE 0.063 0 80 2.7116 0.0082 0.2800
TJ.SIMvsJPlag:CCRvsTE 0.009 0 80 0.3759 0.7080 0.7076

Tool.TextvsJava:AnoNvsAN 0.014 0 80 1.0230 0.3094 0.9889
TT.SHvsOthers:AnoNvsAN 0.004 0 80 0.2790 0.7810 0.6684
TJ.SHvsOthers:AnoNvsAN -0.024 0 80 -1.7670 0.0810 0.0647
TT.SIMvsJPlag:AnoNvsAN 0.000 0 80 0.0000 1.0000 0.5511
TJ.SIMvsJPlag:AnoNvsAN 0.000 0 80 0.0000 1.0000 0.5459

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR, AN - AllNOR

129

Chapter 8. Result analysis

Table 8.20: Simple effects analysis result for RSS A1

Name Estimate SE df t.value Pr(>|t|) p.boot

(Intercept) 0.301 0 4.00 3.9898 0.0163 0.5967
TextvsJava 0.034 0 20.00 1.3740 0.1846 0.4803

TT.SHvsOthers 0.062 0 20.00 2.4745 0.0224 0.3616
TT.SIMvsJPlag 0.100 0 20.00 2.3105 0.0316 0.3729
TJ.SHvsOthers 0.067 0 20.00 2.6980 0.0138 0.3470
TJ.SIMvsJPlag 0.042 0 20.00 0.9646 0.3462 0.9342

TT.SH.NoPPTvsPPT 0.013 0 51.01 0.9326 0.3554 0.8091
TT.SH.SinglevsCombo 0.028 0 51.01 0.8996 0.3726 0.7776

TT.SH.CCRvsTE 0.004 0 51.01 0.0867 0.9312 0.2480
TT.SH.AllnoNORvsAllNOR -0.011 0 51.01 -0.2602 0.7957 0.3016

TT.JPlag.NoPPTvsPPT 0.055 0 51.01 4.0506 0.0002 0.0077
TT.JPlag.SinglevsCombo 0.058 0 51.01 1.9015 0.0629 0.4363

TT.JPlag.CCRvsTE 0.184 0 51.01 4.2504 0.0001 0.0004
TT.JPlag.AllnoNORvsAllNOR 0.000 0 51.01 0.0000 1.0000 0.4210

TT.SIM.NoPPTvsPPT 0.032 0 51.01 2.3590 0.0222 0.2926
TT.SIM.SinglevsCombo 0.094 0 51.01 3.0669 0.0035 0.0496

TT.SIM.CCRvsTE 0.058 0 51.01 1.3301 0.1894 0.7865
TT.SIM.AllnoNORvsAllNOR 0.000 0 51.01 0.0000 1.0000 0.4337

TJ.SH.NoPPTvsPPT 0.013 0 51.01 0.9784 0.3325 0.8378
TJ.SH.SinglevsCombo 0.064 0 51.01 2.1059 0.0402 0.3202

TJ.SH.CCRvsTE -0.007 0 51.01 -0.1735 0.8630 0.1442
TJ.SH.AllnoNORvsAllNOR 0.071 0 51.01 1.6481 0.1055 0.5783

TJ.JPlag.NoPPTvsPPT 0.040 0 51.01 2.9260 0.0051 0.1052
TJ.JPlag.SinglevsCombo 0.040 0 51.01 1.3085 0.1966 0.8751

TJ.JPlag.CCRvsTE 0.043 0 51.01 0.9831 0.3302 0.8980
TJ.JPlag.AllnoNORvsAllNOR 0.000 0 51.01 0.0000 1.0000 0.4369

TJ.SIM.NoPPTvsPPT 0.010 0 51.01 0.7132 0.4790 0.6482
TJ.SIM.SinglevsCombo 0.024 0 51.01 0.7769 0.4408 0.6833

TJ.SIM.CCRvsTE 0.025 0 51.01 0.5783 0.5656 0.5542
TJ.SIM.AllnoNORvsAllNOR 0.000 0 51.01 0.0000 1.0000 0.4239

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

130

Chapter 8. Result analysis

Differences between no preprocessing and preprocessing

The first five interaction terms look at the effect of techniques (i.e., all PPTs combined) rela-
tive to when no PPT is used when comparing the same tools, as was done in the SOCO dataset.
For the five contrasts the interaction difference was not significant for any of the comparisons.
This means that using PPTs (compared to when no technique is used) affects all tested tool
comparisons in the same way.

Based on the five contrasts the question arises as to whether the tool accuracy changes the
same way when PPTs are used in comparison to when no technique is used. This indicates but
does not confirm that using PPTs makes no difference. By examining the interaction graphs
(Figure J.9) it is apparent that the accuracy increases for all tools.

To check H1, if there exists a difference in plagiarism detection accuracy between at least
one PPT and when no PPT is used, a simple effects analysis was performed. The results of the
simple effects analysis for RSS A1 are presented in Table 8.20 and the corresponding effect
sizes in Table I.10. The analysis did confirm that using PPTs made a significant difference (at
pb < 0.01) compared with when no PPT is used for JPlag-text. On the other hand, for the other
tools, the difference was not big enough to be considered significant. For the tool where the
difference was significant, techniques had a positive effect. Although this fact is concerning, one
should take into account the issue with the “Participants” and that all techniques were looked
together (i.e., techniques were not individually compared to when no technique is used) and
that the differences that are visible in Figure 8.18 are masked. For example as shown in the
next section, for SIM-text the difference between single vs. combo techniques is significant
(pb < 0.05), so if the combo techniques alone would be compared to no PPT it is probable that
the result would be significant.

Based on the presented results, it can still be stated that the H1 hypothesis is confirmed for
the RSS A1 assignments.

Differences between different preprocessing techniques

In the previous analysis of the RSS A1 assignments it was confirmed that using PPTs sig-
nificantly increases the accuracy for one tool. The problem with the previous analysis is that
all techniques were put together. To overcome the problem the PPTs were analysed further in
comparison to each other in the same way as for the SOCO dataset.

Regarding the interaction contrasts, as can be seen from Table 8.19 1 contrasts show signifi-
cant differences at pb < 0.05 and one was close with pb = 0.0647. The contrasts that compare
single and combo techniques do not show any significant results (pb > 0.05). The 10 compar-
isons that compare single techniques (TE vs. CCR) and the comparisons that compare combo
techniques (AllnoNOR vs. AllNOR) are significant pb < 0.05 for 1 contrast. Significant results
were obtained for contrast comparing single techniques for text vs. Java tools. The contrast com-
paring combo techniques for Sherlock-java vs. Other-java tools (i.e. JPlag-java and SIM-java

131

Chapter 8. Result analysis

combined) is almost significant.
Since there was only 1 contrast that compares different techniques that is significant, it can be

concluded that accuracy changes for most tools are similar when comparing different techniques.
To check H2, if there exists a difference in plagiarism detection accuracy between at least two
different PPTs, a simple effects analysis was used.

The simple effects analysis of single techniques compared to combo techniques showed a
significant difference in accuracy with pb < 0.05 for SIM-text. From the interaction graphs
(Figure J.9 and Figure J.10) it can be seen that combo techniques show an increase in accuracy
in comparison to a single techniques for all tools but only for SIM-text this was significant.

A simple effects analysis of TE vs. CCR techniques shows that the TE technique increases
the accuracy for all tools except for Sherlock-java (Figure J.10) but only for JPlag-text was this
significant. The simple effects analysis for the combo techniques (AllnoNOR vs. AllNOR) show
that there is no difference between the two techniques for the SIM and JPlag tools (both versions
had around pb = 0.5). For Sherlock-java there is an increase and for Sherlock-text there is a
decrease in accuracy but none were significant.

Based on the presented results it can be stated that the H2 hypothesis is confirmed on the
RSS A1 assignments where for SIM-text and JPlag-text significant differences were observed.

8.3.2 Discussion

In the previous sections the H1 and H2 hypotheses were confirmed for the RSS dataset using
the statistical analysis. To answer the research question Q1 and fulfil the second goal G2, the
results of the statistical tests for the A1 assignments are qualitatively examined. The qualitative
examination should help give more insight into the effects of the preprocessing techniques.

For the RSS dataset only one assignment group was used and it was significant only for JPlag-
text two times and SIM-text one time. Nonetheless, the significant results are consistent with
the results from the SOCO dataset, and that the best results were achieved for textual versions
of JPlag and SIM. Another good thing is also (although not statistically significant) almost all
preprocessing techniques gave an increase in the F1 value as it can be seen from the interaction
graphs in Appendix J.

As already stated, the problem of the previous statistical analysis is the small dataset, and
also that two years had to be excluded since no plagiarism occurred in those two academic years,
but by using qualitative analysis one can get useful information also from those years. Before
the two years are analysed as for the SOCO dataset, first a short discussion about the Precision
and Recall is given for the four years that contained plagiarised matches.

In Appendix K graphs for Precision and Recall are given for the four analysed years in the
RSS dataset. From these, one can see that in all four years there has been mostly an increase in
Recall for all tools comparing no preprocessing and in at least one preprocessing technique. If
one looks closer, the most promising techniques are TE and AllNOR. Note that AllnoNOR is
almost the same as AllNOR for most tools, but because it has a positive effect on Sherlock the

132

Chapter 8. Result analysis

Figure 8.19: False positives for RSS A1 assignment in 2015-2016 with 3*IQR

focus is on the AllNOR.
In regards to Precision there is also a positive effect but not so often as for Recall. Based

on these graphs it is concluded that the preprocessing techniques improve Recall more than
Precision. In other words, they decrease the number of false negatives rather than decreasing
false positives. In some extreme cases some techniques increase the false positives by a lot, for
example in Sherlock-text the number of false positives goes up to 300 (e.g., in Figure 8.19 it
was 190). Such a high increase is a problem since the marked matches can not all be verified
in a reasonable amount of time. This problem might be solved by choosing a different method
for the threshold level calculation but to verify this is beyond the scope of this research. For all
other tools the number of marked matches does not go that high and it is mostly below 10. In
general, it can be stated that the threshold was chosen well.

In Figure 8.19 and Figure 8.20 the false positive rate is presented for the two years that had no
plagiarised matches so it was expected to get zero marked matches. In most cases PPTs reduces
the number of false positives, which indicates that preprocessing is a good way to improve
plagiarism detection.

In summary, based on the RSS dataset the guidelines that were written based on the SOCO
dataset are valid with the modification, that instead of using the CCR technique, TE is suggested
as a single technique. An even better solution is the combo technique AllnoNOR for JPlag and
SIM, while for Sherlock it can be beneficial to use AllNOR in some cases, with the note that
the number of marked matches does not increase too high. As in the SOCO dataset the textual
versions of the tools seem to respond better to preprocessing and in some cases outperform or
come close to the Java version when preprocessing techniques are used. This raises the questions
of if the Java versions are necessary or can the same be achieved with preprocessing techniques
and the textual versions of a tool.

133

Chapter 8. Result analysis

Figure 8.20: False positives for RSS A1 assignment in 2016-2017 with 3*IQR

8.3.3 Limitation of statistical analysis

To give better insight into the benefits of using preprocessing techniques and to overcome the
limitations of the statistical analysis in this Section, some interesting observations on individual
cases are presented. It can happen that there are no statistically significant differences between
using a technique or not using a technique, but still there can be a positive effect of the technique
which can be of importance to the teacher.

The first example is when the TE technique is used on the A4 assignment in 2014-2015. By
using any tool if no technique is used the report gives above 90% similarity for some matches
which dropped to less than 30% when TE is used and to 0% when AllNOR and AllnoNOR
techniques are used. The reason was simple — students submitted only the professors’ code
which was given to them and generated only few getters and setters for the existing classes. Now
this is easy to spot for the professor, but there were multiple such cases and even though it does
not make a significant difference statistically the teacher still needs to look at such cases, so if
the tool does not mark such cases it saves time for the teacher.

One very extreme case of such behaviour was observed in 2017-2018 when Sherlock-java
was used. There were 15 matches with 100% and 4 with 99% which dropped below 20% when
TE was used and below 5% when AllnoNOR was used. Although this is a lot and the teacher
had to go through all such cases, that was not the main problem. The main problem was that the
real cases of plagiarism were hidden by the false matches. There was a case with 72% similarity
which was ranked 392 originally (which was far below the threshold) but it was ranked first
when AllnoNOR technique was used and it was a case of real plagiarism.

This pattern repeats itself throughout all academic years for the A4 assignment. The reason
why this pattern is occurring mostly in A4 and not in A1 is that A4 is an assignment with a lot
of generated code and it is the last assignment in the course. When the A4 assignment is given

134

Chapter 8. Result analysis

to the students many of them already have enough points to pass the course and do not even try
to solve the problem; instead they just do some minor modification and graphical improvements
which do not give them any additional points.

This shows that by evaluating techniques only statistically the improvement might be non-
significant and one could conclude that they are of no use and that they only waste of resources.
But by looking at the individual matches directly one can see there is a huge benefit of using a
technique even if the improvement is not statistically significant. The only problem with such
evaluation is that it can be biased, so it is good to first do the objective statistical evaluation, but
if the results turn out non-significant it can be worthwhile to perform a qualitative evaluation.

8.4 Java or Textual version
The main focus of this thesis was to analyse the effect of preprocessing techniques. In this

Section the idea is to take a look at the performance of tools without any techniques. It was
already discussed in Chapter 4 that the three selected tools are the top tools used for plagiarism
detection and that in different research projects they have been ranked differently. Because
of that, it is hard to tell which tool is better, but there is one agreement between the different
researchers, and that is Java tools are better for source-code plagiarism detection then textual

tools since they are specialized for working with source-code. In this research, as it can be seen
from the previously presented results the textual versions of the tools had often better results.

In all assignments from the SOCO dataset where there are any plagiarised matches (i.e., D1,
D2, D3, D4, T1, C2), SIM-text is better than SIM-java, and Sherlock-text is better than Sherlock-
java. In the case of JPlag, JPlag-text is better than JPlag-java in three SOCO assignments (D1,
D4, C2). Additionally, when PPTs are used since they have a better impact on textual versions
JPlag-text got better than JPlag-java in the D2 and D4 assignments. Even more interesting is that
Sherlock-text and SIM-text have the best results in many assignments with the SOCO dataset.
Similarly, for the RSS dataset the textual versions often come very close to the Java versions
and sometimes they are better like in 2013-2014 the F1 value for JPlag-java was constantly zero
while for JPlag-text it was 0.67 in combination with the TE technique. Another example is in
2014-2015 where SIM-text got the F1 value of 0.6 in combination with AllNOR technique and
for SIM-java the maximum was the F1 value of 0.5 using the same PPT.

This finding is surprising since it is the opposite of what was expected and what was con-
cluded from previous studies. After a more detailed examination of previous work what was
noticed is that the previous research did not actually test textual versions of tools and compare
them to the Java versions. Rather this “fact” is more of an expectation than an actual fact. In
most research, although there is the division of tools into tools made to find plagiarism in textual
documents and the tools specialized for source-code documents, researchers usually focus on
only one type and then use the corresponding version.

On the other hand, there is a small amount of research that has tested both versions. In [157]

135

Chapter 8. Result analysis

the authors tested JPlag-text, JPlag-java, SIM-text and SIM-java and based on their results one
can see that JPlag-text ranked far better than JPlag-java. This confirms that textual versions
might have more to offer than it is known. This does not mean that textual versions are always
better — in fact in [157] SIM-java has been found to be better than SIM-text, which is the
opposite what was found in this research.

A question that flows from this finding is what is the reason for the different results in this
research and the results in [157], since the same tools were used and the same dataset (SOCO
dataset). The answer lies in the tool’s parameters. There is a difference in what parameter
configuration was used to run the tools. Additionally, there is a difference as to how the threshold
level was selected to calculate F1. It is out of the scope of this research to investigate this further
but it is definitely an interesting finding that requires future work and shows the importance
of parameters and the selection of the threshold level. This finding also raises other questions
like “How can it be that textual tools perform better than the specialized Java tools?” and Are

specialized tools necessary at all?.

8.5 Contributions
This Section lists all contributions (scientific and practical) of this thesis. The scientific

contributions of this thesis are as follows.

• Comprehensive overview of the field “source-code plagiarism detection in academia”.
In combination with the results presented in [140] this research presents the largest full
review of the field covering articles from 1980 to 2018.

• New definition of plagiarism in programming assignments.

• New parameter calibration method for similarity detection tools. Together with [138] this
research presents the complete explanation and demonstration of how to use the calibration
method and gives reasons why calibration is important. In addition, this method can be
used in other fields like clone detection, authorship attribution, etc.

• Creation and evaluation of two new PPTs: CCR and TE. This research in combination
with [95] presents the full description of the new TE technique. In addition, in this
research two new combinations of techniques (i.e., AllNOR and AllnoNOR) were created
and evaluated.

• Identification and explanation of the differences in plagiarism detection accuracy, for the
tested tools and assignments, between cases in which the PPTs are used and those in which
the PPTs are not used.

• Identification and explanation of the differences in plagiarism detection accuracy, for the
tested tools and assignments, between different PPTs.

136

Chapter 8. Result analysis

• Explanation of how PPTs affect the plagiarism detection accuracy of tested tools in differ-
ent student programming assignments. This research shows that a significant improvement
of plagiarism detection accuracy can be achieved by using PPTs on some tools and ex-
plains when this is the case on the open SOCO dataset and on the RSS dataset.

• Use-case analysis on real student programming assignments which shows the benefits of
using PPTs (especially template exclusion). Analysing one assignment group from six
academic years is a larger scale of real data than used in most of the previous studies.

• Analysis performed on larger files of real student programming assignments, meaning the
solutions had from 500 and up to 3,900 LOC.

• New case study comparison of tools without preprocessing techniques on a new type of
RSS dataset. This thesis showed some interesting results whereby the textual version of a
tool is better than the specialized Java version.

• Application of designed experiment in plagiarism detection based on multiple assignments,
years, techniques and tools.

• New method for determination of threshold level of positive and negative pairs (median +-
2/3 IQR) based on the similarity between pairs.

• New framework for performing experimental comparisons of similarity detection tools
using statistical methods for objective results. Although the framework has not been
formally evaluated it provides a set of steps that can be followed for performing other
comparisons in the future, for example, it gives the description of how to solve the problem
of normality (i.e., bootstraps) and similar issues.

Except for the scientific contributions there are some practical contributions of this thesis,
which are the following.

• The Multiple Plagiarism Checker (MPC) system which can be used for benchmark and
comparison of similarity detection tools (i.e., SIM, JPlag, and Sherlock), which is extensi-
ble to other tools. In addition, the system enables using various PPTs in combination with
the tools, which is extensible to other techniques.

• The MPC system which can be used as a similarity detection tool which enables the user
to chose one or more tools and use them all at once to check similarity between files. In
addition, a web graphical interface and a command line interface were developed to enable
easy usage of the MPC system on a daily basis.

• The calibration module integrated into the MPC system for calibrating configuration
parameters of SIM, JPlag and Sherlock, which can be used to put tools in equal position
before comparisons are performed.

137

Chapter 8. Result analysis

• Guidelines for which PPT to use in combination with which similarity detection tool (i.e.,
SIM, JPlag and Sherlock).

• R scripts for performing statistical analysis when comparing tools which can be used in
future research.

• The complete source code of the thesis using R scripts, LaTeX and Sweave files which
can be used as examples in future research to generate various graphs, tables and even
whole thesis in PDF format from R studio.

138

CHAPTER 9

FUTURE WORK

In the previous chapter many questions were left unanswered and these questions form the
basis for future research. In this chapter an overview of possible future work is given which goes
beyond the open questions.

There are many possible directions that one could take if interested in the field of source-code
plagiarism. The first possible direction is to continue analysing the effect of preprocessing tech-
niques. This means researching with new techniques, combining different techniques, adding
new tools (for example MOSS), testing with other datasets, assignments, etc. Also, one could
analyse in more detail the existing results and try to answer why the Precision and/or Recall was
increased or decreased with some techniques or why some techniques did not have any effect on
some assignments but affected other assignments.

The second direction can be to focus on the differences between the textual and Java ver-
sions of the tools and test in which cases the textual version in combination with preprocessing
techniques outperform the Java versions, or one could analyse the impact of the configuration
parameters on the quality of detection. Similarly one could analyse what is the impact of the
selected threshold level on the comparison results or the effect of the threshold level on the tools’
accuracy.

A third possible direction for future work is the area of plagiarism prevention rather than
focusing only on detection. One could analyse the effects of motivation on plagiarism by using
the findings from psychology, like “A motivational approach to self: Integration in personality”
[37] or “Using Future Authoring to Improve Student Outcomes” [47]. The Future Authoring
1 program used at Mohawk College Hamilton already showed a 40% reduction in dropout
according to Jordan B. Petterson 2, co-author of [47], so an interesting question would be
whether that program also reduces plagiarism.

Other directions that would be possible for future work are for example: a) testing the
correctness of the calibration method on other tools or with other datasets; b) expanding the
MPC system to use graph representation and investigate the impact of graph visualization of
the results; c) investigating the effect of similarity calculation in Sherlock if the calculation
would be changed to not include the same lines from two different match parts; d) testing the
effect of different inter-quartiles (IQR) multipliers on F1 measure and conclusions about using
preprocessing techniques; e) repeating the experiments with Precision and Recall rather than
using F-score; f) expanding the experiments to other programming languages.

1Online version of the future authoring program for personal evaluation is available at https://www.
selfauthoring.com/

2Statement on Twitter on 4.11.2016 available at https://twitter.com/jordanbpeterson/status/
794686064871010304

139

https://www.selfauthoring.com/
https://www.selfauthoring.com/
https://twitter.com/jordanbpeterson/status/794686064871010304
https://twitter.com/jordanbpeterson/status/794686064871010304

CHAPTER 10

CONCLUSION

Plagiarism detection is a difficult task and requires a lot of time and energy from the teacher
to do it well. In order to help teachers find plagiarism, various similarity detection tools have
been built, commonly called plagiarism detection tools. Although it is stated that the tools
can find plagiarised cases automatically, it is not what they are doing. The tools only find
similarity between two files (called matches) and mark the ones that are suspicious based on an
implemented algorithm. Teachers, when they are using such a tool, no matter how good the tool
is, should act as if the tool marked the wrong matches (false positives) and manually recheck all
marked matches to ensure that no student is falsely accused of plagiarism.

Because of that, a new definition of plagiarism was given which includes the teacher’s role
in the process. Since there are different kinds of plagiarism the focus of this research was on
plagiarism in student programming assignments in academia and the definition was given in this
context. Plagiarism, in programming assignments, is the act of taking a significant amount of

source-code parts (up to the entire source-code) from other students or from the Internet and

using it without noting its origin. A ‘significant amount’ means that the similarity between two

solutions of a programming assignment is high enough that an expert (teacher, ethical board,

etc.) considers specific student work as sufficiently ‘real’ plagiarism to accuse the student of

plagiarism.

Although the tools can not be used to state what is plagiarism and what not, they are of high
value since in an environment with a large number of students and with more than one teacher
since they can help identify the suspicious cases and save time for the teacher. Additionally, such
tools can, with the right algorithm, uncover various obfuscation attempts done by students which
would hide plagiarism if the detection is done manually by the teacher. A tool is considered
useful when it has two properties, first, it needs to find and mark all suspicious matches, and
second, it should mark only those matches that are considered real plagiarised after investigated
by the teacher.

The quality of the tool is measured by the number of matches it misses marking as plagiarised
that really were plagiarised (false negatives) and the number of matches that were marked as
plagiarised but at the end were not cases of real plagiarism (false positives). If one knows the
exact number of plagiarised matches, the measures Precision and Recall can be calculated. Since
both measures are important to ease the comparison process of different tools, the F1 value can
be calculated. Since no tool is perfect researchers always try to improve the tools.

In this research, the idea was to improve the quality of existing tools by preprocessing
the submitted files using different preprocessing techniques, rather than building new tools.
Although preprocessing has been used in the past by different tools to remove some noise

140

Chapter 10. Conclusion

from the submissions, there has been limited research that would actually measure the effect
of such techniques on different tools. In this research preprocessing technique is understood

as a technique which results in modified source-code or similar that can be used with different

detection tools instead of being limited to only one tool.

To measure the effect of preprocessing techniques an experiment was performed on student
programming assignments using five techniques (i.e. Remove Comments (RC), Template Exclu-
sion (TE), Common Code Remove (CCR), All techniques without Normalisation (AllnoNOR),
and All techniques with Normalisation (AllNOR)) on six tools (i.e. SIM-text, SIM-java, JPlag-
text, JPlag-java, Sherlock-text, Sherlock-java) with two different datasets (i.e. SOurce COde
Reuse (SOCO) dataset and Real Student Solution (RSS) dataset). Since the experiment was
done on programming assignments, specialized tools for detecting source-code plagiarism were
used.

The tools were carefully chosen from the best tools that are mentioned in the scientific
literature. Since each selected tool supports two modes, the experiment was done with both
modes. The first mode is the specialized mode (called Java version) — made specifically to
detect plagiarism in source-code, and the second mode is the textual mode (called text version)
— made to detect plagiarism in normal text. The whole process of detection was automatized
using the newly developed Multiple Plagiarism Checker (MPC) system, the output of which was
then used to do statistical analysis which was automated using the system R.

There were three major issues before the experiment could be conducted. First, when per-
forming comparisons with these tools the issue was how to put all tools in equal positions. Each
tool has configuration parameters, and since it is not known what the best configuration is a
problem arises which values to choose. In order to have an objective selection and not to put
one tool in a better position to another, a calibration method was used to find out the optimal
parameters. The calibration method uses one tool to calibrate the other on a calibration dataset.
The main idea is that after the calibration (in an ideal situation) all tools will report the same
similarities for the calibration dataset. Since this is not possible, the calibration method tries to
find such parameter configuration where the tools report as much as possible similar results. To
do the calibration the method uses a measure called calibration difference sum.

The second issue was the selection of preprocessing techniques. In the scientific literature,
many techniques have been described and since it was not possible to test them all the most
used techniques were selected. These techniques were further put through a technique selection
test where the techniques which show the best effect on a small dataset were to be used in the
experiment.

The third issue was the problem of calculating the threshold level. There are various ways
how the threshold level can be selected it can be a fixed value or it can be flexible. Since all tools
have different algorithms and all assignments can have different percentages, it is better to have
a flexible threshold where the threshold is calculated based on the distribution of all matches. In
this research the threshold is calculated as follows. First, the median similarity of all matches is

141

Chapter 10. Conclusion

calculated and then the threshold level is set to 3 inter-quartiles from the median.
In this experiment two hypotheses were tested which are stated in the introduction chapter.

The hypotheses were confirmed using statistical analysis using two different datasets. First is the
SOCO dataset which is an open dataset containing seven assignments for which the plagiarised
matches are known. The detection was performed on all seven assignments but the statistical
analysis could be performed only on four of them. Second, the RSS dataset is a private dataset
that contains data from four assignments in six years. Because it was not known which matches
are plagiarised, an expert was needed to evaluate all marked matches manually according to the
defined procedure (section 6.3.1). Because of that, the statistical analysis was performed only
on the first assignment since manual verification of the matches is a long and tedious process.

In all five assignments on which the statistical analysis was performed the H1 and H2 hy-
potheses were confirmed, at least for one tool. In addition to the hypotheses there was one
research questions (RQ1). To answer this question a qualitative analysis of the results was
performed which gave more insight into the effects of the techniques.

In summary, from the quantitative and qualitative results, a correctly chosen PreProcessing
Technique (PPT) in combination with the right tool (i.e., SIM-text, JPlag-text and Sherlock-java)
can improve the accuracy of plagiarism detection. The experimental results, except from the
fact that preprocessing techniques have a positive impact on the detection quality, also show that
different techniques have a different impact, so it is important which preprocessing technique is
chosen in combination with which tool. To be more precise, based on the results it can be stated
that for SIM-text and JPlag-text the suggested technique is the AllnoNOR technique, while for
Sherlock-java the suggested technique is the AllNOR technique. In some cases the techniques
can have a none or a negative effect on some tools, and therefore it is suggested that for SIM-java,
JPlag-java and Sherlock-text no PPT should be used.

Although the focus of this research was on the preprocessing technique, the most interesting
finding of this research is perhaps about the textual version of the tools itself. At the beginning
of the experiment it was expected that the Java versions would give the best results since they are
made specifically to detect source-code plagiarism. It was therefore a surprise when at the end
the textual versions performed better. The results of the experiment showed that preprocessing
has a positive effect on the detection quality whereby the best results were achieved with JPlag-
text and SIM-text. Although this is already a surprise since both are textual versions of the
tools, an even bigger surprise was that the textual versions in many cases outperformed the Java
version just by using preprocessing techniques.

Even though the emphasis of this research is on plagiarism detection, one must note that pla-
giarism detection is only the second part in the process of fighting plagiarism. Before detection
one should consider preventing plagiarism in the first place and use plagiarism detection only
as a measure in case the prevention techniques fail. A good teacher will always try to prevent
plagiarism first and second do the detection just to make sure students are ethical.

It is important to remember that in the case of plagiarism the teacher is responsible for

142

Chapter 10. Conclusion

their own ethical behaviour as well as the student is for his/hers. While the student does the
plagiarism it is up to the teacher to find plagiarism and act ethically as well, which means
informing the student that such behaviour is unacceptable, and explaining why this is wrong,
but also to understand what led the student to plagiarise and try to help the student if possible
so it does not happen in the future. With this, the teacher can help the student become a better
person and a better member of society. It is unethical for the teacher to ignore plagiarism or
falsely accuse a student of plagiarism. One should always remember the famous phrase “the line

dividing good and evil cuts through the heart of every human being.” 1

1Solzhenitsyn, Aleksandr. The Gulag Archipelago, 1918-56. Vintage Uk, 2002.

143

CHAPTER A

EXAMPLE OF CALIBRATION REPORT

0 CALIBRATION SUCCESSFUL

1

2 Calibrated Tool: JPlagJava

3 Base Tool: SIMGruneJava

4 Base Tool Params: r = 22,

5 CASES

6

7 Optimal params for all cases (minimal CDS): 84.104675

8 with Params: t = 9,

9

10 Case: 100Precent

11 Similarity Base Tool: 100.0

12 Optimal params similarity Calibrated: 100.0

13 Diff to base tool: 0.0

14 Best Similarity Calibrated: 100.0; Best Params: t = 1,

15 Case: 100PrecentMixedComplex

16 Similarity Base Tool: 92.5

17 Optimal params similarity Calibrated: 72.54902

18 Diff to base tool: 19.950981

19 Best Similarity Calibrated: 87.745094; Best Params: t = 1,

20 Case: 100PrecentMixedSimple

21 Similarity Base Tool: 100.0

22 Optimal params similarity Calibrated: 94.97207

23 Diff to base tool: 5.027931

24 Best Similarity Calibrated: 100.0; Best Params: t = 1,

25 Case: 50Precent

26 Similarity Base Tool: 58.5

27 Optimal params similarity Calibrated: 51.764706

28 Diff to base tool: 6.7352943

29 Best Similarity Calibrated: 58.82353; Best Params: t = 4,

30 Case: 50PrecentMixedComplex

31 Similarity Base Tool: 58.0

32 Optimal params similarity Calibrated: 50.0

33 Diff to base tool: 8.0

144

Appendix A. Example of calibration report

34 Best Similarity Calibrated: 57.058823; Best Params: t = 4,

35 Case: 50PrecentMixedSimple

36 Similarity Base Tool: 67.0

37 Optimal params similarity Calibrated: 49.079754

38 Diff to base tool: 17.920246

39 Best Similarity Calibrated: 67.484665; Best Params: t = 3,

40 Case: soco0

41 Similarity Base Tool: 14.5

42 Optimal params similarity Calibrated: 0.0

43 Diff to base tool: 14.5

44 Best Similarity Calibrated: 16.666666; Best Params: t = 5,

45 Case: soco1

46 Similarity Base Tool: 7.5

47 Optimal params similarity Calibrated: 6.912442

48 Diff to base tool: 0.5875578

49 Best Similarity Calibrated: 6.912442; Best Params: t = 8,

50 Case: soco3

51 Similarity Base Tool: 54.0

52 Optimal params similarity Calibrated: 52.040817

53 Diff to base tool: 1.9591827

54 Best Similarity Calibrated: 52.040817; Best Params: t = 8,

55 Case: soco4

56 Similarity Base Tool: 100.0

57 Optimal params similarity Calibrated: 100.0

58 Diff to base tool: 0.0

59 Best Similarity Calibrated: 100.0; Best Params: t = 1,

60 Case: soco7

61 Similarity Base Tool: 85.5

62 Optimal params similarity Calibrated: 79.94543

63 Diff to base tool: 5.554573

64 Best Similarity Calibrated: 85.40246; Best Params: t = 4,

65 Case: soco8

66 Similarity Base Tool: 1.0

67 Optimal params similarity Calibrated: 1.8887722

68 Diff to base tool: 0.88877225

69 Best Similarity Calibrated: 1.8887722; Best Params: t = 9,

70 Case: 0Precent

71 Similarity Base Tool: 0.0

72 Optimal params similarity Calibrated: 0.0

145

Appendix A. Example of calibration report

73 Diff to base tool: 0.0

74 Best Similarity Calibrated: 0.0; Best Params: t = 1,

75 Case: 0Precent2

76 Similarity Base Tool: 0.0

77 Optimal params similarity Calibrated: 0.0

78 Diff to base tool: 0.0

79 Best Similarity Calibrated: 0.0; Best Params: t = 1,

80 Case: soco2

81 Similarity Base Tool: 0.0

82 Optimal params similarity Calibrated: 0.0

83 Diff to base tool: 0.0

84 Best Similarity Calibrated: 0.0; Best Params: t = 1,

85 Case: soco5

86 Similarity Base Tool: 0.0

87 Optimal params similarity Calibrated: 0.0

88 Diff to base tool: 0.0

89 Best Similarity Calibrated: 0.0; Best Params: t = 1,

90 Case: soco6

91 Similarity Base Tool: 0.0

92 Optimal params similarity Calibrated: 0.0

93 Diff to base tool: 0.0

94 Best Similarity Calibrated: 0.0; Best Params: t = 1,

95 Case: soco9

96 Similarity Base Tool: 0.0

97 Optimal params similarity Calibrated: 2.9801323

98 Diff to base tool: 2.9801323

99 Best Similarity Calibrated: 0.0; Best Params: t = 1,

100 ALL COMBO PARAM DIFFS

101 Param combo: t = 15, has total diff (CDS): 140.41025

102 Param combo: t = 27, has total diff (CDS): 234.12029

103 Param combo: t = 20, has total diff (CDS): 177.23363

104 Param combo: t = 11, has total diff (CDS): 96.528244

105 Param combo: t = 2, has total diff (CDS): 599.68134

106 Param combo: t = 26, has total diff (CDS): 234.12029

107 Param combo: t = 28, has total diff (CDS): 234.12029

108 Param combo: t = 24, has total diff (CDS): 234.12029

109 Param combo: t = 29, has total diff (CDS): 234.12029

110 Param combo: t = 4, has total diff (CDS): 221.81158

111 Param combo: t = 9, has total diff (CDS): 84.104675

146

Appendix A. Example of calibration report

112 Param combo: t = 8, has total diff (CDS): 93.469315

113 Param combo: t = 21, has total diff (CDS): 179.96214

114 Param combo: t = 7, has total diff (CDS): 110.32106

115 Param combo: t = 6, has total diff (CDS): 133.79118

116 Param combo: t = 14, has total diff (CDS): 133.5475

117 Param combo: t = 25, has total diff (CDS): 234.12029

118 Param combo: t = 17, has total diff (CDS): 149.36906

119 Param combo: t = 1, has total diff (CDS): 736.3351

120 Param combo: t = 22, has total diff (CDS): 204.25563

121 Param combo: t = 10, has total diff (CDS): 90.94165

122 Param combo: t = 3, has total diff (CDS): 329.10706

123 Param combo: t = 13, has total diff (CDS): 133.5475

124 Param combo: t = 23, has total diff (CDS): 230.9825

125 Param combo: t = 16, has total diff (CDS): 149.36906

126 Param combo: t = 19, has total diff (CDS): 177.23363

127 Param combo: t = 5, has total diff (CDS): 183.4447

128 Param combo: t = 18, has total diff (CDS): 158.86627

129 Param combo: t = 12, has total diff (CDS): 113.78314

147

CHAPTER B

SIM’S LICENCE

C o p y r i g h t (c) 1986 , 2007 , Dick Grune , V r i j e U n i v e r s i t e i t , The

N e t h e r l a n d s

A l l r i g h t s r e s e r v e d .

R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms ,

w i th o r w i t h o u t m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d

t h a t t h e f o l l o w i n g c o n d i t i o n s a r e met :

* R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t

n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .

* R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above

c o p y r i g h t n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g

d i s c l a i m e r i n t h e d o c u m e n t a t i o n and / o r o t h e r m a t e r i a l s p r o v i d e d

wi th t h e d i s t r i b u t i o n .

* N e i t h e r t h e name of t h e V r i j e U n i v e r s i t e i t nor t h e names o f i t s

c o n t r i b u t o r s may be used t o e n d o r s e o r promote p r o d u c t s d e r i v e d

from t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

` `AS IS ' ' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING , BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED .

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE , DATA, OR PROFITS ; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY ,

WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

148

CHAPTER C

MPC SYSTEM ARCHITECTURE DETAILS

The main job of the MPC system wass to support the process of plagiarism detection de-
scribed in Section 3.3. The system supports at least in part all phases from the prepare phase to
the analysis phase. The system fully automates the prepare phase, the preprocessing phase, the
detection phase and the visualization phase. Therefore, the main use-case of the MPC system
enables the user to go from entering the input data for the detection to visualization of the results.
To present the most important implementation parts of the system this use-case will be used.

The MPC system is divided into main modules, the core module and Web GUI module.
The core module has no knowledge of the interface module which made it possible that the
system also supports the CMD interface using the same internal logic, in addition to the Web
GUI interface. Let us suppose the system is configured, and the assignment data have been
downloaded and prepared in one directory. In the most simple form of the main use-case, the
user goes to the summary website (Figure C.1), selects the wanted assignment, selects the wanted
techniques and tools and clicks run. Once the detection is complete the results are presented in
a table (Figure C.2) ready to be inspected in detail using side by side comparison (Figure C.3).

The logic starts with the user visiting the website whereby a session bean is created which
creates all necessary objects. In the Figures that follow class diagrams 1 are presented, in the
explanation of these diagrams the terms object and class will be used as synonyms to keep things
simple, even though there is a difference between object and a class.

In Figure C.4 a class diagram starting with the session bean called SummaryReportBean.
For Figure C.4 it can be seen that the bean creates a controller object, presenter object, and

1All diagrams where generated automatically by the ItelliJ IDEA IDE.

Figure C.1: Summary report main input interface

149

Appendix C. MPC system architecture details

Figure C.2: Summary report table

Figure C.3: Match side by side comparison

view model. These three objects will be responsible for executing the actions and presenting
the data to the user. One can also see that there are two more objects, a use-case object and
an object called FactoryProvider. The use-case object is the entrance to the MPC core module
and it is located in the core module. The FactoryProvider is also located in the core module
and is responsible for creating other factories (Figure C.8, Figure C.9, Figure C.7) needed in the
system.

Since the presenter, the controller, the view model and the bean are in the MPC Web GUI
module they communicate with the core module over the input and output boundary interface.
Using the output boundary interface the use-case can communicate back to the GUI without
knowing who is on the other side as long it implements the interface. Similarly the controller
can send messages over the input boundary interface to the use-case without exactly knowing
which use-case is on the other side, while this interface was not really necessary it was put to
establish a clear boundary between the core module and the Web GUI module.

Once the user enters the data the controller will pass it to the use-case over the input boundary

150

Appendix C. MPC system architecture details

Figure C.4: Summary report class diagram - Web GUI module

Figure C.5: Summary report class diagram - core module

interface. In Figure C.5 the class diagram is presented starting with the use-case object called
SummaryReportUseCase. The use-case class has an inner class called SummaryReportInfo.
SummaryReportInfo is just a helper class so to simplify things, let’s say that the SummaryRe-

portInfo and SummaryReportUseCase are one and the same class representing the use-case
class. The use-case object creates the necessary factories (presented as ExecutionToolFactory

interface) using the FactoryProvider, which then creates the necessary ExecutionTools. Also the
use-case object creates the PhaseRunner object using the PhaseRunnerBuilder and implements
the MPCMatchListener interface. The PhaseRunner is responsible for executing the prepare,
preprocessing and detection phases (Figure C.6). Once all detections are done the PhaseRunner

starts a phase to read all match files and report back to the use-case over the MPCMatchLis-

tener interface, which then creates the result report and passes it to the presenter over the output
boundary interface.

151

Appendix C. MPC system architecture details

In Figure C.6 the class diagram starting with PhaseRunnerBuilder is presented. The Phase-

RunnerBuilder is responsible for building the PhaseRunner object. To create the object it uses
the PhaseFactory which is created by the FactoryProvider (Figure C.7). PhaseFactory creates
objects that represent the different phases. The ExecutionPhase object is used for preprocessing
and for the detection phase, whereby the individual tools are represented over the ExecutionTool

interface. To read the matches at the end the MPCMatchReaderPhase object is used which
communicates over the MPCMatchListener interface to the use-case.

The first phase (prepare phase) is divided into three separate phases, presented in Figure C.7,
which are represented by ArchiveExtractor object, Renamer object and SubmissionFilesUnifier

object. All three objects are the so called prepare tools presented through the PrepareTools

interface, which is a specialisation of the overall ExecutionTool interface.
The tools that are used in the preprocessing phase and detection phase are created using

the corresponding factories (represented by ExecutionToolFactory interface): SimilarityDetec-

tionToolFactory – presented in Figure C.8, and PreprocessingTechniqueFactory – presented in
Figure C.9. These tools are passed to the PhaseRunnerBuilder by the use-case since every time
different tools and techniques can be selected by the user, in comparison the prepare tools are
not passed in, rather they are created by the PhaseFactory during execution since they are always
the same.

Each detection tool, as can be seen in Figure C.8, has their adapters which run the actual
tools. Since tools have Java and text versions there are adapters for each version. Each adapter
represents in the system the concept of similarity detection tool using the SimilarityDetectionTool

interface.
Similarly, each technique as can be seen in Figure C.9 has one object representing it. Since

some techniques that are used are implemented in the tool Sherlock they are using the same
SherlockAdapter object as the detection phase. Each object presenting a technique can be recog-
nized by the implementation of the PreprocessingTechnique interface. A special technique is the
combo technique presented by the class ComboPreporcessingTechnique which enables creation
of new techniques by combining the individual techniques in any order. Combo techniques are
created using the combo use-case, and once created they can be used by any other use-case
through the PreprocessingTechniqueFactory.

Both the SimilarityDetectionTool interface and the PreprocessingTechnique interface are
specialisations of the ExecutionTool, same as the PrepareTools interface. To add a new technique
or tool only a specialized class needs to be implemented that has the corresponding interface,
and the name of the new tool or technique needs to be added to the list of available tools or
techniques in the corresponding factory. In the current implementation of the MPC system, the
tool Spector [117] is supported, but Spector itself has some issues with processing larger files.

Throughout the class diagrams in Figures C.6, C.7, C.8, and C.9, all main classes of the
core module are presented. In figure Figure C.5 an example of the main use-case using these
core modules is presented, and in Figure C.4 is presented how this use-case is accessed from the

152

Appendix C. MPC system architecture details

outside. Note that the same name appearing in the different diagrams is actually representing
the same class, to simplify the explanations and because of space issues the whole diagram was
split in parts.

Figure C.6: Phase creation class diagram

153

Appendix C. MPC system architecture details

Figure C.7: Prepare tools creation class diagram

154

A
ppendix

C
.

M
PC

system
architecture

details

Figure C.8: Detection tools creation class diagram

155

A
ppendix

C
.

M
PC

system
architecture

details

Figure C.9: Preprocessing techniques creation class diagram

156

CHAPTER D

MPC SYSTEM COVERAGE REPORT

The code coverage is based on Clover’s coverage report 1 is a total of 84% (69.1% of
branches, 86.8% of statements and 86% of methods) if models are included and total of 94%
(88.3% of branches, 94.8% of statements and 94.9% of methods) if models are excluded. Models
are simple classes containing only public fields and two functions (equals, toString) which are
used as data transfer objects (DTO), to pass data from one class to another.

Both coverages include various methods that are used by the GUI and where intentionally
skipped so the real coverage is a bit higher. The 84% summary is presented in Figure D.1a and
the 94% summary in Figure D.1b. The full report with models (84%) is presented at the end of
the appendix. There is a bug in the Clover so there is a small difference between the full report
and the summary report for the 84% coverage.

The coverage report does not include the template exclusion technique implementation since
it is treated as external implementation as the preprocessing techniques in Sherlock.

(a) Without models (b) With models

Figure D.1: Coverage report summary

1https://openclover.org/ - used version 4.2.0

157

https://openclover.org/

Clover Coverage Report
MPC Coverage Report
Coverage timestamp: pet lis 5 2018 09:40:30 CEST

project stats: LOC: 15.025 Methods: 1.333
NCLOC: 12.414 Classes: 268

Files: 196 Pkgs: 55

Branch Stmt Method Total
Clover database pet lis 5 2018 09:37:06 CEST 69,1% 86,8% 86% 84%

Packages Branch Stmt Method Total
org.foi.mpc.executiontools.detectionTools - - - -
org.foi.mpc.usecases - - - -
default-pkg - 0% 0% 0%
org.foi.mpc.executiontools.calibrator.models 0% 0% 0% 0%
org.foi.mpc.usecases.reports.pptestreport.models 0% 0% 0% 0%
org.foi.mpc.usecases.reports.statisticsReport.models - 0% 0% 0%
org.foi.mpc.usecases.reports.summaryReport.models 0% 0% 0% 0%
org.foi.mpc.usecases.toolCalibration.models 16,7% 18,8% 20% 18%
org.foi.mpc.usecases.multipleDetecion.models 25% 28,6% 25% 26,9%
org.foi.mpc.summaryReport.view 7,1% 42,3% 62,5% 42,3%
org.foi.mpc 87,5% 61,5% 20,9% 51,4%
org.foi.mpc.usecases.combotechnique.models 50% 56,2% 50% 53,3%
org.foi.mpc.usecases.reports.avalibleTools.models 50% 57,1% 50% 53,8%
org.foi.mpc.usecases.reports.pptestreport.view.models 0% 67,4% 83,3% 66,7%
org.foi.mpc.phases.executionphases 42,3% 74% 100% 73,9%
org.foi.mpc.usecases.combotechnique.view.models 41,7% 80% 88,9% 77,7%
org.foi.mpc.executiontools.calibrator 46,3% 84,3% 91,7% 78,1%
org.foi.mpc.executiontools.techniques 56,2% 82,3% 92,5% 79,9%
org.foi.mpc.matches 65,2% 83,3% 94,3% 80,5%
org.foi.mpc.pptestreport.view - 85,7% 72,7% 82,1%
org.foi.mpc.main 80% 86,5% 70,6% 82,8%
org.foi.mpc.usecases.reports.view.models 50% 83,6% 85,5% 83,3%
org.foi.mpc.executiontools.spies - 89,5% 75% 83,9%
org.foi.common.filesystem.file 77,8% 90,4% 81,5% 86,7%
org.foi.mpc.usecases.reports.summaryReport.view.models 16,7% 86,5% 94,4% 87,1%
org.foi.mpc.executiontools.techniques.sherlock 50% 92,3% 92,3% 90,2%
org.foi.mpc.phases.readerphase 100% 92,5% 78,6% 90,4%
org.foi.mpc.usecases.reports.statisticsReport 85,3% 93,4% 87,5% 91,3%
org.foi.mpc.usecases.reports.statisticsReport.view.model - 92,9% 92,9% 92,9%
org.foi.common.filesystem.directory 91,7% 93,3% 93,1% 93%
org.foi.mpc.executiontools.detectionTools.spector 90% 96,4% 88,9% 94,2%
org.foi.mpc.statisticsReport.view 50% 100% 84,6% 94,4%
org.foi.mpc.executiontools.detectionTools.simgrune 88,6% 95% 97% 94,5%
org.foi.mpc.executiontools.detectionTools.sherlock 93,8% 95,8% 95,8% 95,6%
org.foi.mpc.executiontools.prepareTools 97,1% 95,1% 97,2% 96%
org.foi.mpc.phases.executionphases.spies - 94,4% 100% 96,6%
org.foi.common 100% 97,7% 92,3% 97,2%
org.foi.mpc.usecases.reports.summaryReport 97,8% 97,3% 97,8% 97,4%
org.foi.mpc.executiontools.detectionTools.JPlag 75% 99% 100% 97,8%
org.foi.mpc.executiontools.factories 100% 98,1% 100% 98,7%
org.foi.mpc.usecases.reports.summaryReport.view 92,3% 100% 100% 98,7%
org.foi.mpc.usecases.reports.statisticsReport.view 83,3% 100% 100% 98,8%
org.foi.mpc.usecases.multipleDetecion 94,4% 100% 100% 98,8%
org.foi.mpc.abstractfactories - 100% 100% 100%
org.foi.mpc.matches.models 100% 100% 100% 100%
org.foi.mpc.phases - 100% 100% 100%
org.foi.mpc.phases.runner 100% 100% 100% 100%

Page 1 of Report generated by Clover v4.2.0
pon lis 8 2018 23:16:59 CEST

Clover free edition. 2

org.foi.mpc.usecases.combotechnique 100% 100% 100% 100%
org.foi.mpc.usecases.combotechnique.view - 100% 100% 100%
org.foi.mpc.usecases.reports - 100% 100% 100%
org.foi.mpc.usecases.reports.avalibleTools 100% 100% 100% 100%
org.foi.mpc.usecases.reports.pptestreport 100% 100% 100% 100%
org.foi.mpc.usecases.reports.pptestreport.view 100% 100% 100% 100%
org.foi.mpc.usecases.toolCalibration 100% 100% 100% 100%
org.foi.mpc.usecases.toolCalibration.view 100% 100% 100% 100%

Page 2 of Report generated by Clover v4.2.0
pon lis 8 2018 23:16:59 CEST

Clover free edition. 2

CHAPTER E

CONTRAST CODINGS

To have the planned comparisons as described in Section 8.1.2 they need to be coded. The
contrasts are coded in a way that the sum of products of contrasts ends up zero. “If the products

add to zero then we can be sure that the contrasts are independent or orthogonal. It is important

for interperation that contrasts are orthogonal.”[46, p. 421]
In Table E.1 contrast codings for tool variable are presented which are used for analysing

SOCO and student dataset. In Table E.2 and Table E.3 contrast codigs for techniques are
presented. Table E.2 are te codings for SOCO dataset and Table E.3 are codings for the student
dataset.

Table E.1: Tool contrast codings

Text Java

Tool JPlag SIM Sherlock JPlag SIM Sherlock

TextvsJava 1 1 1 -1 -1 -1
Text.SherlockvsOthers 0 0 0 1 1 -2
Java.SherlockvsOthers 1 1 -2 0 0 0

Text.SIMvsJPlag 0 0 0 1 -1 0
Java.SIMvsJPlag 1 -1 0 0 0 0

Table E.2: SOCO technique contrast codings

Technique NoPPT RC CCR AllnoNOR AllNOR

NoPPTvsPPT -4 1 1 1 1
SinglevsCombo 0 -1 -1 1 1

RCvsCCR 0 -1 1 0 0
AllnoNORvsAllNOR 0 0 0 -1 1

Table E.3: Student technique contrast codings

Technique NoPPT CCR TE AllnoNOR AllNOR

NoPPTvsPPT -4 1 1 1 1
SinglevsCombo 0 -1 -1 1 1

CCRvsTE 0 -1 1 0 0
AllnoNORvsAllNOR 0 0 0 -1 1

160

CHAPTER F

CONTRAST CODINGS FOR THE SIMPLE EFFECS
ANALYSIS

To be able to do the simple effects analysis as described in Section 8.1.2 contrasts need to
be created and coded. The contrasts are coded in the same way (i.e., as orhogonal contrasts) as
in Appendix E.

In Table F.1, Table F.2, and Table F.2 contrast codings for analysing SOCO dataset are
presented. The contrast names for SOCO dataset are: C1 - TextvsJava, C2 - TT.SHvsOthers,
C3 - TT.SIMvsJPlag, C4 - TJ.SHvsOthers, C5 - TJ.SIMvsJPlag, C6 - TT.SH.NoNPPvsNPP,
C7 - TT.SH.SinglevsCombo, C8 - TT.SH.RCvsCCR, C9 - TT.SH.AllnoNORvsAllNOR, C10
- TT.JPlag.NoNPPvsNPP, C11 - TT.JPlag.SinglevsCombo, C12 - TT.JPlag.RCvsCCR, C13 -
TT.JPlag.AllnoNORvsAllNOR, C14 - TT.SIM.NoNPPvsNPP, C15 - TT.SIM.SinglevsCombo,
C16 - TT.SIM.RCvsCCR, C17 - TT.SIM.AllnoNORvsAllNOR, C18 - TJ.SH.NoNPPvsNPP,
C19 - TJ.SH.SinglevsCombo, C20 - TJ.SH.RCvsCCR, C21 - TJ.SH.AllnoNORvsAllNOR, C22
- TJ.JPlag.NoNPPvsNPP, C23 - TJ.JPlag.SinglevsCombo, C24 - TJ.JPlag.RCvsCCR, C25 -
TJ.JPlag.AllnoNORvsAllNOR, C26 - TJ.SIM.NoNPPvsNPP, C27 - TJ.SIM.SinglevsCombo,
C28 - TJ.SIM.RCvsCCR, C29 - TJ.SIM.AllnoNORvsAllNOR,
C29 - TJ.SIM.AllnoNORvsAllNOR.

In Table F.4, Table F.5, and Table F.6 contrast codings for analysing student dataset are
presented. The contrast names for student dataset are: C1 - TextvsJava, C2 - TT.SHvsOthers,
C3 - TT.SIMvsJPlag, C4 - TJ.SHvsOthers, C5 - TJ.SIMvsJPlag, C6 - TT.SH.NoNPPvsNPP,
C7 - TT.SH.SinglevsCombo, C8 - TT.SH.CCRvsTE, C9 - TT.SH.AllnoNORvsAllNOR, C10
- TT.JPlag.NoNPPvsNPP, C11 - TT.JPlag.SinglevsCombo, C12 - TT.JPlag.CCRvsTE, C13 -
TT.JPlag.AllnoNORvsAllNOR, C14 - TT.SIM.NoNPPvsNPP, C15 - TT.SIM.SinglevsCombo,
C16 - TT.SIM.CCRvsTE, C17 - TT.SIM.AllnoNORvsAllNOR, C18 - TJ.SH.NoNPPvsNPP,
C19 - TJ.SH.SinglevsCombo, C20 - TJ.SH.CCRvsTE, C21 - TJ.SH.AllnoNORvsAllNOR, C22
- TJ.JPlag.NoNPPvsNPP, C23 - TJ.JPlag.SinglevsCombo, C24 - TJ.JPlag.CCRvsTE, C25 -
TJ.JPlag.AllnoNORvsAllNOR, C26 - TJ.SIM.NoNPPvsNPP, C27 - TJ.SIM.SinglevsCombo,
C28 - TJ.SIM.CCRvsTE, C29 - TJ.SIM.AllnoNORvsAllNOR,
C29 - TJ.SIM.AllnoNORvsAllNOR.

161

Appendix F. Contrast codings for the simple effecs analysis

Table F.1: Simple effects analysis contrast codings - SOCO dataset - part1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

JPlag-java and AllnoNOR 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and AllNOR 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and CCR 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and NoPPT 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and RC 1 0 0 1 1 0 0 0 0 0 0
JPlag-text and AllnoNOR -1 1 1 0 0 0 0 0 0 1 1
JPlag-text and AllNOR -1 1 1 0 0 0 0 0 0 1 1
JPlag-text and CCR -1 1 1 0 0 0 0 0 0 1 -1
JPlag-text and NoPPT -1 1 1 0 0 0 0 0 0 -4 0
JPlag-text and RC -1 1 1 0 0 0 0 0 0 1 -1
Sherlock-java and AllnoNOR 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and AllNOR 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and CCR 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and NoPPT 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and RC 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-text and AllnoNOR -1 -2 0 0 0 1 1 0 -1 0 0
Sherlock-text and AllNOR -1 -2 0 0 0 1 1 0 1 0 0
Sherlock-text and CCR -1 -2 0 0 0 1 -1 1 0 0 0
Sherlock-text and NoPPT -1 -2 0 0 0 -4 0 0 0 0 0
Sherlock-text and RC -1 -2 0 0 0 1 -1 -1 0 0 0
SIM-java and AllnoNOR 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and AllNOR 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and CCR 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and NoPPT 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and RC 1 0 0 1 -1 0 0 0 0 0 0
SIM-text and AllnoNOR -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and AllNOR -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and CCR -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and NoPPT -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and RC -1 1 -1 0 0 0 0 0 0 0 0

162

Appendix F. Contrast codings for the simple effecs analysis

Table F.2: Simple effects analysis contrast codings - SOCO dataset - part2

C12 C13 C14 C15 C16 C17 C18 C19 C20

JPlag-java and AllnoNOR 0 0 0 0 0 0 0 0 0
JPlag-java and AllNOR 0 0 0 0 0 0 0 0 0
JPlag-java and CCR 0 0 0 0 0 0 0 0 0
JPlag-java and NoPPT 0 0 0 0 0 0 0 0 0
JPlag-java and RC 0 0 0 0 0 0 0 0 0
JPlag-text and AllnoNOR 0 -1 0 0 0 0 0 0 0
JPlag-text and AllNOR 0 1 0 0 0 0 0 0 0
JPlag-text and CCR 1 0 0 0 0 0 0 0 0
JPlag-text and NoPPT 0 0 0 0 0 0 0 0 0
JPlag-text and RC -1 0 0 0 0 0 0 0 0
Sherlock-java and AllnoNOR 0 0 0 0 0 0 1 1 0
Sherlock-java and AllNOR 0 0 0 0 0 0 1 1 0
Sherlock-java and CCR 0 0 0 0 0 0 1 -1 1
Sherlock-java and NoPPT 0 0 0 0 0 0 -4 0 0
Sherlock-java and RC 0 0 0 0 0 0 1 -1 -1
Sherlock-text and AllnoNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and AllNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and CCR 0 0 0 0 0 0 0 0 0
Sherlock-text and NoPPT 0 0 0 0 0 0 0 0 0
Sherlock-text and RC 0 0 0 0 0 0 0 0 0
SIM-java and AllnoNOR 0 0 0 0 0 0 0 0 0
SIM-java and AllNOR 0 0 0 0 0 0 0 0 0
SIM-java and CCR 0 0 0 0 0 0 0 0 0
SIM-java and NoPPT 0 0 0 0 0 0 0 0 0
SIM-java and RC 0 0 0 0 0 0 0 0 0
SIM-text and AllnoNOR 0 0 1 1 0 -1 0 0 0
SIM-text and AllNOR 0 0 1 1 0 1 0 0 0
SIM-text and CCR 0 0 1 -1 1 0 0 0 0
SIM-text and NoPPT 0 0 -4 0 0 0 0 0 0
SIM-text and RC 0 0 1 -1 -1 0 0 0 0

163

Appendix F. Contrast codings for the simple effecs analysis

Table F.3: Simple effects analysis contrast codings - SOCO dataset - part3

C21 C22 C23 C24 C25 C26 C27 C28 C29

JPlag-java and AllnoNOR 0 1 1 0 -1 0 0 0 0
JPlag-java and AllNOR 0 1 1 0 1 0 0 0 0
JPlag-java and CCR 0 1 -1 1 0 0 0 0 0
JPlag-java and NoPPT 0 -4 0 0 0 0 0 0 0
JPlag-java and RC 0 1 -1 -1 0 0 0 0 0
JPlag-text and AllnoNOR 0 0 0 0 0 0 0 0 0
JPlag-text and AllNOR 0 0 0 0 0 0 0 0 0
JPlag-text and CCR 0 0 0 0 0 0 0 0 0
JPlag-text and NoPPT 0 0 0 0 0 0 0 0 0
JPlag-text and RC 0 0 0 0 0 0 0 0 0
Sherlock-java and AllnoNOR -1 0 0 0 0 0 0 0 0
Sherlock-java and AllNOR 1 0 0 0 0 0 0 0 0
Sherlock-java and CCR 0 0 0 0 0 0 0 0 0
Sherlock-java and NoPPT 0 0 0 0 0 0 0 0 0
Sherlock-java and RC 0 0 0 0 0 0 0 0 0
Sherlock-text and AllnoNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and AllNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and CCR 0 0 0 0 0 0 0 0 0
Sherlock-text and NoPPT 0 0 0 0 0 0 0 0 0
Sherlock-text and RC 0 0 0 0 0 0 0 0 0
SIM-java and AllnoNOR 0 0 0 0 0 1 1 0 -1
SIM-java and AllNOR 0 0 0 0 0 1 1 0 1
SIM-java and CCR 0 0 0 0 0 1 -1 1 0
SIM-java and NoPPT 0 0 0 0 0 -4 0 0 0
SIM-java and RC 0 0 0 0 0 1 -1 -1 0
SIM-text and AllnoNOR 0 0 0 0 0 0 0 0 0
SIM-text and AllNOR 0 0 0 0 0 0 0 0 0
SIM-text and CCR 0 0 0 0 0 0 0 0 0
SIM-text and NoPPT 0 0 0 0 0 0 0 0 0
SIM-text and RC 0 0 0 0 0 0 0 0 0

164

Appendix F. Contrast codings for the simple effecs analysis

Table F.4: Simple effects analysis contrast codings - student dataset - part1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

JPlag-java and AllnoNOR 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and AllNOR 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and CCR 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and NoPPT 1 0 0 1 1 0 0 0 0 0 0
JPlag-java and TE 1 0 0 1 1 0 0 0 0 0 0
JPlag-text and AllnoNOR -1 1 1 0 0 0 0 0 0 1 1
JPlag-text and AllNOR -1 1 1 0 0 0 0 0 0 1 1
JPlag-text and CCR -1 1 1 0 0 0 0 0 0 1 -1
JPlag-text and NoPPT -1 1 1 0 0 0 0 0 0 -4 0
JPlag-text and TE -1 1 1 0 0 0 0 0 0 1 -1
Sherlock-java and AllnoNOR 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and AllNOR 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and CCR 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and NoPPT 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-java and TE 1 0 0 -2 0 0 0 0 0 0 0
Sherlock-text and AllnoNOR -1 -2 0 0 0 1 1 0 -1 0 0
Sherlock-text and AllNOR -1 -2 0 0 0 1 1 0 1 0 0
Sherlock-text and CCR -1 -2 0 0 0 1 -1 -1 0 0 0
Sherlock-text and NoPPT -1 -2 0 0 0 -4 0 0 0 0 0
Sherlock-text and TE -1 -2 0 0 0 1 -1 1 0 0 0
SIM-java and AllnoNOR 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and AllNOR 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and CCR 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and NoPPT 1 0 0 1 -1 0 0 0 0 0 0
SIM-java and TE 1 0 0 1 -1 0 0 0 0 0 0
SIM-text and AllnoNOR -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and AllNOR -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and CCR -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and NoPPT -1 1 -1 0 0 0 0 0 0 0 0
SIM-text and TE -1 1 -1 0 0 0 0 0 0 0 0

165

Appendix F. Contrast codings for the simple effecs analysis

Table F.5: Simple effects analysis contrast codings - student dataset - part2

C12 C13 C14 C15 C16 C17 C18 C19 C20

JPlag-java and AllnoNOR 0 0 0 0 0 0 0 0 0
JPlag-java and AllNOR 0 0 0 0 0 0 0 0 0
JPlag-java and CCR 0 0 0 0 0 0 0 0 0
JPlag-java and NoPPT 0 0 0 0 0 0 0 0 0
JPlag-java and TE 0 0 0 0 0 0 0 0 0
JPlag-text and AllnoNOR 0 -1 0 0 0 0 0 0 0
JPlag-text and AllNOR 0 1 0 0 0 0 0 0 0
JPlag-text and CCR -1 0 0 0 0 0 0 0 0
JPlag-text and NoPPT 0 0 0 0 0 0 0 0 0
JPlag-text and TE 1 0 0 0 0 0 0 0 0
Sherlock-java and AllnoNOR 0 0 0 0 0 0 1 1 0
Sherlock-java and AllNOR 0 0 0 0 0 0 1 1 0
Sherlock-java and CCR 0 0 0 0 0 0 1 -1 -1
Sherlock-java and NoPPT 0 0 0 0 0 0 -4 0 0
Sherlock-java and TE 0 0 0 0 0 0 1 -1 1
Sherlock-text and AllnoNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and AllNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and CCR 0 0 0 0 0 0 0 0 0
Sherlock-text and NoPPT 0 0 0 0 0 0 0 0 0
Sherlock-text and TE 0 0 0 0 0 0 0 0 0
SIM-java and AllnoNOR 0 0 0 0 0 0 0 0 0
SIM-java and AllNOR 0 0 0 0 0 0 0 0 0
SIM-java and CCR 0 0 0 0 0 0 0 0 0
SIM-java and NoPPT 0 0 0 0 0 0 0 0 0
SIM-java and TE 0 0 0 0 0 0 0 0 0
SIM-text and AllnoNOR 0 0 1 1 0 -1 0 0 0
SIM-text and AllNOR 0 0 1 1 0 1 0 0 0
SIM-text and CCR 0 0 1 -1 -1 0 0 0 0
SIM-text and NoPPT 0 0 -4 0 0 0 0 0 0
SIM-text and TE 0 0 1 -1 1 0 0 0 0

166

Appendix F. Contrast codings for the simple effecs analysis

Table F.6: Simple effects analysis contrast codings - student dataset - part3

C21 C22 C23 C24 C25 C26 C27 C28 C29

JPlag-java and AllnoNOR 0 1 1 0 -1 0 0 0 0
JPlag-java and AllNOR 0 1 1 0 1 0 0 0 0
JPlag-java and CCR 0 1 -1 -1 0 0 0 0 0
JPlag-java and NoPPT 0 -4 0 0 0 0 0 0 0
JPlag-java and TE 0 1 -1 1 0 0 0 0 0
JPlag-text and AllnoNOR 0 0 0 0 0 0 0 0 0
JPlag-text and AllNOR 0 0 0 0 0 0 0 0 0
JPlag-text and CCR 0 0 0 0 0 0 0 0 0
JPlag-text and NoPPT 0 0 0 0 0 0 0 0 0
JPlag-text and TE 0 0 0 0 0 0 0 0 0
Sherlock-java and AllnoNOR -1 0 0 0 0 0 0 0 0
Sherlock-java and AllNOR 1 0 0 0 0 0 0 0 0
Sherlock-java and CCR 0 0 0 0 0 0 0 0 0
Sherlock-java and NoPPT 0 0 0 0 0 0 0 0 0
Sherlock-java and TE 0 0 0 0 0 0 0 0 0
Sherlock-text and AllnoNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and AllNOR 0 0 0 0 0 0 0 0 0
Sherlock-text and CCR 0 0 0 0 0 0 0 0 0
Sherlock-text and NoPPT 0 0 0 0 0 0 0 0 0
Sherlock-text and TE 0 0 0 0 0 0 0 0 0
SIM-java and AllnoNOR 0 0 0 0 0 1 1 0 -1
SIM-java and AllNOR 0 0 0 0 0 1 1 0 1
SIM-java and CCR 0 0 0 0 0 1 -1 -1 0
SIM-java and NoPPT 0 0 0 0 0 -4 0 0 0
SIM-java and TE 0 0 0 0 0 1 -1 1 0
SIM-text and AllnoNOR 0 0 0 0 0 0 0 0 0
SIM-text and AllNOR 0 0 0 0 0 0 0 0 0
SIM-text and CCR 0 0 0 0 0 0 0 0 0
SIM-text and NoPPT 0 0 0 0 0 0 0 0 0
SIM-text and TE 0 0 0 0 0 0 0 0 0

167

CHAPTER G

SHAPIRO-WILK NORMALITY TEST

Results of Shapiro-Wilk normality test for SOCO dataset D1 assigmenets group:

$`Normal distribution`

[1] "JPlag-java - NoPPT with W=0.9646739, p=0.3856066;"

[2] "JPlag-java - RC with W=0.9646739, p=0.3856066;"

[3] "JPlag-java - CCR with W=0.981933, p=0.8640068;"

[4] "JPlag-java - AllnoNOR with W=0.9736222, p=0.6233963;"

[5] "JPlag-java - AllNOR with W=0.9736222, p=0.6233963;"

[6] "SIM-java - NoPPT with W=0.9684525, p=0.4775116;"

[7] "SIM-java - RC with W=0.9703781, p=0.5295313;"

[8] "SIM-java - CCR with W=0.9645588, p=0.3830315;"

[9] "SIM-java - AllnoNOR with W=0.963926, p=0.3691145;"

[10] "SIM-java - AllNOR with W=0.963926, p=0.3691145;"

[11] "Sherlock-java - NoPPT with W=0.9622875, p=0.3349699;"

[12] "Sherlock-java - RC with W=0.9397757, p=0.08134755;"

[13] "Sherlock-java - CCR with W=0.9488192, p=0.1448137;"

[14] "Sherlock-java - AllnoNOR with W=0.9316043, p=0.04848914;"

[15] "Sherlock-java - AllNOR with W=0.9490796, p=0.1472336;"

[16] "JPlag-text - NoPPT with W=0.968684, p=0.4835915;"

[17] "JPlag-text - RC with W=0.9604874, p=0.3005428;"

[18] "JPlag-text - CCR with W=0.9628915, p=0.3472413;"

[19] "JPlag-text - AllnoNOR with W=0.9712717, p=0.554704;"

[20] "JPlag-text - AllNOR with W=0.9712717, p=0.554704;"

[21] "SIM-text - NoPPT with W=0.9618008, p=0.3253471;"

[22] "SIM-text - RC with W=0.9781271, p=0.7587939;"

[23] "Sherlock-text - AllNOR with W=0.9072469, p=0.01098593;"

$`Non-normal distribution`

[1] "SIM-text - CCR with W=0.8525712, p=0.0005750178;"

[2] "SIM-text - AllnoNOR with W=0.790909, p=3.519414e-05;"

[3] "SIM-text - AllNOR with W=0.790909, p=3.519414e-05;"

[4] "Sherlock-text - NoPPT with W=0.6764819, p=5.32229e-07;"

[5] "Sherlock-text - RC with W=0.8960805, p=0.005762239;"

[6] "Sherlock-text - CCR with W=0.8812919, p=0.002538942;"

[7] "Sherlock-text - AllnoNOR with W=0.8855633, p=0.003204142;"

168

Appendix G. Shapiro-Wilk normality test

Results of Shapiro-Wilk normality test for SOCO dataset D2 assigmenets group:

$`Normal distribution`

[1] "JPlag-java - NoPPT with W=0.9858052, p=0.9450095;"

[2] "JPlag-java - RC with W=0.9858052, p=0.9450095;"

[3] "JPlag-java - CCR with W=0.975526, p=0.6806886;"

[4] "JPlag-java - AllnoNOR with W=0.9715212, p=0.5618368;"

[5] "JPlag-java - AllNOR with W=0.9723407, p=0.585556;"

[6] "SIM-java - CCR with W=0.9670385, p=0.4414707;"

[7] "SIM-java - AllnoNOR with W=0.9593151, p=0.2798053;"

[8] "SIM-java - AllNOR with W=0.9593151, p=0.2798053;"

[9] "Sherlock-java - NoPPT with W=0.9795755, p=0.8007722;"

[10] "Sherlock-java - RC with W=0.9618583, p=0.3264707;"

[11] "Sherlock-java - AllnoNOR with W=0.9390745, p=0.07779658;"

[12] "JPlag-text - NoPPT with W=0.9466654, p=0.1262406;"

[13] "JPlag-text - RC with W=0.9317417, p=0.04890997;"

[14] "JPlag-text - CCR with W=0.9674398, p=0.4515039;"

[15] "JPlag-text - AllnoNOR with W=0.9490834, p=0.1472693;"

[16] "JPlag-text - AllNOR with W=0.9490834, p=0.1472693;"

[17] "SIM-text - NoPPT with W=0.9716205, p=0.5646882;"

[18] "SIM-text - RC with W=0.9451164, p=0.11436;"

[19] "SIM-text - AllnoNOR with W=0.9309576, p=0.04655822;"

[20] "SIM-text - AllNOR with W=0.9309576, p=0.04655822;"

[21] "Sherlock-text - NoPPT with W=0.9246174, p=0.03135723;"

[22] "Sherlock-text - CCR with W=0.9184819, p=0.02151919;"

[23] "Sherlock-text - AllNOR with W=0.9433229, p=0.1019913;"

$`Non-normal distribution`

[1] "SIM-java - NoPPT with W=0.8862555, p=0.003328287;"

[2] "SIM-java - RC with W=0.8862555, p=0.003328287;"

[3] "Sherlock-java - CCR with W=0.8846273, p=0.003044016;"

[4] "Sherlock-java - AllNOR with W=0.8907427, p=0.004267217;"

[5] "SIM-text - CCR with W=0.9052535, p=0.00977406;"

[6] "Sherlock-text - RC with W=0.8180266, p=0.0001133849;"

[7] "Sherlock-text - AllnoNOR with W=0.8700778, p=0.001399096;"

169

Appendix G. Shapiro-Wilk normality test

Results of Shapiro-Wilk normality test for SOCO dataset D3 assigmenets group:

$`Normal distribution`

[1] "JPlag-java - NoPPT with W=0.9576201, p=0.26895;"

[2] "JPlag-java - RC with W=0.9576201, p=0.26895;"

[3] "SIM-java - NoPPT with W=0.9330666, p=0.05926352;"

[4] "SIM-java - RC with W=0.9330666, p=0.05926352;"

[5] "SIM-java - CCR with W=0.9770035, p=0.7415289;"

[6] "SIM-java - AllnoNOR with W=0.9770035, p=0.7415289;"

[7] "SIM-java - AllNOR with W=0.9770035, p=0.7415289;"

[8] "Sherlock-java - NoPPT with W=0.9696577, p=0.5298511;"

[9] "Sherlock-java - RC with W=0.9315619, p=0.05403212;"

[10] "Sherlock-java - CCR with W=0.9582691, p=0.2795822;"

[11] "Sherlock-java - AllnoNOR with W=0.9436364, p=0.1139858;"

[12] "JPlag-text - AllnoNOR with W=0.9559115, p=0.2426764;"

[13] "JPlag-text - AllNOR with W=0.9559115, p=0.2426764;"

[14] "SIM-text - RC with W=0.962473, p=0.357731;"

$`Non-normal distribution`

[1] "JPlag-java - CCR with W=0.87775, p=0.002504022;"

[2] "JPlag-java - AllnoNOR with W=0.8684517, p=0.001547752;"

[3] "JPlag-java - AllNOR with W=0.9003744, p=0.008577694;"

[4] "Sherlock-java - AllNOR with W=0.8555798, p=0.0008132337;"

[5] "JPlag-text - NoPPT with W=0.8211926, p=0.0001636066;"

[6] "JPlag-text - RC with W=0.7608029, p=1.367942e-05;"

[7] "JPlag-text - CCR with W=0.8946996, p=0.006246444;"

[8] "SIM-text - NoPPT with W=0.8954656, p=0.00651751;"

[9] "SIM-text - CCR with W=0.8133351, p=0.0001158564;"

[10] "SIM-text - AllnoNOR with W=0.5541259, p=2.101866e-08;"

[11] "SIM-text - AllNOR with W=0.5541259, p=2.101866e-08;"

[12] "Sherlock-text - NoPPT with W=0.8955069, p=0.006532471;"

[13] "Sherlock-text - RC with W=0.772367, p=2.138859e-05;"

[14] "Sherlock-text - CCR with W=0.8612356, p=0.00107563;"

[15] "Sherlock-text - AllnoNOR with W=0.8601214, p=0.001017588;"

[16] "Sherlock-text - AllNOR with W=0.6531109, p=3.470444e-07;"

170

Appendix G. Shapiro-Wilk normality test

Results of Shapiro-Wilk normality test for SOCO dataset D4 assigmenets group:

$`Normal distribution`

[1] "JPlag-java - NoPPT with W=0.9479069, p=0.1366391;"

[2] "JPlag-java - RC with W=0.9479069, p=0.1366391;"

[3] "JPlag-java - CCR with W=0.9306143, p=0.04556583;"

[4] "JPlag-java - AllnoNOR with W=0.9281943, p=0.0391624;"

[5] "JPlag-java - AllNOR with W=0.9505117, p=0.161267;"

[6] "SIM-java - NoPPT with W=0.9559183, p=0.2267597;"

[7] "SIM-java - RC with W=0.9559183, p=0.2267597;"

[8] "SIM-java - CCR with W=0.9502513, p=0.1586223;"

[9] "SIM-java - AllnoNOR with W=0.948355, p=0.1405961;"

[10] "SIM-java - AllNOR with W=0.9469539, p=0.1285843;"

[11] "Sherlock-java - RC with W=0.9592104, p=0.2780161;"

[12] "Sherlock-java - CCR with W=0.951189, p=0.1683487;"

[13] "Sherlock-java - AllnoNOR with W=0.9285138, p=0.03995139;"

[14] "JPlag-text - NoPPT with W=0.9103471, p=0.01319518;"

[15] "JPlag-text - CCR with W=0.9519791, p=0.1769896;"

[16] "JPlag-text - AllnoNOR with W=0.9329913, p=0.05291376;"

[17] "JPlag-text - AllNOR with W=0.9329913, p=0.05291376;"

[18] "SIM-text - NoPPT with W=0.9219974, p=0.0266797;"

[19] "SIM-text - RC with W=0.9317174, p=0.04883506;"

[20] "Sherlock-text - AllNOR with W=0.9596934, p=0.2863554;"

$`Non-normal distribution`

[1] "Sherlock-java - NoPPT with W=0.8936639, p=0.005026356;"

[2] "Sherlock-java - AllNOR with W=0.8894397, p=0.003968659;"

[3] "JPlag-text - RC with W=0.8585491, p=0.0007748055;"

[4] "SIM-text - CCR with W=0.374969, p=2.135516e-10;"

[5] "SIM-text - AllnoNOR with W=0.3794252, p=2.347685e-10;"

[6] "SIM-text - AllNOR with W=0.3794252, p=2.347685e-10;"

[7] "Sherlock-text - NoPPT with W=0.8784289, p=0.002176162;"

[8] "Sherlock-text - RC with W=0.8830677, p=0.00279574;"

[9] "Sherlock-text - CCR with W=0.7596318, p=1.004897e-05;"

[10] "Sherlock-text - AllnoNOR with W=0.4672953, p=1.683508e-09;"

171

Appendix G. Shapiro-Wilk normality test

Results of Shapiro-Wilk normality test for RSS dataset A1 assigmenet group:

$`Normal distribution`

[1] "JPlag-java - NoPPT with W=0.7095627, p=0.01491974;"

[2] "JPlag-java - CCR with W=0.8495198, p=0.224609;"

[3] "JPlag-java - TE with W=0.960889, p=0.7845021;"

[4] "JPlag-java - AllnoNOR with W=0.9318662, p=0.6054105;"

[5] "JPlag-java - AllNOR with W=0.9318662, p=0.6054105;"

[6] "SIM-java - NoPPT with W=0.7612247, p=0.0489199;"

[7] "SIM-java - CCR with W=0.7612247, p=0.0489199;"

[8] "SIM-java - TE with W=0.7877798, p=0.08205024;"

[9] "SIM-java - AllnoNOR with W=0.700802, p=0.0118625;"

[10] "SIM-java - AllNOR with W=0.700802, p=0.0118625;"

[11] "Sherlock-java - NoPPT with W=0.8150224, p=0.1320046;"

[12] "Sherlock-java - CCR with W=0.8584345, p=0.2546618;"

[13] "Sherlock-java - TE with W=0.8659565, p=0.2821167;"

[14] "Sherlock-java - AllnoNOR with W=0.8812872, p=0.3441629;"

[15] "Sherlock-java - AllNOR with W=0.8837843, p=0.3550508;"

[16] "JPlag-text - NoPPT with W=0.8507872, p=0.2287199;"

[17] "JPlag-text - CCR with W=0.8411582, p=0.1988004;"

[18] "JPlag-text - TE with W=0.8470807, p=0.216846;"

[19] "JPlag-text - AllnoNOR with W=0.851944, p=0.2325183;"

[20] "JPlag-text - AllNOR with W=0.851944, p=0.2325183;"

[21] "SIM-text - NoPPT with W=0.8041968, p=0.1099617;"

[22] "SIM-text - TE with W=0.8107794, p=0.1229993;"

[23] "SIM-text - AllnoNOR with W=0.9064628, p=0.4638634;"

[24] "SIM-text - AllNOR with W=0.9064628, p=0.4638634;"

[25] "Sherlock-text - NoPPT with W=0.803279, p=0.1082314;"

[26] "Sherlock-text - CCR with W=0.8640498, p=0.2749732;"

[27] "Sherlock-text - AllnoNOR with W=0.9359038, p=0.6295144;"

[28] "Sherlock-text - AllNOR with W=0.9567416, p=0.7584044;"

$`Non-normal distribution`

[1] "SIM-text - CCR with W=0.6297763, p=0.001240726;"

[2] "Sherlock-text - TE with W=0.6726856, p=0.005322119;"

All tests were done using Shapiro-Wilk normality test at p<0.01. The test was performed
using shapiro.test function from the package stats.

172

CHAPTER H

MODEL COMPARISONS

This Appendix presents the results of the model comparisons used in the statistical analysis
for the different assignments. All models are using an random intercept. The term Participant

in the SOCO dataset represents one subset assignment (e.g., Dn-1, Dn-2, Dn-3, etc.) from the
D1, D2, D3 or D4 group of assignments, and in the student dataset it represents the results from
one academic year for the A1 assignment. The models that were compared are:

• NullModel

lmer(F1∼ (1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (H.1)

• ToolModel:

lmer(F1∼ Tool+

(1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (H.2)

• MainEffectsModel:

lmer(F1∼ Tool +Technique+

(1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (H.3)

• InteractionModel or FullModel:

lmer(F1∼ Tool +Technique+Tool : Technique+

(1|Participant)+(1|Tool : Participant)+(1|Technique : Participant),

data = SOCO.Dn,REML = FALSE) (H.4)

173

A
ppendix

H
.

M
odelcom

parisons

Table H.1: MLM comparison for SOCO D1

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) p.boot

NullModel 5 -1421.5 -1397.3 715.7 -1431.5 NA NA NA NA
ToolModel 10 -1988.1 -1939.7 1004.0 -2008.1 576.6 5 0.0000 0.0001
MainEffectsModel 14 -2033.9 -1966.2 1030.9 -2061.9 53.8 4 0.0000 0.0001
InteractionModel 34 -3361.6 -3197.2 1714.8 -3429.6 1367.8 20 0.0000 0.0001

Table H.2: MLM comparison for SOCO D2

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) p.boot

NullModel 5 -1564.6 -1540.4 787.3 -1574.6 NA NA NA NA
ToolModel 10 -2086.6 -2038.2 1053.3 -2106.6 531.9 5 0.0000 0.0001
MainEffectsModel 14 -2119.5 -2051.8 1073.8 -2147.5 41.0 4 0.0000 0.0001
InteractionModel 34 -3351.9 -3187.5 1709.9 -3419.9 1272.4 20 0.0000 0.0001

Table H.3: MLM comparison for SOCO D3

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) p.boot

NullModel 5 -1751.4 -1727.4 880.7 -1761.4 NA NA NA NA
ToolModel 10 -2431.1 -2383.1 1225.6 -2451.1 689.7 5 0.0000 0.0001
MainEffectsModel 14 -2445.6 -2378.4 1236.8 -2473.6 22.5 4 0.0002 0.0003
InteractionModel 34 -3365.1 -3201.8 1716.5 -3433.1 959.5 20 0.0000 0.0001174

A
ppendix

H
.

M
odelcom

parisons

Table H.4: MLM comparison for SOCO D4

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) p.boot

NullModel 5 -1338.8 -1314.7 674.4 -1348.8 NA NA NA NA
ToolModel 10 -1793.7 -1745.3 906.8 -1813.7 464.8 5 0.0000 0.0001
MainEffectsModel 14 -1806.6 -1738.9 917.3 -1834.6 20.9 4 0.0003 0.0006
InteractionModel 34 -1866.1 -1701.7 967.0 -1934.1 99.5 20 0.0000 0.0001

Table H.5: Multi level linear model (MLM) comparison for RSS A1

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) p.boot

NullModel 5 -68.2 -54.3 39.1 -78.2 NA NA NA NA
ToolModel 10 -72.8 -45.0 46.4 -92.8 14.6 5 0.0121 0.0351
MainEffectsModel 14 -75.9 -36.9 51.9 -103.9 11.0 4 0.0261 0.0637
InteractionModel 34 -73.8 21.0 70.9 -141.8 37.9 20 0.0092 0.0394

175

CHAPTER I

CONSTRAST EFFECT SIZES

Table I.1: Contrasts effect sizes for SOCO D1

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
Tool.TextvsJava 0.89 0.88 0.91
TT.SHvsOthers 0.86 0.84 0.89
TJ.SHvsOthers 0.94 0.94 0.96
TT.SIMvsJPlag 0.95 0.95 0.96
TJ.SIMvsJPlag 0.80 0.78 0.84
NoPPTvsPPT 0.62 0.26 0.69
SinglevsCombo 0.05 0.00 0.19
RCvsCCR 0.70 0.33 0.75
AnoNvsAN 0.72 0.35 0.77
Tool.TextvsJava:NoPPTvsPPT 0.21 0.13 0.28
TT.SHvsOthers:NoPPTvsPPT 0.71 0.64 0.74
TJ.SHvsOthers:NoPPTvsPPT 0.10 0.02 0.18
TT.SIMvsJPlag:NoPPTvsPPT 0.34 0.26 0.41
TJ.SIMvsJPlag:NoPPTvsPPT 0.00 0.00 0.09
Tool.TextvsJava:SinglevsCombo 0.16 0.08 0.23
TT.SHvsOthers:SinglevsCombo 0.82 0.77 0.84
TJ.SHvsOthers:SinglevsCombo 0.15 0.07 0.22
TT.SIMvsJPlag:SinglevsCombo 0.47 0.38 0.52
TJ.SIMvsJPlag:SinglevsCombo 0.01 0.00 0.09
Tool.TextvsJava:RCvsCCR 0.59 0.52 0.64
TT.SHvsOthers:RCvsCCR 0.61 0.53 0.65
TJ.SHvsOthers:RCvsCCR 0.32 0.24 0.38
TT.SIMvsJPlag:RCvsCCR 0.19 0.11 0.26
TJ.SIMvsJPlag:RCvsCCR 0.00 0.00 0.09
Tool.TextvsJava:AnoNvsAN 0.51 0.43 0.56
TT.SHvsOthers:AnoNvsAN 0.73 0.67 0.77
TJ.SHvsOthers:AnoNvsAN 0.11 0.03 0.19
TT.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09
TJ.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR,
AN - AllNOR

176

Appendix I. Constrast effect sizes

Table I.2: Simple effect analysis effect sizes for SOCO D1

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
TextvsJava 0.89 0.88 0.91
TT.SHvsOthers 0.86 0.84 0.89
TT.SIMvsJPlag 0.95 0.95 0.96
TJ.SHvsOthers 0.94 0.94 0.96
TJ.SIMvsJPlag 0.80 0.78 0.84
TT.SH.NoPPTvsPPT 0.47 0.41 0.53
TT.SH.SinglevsCombo 0.74 0.71 0.78
TT.SH.RCvsCCR 0.13 0.06 0.20
TT.SH.AllnoNORvsAllNOR 0.77 0.74 0.80
TT.JPlag.NoPPTvsPPT 0.34 0.27 0.40
TT.JPlag.SinglevsCombo 0.13 0.06 0.21
TT.JPlag.RCvsCCR 0.51 0.46 0.57
TT.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.08
TT.SIM.NoPPTvsPPT 0.64 0.59 0.68
TT.SIM.SinglevsCombo 0.63 0.59 0.68
TT.SIM.RCvsCCR 0.65 0.61 0.69
TT.SIM.AllnoNORvsAllNOR 0.00 0.00 0.08
TJ.SH.NoPPTvsPPT 0.13 0.06 0.20
TJ.SH.SinglevsCombo 0.18 0.11 0.25
TJ.SH.RCvsCCR 0.34 0.27 0.40
TJ.SH.AllnoNORvsAllNOR 0.13 0.06 0.20
TJ.JPlag.NoPPTvsPPT 0.02 0.00 0.09
TJ.JPlag.SinglevsCombo 0.02 0.00 0.09
TJ.JPlag.RCvsCCR 0.02 0.00 0.09
TJ.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.08
TJ.SIM.NoPPTvsPPT 0.01 0.00 0.09
TJ.SIM.SinglevsCombo 0.01 0.00 0.09
TJ.SIM.RCvsCCR 0.02 0.00 0.09
TJ.SIM.AllnoNORvsAllNOR 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

177

Appendix I. Constrast effect sizes

Table I.3: Contrasts effect sizes for SOCO D2

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
Tool.TextvsJava 0.82 0.82 0.86
TT.SHvsOthers 0.80 0.80 0.84
TJ.SHvsOthers 0.93 0.93 0.94
TT.SIMvsJPlag 0.95 0.95 0.97
TJ.SIMvsJPlag 0.78 0.77 0.82
NoPPTvsPPT 0.14 0.08 0.43
SinglevsCombo 0.09 0.02 0.33
RCvsCCR 0.36 0.31 0.73
AnoNvsAN 0.35 0.29 0.72
Tool.TextvsJava:NoPPTvsPPT 0.27 0.21 0.36
TT.SHvsOthers:NoPPTvsPPT 0.68 0.65 0.75
TJ.SHvsOthers:NoPPTvsPPT 0.09 0.02 0.17
TT.SIMvsJPlag:NoPPTvsPPT 0.17 0.11 0.26
TJ.SIMvsJPlag:NoPPTvsPPT 0.05 0.00 0.13
Tool.TextvsJava:SinglevsCombo 0.01 0.00 0.09
TT.SHvsOthers:SinglevsCombo 0.77 0.75 0.83
TJ.SHvsOthers:SinglevsCombo 0.09 0.02 0.17
TT.SIMvsJPlag:SinglevsCombo 0.28 0.22 0.36
TJ.SIMvsJPlag:SinglevsCombo 0.03 0.00 0.11
Tool.TextvsJava:RCvsCCR 0.58 0.54 0.66
TT.SHvsOthers:RCvsCCR 0.61 0.57 0.69
TJ.SHvsOthers:RCvsCCR 0.10 0.03 0.18
TT.SIMvsJPlag:RCvsCCR 0.13 0.06 0.22
TJ.SIMvsJPlag:RCvsCCR 0.05 0.00 0.13
Tool.TextvsJava:AnoNvsAN 0.39 0.33 0.48
TT.SHvsOthers:AnoNvsAN 0.62 0.58 0.69
TJ.SHvsOthers:AnoNvsAN 0.05 0.00 0.13
TT.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09
TJ.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR,
AN - AllNOR

178

Appendix I. Constrast effect sizes

Table I.4: Simple effect analysis effect sizes for SOCO D2

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
TextvsJava 0.82 0.82 0.86
TT.SHvsOthers 0.80 0.80 0.84
TT.SIMvsJPlag 0.95 0.95 0.97
TJ.SHvsOthers 0.93 0.93 0.94
TJ.SIMvsJPlag 0.78 0.77 0.82
TT.SH.NoPPTvsPPT 0.51 0.45 0.56
TT.SH.SinglevsCombo 0.72 0.69 0.75
TT.SH.RCvsCCR 0.18 0.11 0.25
TT.SH.AllnoNORvsAllNOR 0.69 0.66 0.73
TT.JPlag.NoPPTvsPPT 0.39 0.33 0.45
TT.JPlag.SinglevsCombo 0.25 0.18 0.32
TT.JPlag.RCvsCCR 0.56 0.51 0.61
TT.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.08
TT.SIM.NoPPTvsPPT 0.56 0.51 0.61
TT.SIM.SinglevsCombo 0.55 0.50 0.60
TT.SIM.RCvsCCR 0.65 0.61 0.69
TT.SIM.AllnoNORvsAllNOR 0.00 0.00 0.08
TJ.SH.NoPPTvsPPT 0.02 0.00 0.09
TJ.SH.SinglevsCombo 0.04 0.00 0.11
TJ.SH.RCvsCCR 0.21 0.14 0.28
TJ.SH.AllnoNORvsAllNOR 0.06 0.00 0.13
TJ.JPlag.NoPPTvsPPT 0.12 0.05 0.20
TJ.JPlag.SinglevsCombo 0.09 0.02 0.16
TJ.JPlag.RCvsCCR 0.13 0.06 0.20
TJ.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.08
TJ.SIM.NoPPTvsPPT 0.06 0.00 0.13
TJ.SIM.SinglevsCombo 0.05 0.00 0.12
TJ.SIM.RCvsCCR 0.06 0.00 0.13
TJ.SIM.AllnoNORvsAllNOR 0.00 0.00 0.08

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

179

Appendix I. Constrast effect sizes

Table I.5: Contrasts effect sizes for SOCO D3

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
Tool.TextvsJava 0.94 0.94 0.96
TT.SHvsOthers 0.91 0.92 0.95
TJ.SHvsOthers 0.96 0.96 0.98
TT.SIMvsJPlag 0.98 0.98 0.99
TJ.SIMvsJPlag 0.64 0.64 0.74
NoPPTvsPPT 0.49 0.19 0.60
SinglevsCombo 0.09 0.00 0.24
RCvsCCR 0.19 0.02 0.33
AnoNvsAN 0.44 0.16 0.56
Tool.TextvsJava:NoPPTvsPPT 0.15 0.06 0.22
TT.SHvsOthers:NoPPTvsPPT 0.47 0.37 0.53
TJ.SHvsOthers:NoPPTvsPPT 0.50 0.40 0.56
TT.SIMvsJPlag:NoPPTvsPPT 0.10 0.02 0.17
TJ.SIMvsJPlag:NoPPTvsPPT 0.13 0.05 0.20
Tool.TextvsJava:SinglevsCombo 0.20 0.11 0.27
TT.SHvsOthers:SinglevsCombo 0.66 0.57 0.71
TJ.SHvsOthers:SinglevsCombo 0.50 0.41 0.56
TT.SIMvsJPlag:SinglevsCombo 0.00 0.00 0.09
TJ.SIMvsJPlag:SinglevsCombo 0.10 0.02 0.18
Tool.TextvsJava:RCvsCCR 0.62 0.53 0.68
TT.SHvsOthers:RCvsCCR 0.25 0.16 0.32
TJ.SHvsOthers:RCvsCCR 0.22 0.14 0.30
TT.SIMvsJPlag:RCvsCCR 0.13 0.04 0.20
TJ.SIMvsJPlag:RCvsCCR 0.14 0.05 0.21
Tool.TextvsJava:AnoNvsAN 0.45 0.36 0.51
TT.SHvsOthers:AnoNvsAN 0.60 0.51 0.66
TJ.SHvsOthers:AnoNvsAN 0.25 0.17 0.33
TT.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09
TJ.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR,
AN - AllNOR

180

Appendix I. Constrast effect sizes

Table I.6: Simple effect analysis effect sizes for SOCO D3

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
TextvsJava 0.94 0.94 0.96
TT.SHvsOthers 0.91 0.92 0.95
TT.SIMvsJPlag 0.98 0.98 0.99
TJ.SHvsOthers 0.96 0.96 0.98
TJ.SIMvsJPlag 0.64 0.64 0.74
TT.SH.NoPPTvsPPT 0.22 0.15 0.30
TT.SH.SinglevsCombo 0.57 0.52 0.64
TT.SH.RCvsCCR 0.13 0.06 0.21
TT.SH.AllnoNORvsAllNOR 0.63 0.58 0.70
TT.JPlag.NoPPTvsPPT 0.38 0.31 0.46
TT.JPlag.SinglevsCombo 0.26 0.19 0.33
TT.JPlag.RCvsCCR 0.45 0.39 0.52
TT.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.09
TT.SIM.NoPPTvsPPT 0.28 0.21 0.36
TT.SIM.SinglevsCombo 0.25 0.18 0.33
TT.SIM.RCvsCCR 0.32 0.25 0.40
TT.SIM.AllnoNORvsAllNOR 0.00 0.00 0.09
TJ.SH.NoPPTvsPPT 0.42 0.36 0.50
TJ.SH.SinglevsCombo 0.46 0.39 0.53
TJ.SH.RCvsCCR 0.39 0.32 0.46
TJ.SH.AllnoNORvsAllNOR 0.28 0.20 0.35
TJ.JPlag.NoPPTvsPPT 0.24 0.17 0.31
TJ.JPlag.SinglevsCombo 0.18 0.11 0.26
TJ.JPlag.RCvsCCR 0.25 0.18 0.33
TJ.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.09
TJ.SIM.NoPPTvsPPT 0.08 0.01 0.15
TJ.SIM.SinglevsCombo 0.06 0.00 0.13
TJ.SIM.RCvsCCR 0.08 0.01 0.16
TJ.SIM.AllnoNORvsAllNOR 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

181

Appendix I. Constrast effect sizes

Table I.7: Contrasts effect sizes for SOCO D4

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 NA NA
Tool.TextvsJava 0.86 0.84 0.91
TT.SHvsOthers 0.81 0.79 0.88
TJ.SHvsOthers 0.90 0.90 0.94
TT.SIMvsJPlag 0.91 0.90 0.94
TJ.SIMvsJPlag 0.52 0.48 0.64
NoPPTvsPPT 0.13 0.01 0.27
SinglevsCombo 0.38 0.11 0.50
RCvsCCR 0.06 0.00 0.20
AnoNvsAN 0.00 0.00 0.17
Tool.TextvsJava:NoPPTvsPPT 0.01 0.00 0.09
TT.SHvsOthers:NoPPTvsPPT 0.09 0.01 0.17
TJ.SHvsOthers:NoPPTvsPPT 0.05 0.00 0.14
TT.SIMvsJPlag:NoPPTvsPPT 0.05 0.00 0.13
TJ.SIMvsJPlag:NoPPTvsPPT 0.08 0.01 0.15
Tool.TextvsJava:SinglevsCombo 0.20 0.11 0.28
TT.SHvsOthers:SinglevsCombo 0.10 0.02 0.18
TJ.SHvsOthers:SinglevsCombo 0.09 0.01 0.17
TT.SIMvsJPlag:SinglevsCombo 0.00 0.00 0.09
TJ.SIMvsJPlag:SinglevsCombo 0.06 0.00 0.13
Tool.TextvsJava:RCvsCCR 0.16 0.07 0.24
TT.SHvsOthers:RCvsCCR 0.08 0.01 0.16
TJ.SHvsOthers:RCvsCCR 0.07 0.01 0.15
TT.SIMvsJPlag:RCvsCCR 0.13 0.05 0.21
TJ.SIMvsJPlag:RCvsCCR 0.08 0.01 0.16
Tool.TextvsJava:AnoNvsAN 0.10 0.02 0.18
TT.SHvsOthers:AnoNvsAN 0.10 0.02 0.18
TJ.SHvsOthers:AnoNvsAN 0.09 0.01 0.17
TT.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09
TJ.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR,
AN - AllNOR

182

Appendix I. Constrast effect sizes

Table I.8: Simple effect analysis effect sizes for SOCO D4

ContrastName EffectSize CI.LB CI.UB

(Intercept) 1.00 1.00 1.00
TextvsJava 0.86 0.84 0.91
TT.SHvsOthers 0.81 0.80 0.88
TT.SIMvsJPlag 0.91 0.90 0.94
TJ.SHvsOthers 0.90 0.90 0.94
TJ.SIMvsJPlag 0.52 0.48 0.64
TT.SH.NoPPTvsPPT 0.10 0.02 0.17
TT.SH.SinglevsCombo 0.22 0.14 0.31
TT.SH.RCvsCCR 0.01 0.00 0.09
TT.SH.AllnoNORvsAllNOR 0.11 0.03 0.19
TT.JPlag.NoPPTvsPPT 0.02 0.00 0.10
TT.JPlag.SinglevsCombo 0.11 0.04 0.19
TT.JPlag.RCvsCCR 0.01 0.00 0.09
TT.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.09
TT.SIM.NoPPTvsPPT 0.04 0.00 0.12
TT.SIM.SinglevsCombo 0.10 0.03 0.18
TT.SIM.RCvsCCR 0.16 0.08 0.25
TT.SIM.AllnoNORvsAllNOR 0.00 0.00 0.09
TJ.SH.NoPPTvsPPT 0.02 0.00 0.10
TJ.SH.SinglevsCombo 0.07 0.01 0.15
TJ.SH.RCvsCCR 0.12 0.05 0.20
TJ.SH.AllnoNORvsAllNOR 0.10 0.03 0.19
TJ.JPlag.NoPPTvsPPT 0.09 0.01 0.16
TJ.JPlag.SinglevsCombo 0.06 0.01 0.14
TJ.JPlag.RCvsCCR 0.09 0.02 0.17
TJ.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.09
TJ.SIM.NoPPTvsPPT 0.01 0.00 0.09
TJ.SIM.SinglevsCombo 0.01 0.00 0.09
TJ.SIM.RCvsCCR 0.01 0.00 0.09
TJ.SIM.AllnoNORvsAllNOR 0.00 0.00 0.09

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

183

Appendix I. Constrast effect sizes

Table I.9: Contrasts effect sizes for RSS A1

ContrastName EffectSize CI.LB CI.UB

(Intercept) 0.89 0.87 0.92
Tool.TextvsJava 0.29 0.14 0.47
TT.SHvsOthers 0.48 0.37 0.63
TJ.SHvsOthers 0.52 0.40 0.66
TT.SIMvsJPlag 0.46 0.34 0.61
TJ.SIMvsJPlag 0.21 0.05 0.39
NoPPTvsPPT 0.57 0.43 0.76
SinglevsCombo 0.50 0.34 0.71
CCRvsTE 0.38 0.17 0.62
AnoNvsAN 0.08 0.01 0.35
Tool.TextvsJava:NoPPTvsPPT 0.16 0.01 0.40
TT.SHvsOthers:NoPPTvsPPT 0.26 0.04 0.48
TJ.SHvsOthers:NoPPTvsPPT 0.10 0.01 0.34
TT.SIMvsJPlag:NoPPTvsPPT 0.17 0.01 0.41
TJ.SIMvsJPlag:NoPPTvsPPT 0.22 0.02 0.45
Tool.TextvsJava:SinglevsCombo 0.10 0.01 0.35
TT.SHvsOthers:SinglevsCombo 0.19 0.01 0.42
TJ.SHvsOthers:SinglevsCombo 0.13 0.01 0.36
TT.SIMvsJPlag:SinglevsCombo 0.12 0.01 0.36
TJ.SIMvsJPlag:SinglevsCombo 0.06 0.00 0.30
Tool.TextvsJava:CCRvsTE 0.25 0.03 0.47
TT.SHvsOthers:CCRvsTE 0.31 0.08 0.52
TJ.SHvsOthers:CCRvsTE 0.11 0.01 0.35
TT.SIMvsJPlag:CCRvsTE 0.29 0.05 0.50
TJ.SIMvsJPlag:CCRvsTE 0.04 0.00 0.29
Tool.TextvsJava:AnoNvsAN 0.11 0.01 0.35
TT.SHvsOthers:AnoNvsAN 0.03 0.00 0.29
TJ.SHvsOthers:AnoNvsAN 0.19 0.01 0.43
TT.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.29
TJ.SIMvsJPlag:AnoNvsAN 0.00 0.00 0.29

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock, AnoN - AllnoNOR,
AN - AllNOR

184

Appendix I. Constrast effect sizes

Table I.10: Simple effect analysis effect sizes for RSS A1

ContrastName EffectSize CI.LB CI.UB

(Intercept) 0.89 0.87 0.92
TextvsJava 0.29 0.14 0.47
TT.SHvsOthers 0.48 0.37 0.63
TT.SIMvsJPlag 0.46 0.33 0.61
TJ.SHvsOthers 0.52 0.40 0.66
TJ.SIMvsJPlag 0.21 0.05 0.39
TT.SH.NoPPTvsPPT 0.13 0.01 0.36
TT.SH.SinglevsCombo 0.12 0.01 0.35
TT.SH.CCRvsTE 0.01 0.00 0.27
TT.SH.AllnoNORvsAllNOR 0.04 0.00 0.28
TT.JPlag.NoPPTvsPPT 0.49 0.30 0.65
TT.JPlag.SinglevsCombo 0.26 0.04 0.46
TT.JPlag.CCRvsTE 0.51 0.32 0.66
TT.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.27
TT.SIM.NoPPTvsPPT 0.31 0.09 0.51
TT.SIM.SinglevsCombo 0.39 0.18 0.57
TT.SIM.CCRvsTE 0.18 0.01 0.40
TT.SIM.AllnoNORvsAllNOR 0.00 0.00 0.27
TJ.SH.NoPPTvsPPT 0.14 0.01 0.36
TJ.SH.SinglevsCombo 0.28 0.06 0.48
TJ.SH.CCRvsTE 0.02 0.00 0.27
TJ.SH.AllnoNORvsAllNOR 0.22 0.02 0.44
TJ.JPlag.NoPPTvsPPT 0.38 0.17 0.56
TJ.JPlag.SinglevsCombo 0.18 0.01 0.40
TJ.JPlag.CCRvsTE 0.14 0.01 0.36
TJ.JPlag.AllnoNORvsAllNOR 0.00 0.00 0.27
TJ.SIM.NoPPTvsPPT 0.10 0.01 0.33
TJ.SIM.SinglevsCombo 0.11 0.01 0.34
TJ.SIM.CCRvsTE 0.08 0.00 0.31
TJ.SIM.AllnoNORvsAllNOR 0.00 0.00 0.27

Note:
TT - ToolText, TJ - ToolJava, SH - Sherlock

185

CHAPTER J

INTERACTION GRAPHS

(a) Interaction 1 (b) Interaction 2 (c) Interaction 3

(d) Interaction 4 (e) Interaction 5 (f) Interaction 6

(g) Interaction 7 (h) Interaction 8 (i) Interaction 9

Figure J.1: Interaction graphs for SOCO D1 - part 1

186

Appendix J. Interaction graphs

(a) Interaction 10 (b) Interaction 11 (c) Interaction 12

(d) Interaction 13 (e) Interaction 14 (f) Interaction 15

(g) Interaction 16 (h) Interaction 17 (i) Interaction 18

(j) Interaction 19 (k) Interaction 20

Figure J.2: Interaction graphs for SOCO D1 - part 2

187

Appendix J. Interaction graphs

(a) Interaction 1 (b) Interaction 2 (c) Interaction 3

(d) Interaction 4 (e) Interaction 5 (f) Interaction 6

(g) Interaction 7 (h) Interaction 8 (i) Interaction 9

Figure J.3: Interaction graphs for SOCO D2 - part 1

188

Appendix J. Interaction graphs

(a) Interaction 10 (b) Interaction 11 (c) Interaction 12

(d) Interaction 13 (e) Interaction 14 (f) Interaction 15

(g) Interaction 16 (h) Interaction 17 (i) Interaction 18

(j) Interaction 19 (k) Interaction 20

Figure J.4: Interaction graphs for SOCO D2 - part 2

189

Appendix J. Interaction graphs

(a) Interaction 1 (b) Interaction 2 (c) Interaction 3

(d) Interaction 4 (e) Interaction 5 (f) Interaction 6

(g) Interaction 7 (h) Interaction 8 (i) Interaction 9

Figure J.5: Interaction graphs for SOCO D3 - part 1

190

Appendix J. Interaction graphs

(a) Interaction 10 (b) Interaction 11 (c) Interaction 12

(d) Interaction 13 (e) Interaction 14 (f) Interaction 15

(g) Interaction 16 (h) Interaction 17 (i) Interaction 18

(j) Interaction 19 (k) Interaction 20

Figure J.6: Interaction graphs for SOCO D3 - part 2

191

Appendix J. Interaction graphs

(a) Interaction 1 (b) Interaction 2 (c) Interaction 3

(d) Interaction 4 (e) Interaction 5 (f) Interaction 6

(g) Interaction 7 (h) Interaction 8 (i) Interaction 9

Figure J.7: Interaction graphs for SOCO D4 - part 1

192

Appendix J. Interaction graphs

(a) Interaction 10 (b) Interaction 11 (c) Interaction 12

(d) Interaction 13 (e) Interaction 14 (f) Interaction 15

(g) Interaction 16 (h) Interaction 17 (i) Interaction 18

(j) Interaction 19 (k) Interaction 20

Figure J.8: Interaction graphs for SOCO D4 - part 2

193

Appendix J. Interaction graphs

(a) Interaction 1 (b) Interaction 2 (c) Interaction 3

(d) Interaction 4 (e) Interaction 5 (f) Interaction 6

(g) Interaction 7 (h) Interaction 8 (i) Interaction 9

Figure J.9: Interaction graphs for RSS A1 - part 1

194

Appendix J. Interaction graphs

(a) Interaction 10 (b) Interaction 11 (c) Interaction 12

(d) Interaction 13 (e) Interaction 14 (f) Interaction 15

(g) Interaction 16 (h) Interaction 17 (i) Interaction 18

(j) Interaction 19 (k) Interaction 20

Figure J.10: Interaction graphs for RSS A1 - part 2

195

CHAPTER K

PRECISION AND RECALL FOR RSS DATASET

The folowing figures present the Precision and Recall for the RSS A1 dataset in the academic
years: 2012-2013 (Figure K.1), 2013-2014 (Figure K.2), 2014-2015 (Figure K.3), and 2017-
2018 Figure K.4.

Figure K.1: Precision and Recall for RSS A1 assigment in academic year 2012-2013

196

Appendix K. Precision and Recall for RSS dataset

Figure K.2: Precision and Recall for RSS A1 assigment in academic year 2013-2014

Figure K.3: Precision and Recall for RSS A1 assigment in academic year 2014-2015

197

Appendix K. Precision and Recall for RSS dataset

Figure K.4: Precision and Recall for RSS A1 assigment in academic year 2017-2018

198

CHAPTER L

LIST OF USED PACKAGES IN R

Here is a listing of the R session and loaded packages to perfom the various statistical
analysis, table and graph creation.

sessionInfo()

R version 3.6.2 (2019-12-12)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Arch Linux

##

Matrix products: default

BLAS: /usr/lib/libblas.so.3.9.0

LAPACK: /usr/lib/liblapack.so.3.9.0

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] pbkrtest_0.4-7 qqplotr_0.0.3 boot_1.3-24

[4] lmerTest_3.1-1 lme4_1.1-21 Matrix_1.2-18

[7] pgirmess_1.6.9 compute.es_0.2-4 reshape_0.8.8

[10] multcomp_1.4-11 TH.data_1.0-10 MASS_7.3-51.4

[13] survival_3.1-8 mvtnorm_1.0-11 ez_4.4-0

[16] nlme_3.1-142 car_3.0-6 carData_3.0-3

[19] pastecs_1.3.21 dplyr_0.8.3 wordcloud_2.6

[22] RColorBrewer_1.1-2 tm_0.7-7 NLP_0.2-0

[25] UtilityFunctions_1.5 ggplot2_3.2.1 testthat_2.3.1

[28] kableExtra_1.1.0 stringr_1.4.0 xtable_1.8-4

199

Appendix L. List of used packages in R

[31] knitr_1.26

##

loaded via a namespace (and not attached):

[1] readxl_1.3.1 backports_1.1.5 Hmisc_4.3-0

[4] plyr_1.8.5 lazyeval_0.2.2 sp_1.3-2

[7] splines_3.6.2 usethis_1.5.1 digest_0.6.23

[10] htmltools_0.4.0 gdata_2.18.0 fansi_0.4.0

[13] checkmate_1.9.4 magrittr_1.5 memoise_1.1.0

[16] cluster_2.1.0 openxlsx_4.1.4 remotes_2.1.0

[19] readr_1.3.1 gmodels_2.18.1 sandwich_2.5-1

[22] prettyunits_1.0.2 jpeg_0.1-8.1 colorspace_1.4-1

[25] rvest_0.3.5 haven_2.2.0 xfun_0.11

[28] rgdal_1.4-8 callr_3.4.0 crayon_1.3.4

[31] zeallot_0.1.0 zoo_1.8-6 glue_1.3.1

[34] gtable_0.3.0 webshot_0.5.2 pkgbuild_1.0.6

[37] DEoptimR_1.0-8 abind_1.4-5 scales_1.1.0

[40] DBI_1.1.0 Rcpp_1.0.3 htmlTable_1.13.3

[43] viridisLite_0.3.0 spData_0.3.2 units_0.6-5

[46] foreign_0.8-72 spdep_1.1-3 Formula_1.2-3

[49] htmlwidgets_1.5.1 httr_1.4.1 acepack_1.4.1

[52] ellipsis_0.3.0 pkgconfig_2.0.3 farver_2.0.1

[55] nnet_7.3-12 deldir_0.1-23 tidyselect_0.2.5

[58] labeling_0.3 rlang_0.4.2 reshape2_1.4.3

[61] munsell_0.5.0 cellranger_1.1.0 tools_3.6.2

[64] cli_2.0.0 splancs_2.01-40 devtools_2.2.1

[67] evaluate_0.14 processx_3.4.1 fs_1.3.1

[70] zip_2.0.4 robustbase_0.93-5 purrr_0.3.3

[73] slam_0.1-47 xml2_1.2.2 compiler_3.6.2

[76] rstudioapi_0.10 png_0.1-7 curl_4.3

[79] e1071_1.7-3 tibble_2.1.3 stringi_1.4.3

[82] ps_1.3.0 desc_1.2.0 forcats_0.4.0

[85] rgeos_0.5-2 lattice_0.20-38 classInt_0.4-2

[88] nloptr_1.2.1 vctrs_0.2.1 pillar_1.4.3

[91] LearnBayes_2.15.1 lifecycle_0.1.0 data.table_1.12.8

[94] maptools_0.9-9 R6_2.4.1 latticeExtra_0.6-29

[97] gridExtra_2.3 KernSmooth_2.23-16 rio_0.5.16

[100] sessioninfo_1.1.1 codetools_0.2-16 gtools_3.8.1

[103] assertthat_0.2.1 pkgload_1.0.2 rprojroot_1.3-2

200

Appendix L. List of used packages in R

[106] withr_2.1.2 mgcv_1.8-31 expm_0.999-4

[109] parallel_3.6.2 hms_0.5.2 rpart_4.1-15

[112] grid_3.6.2 coda_0.19-3 class_7.3-15

[115] minqa_1.2.4 rmarkdown_2.0 sf_0.8-0

[118] numDeriv_2016.8-1.1 base64enc_0.1-3

201

BIBLIOGRAPHY

[1] C. Aasheim, P. Rutner, L. Li, and S. Williams, “Plagiarism and programming: A survey
of student attitudes”, Journal of Information Systems Education, vol. 23, no. 3, pp. 297–
314, 2012, I S S N: 1055-3096.

[2] G. Acampora and G. Cosma, “A Fuzzy-based approach to programming language inde-
pendent source-code plagiarism detection”, in IEEE International Conference on Fuzzy

Systems, Istanbul, Turkey: IEEE, 2015, pp. 1–8, I S B N: 978-1-4673-7428-6. D O I:
10.1109/FUZZ-IEEE.2015.7337935.

[3] A. Ahtiainen, S. Surakka, and M. Rahikainen, “Plaggie: GNU-licensed source code
plagiarism detection engine for Java exercises.”, in Proceedings of the 6th Baltic Sea

conference on Computing education research Koli Calling, vol. 276, New York, USA:
ACM Press, 2006, p. 141. D O I: 10.1145/1315803.1315831.

[4] M. Arevalillo-Herráez and J. M. Claver, “Assessment Technique to Encourage Coopera-
tive Learning in a Computer Programming Course”, International Journal of Engineer-

ing Education, vol. 27, no. 4, pp. 867–874, 2011, I S S N: 0949-149X.

[5] C. Arwin and S. M. M. Tahaghoghi, “Plagiarism detection across programming lan-
guages”, in 29th Australasian Computer Science Conference, vol. 48, Melbourne, Aus-
tralia: Australian Computer Society, Inc., 2006, pp. 277–286, I S B N: 978-1-9206-8230-
9.

[6] A. Asadullah, M. Basavaraju, I. Stern, and V. D. Bhat, “Design Patterns Based Pre-
processing of Source Code for Plagiarism Detection”, in 19th Asia-Pacific Software

Engineering Conference, vol. 2, Bangalore, India: IEEE, 2012, pp. 128–135, I S B N:
978-1-4673-4930-7. D O I: 10.1109/APSEC.2012.141.

[7] M. J. Austin and L. D. Brown, “Internet Plagiarism: Developing Strategies to Curb
Student Academic Dishonesty”, The Internet and Higher Education, vol. 2, no. 1, pp. 21–
33, 1999, I S S N: 1096-7516. D O I: 10.1016/S1096-7516(99)00004-4.

[8] W. Badke, “Training plagiarism detectives: The law and order approach”, Online Maga-

zine at questia.com, vol. 31, no. 6, pp. 50–52, 2007, I S S N: 0146-5422.

[9] E. S. Banjanovic and J. W. Osborne, “Confidence intervals for effect sizes: Applying
bootstrap resampling”, Practical Assessment, Research & Evaluation, vol. 21, no. 5,
pp. 1–20, 2016, I S S N: 1531-7714.

[10] E. Barnes, “Student Honor: A Study in Cheating”, The International Journal of Ethics,
vol. 14, no. 4, pp. 481–488, 1904, I S S N: 1526-422X. D O I: 10.1086/intejethi.14.
4.2376257.

202

https://doi.org/10.1109/FUZZ-IEEE.2015.7337935
https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1109/APSEC.2012.141
https://doi.org/10.1016/S1096-7516(99)00004-4
https://doi.org/10.1086/intejethi.14.4.2376257
https://doi.org/10.1086/intejethi.14.4.2376257

Bibliography

[11] R. Barrett and A. L. Cox, “At least they’re learning something: the hazy line between
collaboration and collusion”, Assessment & Evaluation in Higher Education, vol. 30,
no. 2, pp. 107–122, 2005, I S S N: 0260-2938. D O I: 10.1080/0260293042000264226.

[12] M. Bartoszuk and M. Gagolewski, “A Fuzzy R Code Similarity Detection Algorithm”,
in 15th International Conference on Information Processing and Management of Uncer-

tainty in Knowledge-based Systems, Part 3, vol. 444 CCIS, Warsaw, Poland: Springer
Verlag, 2014, pp. 21–30, I S B N: 978-3-3190-8851-8. D O I: 10.1007/978-3-319-

08852-5_3.

[13] K. Beck, Test-driven development: by example. Addison-Wesley Professional, 2003,
I S B N: 978-0-3211-4653-3.

[14] A. M. Bejarano, L. E. García, and E. E. Zurek, “Detection of source code similitude
in academic environments”, Computer Applications in Engineering Education, vol. 23,
no. 1, pp. 13–22, 2015, I S S N: 1061-3773. D O I: 10.1002/cae.21571.

[15] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and Evalu-
ation of Clone Detection Tools”, IEEE Transactions on Software Engineering, vol. 33,
no. 9, pp. 577–591, 2007, I S S N: 0098-5589. D O I: 10.1109/TSE.2007.70725.

[16] J. Bloch, Effective java (3rd Edition). Addison-Wesley Professional, 2018, I S B N: 978-
0-1346-8599-1.

[17] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes, “Language-Independent
Clone Detection Applied to Plagiarism Detection”, in 10th IEEE Working Conference on

Source Code Analysis and Manipulation, Caen, France: IEEE, 2010, pp. 77–86, I S B N:
978-1-4244-8655-7. D O I: 10.1109/SCAM.2010.19.

[18] S. Burrows and S. M. M. Tahaghoghi, “Source code authorship attribution using n-
grams”, in 12th Australasian Document Computing Symposium, RMIT University, Mel-
bourne, Australia, 2007, pp. 32–39, I S B N: 978-0-6464-8437-2.

[19] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, “Temporally Robust Software Features
for Authorship Attribution”, in 33rd Annual IEEE International Computer Software and

Applications Conference, vol. 1, 2009, pp. 599–606, I S B N: 978-0-7695-3726-9. D O I:
10.1109/COMPSAC.2009.85.

[20] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, “Efficient plagiarism detection for large
code repositories”, Software: Practice and Experience, vol. 37, no. 2, pp. 151–175,
2007, I S S N: 0038-0644. D O I: 10.1002/spe.750.

[21] S. Butakov and V. Shcherbinin, “On the number of search queries required for Internet
plagiarism detection”, in 9th IEEE International Conference on Advanced Learning

Technologies, IEEE, 2009, pp. 482–483, I S B N: 978-0-7695-3711-5. D O I: 10.1109/
ICALT.2009.78.

203

https://doi.org/10.1080/0260293042000264226
https://doi.org/10.1007/978-3-319-08852-5_3
https://doi.org/10.1007/978-3-319-08852-5_3
https://doi.org/10.1002/cae.21571
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/SCAM.2010.19
https://doi.org/10.1109/COMPSAC.2009.85
https://doi.org/10.1002/spe.750
https://doi.org/10.1109/ICALT.2009.78
https://doi.org/10.1109/ICALT.2009.78

Bibliography

[22] M Cebrian, M. Alfonseca, and A. Ortega, “Towards the Validation of Plagiarism De-
tection Tools by Means of Grammar Evolution”, IEEE Transactions on Evolutionary

Computation, vol. 13, no. 3, pp. 477–485, 2009, I S S N: 1941-0026. D O I: 10.1109/
TEVC.2008.2008797.

[23] G. Chen, Y. Zhang, and X. Wang, “Analysis on Identification Technologies of Program
Code Similarity”, in International Conference of Information Technology, Computer

Engineering and Management Sciences, vol. 1, Nanjing, Jiangsu, China: IEEE, 2011,
pp. 188–191, I S B N: 978-1-4577-1419-1. D O I: 10.1109/ICM.2011.240.

[24] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared Information and
Program Plagiarism Detection”, IEEE Transactions on Information Theory, vol. 50,
no. 7, pp. 1545–1551, 2004, I S S N: 0018-9448. D O I: 10.1109/TIT.2004.830793.

[25] J. Choma, E. M. Guerra, and T. S. da Silva, “Developers’ Initial Perceptions on TDD
Practice: A Thematic Analysis with Distinct Domains and Languages”, in International

Conference on Agile Software Development, 2018, pp. 68–85, I S B N: 978-3-319-91601-
9. D O I: 10.1007/978-3-319-91602-6_5.

[26] D. Chuda and P. Navrat, “Support for checking plagiarism in e-learning”, Procedia -

Social and Behavioral Sciences, vol. 2, no. 2, pp. 3140–3144, 2010, I S S N: 1877-0428.
D O I: 10.1016/j.sbspro.2010.03.478.

[27] D. Chuda, P. Navrat, B. Kovacova, and P. Humay, “The Issue of (Software) Plagiarism:
A Student View”, IEEE Transactions on Education, vol. 55, no. 1, pp. 22–28, 2012,
I S S N: 0018-9359. D O I: 10.1109/TE.2011.2112768.

[28] V. Ciesielski, N. Wu, and S. Tahaghoghi, “Evolving similarity functions for code pla-
giarism detection”, in Proceedings of the 10th annual conference on Genetic and evolu-

tionary computation, Georgia, USA: ACM Press, 2008, pp. 1453–1460, I S B N: 978-1-
6055-8130-9. D O I: 10.1145/1389095.1389380.

[29] F. Cirillo, The Pomodoro Technique: The Acclaimed Time-Management System That

Has Transformed How We Work. Currency, 2018, I S B N: 978-1-5247-6070-0.

[30] P. Clough, Plagiarism in natural and programming languages: an overview of current

tools and technologies, Research Memoranda: CS-00-05, Department of Computer
Science, University of Sheffield, Accessed on 2016-07-25 Available at http://ir.shef.ac.uk
/cloughie/papers/plagiarism2000.pdf, Sheffield, UK, 2000.

[31] G. Cosma and M. Joy, “An Approach to Source-Code Plagiarism Detection and Inves-
tigation Using Latent Semantic Analysis”, IEEE Transactions on Computers, vol. 61,
no. 3, pp. 379–394, 2012, I S S N: 0018-9340. D O I: 10.1109/TC.2011.223.

[32] G. Cosma and M. Joy, “Evaluating the performance of LSA for source-code plagiarism
detection”, Informatica (Slovenia), vol. 36, no. 4, pp. 409–424, 2012, I S S N: 0350-5596.

204

https://doi.org/10.1109/TEVC.2008.2008797
https://doi.org/10.1109/TEVC.2008.2008797
https://doi.org/10.1109/ICM.2011.240
https://doi.org/10.1109/TIT.2004.830793
https://doi.org/10.1007/978-3-319-91602-6_5
https://doi.org/10.1016/j.sbspro.2010.03.478
https://doi.org/10.1109/TE.2011.2112768
https://doi.org/10.1145/1389095.1389380
https://doi.org/10.1109/TC.2011.223

Bibliography

[33] G. Cosma, “An approach to source-code plagiarism detection and investigation using
latent semantic analysis”, PhD thesis, University of Warwick, Accessed on 2016-07-25
Available at http://wrap.warwick.ac.uk/3575/, 2008.

[34] G. Cosma and M. Joy, “Towards a Definition of Source-Code Plagiarism”, IEEE Trans-

actions on Education, vol. 51, no. 2, pp. 195–200, 2008, I S S N: 0018-9359. D O I:
10.1109/TE.2007.906776.

[35] A. Ramírez-de-la Cruz, G. Ramírez-de-la Rosa, C. Sánchez-Sánchez, and H. Jiménez-
Salazar, “On the Importance of Lexicon, Structure and Style for Identifying Source
Code Plagiarism”, in Proceedings of the Forum for Information Retrieval Evaluation,
ser. FIRE ’14, New York, USA: ACM Press, 2015, pp. 31–38, I S B N: 978-1-4503-3755-
7. D O I: 10.1145/2824864.2824879.

[36] C. Daly, “A Technique for Detecting Plagiarism in Computer Code”, The Computer

Journal, vol. 48, no. 6, pp. 662–666, 2005, I S S N: 0010-4620. D O I: 10.1093/comjnl/
bxh139.

[37] E. L. Deci and R. M. Ryan, “A motivational approach to self: Integration in personality”,
Perspectives on motivation, vol. 38, no. 237, pp. 237–288, 1990.

[38] Z. Ðurić and D. Gašević, “A Source Code Similarity System for Plagiarism Detection”,
The Computer Journal, vol. 56, no. 1, pp. 70–86, 2013, I S S N: 0010-4620. D O I: 10.
1093/comjnl/bxs018.

[39] J. Dobša, D. Mladenić, J. Rupnik, D. Radošević, and I. Magdalenić, “Cross-language
information retrieval by reduced k-means”, International Journal of Computer Infor-

mation Systems and Industrial Managerment Applications, vol. 10, no. 1, pp. 314–322,
2018, I S S N: 2150-7988.

[40] C. Domin, H. Pohl, and M. Krause, “Improving Plagiarism Detection in Coding As-
signments by Dynamic Removal of Common Ground”, in Proceedings of the 2016 CHI

Conference Extended Abstracts on Human Factors in Computing Systems, ser. CHI EA
’16, New York, USA: ACM Press, 2016, pp. 1173–1179, I S B N: 978-1-4503-4082-3.
D O I: 10.1145/2851581.2892512.

[41] J. L. Donaldson, A.-M. Lancaster, and P. H. Sposato, “A plagiarism detection system”,
ACM SIGCSE Bulletin, SIGCSE ’81, vol. 13, no. 1, pp. 21–25, 1981, I S S N: 0097-8418.
D O I: 10.1145/953049.800955.

[42] R. A. Easterlin, “Income and happiness: Towards a unified theory”, The economic

journal, vol. 111, no. 473, pp. 465–484, 2001, I S S N: 0013-0133. D O I: 10.1111/1468-
0297.00646.

[43] Encyclopædia Britannica Inc, Plagiarism, Accessed on 2015-09-10 Available at
http://www.britannica.com/topic/plagiarism, 2015.

205

https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1145/2824864.2824879
https://doi.org/10.1093/comjnl/bxh139
https://doi.org/10.1093/comjnl/bxh139
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1145/2851581.2892512
https://doi.org/10.1145/953049.800955
https://doi.org/10.1111/1468-0297.00646
https://doi.org/10.1111/1468-0297.00646

Bibliography

[44] J. Faidhi and S. Robinson, “An empirical approach for detecting program similarity and
plagiarism within a university programming environment”, Computers & Education,
vol. 11, no. 1, pp. 11–19, 1987, I S S N: 0360-1315. D O I: 10.1016/0360-1315(87)
90042-X.

[45] Y. Fain, Java Programming 24-Hour Trainer. Wiley Publishing, Inc., 2011, I S B N:
978-0-470-88964-0.

[46] A. Field, J. Miles, and Z. Field, Discovering statistics using R. SAGE Publications Ltd,
2012, I S B N: 978-1-4462-0046-9.

[47] R. Finnie, W. Poirier, E. Bozkurt, J. B. Peterson, T. Fricker, and M. Pratt, “Using
Future Authoring to Improve Student Outcomes”, Higher Education Quality Coun-
cil of Ontario, Toronto, Canada, Tech. Rep., 2017, Accessed on 2016-07-25 Avail-
able at http://www.heqco.ca/en-ca/Research/ResPub/Pages/Using-Future-Authoring-to-
Improve-Student-Outcomes-.aspx, pp. 1–50.

[48] E. Flores, A. Barrón-Cedeño, L. Moreno, and P. Rosso, “Cross-language source code
re-use detection using latent semantic analysis”, Journal of Universal Computer Science,
vol. 21, no. 13, pp. 1708–1725, 2015, I S S N: 0948-695X.

[49] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello, “Pan@ fire 2015: Overview of
cl-soco track on the detection of cross-language source code re-use”, in Proceedings

of the Seventh Forum for Information Retrieval Evaluation, Gandhinagar, India, 2015,
pp. 4–6.

[50] E. Flores, A. Barrón-Cedeño, L. Moreno, and P. Rosso, “Uncovering source code reuse
in large-scale academic environments”, Computer Applications in Engineering Educa-

tion, vol. 23, no. 3, pp. 383–390, 2015, I S S N: 1061-3773. D O I: 10.1002/cae.21608.

[51] E. Flores, L. Moreno, and P. Rosso, “Detecting Source Code Re-Use with Ensemble
Models”, in Proceedings of the 4th Spanish Conference on Information Retrieval, New
York, USA: ACM Press, 2016, pp. 1–7, I S B N: 9781450341417. D O I: 10.1145/

2934732.2934738.

[52] E. Flores, P. Rosso, L. Moreno, and E. Villatoro-Tello, “On the Detection of SOurce
COde Re-use”, in Proceedings of the Forum for Information Retrieval Evaluation, New
York, USA: ACM Press, 2015, pp. 21–30, I S B N: 978-1-4503-3755-7. D O I: 10.1145/
2824864.2824878.

[53] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: improving the

design of existing code. Addison-Wesley Professional, 1999, I S B N: 978-0-2014-8567-
7.

[54] R. Fraser, “Collaboration, Collusion and Plagiarism in Computer Science Coursework”,
Informatics in Education, vol. 13, no. 2, pp. 179–195, 2014, I S S N: 16485831. D O I:
10.15388/infedu.2014.01.

206

https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/10.1016/0360-1315(87)90042-X
https://doi.org/10.1002/cae.21608
https://doi.org/10.1145/2934732.2934738
https://doi.org/10.1145/2934732.2934738
https://doi.org/10.1145/2824864.2824878
https://doi.org/10.1145/2824864.2824878
https://doi.org/10.15388/infedu.2014.01

Bibliography

[55] S. Freeman and N. Pryce, Growing Object-oriented Software: Guided by Tests. Pearson
Education India, 2009, I S B N: 978-0-3215-0362-6.

[56] M. Freire, “Visualizing program similarity in the Ac plagiarism detection system”, in
Proceedings of the working conference on Advanced visual interfaces, New York, USA:
ACM Press, 2008, pp. 404–407, I S B N: 978-1-6055-8141-5. D O I: 10.1145/1385569.
1385644.

[57] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Pearson Education, 2005, I S B N: 978-1-4058-
3730-9.

[58] D. Ganguly and G. J. F. Jones, “DCU@FIRE-2014: An Information Retrieval Approach
for Source Code Plagiarism Detection”, in Proceedings of the Forum for Information

Retrieval Evaluation, ser. FIRE ’14, vol. 05-07-Dec-, New York, USA: ACM Press,
2015, pp. 39–42, I S B N: 978-1-4503-3755-7. D O I: 10.1145/2824864.2824887.

[59] D. Gitchell and N. Tran, “Sim: A utility for detecting similarity in computer programs”,
in The proceedings of the thirtieth SIGCSE technical symposium on Computer science

education, vol. 31, New York, USA: ACM Press, 1999, pp. 266–270, I S B N: 987-1-
58113-085-6. D O I: 10.1145/299649.299783.

[60] S. Grier, “A tool that detects plagiarism in Pascal programs”, in Proceedings of the

twelfth SIGCSE technical symposium on Computer science education, ser. SIGCSE
’81, New York, USA: ACM Press, 1981, pp. 15–20, I S B N: 978-0-8979-1036-1. D O I:
10.1145/800037.800954.

[61] D. Grune and M. Huntjens, “Het detecteren van kopieen bij informatica-practica”, Infor-

matie, vol. 31, no. 11, pp. 864–867, 1989.

[62] J. Hage, “Programmeerplagiaatdetectie met Marble - Technical Report UU-CS-2006-
062”, Department of Information and Computing Sciences, Utrecht University, Depart-
ment of Information and Computing Sciences, Utrecht University, Tech. Rep., 2006,
Accessed on 2016-07-25 Available at http://www.cs.uu.nl/research/techreps/repo/CS-
2006/2006-062.pdf.

[63] J. Hage, P. Rademaker, and N. van Vugt, “Plagiarism Detection for Java: A Tool Compar-
ison”, in Computer Science Education Research Conference, ser. CSERC ’11, Heerlen,
The Netherlands: Open Universiteit, Heerlen, 2011, pp. 33–46, I S B N: 978-9-0358-
1987-0.

[64] J. Hage, B. Vermeer, and G. Verburg, “Research Paper: Plagiarism Detection for Haskell
with Holmes”, in Proceedings of the 3rd Computer Science Education Research Confer-

ence on Computer Science Education Research, ser. CSERC ’13, Heerlen, The Nether-
lands: Open Universiteit, Heerlen, 2013, pp. 19–30.

207

https://doi.org/10.1145/1385569.1385644
https://doi.org/10.1145/1385569.1385644
https://doi.org/10.1145/2824864.2824887
https://doi.org/10.1145/299649.299783
https://doi.org/10.1145/800037.800954

Bibliography

[65] M. H. Halstead, “Natural laws controlling algorithm structure?”, ACM SIGPLAN No-

tices, vol. 7, no. 2, pp. 19–26, 1972, I S S N: 0362-1340. D O I: 10.1145/953363.

953366.

[66] M. H. Halstead, Elements of Software Science (Operating and Programming Systems

Series). New York, USA: Elsevier Science Inc., 1977, I S B N: 978-0-4440-0205-1.

[67] J. Hamblen, A. Parker, and S. Wachtel, “A new undergraduate computer arithmetic
software laboratory”, IEEE Transactions on Education, vol. 31, no. 3, pp. 177–180,
1988, I S S N: 0018-9359. D O I: 10.1109/13.2309.

[68] B. Hart, M. Joy, W. Smith, R. Pitt, A. Ward, W. Zhang, T. Mak, and D. White, Sher-

lock Help Guide, Department of Computer Science, University of Warwick, Accessed on
2018-09-13 Available at https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock
/sherlock.jar, Coventry, UK, 2003.

[69] J. H. Hayes and J. Offutt, “Recognizing authors: An examination of the consistent
programmer hypothesis”, Software Testing Verification and Reliability, vol. 20, no. 4,
pp. 329–356, 2010, I S S N: 0960-0833. D O I: 10.1002/stvr.412.

[70] D. O. Hebb and W. Thompson, “The social significance of animal studies”, in G. Lindzey

& E. Aronson, Handbook of social psychology, 3rd ed, New York: Random House, 1985,
pp. 729–774, I S B N: 978-0-8985-9720-2.

[71] D. Heres and J. Hage, “A Quantitative Comparison of Program Plagiarism Detection
Tools”, in Proceedings of the 6th Computer Science Education Research Conference,
ser. CSERC ’17, New York, USA: ACM, 2017, pp. 73–82, I S B N: 978-1-4503-6338-9.
D O I: 10.1145/3162087.3162101.

[72] M. J. Heron and P. Belford, “Musings on misconduct: A Practitioner Reflection on
the Ethical Investigation of Plagiarism within Programming Modules”, ACM SIGCAS

Computers and Society, vol. 45, no. 3, pp. 438–444, 2016, I S S N: 0095-2737. D O I:
10.1145/2874239.2874304.

[73] L. Hertzog, Introduction to bootstrap with applications to mixed-effect models, R-
bloggers, Accessed on 2018-12-19 Available at https://www.r-bloggers.com/introduction-
to-bootstrap-with-applications-to-mixed-effect-models/, 2015.

[74] T. C. Hoad and J. Zobel, “Methods for identifying versioned and plagiarized documents”,
Journal of the American Society for Information Science and Technology, vol. 54, no. 3,
pp. 203–215, 2003, I S S N: 1532-2882. D O I: 10.1002/asi.10170.

[75] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy, “Using web corpus statistics for
program analysis”, in Proceedings of the 2014 ACM International Conference on Object

Oriented Programming Systems Languages & Applications, vol. 49, New York, USA:
ACM Press, 2014, pp. 49–65, I S B N: 978-1-4503-2585-1. D O I: 10.1145/2660193.
2660226.

208

https://doi.org/10.1145/953363.953366
https://doi.org/10.1145/953363.953366
https://doi.org/10.1109/13.2309
https://doi.org/10.1002/stvr.412
https://doi.org/10.1145/3162087.3162101
https://doi.org/10.1145/2874239.2874304
https://doi.org/10.1002/asi.10170
https://doi.org/10.1145/2660193.2660226
https://doi.org/10.1145/2660193.2660226

Bibliography

[76] L. Huang, S. Shi, and H. Huang, “A new method for Code Similarity Detection”, in IEEE

International Conference on Progress in Informatics and Computing, vol. 2, Nanjing,
China: IEEE, 2010, pp. 1015–1018, I S B N: 978-1-4244-6788-4. D O I: 10.1109/PIC.
2010.5687856.

[77] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman to master.
Addison-Wesley Professional, 2000, I S B N: 978-0-2016-1622-4.

[78] A. Jadalla and A. Elnagar, “PDE4Java: Plagiarism Detection Engine for Java source
code: a clustering approach”, International Journal of Business Intelligence and Data

Mining, vol. 3, no. 2, p. 121, 2008, I S S N: 1743-8187. D O I: 10.1504/IJBIDM.2008.
020514.

[79] J.-H. Ji, S.-H. Park, G Woo, and H.-G. Cho, “Generating pylogenetic tree of homoge-
neous source code in a plagiarism detection system”, International Journal of Control,

Automation and Systems, vol. 6, no. 6, pp. 809–817, 2008, I S S N: 1598-6446.

[80] J.-H. Ji, G. Woo, and H.-G. Cho, “A Plagiarism Detection Technique for Java Program
Using Bytecode Analysis”, in Third International Conference on Convergence and Hy-

brid Information Technology, vol. 1, Busan, South Korea: IEEE, 2008, pp. 1092–1098,
I S B N: 978-0-7695-3407-7. D O I: 10.1109/ICCIT.2008.267.

[81] S. Jia, L. Dongsheng, L. Zhang, and C. Liu, “A Research on Plagiarism Detecting
Method Based on XML Similarity and Clustering”, in International Workshop on Inter-

net of Things, vol. 312 CCIS, Hohhot, China, 2012, pp. 619–626, I S B N: 978-3-6423-
2426-0. D O I: 10.1007/978-3-642-32427-7_88.

[82] M. C. Johnson, C. Watson, S. Davidson, and D. Eschbach, “Gene sequence inspired
design plagiarism screening”, in Annual Conference and Exposition, "Engineering Re-

searchs New Heights", Purdue University, USA, 2004, pp. 6087–6105.

[83] E. L. Jones, “Metrics Based Plagarism Monitoring”, Journal of Computing Sciences in

Colleges, vol. 16, no. 4, pp. 253–261, 2001, I S S N: 1937-4771.

[84] I. Jonyer, P. Apiratikul, and J. Thomas, “Source code fingerprinting using graph gram-
mar induction”, in Recent Advances in Artifical Intelligence - Eighteenth International

Florida Artificial Intelligence Research Society Conference, Tulsa, USA, 2005, pp. 468–
473, I S B N: 978-1-5773-5234-1.

[85] M. Joy and M. Luck, “Plagiarism in programming assignments”, IEEE Transactions on

Education, vol. 42, no. 2, pp. 129–133, 1999, I S S N: 0018-9359. D O I: 10.1109/13.
762946.

[86] M. Joy, G. Cosma, J. Y.-K. Yau, and J. Sinclair, “Source Code Plagiarism - A Student
Perspective”, IEEE Transactions on Education, vol. 54, no. 1, pp. 125–132, 2011, I S S N:
0018-9359. D O I: 10.1109/TE.2010.2046664.

209

https://doi.org/10.1109/PIC.2010.5687856
https://doi.org/10.1109/PIC.2010.5687856
https://doi.org/10.1504/IJBIDM.2008.020514
https://doi.org/10.1504/IJBIDM.2008.020514
https://doi.org/10.1109/ICCIT.2008.267
https://doi.org/10.1007/978-3-642-32427-7_88
https://doi.org/10.1109/13.762946
https://doi.org/10.1109/13.762946
https://doi.org/10.1109/TE.2010.2046664

Bibliography

[87] R. I. Kabacoff, R in Action Data analysis and graphics with R. New York, USA: Man-
ning Publications Co., 2011, I S B N: 978-1-93518-2399.

[88] D. C. Kar, “Detection of Plagiarism in Computer Programming Assignments”, Journal

of Computing Sciences in Colleges, vol. 15, no. 3, pp. 266–276, 2000, I S S N: 1937-4771.

[89] B Kaučič, D Sraka, M Ramsǎk, and M Krašna, “Observations on plagiarism in program-
ming courses”, in 2nd International Conference on Computer Supported Education,
vol. 2, Ljubljana, Slovenia, 2010, pp. 181–184, I S B N: 978-9-8967-4023-8.

[90] R. Kaushal and A. Singh, “Automated evaluation of programming assignments”, in
IEEE International Conference on Engineering Education: Innovative Practices and

Future Trends, Kottayam, India: IEEE, 2012, pp. 1–5, I S B N: 978-1-4673-2269-0. D O I:
10.1109/AICERA.2012.6306707.

[91] M. Kaya and S. A. Özel, “Integrating an online compiler and a plagiarism detection
tool into the Moodle distance education system for easy assessment of programming
assignments”, Computer Applications in Engineering Education, vol. 23, no. 3, pp. 363–
373, 2015, I S S N: 1061-3773. D O I: 10.1002/cae.21606.

[92] R. Kelley and B. Dooley, “The technology of cheating”, in IEEE International Sympo-

sium on Ethics in Science, Technology and Engineering, Chicago, IL, USA: IEEE, 2014,
pp. 1–4, I S B N: 978-1-4799-4992-2. D O I: 10.1109/ETHICS.2014.6893442.

[93] D. Kermek, M. Novak, and M. Kaniški, “Two years of gamification of the course —
Lessons learned”, in 41st International Convention on Information and Communication

Technology, Electronics and Microelectronics, Opatija, Croatia: IEEE, 2018, pp. 754–
759, I S B N: 978-953-233-095-3. D O I: 10.23919/MIPRO.2018.8400140.

[94] D. Kermek, D. Strmečki, M. Novak, and M. Kaniški, “Preparation of a hybrid e-learning
course for gamification”, in 2016 39th International Convention on Information and

Communication Technology, Electronics and Microelectronics, IEEE, 2016, pp. 829–
834, I S B N: 978-953-233-086-1. D O I: 10.1109/MIPRO.2016.7522254.

[95] D. Kermek and M. Novak, “Process Model Improvement for Source Code Plagiarism
Detection in Student Programming Assignments”, Informatics in Education, vol. 15,
no. 1, pp. 103–126, 2016, I S S N: 2335-8971. D O I: 10.15388/infedu.2016.06.

[96] A. Kleiman and T. Kowaltowski, “Qualitative Analysis and Comparison of Plagiarism-
Detection Systems in Student Programs - Technical Report IC-09-08”, Institu to de
Computação, Universidade Estadual de Campinas, Tech. Rep., 2009, Accessed on 2016-
07-25 Available at http://www.ic.unicamp.br/ reltech/2009/09-08.pdf.

[97] M. Konecki, T. Orehovački, and A. Lovrenčić, “Detecting computer code plagiarism in
higher education”, in 31st International Conference on Information Technology Inter-

faces, Dubrovnik, Croatia: IEEE, 2009, pp. 409–414, I S B N: 978-953-7138-15-8. D O I:
10.1109/ITI.2009.5196118.

210

https://doi.org/10.1109/AICERA.2012.6306707
https://doi.org/10.1002/cae.21606
https://doi.org/10.1109/ETHICS.2014.6893442
https://doi.org/10.23919/MIPRO.2018.8400140
https://doi.org/10.1109/MIPRO.2016.7522254
https://doi.org/10.15388/infedu.2016.06
https://doi.org/10.1109/ITI.2009.5196118

Bibliography

[98] J. Y. Kuo and F. C. Huang, “Code analyzer for an online course management system”,
Journal of Systems and Software, vol. 83, no. 12, pp. 2478–2486, 2010, I S S N: 0164-
1212. D O I: 10.1016/j.jss.2010.07.037.

[99] J. Y. Kuo, F. C. Huang, C. Hung, and L. H. Z. Yang, “The Study of Plagiarism Detection
for Object-Oriented Programming”, in Sixth International Conference on Genetic and

Evolutionary Computing, Kitakushu, Japan: IEEE, 2012, pp. 188–191, I S B N: 978-1-
4673-2138-9. D O I: 10.1109/ICGEC.2012.145.

[100] T. Lancaster, “Effective and Efficient Plagiarism Detection”, PhD thesis, South Bank
University, Accessed on 2016-07-25 Available at https://www.academia.edu/168972/
Effective_and_Efficient_Plagiarism_Detection, 2003.

[101] T. Lancaster and F. Culwin, “A Comparison of Source Code Plagiarism Detection En-
gines”, Computer Science Education, vol. 14, no. 2, pp. 101–112, 2004, I S S N: 0899-
3408. D O I: 10.1080/08993400412331363843.

[102] Y.-J. Lee, J.-S. Lim, J.-H. Ji, H.-G. Cho, and G. Woo, “Plagiarism Detection among
Source Codes using Adaptive Methods”, KSII Transactions on Internet and Information

Systems, vol. 6, no. 6, pp. 1627–1648, 2012, I S S N: 1976-7277. D O I: 10.3837/tiis.
2012.06.008.

[103] A. M. Leitao, “Detection of redundant code using (RD2)-D-2”, Software quality jour-

nal, vol. 12, no. 4, pp. 361–382, 2004, I S S N: 0963-9314. D O I: 10.1023/B:SQJO.

0000039793.31052.72.

[104] B. Lesner, R. Brixtel, C. Bazin, and G. Bagan, “A novel framework to detect source
code plagiarism”, in Proceedings of the 2010 ACM Symposium on Applied Computing,
New York, USA: ACM Press, 2010, pp. 57–58, I S B N: 978-1-6055-8639-7. D O I:
10.1145/1774088.1774101.

[105] X. Li and X. J. Zhong, “The Source Code Plagiarism Detection Using AST”, in In-

ternational Symposium on Intelligence Information Processing and Trusted Comput-

ing, Chengdu, China: IEEE, 2010, pp. 406–408, I S B N: 978-1-4244-8148-4. D O I:
10.1109/IPTC.2010.90.

[106] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of software plagiarism by
program dependence graph analysis”, in 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, vol. 2006, University of Illinois-UC, Illinois,
USA, 2006, pp. 872–881, I S B N: 978-1-5959-3339-3.

[107] X. Liu, C. Xu, and B. Ouyang, “Plagiarism Detection Algorithm for Source Code in
Computer Science Education”, International Journal of Distance Education Technolo-

gies, vol. 13, no. 4, pp. 29–39, 2015, I S S N: 1539-3100. D O I: 10.4018/IJDET.

2015100102.

211

https://doi.org/10.1016/j.jss.2010.07.037
https://doi.org/10.1109/ICGEC.2012.145
https://doi.org/10.1080/08993400412331363843
https://doi.org/10.3837/tiis.2012.06.008
https://doi.org/10.3837/tiis.2012.06.008
https://doi.org/10.1023/B:SQJO.0000039793.31052.72
https://doi.org/10.1023/B:SQJO.0000039793.31052.72
https://doi.org/10.1145/1774088.1774101
https://doi.org/10.1109/IPTC.2010.90
https://doi.org/10.4018/IJDET.2015100102
https://doi.org/10.4018/IJDET.2015100102

Bibliography

[108] Y. T. Liu, H. R. Zhang, T. W. Chen, and W. G. Teng, “Extending web search for online
plagiarism detection”, in IEEE International Conference on Information Reuse and

Integration, Las Vegas, IL, USA: IEEE, 2007, pp. 164–169, I S B N: 978-1-4244-1499-4.
D O I: 10.1109/IRI.2007.4296615.

[109] S. Mancuso, Model-based bootstrapped ANOVA and ANCOVA, Accessed on 2018-12-19
Available at https://sammancuso.com/2017/11/01/model-based-bootstrapped-anova-and-
ancova/, 2017.

[110] S. Mann and Z. Frew, “Similarity and originality in code: Plagiarism and normal vari-
ation in student assignments”, in Conferences in Research and Practice in Information

Technology Series, vol. 52, Hobart, TAS, Australia, 2006, pp. 143–150, I S B N: 978-1-
9206-8234-7.

[111] E. Marais, U. Minnaar, and D. Argles, “Plagiarism in e-Learning Systems: Identify-
ing and Solving the Problem for Practical Assignments”, in Sixth IEEE International

Conference on Advanced Learning Technologies, Kerkrade, Netherlands: IEEE, 2006,
pp. 822–824, I S B N: 0-7695-2632-2. D O I: 10.1109/ICALT.2006.1652567.

[112] L. Mariani and D. Micucci, “AuDeNTES: Automatic Detection of teNtative plagiarism
according to a rEference Solution”, ACM Transactions on Computing Education, vol. 12,
no. 1, pp. 1–26, 2012, I S S N: 1946-6226. D O I: 10.1145/2133797.2133799.

[113] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and

Design, ser. Robert C. Martin Series. Pearson Education, 2017, I S B N: 978-0-1344-
9432-6.

[114] R. C. Martin, Clean code: a handbook of agile software craftsmanship. Pearson Educa-
tion, 2009, I S B N: 978-0-1323-5088-4.

[115] R. C. Martin, The clean coder: a code of conduct for professional programmers. Pearson
Education, 2011, I S B N: 978-0-1370-8107-3.

[116] V. T. Martins, D. Fonte, P. R. Henriques, and D. da Cruz, “Plagiarism detection: A
tool survey and comparison”, in 3rd Symposium on Languages, Applications and Tech-

nologies, vol. 38, Gualtar, Portugal: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, 2014, pp. 143–158, I S B N: 978-3-9398-9768-2. D O I:
10.4230/OASIcs.SLATE.2014.143.

[117] V. T. V. Martins, “Detection of Plagiarism in Software in an Academic Environment”,
Master’s thesis, University of Minho, Accessed on 2016-07-25 Available at http://hdl.
handle.net/1822/42735, 2015.

[118] V. T. Martins, P. R. Henriques, and D. da Cruz, “An AST-based Tool, Spector, for Plagia-
rism Detection: The Approach, Functionality, and Implementation”, Communications

in Computer and Information Science, vol. 563, pp. 153–159, 2015, I S S N: 1865-0929.
D O I: 10.1007/978-3-319-27653-3_15.

212

https://doi.org/10.1109/IRI.2007.4296615
https://doi.org/10.1109/ICALT.2006.1652567
https://doi.org/10.1145/2133797.2133799
https://doi.org/10.4230/OASIcs.SLATE.2014.143
https://doi.org/10.1007/978-3-319-27653-3_15

Bibliography

[119] J. A. McCart and J. Jarman, “A technological tool to detect plagiarized projects in
microsoft access”, IEEE Transactions on Education, vol. 51, no. 2, pp. 166–173, 2008,
I S S N: 0018-9359. D O I: 10.1109/TE.2007.906312.

[120] Z. Mei and L. Dongsheng, “An XML plagiarism detection algorithm for Procedural
Programming Languages”, in International Conference on Educational and Information

Technology, vol. 3, Chongqing, China: IEEE, 2010, pp. V3–427–V3–431, I S B N: 978-
1-4244-8033-3. D O I: 10.1109/ICEIT.2010.5608336.

[121] Z. Mei and L. Dongsheng, “An XML plagiarism detection model for C program”, in
3rd International Conference on Advanced Computer Theory and Engineering, vol. 1,
Chengdu, China: IEEE, 2010, pp. V1–460–V1–464, I S B N: 978-1-4244-6539-2. D O I:
10.1109/ICACTE.2010.5578975.

[122] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education, 2007,
I S B N: 978-0-1314-9505-0.

[123] C. Meyer, C. Heeren, E. Shaffer, and J. Tedesco, “CoMoTo: the collaboration modeling
toolkit”, in Proceedings of the 16th annual joint conference on Innovation and technol-

ogy in computer science education, New York, USA: ACM Press, 2011, p. 143, I S B N:
978-1-4503-0697-3. D O I: 10.1145/1999747.1999789.

[124] G. Milliken and D. Johnson, Analysis of messy data Volume 1 Designed Experiments.
CRC Press, 2009, p. 690, I S B N: 978-1-5848-8334-0.

[125] O. Mirza, M. Joy, and G. Cosma, “Style Analysis for Source Code Plagiarism Detec-
tion”, in The 17th IEEE International Conference on Advanced Learning Technolo-

gies, Timisoara, Romania: IEEE, 2017, pp. 53–61, I S B N: 978-1-5386-3870-5. D O I:
10.1109/ICALT.2017.117.

[126] M. Mišić, Z. Siustran, and J. Protić, “A comparison of software tools for plagiarism de-
tection in programming assignments”, International Journal of Engineering Education,
vol. 32, no. 2, pp. 738–748, 2016, I S S N: 0949149X.

[127] M. J. Mišić, J. Protić, and M. V. Tomašević, “Improving source code plagiarism de-
tection: Lessons learned”, in 25th Telecommunication Forum, Belgrade, Serbia: IEEE,
2018, pp. 1–8, I S B N: 978-1-5386-3072-3. D O I: 10.1109/TELFOR.2017.8249481.

[128] H. Mohamad Judi, S. Mohd Sallen, N. Hussin, and S. Idris, “The Use of Assignment
Programming Activity Log to Study Novice Programmers’ Behavior between Non-
Plagiarized and Plagiarized Groups”, Information Technology Journal, vol. 9, no. 1,
pp. 98–106, 2010, I S S N: 1812-5638. D O I: 10.3923/itj.2010.98.106.

[129] C. Z. Mooney and R. D. Duval, Bootstrapping: A Nonparametric Approach to Statistical

Inference. California, USA: SAGE Publications, Inc., 1993, I S B N: 978-0-8039-5381-9.

213

https://doi.org/10.1109/TE.2007.906312
https://doi.org/10.1109/ICEIT.2010.5608336
https://doi.org/10.1109/ICACTE.2010.5578975
https://doi.org/10.1145/1999747.1999789
https://doi.org/10.1109/ICALT.2017.117
https://doi.org/10.1109/TELFOR.2017.8249481
https://doi.org/10.3923/itj.2010.98.106

Bibliography

[130] L. Moussiades, “PDetect: A Clustering Approach for Detecting Plagiarism in Source
Code Datasets”, The Computer Journal, vol. 48, no. 6, pp. 651–661, 2005, I S S N: 0010-
4620. D O I: 10.1093/comjnl/bxh119.

[131] M. Mozgovoy, “Desktop tools for offline plagiarism detection in computer programs”,
Informatics in Education, vol. 5, no. 1, pp. 97–112, 2006, I S S N: 1648-5831.

[132] M. Mozgovoy, “Enhancing computer-aided plagiarsim detection”, PhD thesis, Univer-
sity of Joensuu, Accessed on 2016-07-25 Available at http://epublications.uef.fi/pub/
urn_isbn_978952219050-5/index_en.html, 2007, I S B N: 978-9-5221-9049-9.

[133] M. Mozgovoy, K. Fredriksson, D. White, M. Joy, and E. Sutinen, “Fast Plagiarism
Detection System”, in Lecture Notes in Computer Science, ser. SPIRE’05, vol. 3772
LNCS, Berlin, Heidelberg: Springer-Verlag, 2005, pp. 267–270, I S B N: 978-3-5402-
9740-6. D O I: 10.1007/11575832_30.

[134] B. Muddu, A. Asadullah, and V. Bhat, “CPDP: A robust technique for plagiarism detec-
tion in source code”, in 2013 7th International Workshop on Software Clones, Infosys
Labs., Bangalore, India: IEEE, 2013, pp. 39–45, I S B N: 978-1-4673-6445-4. D O I:
10.1109/IWSC.2013.6613041.

[135] O. Müller and S. Strickroth, “GATE - Ein System zur Verbesserung der Programmier-
ausbildung und zur Unterstützung von Tutoren”, in Proceedings of the First Workshop

"Automatische Bewertung von Programmieraufgaben", Hannover, Germany: CEUR-
WS, 2013.

[136] S. Narayanan and S. Simi, “Source code plagiarism detection and performance analysis
using fingerprint based distance measure method”, in 7th International Conference on

Computer Science & Education, Cochin, India: IEEE, 2012, pp. 1065–1068, I S B N:
978-1-4673-0242-5. D O I: 10.1109/ICCSE.2012.6295247.

[137] S. C. Ng, S. O. Choy, and R. Kwan, “An intelligent online assessment system for
programming courses”, in Enhancing Learning Through Technology, World Scientific
Publishing Co. Pte. Ltd, 2008, pp. 217–231, I S B N: 978-9-8127-9944-9. D O I: 10.

1142/9789812799456_0014.

[138] M. Novak, D. Kermek, and M. Joy, “Calibration of source-code similarity detection tools
for objective comparisons”, in 41st International Convention on Information and Com-

munication Technology, Electronics and Microelectronics, Opatija, Croatia: IEEE, 2018,
pp. 794–799, I S B N: 978-953-233-095-3. D O I: 10.23919/MIPRO.2018.8400147.

[139] M. Novak, “Review of source-code plagiarism detection in academia”, in 39th Inter-

national Convention on Information and Communication Technology, Electronics and

Microelectronics, Opatija, Croatia: IEEE, 2016, pp. 796–801, I S B N: 978-953-233-086-
1. D O I: 10.1109/MIPRO.2016.7522248.

214

https://doi.org/10.1093/comjnl/bxh119
https://doi.org/10.1007/11575832_30
https://doi.org/10.1109/IWSC.2013.6613041
https://doi.org/10.1109/ICCSE.2012.6295247
https://doi.org/10.1142/9789812799456_0014
https://doi.org/10.1142/9789812799456_0014
https://doi.org/10.23919/MIPRO.2018.8400147
https://doi.org/10.1109/MIPRO.2016.7522248

Bibliography

[140] M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection and detection tools
used in academia: A systematic review”, ACM Transactions on Computing Education,
vol. 19, no. 3, 27:1–27:37, 2019, I S S N: 1946-6226. D O I: 10.1145/3313290.

[141] M. Novak and D. Kermek, “Profesional programmer: knowledge, attitude and miscon-
ceptions”, in CASE30-Razvoj poslovnih i informatičkih sustava, Zagreb, Croatia: CASE
d.o.o., 2018, pp. 12–18.

[142] M. Novak and D. Oreški, “Fuzzy knowledge-based system for calculating course diffi-
culty based on student perception”, Computer Applications in Engineering Education,
vol. 24, no. 2, pp. 225–233, 2016, I S S N: 1061-3773. D O I: 10.1002/cae.21700.

[143] T. Ohmann and I. Rahal, “Efficient clustering-based source code plagiarism detection
using PIY”, Knowledge and Information Systems, vol. 43, no. 2, pp. 445–472, 2015,
I S S N: 0219-1377. D O I: 10.1007/s10115-014-0742-2.

[144] A. Ohno and H. Murao, “A two-step in-class source code plagiarism detection method
utilizing improved CM algorithm and SIM”, International Journal of Innovative Com-

puting, Information and Control, vol. 7, no. 8, pp. 4729–4739, 2011, I S S N: 1349-4198.

[145] C. Oprisa, G. Cabau, and A. Colesa, “From Plagiarism to Malware Detection”, in 15th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Bitdefender, Romania: IEEE, 2013, pp. 227–234, I S B N: 978-1-4799-3036-4. D O I:
10.1109/SYNASC.2013.37.

[146] K. J. Ottenstein, “An algorithmic approach to the detection and prevention of plagia-
rism”, ACM SIGCSE Bulletin, vol. 8, no. 4, pp. 30–41, 1976, I S S N: 0097-8418. D O I:
10.1145/382222.382462.

[147] A. Parker and J. Hamblen, “Computer algorithms for plagiarism detection”, IEEE Trans-

actions on Education, vol. 32, no. 2, pp. 94–99, 1989, I S S N: 0018-9359. D O I: 10.

1109/13.28038.

[148] J. B. Peterson, Maps of meaning: The architecture of belief. Routledge, 2002, I S B N:
978-0-4159-2222-7.

[149] J. B. Peterson, 12 Rules for Life: An Antidote to Chaos. Random House Canada, 2018,
I S B N: 978-0-1419-8851-1.

[150] J. Y. Poon, K. Sugiyama, Y. F. Tan, and M.-Y. Kan, “Instructor-centric source code
plagiarism detection and plagiarism corpus”, in Proceedings of the 17th ACM annual

conference on Innovation and technology in computer science education, New York,
USA: ACM Press, 2012, p. 122, I S B N: 978-1-4503-1246-2. D O I: 10.1145/2325296.
2325328.

215

https://doi.org/10.1145/3313290
https://doi.org/10.1002/cae.21700
https://doi.org/10.1007/s10115-014-0742-2
https://doi.org/10.1109/SYNASC.2013.37
https://doi.org/10.1145/382222.382462
https://doi.org/10.1109/13.28038
https://doi.org/10.1109/13.28038
https://doi.org/10.1145/2325296.2325328
https://doi.org/10.1145/2325296.2325328

Bibliography

[151] D. A. Popescu and D. Nicolae, “Determining the Similarity of Two Web Applications
Using the Edit Distance”, Advances in Intelligent Systems and Computing, vol. 356,
pp. 681–690, 2016, I S S N: 2194-5357. D O I: 10.1007/978-3-319-18296-4_53.

[152] J. L. Popyack, N. Herrmann, P. Zoski, B. Char, C. Cera, and R. N. Lass, “Academic
dishonesty in a high-tech environment”, in Proceedings of the 34th SIGCSE Technical

Symposium on Computer Science Education, Drexel University, Philadelphia, USA,
2003, pp. 357–358, I S B N: 978-1-58113-648-X. D O I: 10.1145/611892.611916.

[153] A. O. Portillo-Dominguez, V. Ayala-Rivera, E. Murphy, and J. Murphy, “A unified
approach to automate the usage of plagiarism detection tools in programming courses”,
in 12th International Conference on Computer Science and Education, Houston, TX,
USA: IEEE, 2017, pp. 18–23, I S B N: 978-1-5090-2508-4. D O I: 10.1109/ICCSE.

2017.8085456.

[154] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among a set of pro-
grams with JPlag”, Journal of Universal Computer Science, vol. 8, no. 11, pp. 1016–
1038, 2002, I S S N: 0958-695X. D O I: 10.3217/jucs-008-11-1016.

[155] D. Qiu, J. Sun, and H. Li, “Improving Similarity Measure for Java Programs Based
on Optimal Matching of Control Flow Graphs”, International Journal of Software En-

gineering and Knowledge Engineering, vol. 25, no. 07, pp. 1171–1197, 2015, I S S N:
0218-1940. D O I: 10.1142/S0218194015500229.

[156] F. S. Rabbani and O. Karnalim, “Detecting Source Code Plagiarism on .NET Program-
ming Languages using Low-level Representation and Adaptive Local Alignment”, Jour-

nal of Information and Organizational Sciences, vol. 42, no. 1, pp. 105–123, 2017,
I S S N: 1846-9418. D O I: 10.31341/jios.41.1.7.

[157] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of Source Code in the Presence
of Pervasive Modifications”, in IEEE 16th International Working Conference on Source

Code Analysis and Manipulation, IEEE, 2016, pp. 117–126, I S B N: 978-1-5090-3848-0.
D O I: 10.1109/SCAM.2016.13.

[158] S. S. Robinson and M. L. Soffa, “An instructional aid for student programs”, ACM

SIGCSE Bulletin, vol. 12, no. 1, pp. 118–129, 1980, I S S N: 0097-8418. D O I: 10.1145/
953032.804623.

[159] R. E. Roxas, N. R. Lim, and N. Bautista, “Automatic Generation of Plagiarism Detection
Among Student Programs”, in 7th International Conference on Information Technology

Based Higher Education and Training, Ultimo, NSW, Australia: IEEE, 2006, pp. 226–
235, I S B N: 1-4244-0405-3. D O I: 10.1109/ITHET.2006.339768.

216

https://doi.org/10.1007/978-3-319-18296-4_53
https://doi.org/10.1145/611892.611916
https://doi.org/10.1109/ICCSE.2017.8085456
https://doi.org/10.1109/ICCSE.2017.8085456
https://doi.org/10.3217/jucs-008-11-1016
https://doi.org/10.1142/S0218194015500229
https://doi.org/10.31341/jios.41.1.7
https://doi.org/10.1109/SCAM.2016.13
https://doi.org/10.1145/953032.804623
https://doi.org/10.1145/953032.804623
https://doi.org/10.1109/ITHET.2006.339768

Bibliography

[160] R. Saikkonen, L. Malmi, and A. Korhonen, “Fully automatic assessment of programming
exercises”, in Proceedings of the Conference on Integrating Technology into Computer

Science Education, Cantenbury, UK: ACM, 2001, pp. 133–136, I S B N: 987-1-58113-
330-8. D O I: 10.1145/377435.377666.

[161] J. Sant, “Code Repurposing as an Assessment Tool”, in IEEE/ACM 37th IEEE Interna-

tional Conference on Software Engineering, ser. ICSE ’15, vol. 2, Piscataway, NJ, USA:
IEEE, 2015, pp. 295–298, I S B N: 978-1-4799-1934-5. D O I: 10.1109/ICSE.2015.

158.

[162] S. Saxon, “Comparison of plagiarism detection techniques applied to student code”, Part
II . Computer Science project, Trinity College, Cambridge, UK, Tech. Rep., 2000.

[163] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local algorithms for docu-
ment fingerprinting”, in Proceedings of the 2003 ACM SIGMOD international confer-

ence on on Management of data, New York, USA: ACM Press, 2003, pp. 76–85, I S B N:
158113634X. D O I: 10.1145/872757.872770.

[164] N. Shah, S. Modha, and D. Dave, “Differential Weight Based Hybrid Approach to
Detect Software Plagiarism”, Advances in Intelligent Systems and Computing, vol. 409,
pp. 645–653, 2016, I S S N: 2194-5357. D O I: 10.1007/978-981-10-0135-2_62.

[165] S. Shan, F. Guo, and J. Ren, “Similarity Detection Method Based on Assembly Language
and String Matching”, Advances in Intelligent and Soft Computing, vol. 1, no. 148 AISC,
pp. 363–367, 2012, I S S N: 1867-5662. D O I: 10.1007/978-3-642-28655-1_57.

[166] D. Silverman and A. Marvasti, Doing Qualitative Research: A Comprehensive Guide.
SAGE Publications, 2008, I S B N: 978-1-4129-2639-3.

[167] Simon, “Academic Integrity in Non-Text Based Disciplines”, in Handbook of Academic

Integrity, Singapore: Springer Singapore, 2016, pp. 763–782, I S B N: 978-981-287-098-
8. D O I: 10.1007/978-981-287-098-8_61.

[168] Simon, B. Cook, J. Sheard, A. Carbone, and C. Johnson, “Academic integrity percep-
tions regarding computing assessments and essays”, in Proceedings of the tenth annual

conference on International computing education research, ser. ICER ’14, New York,
USA: ACM Press, 2014, pp. 107–114, I S B N: 978-1-4503-2755-8. D O I: 10.1145/

2632320.2632342.

[169] A. Singh, G. Mangalaraj, and A. Taneja, “An approach to detecting plagiarism in spread-
sheet assignments: A digital answer to digital cheating”, Journal of Accounting Edu-

cation, vol. 29, no. 2–3, pp. 142–152, 2011, I S S N: 0748-5751. D O I: 10.1016/j.

jaccedu.2012.02.002.

[170] H.-J. Song, S.-B. Park, and S. Y. Park, “Computation of Program Source Code Similarity
by Composition of Parse Tree and Call Graph”, Mathematical Problems in Engineering,
vol. 2015, pp. 1–12, 2015, I S S N: 1024-123X. D O I: 10.1155/2015/429807.

217

https://doi.org/10.1145/377435.377666
https://doi.org/10.1109/ICSE.2015.158
https://doi.org/10.1109/ICSE.2015.158
https://doi.org/10.1145/872757.872770
https://doi.org/10.1007/978-981-10-0135-2_62
https://doi.org/10.1007/978-3-642-28655-1_57
https://doi.org/10.1007/978-981-287-098-8_61
https://doi.org/10.1145/2632320.2632342
https://doi.org/10.1145/2632320.2632342
https://doi.org/10.1016/j.jaccedu.2012.02.002
https://doi.org/10.1016/j.jaccedu.2012.02.002
https://doi.org/10.1155/2015/429807

Bibliography

[171] D. Sraka and B. Kaučić, “Source code plagiarism”, in 31st International Conference

on Information Technology Interfaces, Ljbuljana, Slovenia: IEEE, 2009, pp. 461–466,
I S B N: 978-953-7138-15-8. D O I: 10.1109/ITI.2009.5196127.

[172] M. F. Tennyson and F. J. Mitropoulos, “Choosing a profile length in the SCAP method
of source code authorship attribution”, in IEEE SoutheastCon 2014, Bradley University
Peoria, Illinois, USA: Institute of Electrical and Electronics Engineers Inc., 2014, I S B N:
978-1-4799-6585-4. D O I: 10.1109/SECON.2014.6950705.

[173] J. Traxler, “Plagiarism in Programming: A Review and Discussion of the Factors”, in
Proceedings of the Second International Conference on Software Engineering in Higher

Education II, ser. SEHE ’95, Billerica, MA, USA: Computational Mechanics, Inc., 1995,
pp. 131–138, I S B N: 1-56252-309-0. D O I: 10.2495/SEHE950171.

[174] K. Ueta and H. Tominaga, “A development and application of similarity detection meth-
ods for plagiarism of online reports”, in 9th International Conference on Information

Technology Based Higher Education and Training, Hayashi-cho, Takamatsu, Japan:
IEEE, 2010, pp. 363–371, I S B N: 978-1-4244-4810-4. D O I: 10.1109/ITHET.2010.
5480091.

[175] J. Underwood and A. Szabo, “Academic offences and e-learning: Individual propensities
in cheating”, British Journal of Educational Technology, vol. 34, no. 4, pp. 467–477,
2003, I S S N: 0007-1013. D O I: 10.1111/1467-8535.00343.

[176] University of Sydney, The Sherlock Plagiarism Detector, Accessed on 2016-01-26 Avail-
able at http://sydney.edu.au/engineering/it/ scilect/sherlock/.

[177] P. Vamplew and J. Dermoudy, “An Anti-Plagiarism Editor for Software Development
Courses”, in 7th Australasian Computing Education Conference, vol. 42, University of
Tasmania, Tasmania, Australia, 2005, pp. 83–90, I S B N: 978-1-9206-8224-8.

[178] K. L. Verco and M. J. Wise, “Plagiarism à la mode: A comparison of automated systems
for detecting suspected plagiarism”, Computer Journal, vol. 39, no. 9, pp. 749–750,
1996, I S S N: 0010-4620. D O I: 10.1093/comjnl/39.9.741.

[179] K. L. Verco and M. J. Wise, “Software for detecting suspected plagiarism: comparing
structure and attribute-counting systems”, in Proceedings of the first Australasian con-

ference on Computer science education, New York, USA: ACM Press, 1996, pp. 81–88,
I S B N: 978-0-8979-1845-9. D O I: 10.1145/369585.369598.

[180] D. Vogts, “Plagiarising of source code by novice programmers a "cry for help"?”, in
Proceedings of the 2009 Annual Research Conference of the South African Institute of

Computer Scientists and Information Technologists, New York, USA: ACM Press, 2009,
pp. 141–149, I S B N: 978-1-6055-8643-4. D O I: 10.1145/1632149.1632168.

[181] R. Všianský, D. Dlabolová, and T. Foltýnek, “Source Code Plagiarism Detection for PHP
Language”, vol. 3, no. 2, pp. 106–117, 2017. D O I: 10.11118/ejobsat.v3i2.100.

218

https://doi.org/10.1109/ITI.2009.5196127
https://doi.org/10.1109/SECON.2014.6950705
https://doi.org/10.2495/SEHE950171
https://doi.org/10.1109/ITHET.2010.5480091
https://doi.org/10.1109/ITHET.2010.5480091
https://doi.org/10.1111/1467-8535.00343
https://doi.org/10.1093/comjnl/39.9.741
https://doi.org/10.1145/369585.369598
https://doi.org/10.1145/1632149.1632168
https://doi.org/10.11118/ejobsat.v3i2.100

Bibliography

[182] C. Wang, Z. Liu, and L. Dongsheng, “Preventing and Detecting Plagiarism in Program-
ming Course”, International Journal of Security and Its Applications, vol. 7, no. 5,
pp. 269–278, 2013, I S S N: 1738-9976. D O I: 10.14257/ijsia.2013.7.5.25.

[183] D. Weber-Wulff, K. Köhler, and C. Möller, “Collusion Detection System Test Report
2012”, Hochschule für Technik und Wirtchaft, Berlin, Tech. Rep., 2012, Accessed on
2016-08-11 Available at http://plagiat.htw-berlin.de/collusion-test-2012/.

[184] D. Weber-Wulff, C. Möller, J. Touras, and E. Zincke, “Plagiarism Detection Software
Test 2013”, Hochschule für Technik und Wirtchaft, Berlin, Tech. Rep., 2013, Accessed
on 2016-07-25 Available at http://plagiat.htw-berlin.de/software-en/test2013/.

[185] G. Whale, “Identification of program similarity in large populations”, Computer Journal,
vol. 33, no. 2, pp. 140–146, 1990, I S S N: 0010-4620. D O I: 10.1093/comjnl/33.2.
140.

[186] D. R. White and M. S. Joy, “Sentence-based natural language plagiarism detection”,
ACM Journal on Educational Resources in Computing, vol. 4, no. 4, 2004, I S S N: 1531-
4278. D O I: 10.1145/1086339.1086341.

[187] M. J. Wise, “Detection of similarities in student programs: YAP’ing may be preferable
to plague’ing”, in ACM SIGCSE Bulletin, vol. 24, Kansas City, MO, USA: ACM, 1992,
pp. 268–271. D O I: 10.1145/135250.134564.

[188] M. J. Wise, “YAP3: improved detection of similarities in computer program and other
texts”, in Proceedings of the twenty-seventh SIGCSE technical symposium on Computer

science education, vol. 28, New York, USA: ACM Press, 1996, pp. 130–134, I S B N:
0-89791-757-X. D O I: 10.1145/236452.236525.

[189] D. Wollschlaeger, Mixed-effects models for repeated-measures ANOVA, R Examples
Repository, Accessed on 2018-12-19 Available at http://dwoll.de/rexrepos/posts/
anovaMixed.html, 2013.

[190] H. Xiong, H. Yan, Z. Li, and H. Li, “BUAA_AntiPlagiarism: A System To Detect Pla-
giarism for C Source Code”, in International Conference on Computational Intelligence

and Software Engineering, Beijing, China: IEEE, 2009, pp. 1–5, I S B N: 978-1-4244-
4507-3. D O I: 10.1109/CISE.2009.5366790.

[191] H.-B. Yang, L. Chen, and L.-F. Yang, “Study on the static analysis and the similarity
comparing of SQL code”, in 2010 3rd International Conference on Advanced Computer

Theory and Engineering, vol. 6, IEEE, 2010, pp. V6–138–V6–141, I S B N: 978-1-4244-
6539-2. D O I: 10.1109/ICACTE.2010.5579400.

[192] S. Yang and X. Wang, “A Visual Domain Recognition Method Based on Function
Mode for Source Code Plagiarism”, in Third International Symposium on Intelligent

Information Technology and Security Informatics, Dalian, China: IEEE, 2010, pp. 580–
584, I S B N: 978-1-4244-6730-3. D O I: 10.1109/IITSI.2010.114.

219

https://doi.org/10.14257/ijsia.2013.7.5.25
https://doi.org/10.1093/comjnl/33.2.140
https://doi.org/10.1093/comjnl/33.2.140
https://doi.org/10.1145/1086339.1086341
https://doi.org/10.1145/135250.134564
https://doi.org/10.1145/236452.236525
https://doi.org/10.1109/CISE.2009.5366790
https://doi.org/10.1109/ICACTE.2010.5579400
https://doi.org/10.1109/IITSI.2010.114

Bibliography

[193] S. Yang, X. Wang, C. Shao, and P. Zhang, “Recognition on source codes similarity with
weighted attributes eigenvector”, in International Conference on Intelligent Control and

Information Processing, Dalian, China: IEEE, 2010, pp. 539–543, I S B N: 978-1-4244-
7047-1. D O I: 10.1109/ICICIP.2010.5565209.

[194] B. Zeidman, “Detecting source-code plagiarism”, Dr. Dobb’s Journal, vol. 29, no. 7,
pp. 57–60, 2004, I S S N: 1044-789X.

[195] A. Zeller, “Making students read and review code”, in Proceedings of the Conference on

Integrating Technology into Computer Science Education, Helsinki, Finl: ACM, New
York, USA, 2000, pp. 89–92, I S B N: 978-1-58113-207-7. D O I: 10.1145/353519.

343090.

[196] D. Zhang, M. Joy, G. Cosma, R. Boyatt, J. Sinclair, and J. Yau, “Source-code plagiarism
in universities: a comparative study of student perspectives in China and the UK”,
Assessment & Evaluation in Higher Education, vol. 39, no. 6, pp. 743–758, 2014, I S S N:
0260-2938. D O I: 10.1080/02602938.2013.870122.

[197] L. Zhang and L. Dongsheng, “AST-based multi-language plagiarism detection method”,
in IEEE 4th International Conference on Software Engineering and Service Science,
IEEE, Hohhot, China: IEEE, 2013, pp. 738–742, I S B N: 978-1-4673-5000-6. D O I:
10.1109/ICSESS.2013.6615411.

[198] L. Zhang, Y.-t. Zhuang, and Z.-m. Yuan, “A Program Plagiarism Detection Model
Based on Information Distance and Clustering”, in The 2007 International Conference

on Intelligent Pervasive Computing, Jeju City, South Korea: IEEE, 2007, pp. 431–436,
I S B N: 978-0-7695-3006-2. D O I: 10.1109/IPC.2007.10.

[199] J. Zhao, G. Zhan, and J. Feng, “Disputed authorship in C program code after detection of
plagiarism”, in International Conference on Computer Science and Software Engineer-

ing, vol. 1, School Hang Zhou Normal University, Hang Zhou, China, 2008, pp. 86–89,
I S B N: 978-0-7695-3336-0. D O I: 10.1109/CSSE.2008.620.

[200] H. M. Zhu, L. Zhang, W. Sun, and Y. X. Sun, “A Token Oriented Measurement Method
of Source Code Similarity”, Applied Mechanics and Materials, vol. 668-669, pp. 899–
902, 2014, I S S N: 1662-7482. D O I: 10.4028/www.scientific.net/AMM.668-

669.899.

[201] J. Zhu, Z. Wu, Z. Guan, and Z. Chen, “Appearance similarity evaluation for Android
applications”, in Seventh International Conference on Advanced Computational Intelli-

gence, IEEE, 2015, pp. 323–328, I S B N: 978-1-4799-7257-9. D O I: 10.1109/ICACI.
2015.7184722.

220

https://doi.org/10.1109/ICICIP.2010.5565209
https://doi.org/10.1145/353519.343090
https://doi.org/10.1145/353519.343090
https://doi.org/10.1080/02602938.2013.870122
https://doi.org/10.1109/ICSESS.2013.6615411
https://doi.org/10.1109/IPC.2007.10
https://doi.org/10.1109/CSSE.2008.620
https://doi.org/10.4028/www.scientific.net/AMM.668-669.899
https://doi.org/10.4028/www.scientific.net/AMM.668-669.899
https://doi.org/10.1109/ICACI.2015.7184722
https://doi.org/10.1109/ICACI.2015.7184722

CURRICULUM VITAE

Matija Novak was born on 16th March 1987 in Čakovec and currently he lives in Strahoninec.
He completed his secondary education in 2005, in Technical, commercial and industrial school in
Čakovec, field “Computer Technician”. That same year, he enrolled the Faculty of Organization
and Informatics in Varaždin at University of Zagreb. He gained Bachelor’s degree: “Bachelor of
Informatics” in 2008 with honorary mention, and in 2010 he gained the master degree: “Master
of Informatics” with honorary mention at the same faculty.

After finishing master’s degree he worked for two years in NTH Group in Varaždin, first as
voice service administrator and later as Product manager for voice platform and Business Con-
sultant for mobile applications for Swiss and German territory where he gained experience on
international projects. His job included gathering of customer requirements, their specification
and documentation. Later on, he worked for one year at MCS d.o.o in Strahoninec as system
architect for mobile and web platforms. One of his main product was developing Cadastral web
for Croatian State Geodetic Administration that provides an insight into cadastral data from all
over the Republic of Croatia. During his work in these two companies, he gained deep knowl-
edge and understanding of Web and mobile applications development and the process required
for their implementation.

From November 2013 he is a PhD student at University of Zagreb - Faculty of Organization
and Informatics. Matija is working as a teaching assistant at the same faculty where he is
teaching courses Web design and programming, Building a Web application and Advanced Web
technologies and services. He is an author of multiple of technical and scientific articles listed
bellow in the field of software engineering and education.

Published Research

1. M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection and detection tools
used in academia: A systematic review”, ACM Transactions on Computing Education,
vol. 19, no. 3, 27:1–27:37, 2019, I S S N: 1946-6226. D O I: 10.1145/3313290

2. D. Andročec, M. Novak, and D. Oreški, “Using Semantic Web for Internet of Things
Interoperability”, International Journal on Semantic Web and Information Systems, vol. 14,
no. 4, pp. 147–171, 2018, I S S N: 1552-6283. D O I: 10.4018/IJSWIS.2018100108

3. M. Novak, M. Kaniški, and D. Kermek, “Course gamification with LevelUp Plugin”, in
MoodleMoot 2019, Zagreb, Croatia, 2019

4. M. Novak and D. Kermek, “Profesional programmer: knowledge, attitude and miscon-
ceptions”, in CASE30-Razvoj poslovnih i informatičkih sustava, Zagreb, Croatia: CASE
d.o.o., 2018, pp. 12–18

221

https://doi.org/10.1145/3313290
https://doi.org/10.4018/IJSWIS.2018100108

Curriculum Vitae

5. D. Kermek, M. Novak, and M. Kaniški, “Two years of gamification of the course —
Lessons learned”, in 41st International Convention on Information and Communication

Technology, Electronics and Microelectronics, Opatija, Croatia: IEEE, 2018, pp. 754–759,
I S B N: 978-953-233-095-3. D O I: 10.23919/MIPRO.2018.8400140

6. M. Novak, D. Kermek, and M. Joy, “Calibration of source-code similarity detection
tools for objective comparisons”, in 41st International Convention on Information and

Communication Technology, Electronics and Microelectronics, Opatija, Croatia: IEEE,
2018, pp. 794–799, I S B N: 978-953-233-095-3. D O I: 10.23919/MIPRO.2018.8400147

7. M. Novak, “Review of source-code plagiarism detection in academia”, in 39th Inter-

national Convention on Information and Communication Technology, Electronics and

Microelectronics, Opatija, Croatia: IEEE, 2016, pp. 796–801, I S B N: 978-953-233-086-1.
D O I: 10.1109/MIPRO.2016.7522248

8. D. Kermek and M. Novak, “Process Model Improvement for Source Code Plagiarism
Detection in Student Programming Assignments”, Informatics in Education, vol. 15, no. 1,
pp. 103–126, 2016, I S S N: 2335-8971. D O I: 10.15388/infedu.2016.06

9. D. Kermek, D. Strmečki, M. Novak, and M. Kaniški, “Preparation of a hybrid e-learning
course for gamification”, in 2016 39th International Convention on Information and

Communication Technology, Electronics and Microelectronics, IEEE, 2016, pp. 829–834,
I S B N: 978-953-233-086-1. D O I: 10.1109/MIPRO.2016.7522254

10. D. Kermek and M. Novak, “Course gemification for programming education in Moodle”,
in MoodleMoot 2016, Zagreb, Croatia, 2016

11. M. Novak, D. Strmečki, and D. Oreški, “Linked Open Data: Realization, Trends and
Application Overview”, in CEE e| Dem and e| Gov Days 2016, Budapest, Hungary, 2016,
pp. 303–314

12. D. Kermek, M. Kaniški, and M. Novak, “IoT Protocols overivew”, in CASE28-Razvoj

poslovnih i informatičkih sustava, Zagreb, Croatia: Case d.o.o, 2016, pp. 71–78

13. R. Tomašković, E. Popović, and M. Novak, “PHP7. 0-Innovations review, testing and
transition”, in CASE28-Razvoj poslovnih i informatičkih sustava, Zagreb, Croatia: Case
d.o.o, 2016, pp. 27–36

14. T. Balint, D. Jakovljević, and M. Novak, “Phaser game development”, in CASE28-Razvoj

poslovnih i informatičkih sustava, Zagreb, Croatia: CASE d.o.o., 2016, pp. 21–26

15. M. Novak and I. Švogor, “Current usage of Component based Principles for Developing
Web Applications with Frameworks: A Literature Review”, Interdisciplinary Description

of Complex Systems, vol. 14, no. 2, pp. 253–276, 2016, I S S N: 1334-4676. D O I: 10.

7906/indecs.14.2.14

16. M. Novak and D. Oreški, “Fuzzy knowledge-based system for calculating course difficulty

222

https://doi.org/10.23919/MIPRO.2018.8400140
https://doi.org/10.23919/MIPRO.2018.8400147
https://doi.org/10.1109/MIPRO.2016.7522248
https://doi.org/10.15388/infedu.2016.06
https://doi.org/10.1109/MIPRO.2016.7522254
https://doi.org/10.7906/indecs.14.2.14
https://doi.org/10.7906/indecs.14.2.14

Curriculum Vitae

based on student perception”, Computer Applications in Engineering Education, vol. 24,
no. 2, pp. 225–233, 2016, I S S N: 1061-3773. D O I: 10.1002/cae.21700

17. M. Novak, I. Magdalenić, and D. Radošević, “Common Metamodel of Component Dia-
gram and Feature Diagram in Generative Programming”, Journal of Computer Science,
vol. 12, no. 10, pp. 517–526, 2016, I S S N: 1549-3636. D O I: 10.3844/jcssp.2016.517.
526

18. M. Šestak, Martina; Rabuzin, Kornelije; Novak, “Integrity constraints in graph databases -
implementation challenges”, in Central European Conference on Information and Intelli-

gent Systems, Varaždin, Croatia: Faculty of Organization and Informatics, University of
Zagreb, 2016, pp. 23–30

19. D. Oreški, M. Konecki, and M. Novak, “Identifying impacts of social networks usage on
student population”, in IAC-SSaH 2015, Prague, Cezch Republic, 2015, pp. 252–257

20. M. Novak, “Source-code preprocess model for improved plagiarism detectionin student
programming assignments”, in 10th International Doctoral Seminar, Varaždin, Croatia:
Faculty of Organization and Informatics, University of Zagreb, 2015, pp. 41–44

21. M. Novak and D. Kermek, “Home Automation Using Raspberry Pi”, in Central Euro-

pean Conference on Information and Intelligent Systems, Varaždin, Croatia: Faculty of
Organization and Informatics, University of Zagreb, 2015, pp. 239–245, I S B N: 978-1-
4673-7910-6

22. M. Novak and D. Kermek, “Internet of things with RPi and Java”, in JavaCro’15 - 4.

international Java conference in Croatia, Rovinj, Croatia, 2015

23. D. Kermek and M. Novak, “Home automation using Raspberry PI”, in CASE 27 - Razvoj

poslovnih i informatičkih sustava, Zagreb, Croatia: Case d.o.o, 2015, pp. 41–47

24. K. Rabuzin and M. Novak, “WebETL Tool–A Prototype in Action”, in The Ninth Inter-

national Multi-Conference on Computing in the Global Information Technology, Sevilja,
Spain, 2014, pp. 67–71, I S B N: 978-1-6120-8346-9

25. M. Novak and K. Rabuzin, “Prototype of a Web ETL Tool”, International Journal of

Advanced Computer Science and Applications, vol. 5, no. 6, pp. 97–103, 2014, I S S N:
2156-5570. D O I: 10.14569/IJACSA.2014.050614

26. K. Rabuzin and M. Novak, “Data warehouses and ETL”, in Case 22 - Metode i alati za

razvoj poslovnih i informatičkih sustava, Zagreb, Croatia: Case d.o.o, 2010, pp. 85–89

27. M. Novak, “A tool for data extraction, transformation and load”, Graduate thesis, Univer-
sity of Zagreb, Faculty of Organization and Informatics, 2010, p. 140

28. M. Novak, “Databases on the Web”, Undergraduate thesis, University of Zagreb, Faculty
of Organization and Informatics, 2008, p. 65

223

https://doi.org/10.1002/cae.21700
https://doi.org/10.3844/jcssp.2016.517.526
https://doi.org/10.3844/jcssp.2016.517.526
https://doi.org/10.14569/IJACSA.2014.050614

	Title pages
	Thesis information
	Supervisor
	Acknowledgments
	Abstract
	Sažetak

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related work
	Definition of plagiarism
	Plagiarism prevention
	Differences between source-code and textual plagiarism
	Plagiarism detection
	Obfuscation methods

	Methodology
	Systematic literature review
	Top authors

	Research constraints
	Detection tools
	Preprocessing techniques
	Evaluation measures
	Datasets
	Ethical issues

	Plagiarism detection process
	Process automation
	Isabella cluster
	Automation of analysis phase

	Similarity detection tools
	Related work
	Related areas to source-code plagiarism detection
	Comparison of plagiarism detection tools

	Selection of tools
	Changes on selected similarity detection tools
	Problems with JPlag-java and Sherlock

	Configuration parameters of similarity detection tools
	Calibration of similarity detection tools
	Comparison of SIM and JPlag
	Calibration of SIM and JPlag
	Calibration of Sherlock

	Evaluation measures
	Related work
	Sensitivity
	Performance Index

	Precision, Recall and F-beta

	Experimental datasets
	Related work
	Source Code Reuse dataset
	Real student solutions datasets
	Procedure for analysing student solutions

	Preprocessing techniques
	Related work
	Selection of preprocessing techniques
	Remove comments technique
	Common code remove technique
	Template exclusion technique
	Technique selection test

	Result analysis
	Preparation for analysis
	Threshold level selection
	Planned comparisons

	SOCO dataset analysis
	SOCO dataset preparation for analysis
	Results for D1 assignments
	Results for D2 assignments
	Results for D3 assignments
	Results for D4 assignments
	Discussion
	Guidelines verification

	RSS dataset analysis
	Results for A1 assignments
	Discussion
	Limitation of statistical analysis

	Java or Textual version
	Contributions

	Future work
	Conclusion
	Appendices
	Appendix Example of calibration report
	Appendix SIM's Licence
	Appendix MPC system architecture details
	Appendix MPC system coverage report
	Appendix Contrast codings
	Appendix Contrast codings for the simple effecs analysis
	Appendix Shapiro-Wilk normality test
	Appendix Model comparisons
	Appendix Constrast effect sizes
	Appendix Interaction graphs
	Appendix Precision and Recall for RSS dataset
	Appendix List of used packages in R

	Bibliography
	Curriculum Vitae
	Published Research

