Deković, Matko

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:770749

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-02

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Matko Deković

Zagreb, 2017.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentori:

Izv.prof. dr. sc. Jerolim Andrić, dipl. ing.

Student:

Matko Deković

Zagreb, 2017.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru Izv.prof. dr. sc. Jerolimu Andriću na pruženoj pomoći i stručnom vodstvu tijekom izrade diplomskog rada.

Hvala Dr. sc. Stanislavu Kitaroviću i Izv. prof. dr.sc. Smiljku Rudanu na uloženom trudu, korisnim primjedbama, sugestijama i savjetima tokom izrade ovog rada.

Posebno se zahvaljujem svojoj djevojci, bratu, roditeljima i ostaloj obitelji na pruženoj podršci tijekom studiranja.

Matko Deković

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija brodogradnje

Sveučilište Fakultet strojarst	u Zagrebu va i brodogradnje
Datum 30 -11- 2	Prilog
Klasa: 602-04	117-6/4
Ur.broj: /5- 17	03-17-389

DIPLOMSKI ZADATAK

Student:

Matko Deković

Mat. br.: 0035185898

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

ANALIZA GRANIČNE ČVRSTOĆE TRUPA BRODA ZA PRIJEVOZ NAFTE HULL GIRDER ULTIMATE STRENGTH ANALYSIS OF OIL

Provesti analizu progresivnog kolapsa trupa broda za prijevoz tekućeg tereta koristeći: a) geometrijski i materijalno nelinearnu metodu konačnih elemenata (NLMKE) te b) inkrementalno-iterativnu metodu propisanu unutar IACS-ovih Združenih pravila za projektiranje (IACS H_CSR). U okviru diplomskog zadatka potrebno je:

1. Analizirati dostupnu literaturu relevantnu za zadatak.

TANKER

- 2. Na temelju dostupne tehničke dokumentacije i konstrukcijskih nacrta razmatranog broda napraviti fini model konačnih elemenata trupa brođa oko glavnog rebra u duljini tri razmaka okvirnih rebara. Veličinu mreže i tip elemenata potrebno je odrediti tako da je moguće primjerno obuhvatiti sve oblike kolapsa, a posebno izvijanja ukrepa i oplate.
- 3. Provesti geometrijski i materijalno nelinearnu analizu pomoću metode konačnih elemenata (NLMKE) s ciljem određivanja vertikalnog graničnog momenta savijanja korištenjem prikladnog programskog paketa (LS-DYNA, FEMAP i sl.).
- 4. Modelirati 2D presjek trupa broda oko glavnog rebra i provesti analizu progresivnog kolapsa koristeći inkrementalno-iterativnu metodu propisanu unutar IACS-ovih Združenih pravila za projektiranje (IACS H_CSR) te izračunati vertikalni granični moment savijanja.
- 5. Usporediti vertikalni granični moment savijanja proračunat korištenjem NLMKE s onim dobivenim inkrementalno-iterativnom metodom propisanom unutar IACS-ovih Združenih pravila (IACS H CSR).

Zadatak zadan: 28. rujna 2017.

Datum predaje rada:

Zadatak zadao

prof. dr. sc. Jerolim Andrić

30. studenog 2017.

Predviđeni datumi obrane:

6., 7. i 8. prosinca 2017.

Predsjednica Povjerenstva: Nanie

Prof. dr. sc. Nastia Degiuli

Sadržaj

Sadržaj	I
Popis slika	
Popis tablica	V
Popis oznaka	VI
Sažetak	VII
Summary	VIII
1. Uvod	1
2. Uzdužna granična čvrstoća trupa broda	1
2.1.Opis metoda za proračun graničnog momenta savijanja trupa broda	3
2.1.1. Inkrementalno-iterativna metoda	4
2.1.1.1. Krivulje naprezanja-deformacije σ - ϵ	6
2.1.2. Nelinearna metoda konačnih elemenata (NLMKE)	7
3. Izgradnja strukturnog modela	8
3.1. Opći podaci broda za prijevoz tekućeg tereta	8
3.2. Strukturni model za iterativno-inkrementalnu metodu	8
3.2.1. Diskretizacija modela	10
3.3. Strukturni model za NLMKE	11
3.3.1. Definiranje materijala	15
3.3.2. Definiranje svojstva elemenata	16
3.3.3. Kreirenja pločastih i grednih elemenata	
3.3.4. Kreiranje krutih elemenata	22
3.3.5. Rubni uvjeti i opterećenje	24
3.3.6. Zadavanje parametara analize	28
3.3.7. LS-DYNA model	30
3.3.8. Dodatni ulazni podaci za definiranje NLMKE u programskom paketu LS-DYNA	30
4. Analiza rezultata	33
4.1. Analiza rezultata iterativno-inkrementalne metode	33
4.1.1. Analiza rezultata iz programa LUSA/MAESTRO	33
4.1.2. Analiza rezultata iz programa MARS	41
4.1.3. Usporedba rezultata za iterativno-inkrementalnu metodu	42
4.2. Analiza rezultata NLMKE	43

4.2.1. Analiza rezultata u stanju pregiba iz programa LS-DYNA	43
4.2.2. Analiza rezultata u stanju progiba iz programa LS-DYNA	47
4.3.Usporedba rezultata	51
5. Zaključak	53
Literatura	54

Popis slika

Slika 1 Krivulje ovisnosti opterećenja q i defleksije δ za razne načine loma strukturnih elemenata [1] .2
Slika 2 Ovisnost momenta savijanja o zakrivljenosti trupa [2]	3
Slika 3 Algoritam numeričkog rješenja proračuna graničnog momenta savijanja [2]	5
Slika 4 Granični moment savijanja u ovisnosti o zakrivljenosti [3]	6
Slika 5 Izgled krivulje σ-ε za elasto-plastični slom [3]	7
Slika 6 Prikaz sučelja programskog paketa MAESTRO s modelom glavnog rebra tankera	9
Slika 7 Prikaz sučelja programskog paketa MARS s modelom glavnog rebra tankera	10
Slika 8 Pravila diskretizacije [3]	11
Slika 9 Prikaz sučelja programskog paketa FEMAP s modelom glavnog rebra tankera	12
Slika 10 Ovisnost graničnog momenta savijanja o dimenziji elementa [9]	13
Slika 11 Model glavnog rebra tankera u FEMAPU	14
Slika 12 Detaljni prikaz strukture elemenata	14
Slika 13 Definiranje materijala	15
Slika 14 Definiranje svojstva pločastih elemenata	16
Slika 15 Defiranje svojstva grednih elemenata	17
Slika 16 Definiranje oblika grednog elementa	17
Slika 17 Definiranje čvorova	18
Slika 18 Kreiranje pločastih elemenata	19
Slika 19 Kreiranje grednih elemenata	19
Slika 20 Odabir vrste elementa za izradu	19
Slika 21 Definiranja fine mreže preko opcije Between	20
Slika 22 Dorada pločastih elemenata	20
Slika 23 Postupak kopiranja elemenata	21
Slika 24 Reflektiranje modela	21
Slika 25 Definiranje <i>Rigid</i> elemenata	22
Slika 26 Odabir čvorova	22
Slika 27 Odabir ravnine	23
Slika 28 Odabir udaljenosti od ravnine u mm	23
Slika 29 Kruti elementi	23
Slika 30 Rubni uvjeti na čvoru 1	24
Slika 31 Rubni uvjeti na čvoru 2	24
Slika 32 Zadavanje opterećenja	25
Slika 33 Odabir čvorova za provjeru	26
Slika 34 Odabir elemenata za provjeru	26
Slika 35 Provjera koincidentnih čvorova	26
Slika 36 Provjera koincidentih elemenata	26
Slika 37 Postupak pronalaska duplih elemenata	27
Slika 38 Brisanje elemenata i čvorova	27
Slika 39 Provjera slobodnih rubova	28
Slika 40 Model bez slobodnih rubova	28

Slika 41 Postavke analize29
Slika 42 Odabir analize
Slika 43 Pokretanje analize29
Slika 44 Export u LS-DYNA
Slika 45 Pokretanje analize u LS-DYNA Manager32
Slika 46 Model glavnog rebra u MAESTRU33
Slika 47 Ovisnost momenta savijanja o zakrivljenosti u stanju pregiba
Slika 48 Ovisnost udaljenost neutralne linije i zakrivljenost
Slika 49 Kolapsna sekvenca za stanje pregiba35
Slika 50 Raspodjela naprezanja po visini u stanju pregiba37
Slika 51 Kolapsna sekvenca za stanje progiba38
Slika 52 Raspored naprezanja po visini u stanju progiba40
Slika 53 Model glavnog rebra tankera u MARSU41
Slika 54 Moment savijanja u ovisnosti o zakrivljenosti u MARSU41
Slika 55 Usporedba ovisnosti graničnog momenta savijanja o zakrivljenosti u programima MARS i
LUSA42
Slika 56 Ovisnost graničnog momenta savijanja i vremena u pregibu sa korugiranom pregradom43
Slika 57 Ovisnost graničnog momenta savijanja i vremena u pregibu bez korugirane pregrade44
Slika 58 Von Mises naprezanje za 0,8M _{ULT} 45
Slika 59 Von Mises naprezanja za M _{ULT} 45
Slika 60 Naprezanja u smjeru osi x za 0,8M _{ULT} 46
Slika 61 Naprezanja u smjeru osi x za M _{ult} 46
Slika 62 Ovisnost graničnog momenta savijanja i vremena u progibu sa korugiranom pregradom47
Slika 63 Ovisnost graničnog momenta savijanja i vremena zakrivljenosti u progibu bez korugirane
pregrade47
Slika 64 Von Mises naprezanja za 0,8M _{ULT} 49
Slika 65 Von Mises naprezanja za M _{ULT} 49
Slika 66 Naprezanja u smjeru osi x za 0,8M _{ULT} 50
Slika 67 Naprezanja u smjeru osi x za M _{ult} 50

Popis tablica

Tablica 1 Načini gubitka nosivosti pojedinih diskretnih elemenata [3]	7
Tablica 2 Glavne dimenzije tankera	8
Tablica 3 Granični moment savijanja za različite dimenzije mreže elemenata [9]	13
Tablica 4 Rubni uvjeti	24
Tablica 5 Kolaps pojedinih strukturnih elemenata uslijed pregiba	36
Tablica 6 Kolaps pojedinih strukturnih elemenata uslijed pregiba	39
Tablica 7 Usporedba rezultata za iterativno-inkrementalnu metodu	42
Tablica 8 Utjecaj korugirane pregrade na granični moment savijanja	43
Tablica 9 Usporedba rezultata graničnog momenta savijanja	51
Tablica 10 Usporedba rezultata između metoda	51

Popis oznaka

Oznaka	Jedinica	Opis
M_{ULT}	[kNm]	Granični moment savijanja;
Х	[1/m]	Zakrivljenost;
\mathcal{E}_{ULT}		Granična deformacija;
σ	$[N/mm^2]$	Normalno naprezanje;
Α	m^2	Površina;
Z.	m	Neutralna linija;
γ_R		Parcijalni faktor sigurnosti;
M_{SW-U}	[kNm]	Moment savijanja na mirnoj vodi;
M_W	[kNm]	Moment savijanja na valovima;
3		Deformacija;
L_{OA}	[m]	Duljina preko svega;
В	[m]	Širina;
Т	[m]	Gaz;
C_B		Koeficijent punoće istisnine;
v	[cv]	Brzina;
W	[m]	Razmak okvira;
R_{EH}	$[N/mm^2]$	Granica popuštanja;
E	$[N/mm^2]$	Youngov modul elastičnosti;
v		Poissonov koeficijent;
γs		Parcijalni faktor sigurnosti za moment savijanja na mirnoj vodi
γ_W		Parcijalni faktor sigurnosti za moment savijanja na valu

Sažetak

Diplomski rad obuhvaća analizu granične uzdužne čvrstoće trupa broda za prijevoz tekućeg tereta koristeći geometrijski i materijalno nelinearnu metodu konačnih elemenata (NLMKE) te inkrementalnu-iterativnu metodu propisane unutar IACS-ovih Združenih pravila za projektiranje (engl. Common Structural Rules, International Association of Classification Societies) brodske konstrukcije. Nakon teorijskog opisa propisanih metoda za analizu uzdužne granične čvrstoće i opisa izrade strukturnog modela, provedena je nelinearna analiza metodom konačnih elemenata glavnog rebra pomoću programskog paketa LS-DYNA. Osim programskog paketa LS-DYNA korišten je programski paket LUSA i MARS za provedbu iterativno-inkrementalne metode u koju su implementirane krivulje naprezanja-deformacije σ - ϵ . Preko krivulja naprezanja-deformacije σ - ϵ određuje se vrsta kolapsa pojedinog strukturnog elementa. Cilj propisanih metoda je određivanje graničnog momenta savijanja trupa broda. Uspoređeni su rezultati dobiveni korištenjem dva programska paketa (LUSA i MARS) u okviru iterativno-inkrementalne metode te rezultati dobiveni nelinearnom metodom konačnih elemenata korištenjem programa LS-DYNA. Osim cilja dobivanja graničnog momenta savijanja, analiziran je redoslijed kolapsa pojedinih strukturnih elemenata za stanje pregiba i progiba. Na kraju su komentirani mogućnost korištenja (dobre strane i ograničenja) obiju metoda proračuna graničnog momenta savijanja trupa.

Ključne riječi: granična čvrstoća, granični moment savijanja, krivulje naprezanja-deformacije, nelinearna metoda konačnih elemenata, iterativno-inkrementalna metoda, nosivost, kolaps

Summary

Graduate thesis includes hull girder ultimate longitudinal strength analysis for tankers using geometric and material non-linear method finite elements and incremental-iterative method prescribed by the International Association of Classification Socities, Common Structural Rules for ship construction. After teoretical description of prescribed methods for hull girder ultimate longitudinal strength and description for makig of structural models, it was conducted non-linear analysis of hull girder with the program LS-DYNA. Besides LS-DYNA, for incremental-iterative method were used programs LUSA and MARS2000, in which are inserted curves stress-deformation σ - ϵ . With curves stress-deformation σ - ϵ determined the type of collaps of each structural element. The target of prescribed methods are assessment ultimate hull girder bending moment. The results were obtained by using two program packages (LUSA and MARS) within the iterative-incremental method and the results obtained by the nonlinear finite element method using LS-DYNA program. In addition to the aim of obtaining the ultimate bending moment, also was analysied the order of collapse of the individual structural elements for the state of sagging and hogging. Finally, the possibility of using (the good side and the limitations) of both calculation methods of the ultimate hull girder bending moment are commented.

Key words: ultimate strength, ultimade bending moment, curves of stress-deformation, nonlinear method of finite elements, iterative-incremental method, collaps, capacity

1. Uvod

Tema diplomskog rada je proračun granične čvrstoće trupa broda za prijevoz nafte. Granična čvrstoća trupa broda je mjera izdržljivosti konstrukcije trupa broda s obzirom na primarnu čvrstoću i predstavlja bitan kriterij za dimenzioniranje uzdužno nosivih elemenata brodske konstrukcije. U radu je bilo potrebno provesti proračun graničnog momenta savijanja trupa broda za prijevoz tekućeg tereta koristeći nelinearnu metodu konačnih elemenata (NLMKE) te inkrementalnu-iterativnu metodu propisanu unutar IACS-ovih Združenih pravila za projektiranje tankera i brodova za rasuti teret (IACS H_CSR).

Za potrebe provođenja numeričkog proračuna korištenjem obje metode izgrađeni su prikladni strukturni modeli. Za potrebe nelinearnog proračuna metodom konačnih elemenata (MKE) korištenjem programskog paketa FEMAP/NX NASTRAN napravljen je fini model konačnih elemenata trupa broda oko glavnog rebra broda u duljini tri razmaka okvirnih rebara. Posebna pažnja posvetila se na veličinu mreže i tip elemenata zbog primjernog obuhvaćanja svih oblika kolapsa, a posebno izvijanja ukrepa i oplate. Na osnovu izgrađenog strukturnog modela proveden je proračun korištenjem programskog paketa LS-DYNA. Programski paket LS-DYNA koristi eksplicitni rješavač sustava jednadžbi u vremenskoj domeni te je u proračunu obuhvaćena geometrijska i materijalna nelinearnost.

Za potrebe proračuna iterativno-inkrementalnom metodom korištena su dva programska paketa: program MARS razvijen od strane klasifikacijskog društva Bureau Veritas (BV) i program LUSA razvijen na Fakultetu strojarstva i brodogradnje u Zagrebu (FSB). U oba programa modelirao se 2D presjek trupa broda oko glavnog rebra sukladno zadanom konstrukcijskom nacrtu.

Cilj diplomskog rada bio je izračunati vertikalni granični moment savijanja trupa broda korištenjem različitih metoda te različitih programskih paketa te na kraju usporedba dobivenih rezultata.

2. Uzdužna granična čvrstoća trupa broda

Pojam uzdužne granične čvrstoće trupa može se definirati kao stanje naprezanja i deformacije na razini trupa koje odgovara maksimalnom opterećenju (granični moment savijanja) koje struktura može izdržati. Svako daljnje povećanje momenta savijanja dovodi do kolapsa trupa broda [4].

Klasifikacijska društva sve više vode računa o graničnoj čvrstoći brodskog trupa. Društva okupljena u IACS-u podupiru razvoj jedinstvenih pravila uzdužne čvrstoće broda uključujući i provjeru granične čvrstoće trupa. Lom pojedinih dijelova i cijeloga trupa broda zbog premašivanja granične čvrstoće je nelinearna pojava, bilo zbog geometrijske nelinearnosti (zbog izvijanja ili drugog znatnog pomaka), bilo zbog nelinearnosti materijala (popuštanje i plastična deformacija) [1].

Slika 1 Krivulje ovisnosti opterećenja q i defleksije δ za razne načine loma strukturnih elemenata [1]

Glavni načini loma čeličnih strukturnih elemenata prikazuju se na osnovi ovisnosti opterećenja q i defleksije δ za lokalne plastične deformacije (krivulja 1, slika 1), izvijanje nosača (krivulja 2, slika 1) i izvijanje opločenja (krivulja 3, slika 1) [1].

Pri razmatranju problema čvrstoće trupa potrebno je voditi računa o odgovarajućem modeliranju brodskog trupa, odabiru postupka analize i pritom valja procijeniti utjecaje nedostatnosti postupaka proračuna i početnih netočnosti na graničnu čvrstoću (početne deformacije, zaostala naprezanja zbog zavarivanja itd.). Mnogi se čimbenici koji utječu na graničnu čvrstoću i opterećenja ne mogu uvijek točno odrediti, već se računa s neizvjesnostima njihovih djelovanja i to ne samo za neoštećena stanja nego i za moguća oštećenja brodova [1].

Prvo moguće pojednostavljenje se postiže idealizacijom geometrije brodskog trupa tako da se odrede dijelovi strukture za koje se mogu razviti i primijeniti približne metode analize granične čvrstoće, uz nužno zanemarenije uzajamnih utjecaja dijelova. Drugo moguće pojednostavljenje se zasniva na zasebnim analizama izvijanja i pojave plastičnih zglobova. Međutim, oba pojednostavljenja zanemaruju mogućnost istovremenog pojavljivanje više načina sloma, na različitim mjestima strukture te mogućnost njihove kombinacije i uzajamnih utjecaja. Pod slomom brodskog trupa se pojednostavljeno smatra gubitak krutosti grede na savijanje, smik ili torziju, pri čemu se uzima da je modul trupa prizmatičan, a poprečna struktura okomita na uzdužnu, te da velika ravninska krutost opločenja onemogućuje značajnije uzdužne pomake spojeva. U okvirima ovih pretpostavki može se zamisliti da se opći slom može dogoditi samo u uzdužnom smjeru i to slomom dovoljnog broja uzdužnih elemenata brodske grede što uzrokuje velik gubitak krutosti na savijanje, smik ili torziju i/ili u poprečnoj ravnini uslijed sloma dovoljnog broja elemenata da se stvori mehanizam u poprečnom orebrenju što smanjuje potporu elementima uzdužne čvrstoće. Uvođenjem ograničenja da su svi poprečni presjeci dovoljno čvrsti tako da bi svi uzdužni elementi doživjeli slom između dva poprečna presjeka, uzdužni i poprečni tipovi sloma postaju neovisni te se mogu analizirati odvojeno što dodatno olakšava postupak. Za uzdužni globalni slom brodskog trupa promatranog kao idealna greda prevladavajuće opterećenje je moment savijanja M, a glavni je odziv savijanje grede, što može biti izraženo pomoću zakrivljenosti grede χ [2].

Slika 2 Ovisnost momenta savijanja o zakrivljenosti trupa [2]

Najveći utjecaj na graničnu čvrstoću imaju debljina opločenja i dimenzije ukrepa kao i čvrstoća popuštanja materijala. Utjecaji početnih deformacija i zaostalih naprezanja nisu znatni. Općenito je čimbenik sigurnosti pri progibu manji nego pri pregibu. Pri projektiranju pojedinih tipova brodova trebalo bi uzeti u obzir projektne značajke ovisne o tipu broda [1].

Granični moment savijanja M_{ult} nastupa kad se dovoljan broj elemenata unutar pojedinog segmenta brodskog trupa slomi bilo zbog vlačnog ili tlačnog opterećenja što se očituje u ekstremnoj vrijednosti na krivulji momenta savijanja ovisno o zakrivljenosti trupa, slika 2. Tijekom globalnog sloma razni paneli nalaze se u različitim stupnjevima slamanja i unutar svakog panela glavni efekt opterećenja je produženje ili skraćenje koje gredi nameće moment savijanja kao rezultat zakrivljenosti χ [2].

Uzdužna se deformacija prije nastanka oštećenja određuje na osnovi teorije elastičnog savijanje grede. Budući da je svaki panel izložen procesu loma što uključuje popuštanje, izvijanje ili oboje, odgovarajuća raspodjela naprezanja preko presjeka kritičnog segmenta vrlo je nelinearna. Čak i unutar svakog panela odnos između srednjeg naprezanja i deformacije varira kako opterećenje raste. Svejedno, smatra se da raspored deformacija ostaje približno linearan sve do sloma grede. Prema tome, granične vrijednosti elemenata koje imaju najveću važnost u uzdužnom slomu su vrijednosti granične deformacije ε_{ULT} ukrepljenih panela. Za svaki panel granična deformacija ε_{ULT} je količina nametnute tlačne deformacije koja uzrokuje slom tog panela [2].

2.1.Opis metoda za proračun graničnog momenta savijanja trupa broda

Za proračun graničnog momenta savijanja trupa broda u ovom radu korištene su sljedeće metode:

- inkrementalno-iterativna metoda unutar IACS-ovih Združenih pravila za projektiranje (IACS H_CSR) brodske konstrukcije
- geometrijsko i materijalna nelinearna metoda konačnih elemenata (NLMKE)

2.1.1. Inkrementalno-iterativna metoda

Za provođenje inkrementalno-iterativne metode korištena su dva programska paketa: MARS klasifikacijskog društva Bureau Veritas i LUSA razvijen na FSB-u Zagreb. Oba programa temelje se Harmoniziranim pravilima od Međunarodne Asocijacije klasifikacijskih društava, IACS-CSR (*International Association of Classification Societies, Common Structural Rules*).

Pravila većine klasifikacijskih društava kao i IACS CSR propisuju korištenje metoda zasnovanih na Smithovoj metodi [6]. Smithova metoda prva je omogućila bolji uvid u kolapsnu sekvencu i poslijekritično ponašanje elemenata konstrukcije opterećene savijanjem. Manje je zahtjevna, a daje pouzdane rezultate. Radi se o inkrementalno-iterativnom postupku u kojem se koriste već izračunate krivulje naprezanje-deformacija (eng. *load and shortening curves*) za određene strukturne elemente konstrukcije. Inkrementalni dio postupka odnosi se na postepeno povećavanje opterećenja tj. zamišljene zakrivljenosti trupa broda, a iterativni dio na određivanje položaja neutralne osi presjeka trupa broda koji se mijenja prilikom gubitka čvrstoće pojedinih elemenata [1].

Za svaki narinuti korak povećanja zakrivljenosti trupa χ , raspored naprezanja svih elemenata koji čine poprečni presjek trupa određuju položaj trenutne neutralne osi budući da u pojedinom koraku odnos naprezanja i deformacije $\sigma - \varepsilon$ nije linearan. Nova neutralna os koja se odnosi na promatrani korak određuje se iterativnim putem, tako da se odredi ravnoteža između naprezanja koja djeluju u elementima strukture. Kada je određena neutralna os i prema tome raspored naprezanja, moment savijanja M_i oko nove neutralne osi, koji odgovara zakrivljenosti u promatranom koraku χ_i , dobije se zbrajanjem doprinosa momentu savijanja svakog elementa posebno. Sljedeći su glavni koraci inkrementalno – iterativnog pristupa proračunu graničnog momenta savijanja [2]:

- podjela poprečnog presjeka na elemente ukrepljenih panela,
- određivanje neutralne osi za nedeformiranu strukturu,
- definicija odnosa naprezanje-deformacija za sve elemente,
- početak postupka određivanjem početne zakrivljenosti,
- određivanje deformacije za sve elemente,
- određivanje odgovarajućeg naprezanja za svaki element na temelju krivulja naprezanjedeformacije (σ-ε),
- nalaženje nove neutralne osi postavljanjem uvjeta ravnoteže preko cijelog presjeka,
- proračun ukupnog momenta savijanja zbrajanjem doprinosa svih elemenata momentu savijanja

Postavljanje ravnoteže naprezanja preko cijelog poprečnog presjeka trupa izvodi se tako da sila koju uzrokuje naprezanje u elementima iznad neutralne osi bude jednaka sili koju izaziva naprezanje u elementima ispod neutralne osi. Jednadžba uvjeta ravnoteže [2]:

$$\sum A_i \sigma_i = \sum A_j \sigma_j \ [N]$$

[2]

 $M_{U} = \sum A_{i} \sigma_{Ui} \left[z_{i} - z_{NOi} \right] \quad [Nm]$

gdje je i indeks elemenata ispod, a j indeks elemenata iznad neutralne osi. Kada je izračunata neutralna os za pojedini korak, zbrajaju se doprinosu naprezanja svih elemenata presjeka ukupnom momentu savijanja, prema izrazu [2]:

Slika 3 Algoritam numeričkog rješenja proračuna graničnog momenta savijanja [2]

Granični momenti savijanja poprečnog presjeka brodskog trupa prema Smith-ovom inkrementalnoiterativnom postupku zasnovanom na teoriji grede, određuju se kao maksimalne vrijednosti momenta na krivulji momenta čistog savijanja $M_{\rm U}$ u ovisnosti od zakrivljenosti χ brodskog trupa promatranog kao grede na odabranom poprečnom presjeku [2]:

Prema pravilima IACS-a, vertikalni granični moment savijanja trupa treba zadovoljiti sljedeće kriterije [3]:

$$M \le \frac{M_U}{\gamma_R}$$
[3]

M je vertikalni moment savijanja, a M_U je vertikalni granični moment savijanja trupa kao grede. γ_R je parcijalni faktor sigurnosti za vertikalni granični moment savijanja trupa [3]:

M je vertikalni moment savijanja, u uvjetima pregiba i progiba, koji se dobije zbrajanjem momenta savijanja na mirnoj vodi M_{SW-U} i momenta savijanja na valovima M_w [3]:

$$M = \gamma_S M_{SW-U} + \gamma_W M_W$$
[4]

Slika 4 Granični moment savijanja u ovisnosti o zakrivljenosti [3]

2.1.1.1. Krivulje naprezanja-deformacije σ - ϵ

Sa šest vrsta krivulja koje predočavaju odnos naprezanja i deformacija σ - ϵ (eng. *load-end shortening curves*) opisuje se ponašanje tri vrste elemenata pri procesu sloma brodskog trupa [3]:

- Elasto-plastični slom
- Gredno-štapno izvijanje
- Torzijsko izvijanje
- Lokalno izvijanje struka običnih ukrepa sastavljenih od pojasnih profila
- Lokalno izvijanje struka običnih ukrepa sastavljenih od ravnih profila
- Izvijanje oplate

Slika 5 Izgled krivulje σ-ε za elasto-plastični slom [3]

σ-ε krivulje dobiju se analizom nosivosti reprezentativnih modela elemenata pri uzdužnom opterećenju pomoću nelinearnih numeričkih, analitičkih ili eksperimentalnih (vrlo rijetko) metoda [3].
 U tablici 1. prikazan je mogući način gubitka nosivosti za pojedine diskretne elemente.

Vrsta diskretnog sastavnog elementa	Mogući način gubitka nosivosti
Vlačno/tlačno opterećena tankostjena greda, kruti kut, neukrepljena oplata	Elasto-plastični slom
	Elasto-plastični slom
	Gredno štapno izvijanje
Tlačno opterećena tankostjena greda	Lokalno izvijanje struka običnih ukrepa
	Lokalno izvijanje struka običnih ukrepa
	sastavljenih od ravnih profila
Tlačno opterećena oplata	Izvijanje oplate

Tablica 1 Načini gubitka nosivosti pojedinih diskretnih elemenata [3]

2.1.2. Nelinearna metoda konačnih elemenata (NLMKE)

Nelinearna metoda konačnih elemenata (NLMKE) danas predstavlja najpouzdaniji alat za razumijevanje kolapsnog scenarija, a posebno razmatranih konstrukcija. Zbog složenosti i dugotrajnosti izgradnje prikladnog MKE modela (veličina i gustoća mreže) te trajanja samog proračuna u smislu konvergencije rezultata provođenje takvog proračuna zahtijeva jako puno iskustva i dodatnog znanja. Uključivanje materijalne i geometrijske nelinearnosti u model zahtjeva korištenje inkrementalnih procedura što jako produžuje proračunsko vrijeme. Još uvijek nije realno očekivati uvođenje takvih proračuna u uobičajeni projektni postupak, ali rezultati mogu pomoći u boljem razumijevanju kolapsnog procesa, razvoju jednostavnijih metoda i validaciji rezultata [4].

3. Izgradnja strukturnog modela

3.1. Opći podaci broda za prijevoz tekućeg tereta

Kao testni primjer u ovom radu za izradu modela korišten je nacrt glavnog rebra tankera za prijevoz nafte Oil Product Tanker 74999 DWT. U tablici 4 nalaze se zadane dimenzije tankera:

Tablica 2 Glavne dimenzije tankera

Duljina preko svega, L _{OA}	228.5	m
Širina, B	32.24	m
Gaz, T	14.3	m
Koeficijent punoće, C _B	0.883	-
Brzina, v	16.2	CV
Razmak okvira, w	3.2	m

3.2. Strukturni model za iterativno-inkrementalnu metodu

MAESTRO je računalni program namijenjen za analize velikih, složenih tankostijenih konstrukcija. Vrlo je dostupan u brodograđevnoj industriji zbog brze izrade modela cijelog broda. Također uključuje analizu granične čvrstoće te optimizaciju konstrukcije. Model generiran kroz grafički predprocesor programa MAESTRO korišten je kao i ulazna datoteka programskog modula LUSA za proračun graničnog momenta savijanja trupa, koji je razvijen na FSB-u

U programskom paketu MAESTRO izrađen je 3D model glavnog rebra broda. Prvo je izrađen polovični model glavnog rebra u kojem se nalaze svi elementi konstrukcije. Elementi konstrukcije su: uzdužnjaci boka, debljina oplate dna, uzdužnjaci pokrova dvodna, uzvoj itd. Zatim se cijeli model preslikao na drugu stranu da bi se dobio cjeloviti model. Za razliku od modela napravljenog u programu FEMAP sa tri okvira, u MAESTRU modelirao se samo jedan okvir.

Koordinatni sustav programa MAESTRO [11] definiran je na idući način:

- ishodište koordinatnog sustava definirano je u sjecištu centralne ravnine i osnovice;
- globalna os X definirana je u smjeru uzdužne ravnine broda i pozitivna je prema naprijed;
- globalna os Z definirana je u poprečnom smislu i pozitivna je prema desno od osi X;
- globalna os Y je definirana u vertikalnom smjeru, okomita je na XZ ravninu, prolazi kroz sjecište osi X i osi Z te je pozitivna prema gore.

Izrada modela prototipne konstrukcije tekla je u nekoliko koraka, prvi korak je definiranje čvorova glavnog rebra u prostoru pomoću prostornih koordinata (x,y,z) s obzirom na prethodno objašnjenu definiciju koordinatnog sustava [11]. Čvorovi se postavljaju na mjesta spajanja konačnih elemente te se dobiva model glavnog rebra, prikazan na slici 6.

Slika 6 Prikaz sučelja programskog paketa MAESTRO s modelom glavnog rebra tankera

Uzdužna korugirana (naborana) pregrada nije modelirana jer se pretpostavilo da je njezino sudjelovanje u uzdužnoj čvrstoći zanemareno. Potvrdu te predpostavke treba se dokazati korištenjem modela (sa i bez korugirane pregrade) kroz NLMKE proračun (vidi poglavlje 4.2.)

Programski paketi MARS, kao i MAESTRO, koristi iterativno-inkrementalnu metodu kod proračuna graničnog momenta savijanja.

U programu MARS moguće je dimenzionirati samo uzdužne elemente. Preko uzdužnih elemenata, za koje zadajemo odgovarajuće dimenzije i debljine konstrukcije, dati će potrebne podatke o uzdužnoj graničnoj čvrstoći, odnosno o graničnom momentu savijanja konstrukcije. Također računa i zahtjevani moment savijanja. Pri izvođenju proračuna uzima u obzir korekcijske faktore sigurnosti. Osim što globalno ispituje čvrstoću konstrukcije, ispituje ju i lokalno. Na temelju lokalnih i globalnih kriterija, program računa *gross* i *net* debljine strukturnih elemenata. Razlika između gross i net debljine strukturnih elemenata daje korozijski dodatak koji je definiran Harmoniziranim pravilima. Slika 7 prikazuje nam sučelje programskog paketa MARS.

Slika 7 Prikaz sučelja programskog paketa MARS s modelom glavnog rebra tankera

3.2.1. Diskretizacija modela

Uzdužni segment za kojega želimo izračunati granični moment nosivosti se prema inkrementalnoiterativnoj metodi analize progresivnog kolapsa diskretizira s tri vrste međusobno raspregnutih diskretnih sastavnih elemenata i to [3]:

- Kruti kutovi elemenata: kruti kutovi elemenata su robusniji elementi koji tvore poprečni presjek kod kojih će se kolaps dogoditi zbog elasto-plastičnog ponašanja (dosegao je svoju nosivost)
- Grede tankostijenog presjeka, koje obuhvaćaju sve uzdužne ukrepe sa pridruženom sunosivom širinom oplate
- Poprečno orebrena oplata

3.3. Strukturni model za NLMKE

FEMAP (Finite Element Modeling and Postprocessing) i njegov rješavač (*solver*) NX NASTRAN zajedno čine inženjerski program za analizu složenih konstrukcija metodom konačnih elemenata i potpuni prikaz modela i rezultata analize [8].

Zapravo je FEMAP "pre" i "post" procesor . Koristi se za izradu modela konačnih elemenata složenih inženjerskih problema ("pre-proces") i prikaz rezultata rješenja ("post-processing"). Metoda konačnih elemenata omogućava inženjerima mogućnost izrade komponenata modela, sklopova ili sustava kako bi se odredilo njihovo ponašanje u zadanom skupu graničnih uvjeta. Obično se koristi u

procesu projektiranja kako bi se smanjila skupa izrada prototipova i testiranje, vrednuju se različiti materijali te se koriste za strukturnu optimizaciju (smanjenje težine) [8].

Također FEMAP ima ugrađene translatore za preuzimanje geometrije iz svih glavnih CAD programa (SOLID, EDGE, NX, CATIA, AutoCAD, itd...). Na raspolaganju su mu svi potrebni programski alati za kreiranje krivulja, površina i volumena modela te je priprema geometrije za različite vrste analiza brza i jednostavna [8]. Na slici 9 je prikazano programa sučelje FEMAP-a.

Slika 9 Prikaz sučelja programskog paketa FEMAP s modelom glavnog rebra tankera

Prilikom korištenja proračuna graničnog momenta savijanja potrebno je odabrati sljedeće parametre:

- veličinu mreže konačnih elemenata
- odgovarajući rješavača (solvera)
- prikladnih rubni uvjeta

Za potrebe ovog rada korišteni su rezultati istraživanja dani u radu [9].

Parametri koji utječu na rezultate dobiveni od eksplicitnog algoritma su proučavani. Veličina mreže, zakrivljenost i vrijeme veličine inkrementa su istraživani radi odgovarajućih ulaznih parametara koji će dati točne i snažne rezultate zajedno sa najnižim mogućim računalnim vrijednostima [9].

Konvergencija rezultata ovisno o veličini mreže istraženo je pet modela s različitim veličinama: 85 mm, 100 mm, 150 mm, 200 mm i 300 mmm. Narinuto opterećenje je 0,0009 rad koje korespondira zakrivljenosti od 0.0002432 (1/m) je primijenjeno u periodu od dvije sekunde te daje kvazi-statičke rezultate. Vrijeme inkrementa je postavljeno na 1E-6 sekundi. Rezultati dobiveni za granični moment savijanja su prikazani u sljedećoj tablici [9].

Mesh size (mm)						
	85	100	150	200	300	
M _u (GNm)	14.74	14.77	14.86	14.93	15.18	

Tablica 3 Granični moment savijanja za različite dimenzije mreže elemenata [9]

Kao što se vidi iz rezultata, sve vrijednosti konvergiraju u nulu , slika 9, stoga je vrijednost 100 mm x 100 mm je prikladna veličina elementa za modeliranje. Također, potvrđuje to i Pollalis (2013.) i Notaro (2011.) koji tvrdi da veličinu mreže treba generirati preko visine struka uzdužnjaka sa tri do četiri elementa, u području gdje se pojavljuje izvijanje [10].

Slika 10 Ovisnost graničnog momenta savijanja o dimenziji elementa [9]

Sljedeći bitan faktor za određivanje veličine elementa je brzina zakrivljenosti. U članku se proučavali uvjeti progiba modela. Razdoblje primjene rotacije je od primarne važnosti koje utječe na brzinu zakrivljenosti i na taj način kontrolira inercijalne sile koje su uvedene u model. Kratko razdoblje dovodi do većih inercijskih sila te je izložen većoj krutosti. Činjenica je da dovodi do precijenjenosti granične čvrstoće [9].

Na temelju proučavanih parametara koji se opisuju u članku [9] odlučeno je da će se koristiti elementi veličine 100 mm x 100 mm prilikom modeliranja u programskom paketu FEMAP-u. Zapravo, veličina elementa određuje naše konačne rezultate koje želimo dobiti. Finija mreža konačnih elemenata modela daje točnije rezultate, ali pofinjavanje mreže nije poželjno zbog povećavanja broja stupnjeva slobode. Već smo spomenuli da je za provedbu nelinearne metode konačnih elemenata potrebna velika količina računalnog vremena te bi finija mreža produljila potrebno vrijeme. Cilj je dobiti što bolje rezultate za granični moment savijanja odnosno kod kojeg graničnog momenta savijanja će se dogoditi kolaps glavnog rebra tankera, posebno izvijanja ukrepa i oplate.

Zbog lakšeg i boljeg shvaćanja rada u programu FEMAP bit će opisan način modeliranja modela. U nastavku će biti objašnjeni postupci crtanja modela, zadavanje materijala, opterećenja i rubnih uvjeta

te na kraju i postupak odabira analize za program LS-DYNA. Na sljedećim slikama prikazan je gotov model i elementi koji su se koristili prilikom izrade.

Slika 11 Model glavnog rebra tankera u FEMAPU

Slika 12 Detaljni prikaz strukture elemenata

3.3.1. Definiranje materijala

Prije početka modeliranja potrebno je zadati potrebne materijale kojećemo koristiti. Korišteni materijali su [3]:

- obični brodograđevni čelik ST24, R_{eh}=235 N/mm²
- čelik povišene čvrstoće AH36, R_{eh}=355 N/mm²
- čelik povišene čvrstoće AH32, R_{eh}=315 N/mm²

Svi korišteni čelici sadrže *Youngov* modul elastičnosti E=206 000 N/mm² i *Poissonov* koeficijent υ=0.3 [3]. Slika 13 prikazat će postupak zadavanja materijala.

	Title			Color	55	Palet	te	Layer	1	Type	•
General	Function Refer	ences	Nonlinear	Ply/Bond Fai	lure	Creep	Electr	ical/Optic	al Phas	se	
Stiffne	SS	in the second se			Li	imit Stress	3	-			
Youngs Modulus, E		0.				Tension		0.			
Shear	Modulus, G	0.				Compres	sion	0.			
Poisso	on's Ratio, nu	0.				Shear		0.			
Therm	al										
Expan	nsion Coeff, a	0.			Mass Density		0.			1	
Condu	uctivity, k	0.			Da	ampina, 2	C/Co	0.			Î
Specif	fic Heat, Cp	0.			Re	eference	Temp	0.			Î
Heat (Generation Facto	or	0.								
fxy (Load terial - ISOTRO	Sa PIC	we	Coj	ру			ОК		Cancel	
fxy (ine Mat	Load terial - ISOTRO Title Function Refere	Sa PIC	Nonlinear	Color Ply/Bond Fa	55	Pale	tte	OK Layer	1 cal Pha	Cancel	
fxy (ine Mat 4 eneral Nonlin	Load terial - ISOTRO Title Function Refere earity Type	Sa PIC ences	Nonlinear	Color Ply/Bond Fai	55 ilure	Palet Creep Yield Fun	tte	OK Layer rical/Optic	1 cal Pha	Cancel	
fxy (ine Mat 4 eneral Nonline	Load terial - ISOTRO Title Function Refere earity Type	Sa PIC ences	Nonlinear	Color Ply/Bond Fai	55 ilure	Palet Creep Yield Fun Yield Crit	tte	OK Layer rical/Optic	1 cal Pha	Cancel Type.	
fxy (ine Mat 4 eneral) Nonlin	Load terial - ISOTRO Title Function Refere earity Type None	Sa PIC ences O No e Ela	Nonlinear Ninear Elast sto-Plastic (Color Ply/Bond Fa tic (Bi-Linear)	55 ilure	Pale Creep Yield Fun Yield Crit Initial Yie	tte Elect ction erion	OK Layer rical/Optio 0von l ss 0.	1 cal Pha Mises	Cancel Type.	
fxy (ine Mat 4 ieneral Nonline	Load terial - ISOTRO Title Function Refere earity Type) None	PIC ences No Ela Pla	Nonlinear Nonlinear Elast nlinear Elastic (stic	Color Ply/Bond Fai tic (Bi-Linear)	55 ilure	Palei Creep Yield Fun Yield Crit Initial Yie Friction A	tte) Elect ction erion eld Stre	OK Layer rical/Optic 0von 1 ss 0.	1 Cal Pha Mises	Cancel Type.	
fxy (ine Mat 4 eneral Nonlin	Load terial - ISOTRO Title Function Refere earity Type None ear Properties	Sa PIC ences No ences Ela	Nonlinear Nonlinear Inlinear Elast sto-Plastic (stic	Color Color Ply/Bond Fa tic Bi-Linear)	55 ilure	Palet Creep Yield Fun Yield Crit Initial Yie Friction 4	tte Elect ction erion Id Stre Angle Exter	OK Layer rical/Optic 0von I ss 0. 0. nded Mat	1 cal Pha Mises	Cancel Type.	
fxy [ine Mat 4 . eneral . Nonline . Plastici .	Load terial - ISOTRO Title Function Refere earity Type None ear Properties ty Modulus, H	Sa PIC ences No ela Pla 0.	Nonlinear Ninear Elast sto-Plastic (stic	Color Ply/Bond Fa iic BI-Linear)	55 Ilure	Pale Creep Yield Fun Yield Crit Initial Yie Friction A	tte) Elect ction erion kingle Exter	OK Layer Inical/Option Ovon I SS 0. 0. 0.	1 cal Pha Mises erial Moc	Cancel Type. Ise	
fxy [ine Mat 4 eneral Nonline 0 Nonline Plastici	Load terial - ISOTRO Title Function Refere earity Type None ear Properties ty Modulus, H Compute From	Sa PIC No ences O No e Ela O Pla	Nonlinear Nonlinear Elast sto-Plastic (stic	Color Ply/Bond Fa iic (Bi-Linear)	55 ilure	Pale Creep Yield Fun Yield Crit Initial Yie Friction 4	tte) Elect ction erion Id Stree Exter	OK Layer Inical/Option Ovon I Ss 0. 0. 0.	1 Cal Pha Mises erial Moo	Cancel Type. se	
for (ine Mat 4 eneral Nonlin C Nonlin Plastici Harder	Load terial - ISOTRO Title Function Refere earity Type None ear Properties ty Modulus, H Compute From ning Rule	Sa PIC ences No ences Pla 0. Tange 0	Nonlinear Nonlinear Elast sto-Plastic (stic	Color Ply/Bond Fa iic (Bi-Linear) , Et.,.	55	Pale Creep Yield Fun Yield Crit Initial Yie Friction A	tte) Elect ction erion Angle Exter	OK Layer Inical/Option Ovon I ss 0. 0. 0.	1 Cal Pha Mises	Cancel Type. ise	
fy (ine Mat 4 4 - Nonlin Plastici Harder Functice	Load terial - ISOTRO Title Function Refere earity Type None ear Properties ty Modulus, H Compute From ning Rule on Dependence	Sa PIC PIC No Ela Pla 0. Tange 0 0	Nonlinear Nonlinear Elast Isto-Plastic (stic ent Modulus, Isotropic None	Color Color Ply/Bond Fa iic (BI-Linear) , Et	55 ilure	Palei Creep Yield Fun Yield Crit Initial Yie Friction A	tte) Elect ction erion kingle Exter	OK Layer rical/Optio 0von I ss 0. 0. 0.	1 Cal Pha Mises	Cancel	
fy (ine Mat 4 4 - Nonlin 0 - Nonlin - Nonlin - Nonlin - Nonlin - - - - - - - - - - - - - - - - - - -	Load terial - ISOTRO Title Function Refere earity Type) None ear Properties ty Modulus, H Compute From ning Rule an Dependence	Sa PIC ences No Ela Pla 0. Tange 0 0	Nonlinear Nonlinear Elast Isto-Plastic (stic ent Modulus, Isotropic None	Color Ply/Bond Fa tic (BI-Linear) , Et	55 ilure	Pale Creep Yield Fun Yield Crit Initial Yie Friction A	tte) Elect ction erion Angle Exter	OK Layer 0von I 0von I 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	1 I Mises	Cancel	
f _{xy} (ine Mat eneral - Nonlin Plastici Harder Functic	Load terial - ISOTRO Title Function Refere earity Type None ear Properties ty Modulus, H Compute From ning Rule n Dependence	Sa PIC No ences No Ela O. Tange 0 0	Nonlinear Inlinear Elast Isto-Plastic (Istic Isotropic None	Color Ply/Bond Fa ik (Bi-Linear)	55	Palei Creep Yield Fun Initial Yie	tte Elect ction erion kld Stre Exter	OK Layer nical/Option 0von 0. 0. 0. 0.	1 Mises erial Moc	Cancel	
for (ine Materia)	Load terial - ISOTRO Title Function Refere earity Type None ear Properties ty Modulus, H Compute From ning Rule on Dependence	Sa PIC ences No e Ela Pla 0 Tange 0 0	Nonlinear Nonlinear Inlinear Elasti Isto-Plastic (stic ent Modulus, Isotropic None	Color Ply/Bond Fa lic Bi-Linear)	55 ilure	Paleti Creep Yield Fun Initial Yield Criti	tte) Election erion Idd Stree Exter	OK Layer 0von I 0. 0. 0. 0. 0.	1 1 Mises	Cancel Type. se	

Slika 13 Definiranje materijala

U alatnoj traci koja je prikazana na slici 5 nalazi se kartica *Model* koja kada se otvori izbacuje padajući izbornik sa funkcijama. Kliknuvši na funkciju *Material* otvara se sljedeći izbornik koji je prikazan na slici 13. Prvo se zapisuje opće značajke materijala kao što su Youngov modul elastičnosti i Poissonov koeficijent te nakon toga, s obzirom da radimo nelinearnu metodu konačnih elemenata, odabiremo opciju *Non-linear*. U novom otvorenom izborniku odabiremo opciju elasto-plastično područje (eng. *elasto-plastic (Bi-Linear)*) i upisujemo pod *Initial Yield Stress* potrebnu granicu razvlačenja materijala.

3.3.2. Definiranje svojstva elemenata

Nakon definiranja materijala, sljedeće na redu je definiranje svojstva materijala. U alatnoj traci nalazi se kartica *Model* koja kada se otvori izbacuje padajući izbornik sa funkcijama. Kliknuvši na funkciju *Property* otvara se sljedeći izbornik koji je prikazan na slici 14.

		Element / Property Type		
		Para	bolic Elements	
		Line Elements	Plane Elements	
fine Property - PLATE Element	Туре	 Rod Tube Curved Tube Bar Beam Link Curved Beam Spring/Damper 	 Shear Panel Membrane Bending Only Plate Laminate Plane Strain Axisymmetric Shell Plat Only 	
> 31 Title Color 110 Pa Property Values Thicknesses, Tavg or T1 0.	Material 	 DOF Spring Gap Plot Only 	Volume Elements Axisymmetric Solid Solid	
blank or T2 0.	TShear/Mem Thickness,ts/t 0.	Other Elements		
blank or T3 0. blank or T4 0. Nonstructural mass/area 0.	Bending 0Plate Material Transverse Shear 0Plate Material Memb-Bend Coupling 0None - Ignore Mean Dilatational Formulation NEi Nastran Tension Only 	 Mass Mass Matrix Spring/Damper to Gi DOF Spring to Grour 	 Rigid General Matrix round Slide Line Meld/Fastener 	
Stress Recovery (Default=T/2)		Element Material Orien	Itation OK	
Top Fiber 0. Bottom Fiber 0.	Load Save OK Copy Cancel	Formulation	Cancel	

Slika 14 Definiranje svojstva pločastih elemenata

Na slici 14 nalaze se opcije za odabir materijala i oblik elementa *Elem/Property Type*. U diplomskom radu korišteni su pločasti, gredni i kruti elementi. Odaberemo *Plate* i pod *Thicknesses, Tavg or T1* upišemo zadanu debljinu elementa. Uzdužnjaci su u projektu navedeni kao HP profili (bulb profili), a modelirani su kao L profili pomoću tablice ekvivalentnih profila.

Za gredne elemente se odabere opcija *Beam* te se otvara drugačiji izbornik od Plate elementa. To je prikazano na slici 15. Također, odabere se materijal potreban za definiranje svojstva elementa.

						Dara	holic Elements
							Plane Flements
ine Property - BEAM Element	Туре		Material		×	 Rod Tube Curved Tube Bar Beam Link Curved Beam 	 Shear Panel Membrane Bending Only Plate Laminate Plane Strain Axisymmetric Shell
Color 110 P	alette	ayer 1		Elem/Pro	perty Type	Spring/Damper	Plot Only
Property Values			Stress Rec	overy (2 to	4 Blank=Square)	ODOF Spring	Volume Elements
Tapered Beam	End A	End B		Y	Z	O Gap	
Area, A	0.	0.	End A 1	0.	0.	O Plot Only	Axisymmetric
Moment of Inertia, I1 or Izz	0.	0.	2	0.	0.		C Solid
I2 or Iyy	0.	0.	3	0.	0.		C Solid Laminate
I12 or Izy	0.	0.	4	0.	0.	Other Elements	
Torsional Constant, J	0.	0.				Mass	C Rigid
Y Shear Area	0.	0.	End B 1	0.	0,	Macs Matrix	Ceneral Matrix
Z Shear Area	0.	0.	2	0.	0.		
Nonstruct mass/length	0.	0.	3	0.	0.	Spring/Damper to G	round () Slide Line
Warping Constant	0.	0.	4	0.	0.	ODF Spring to Groun	nd 💿 Weld/Fastener
Perimeter	0.	0.					
Y Neutral Axis Offset	0.	0.	e-	Shap	e	Element Material Orier	ntation OK

Slika 15 Defiranje svojstva grednih elemenata

Slika 16 Definiranje oblika grednog elementa

Osim odabira vrste elementa potrebno je odrediti i njegov oblik. Na slici 16 nalazi se opcija *Shape*. Kliknuvši na tu opciju otvara nam se novi izbornik gdje se odabere njegov oblik (*Shape*), visina (*Height*) i širina (*Width*) elementa. Osim glavnih značajki elementa potrebno je još odrediti njegovu referentnu točku i orijentacijski smjer.

3.3.3. Kreirenja pločastih i grednih elemenata

Sljedeće na redu, nakon definiranja materijala i svojstava elemenata, je izrada modela sa potrebnim elementima. Kao što je već spomenuto, veličina pločastih elemenata je 100 mm x 100 mm i po struku uzdužnjaka mora biti minimalno 3 elementa, ovisno o dimenzijama. Za izradu se koristio nacrt glavnog rebra tankera na kojem se nalaze koordinate pojedinih dijelova broda.

Prije izrade elemenata, potrebno je definirati čvorove. U alatnoj traci nalazi se kartica *Model* koja kada se otvori izbacuje padajući izbornik sa funkcijama. Kliknuvši na funkciju *Node* otvara se sljedeći izbornik koji je prikazan na slici 17.

Slika 17 Definiranje čvorova

Na prikazanoj slici 17 upisuju se zadane koordinate čvorova koje će nam u sljedećem koraku pomoći kod izrade fine mreže elemenata.

Sljedeći korak je stvaranje elemenata. Opet se u alatnoj traci otvori kartica *Mode*l i klikne se funkcija *Element*. Kliknuvši na funkciju Element otvara se izbornik gdje možemo kreirati elemente preko četiri ili tri čvora, slika 18. Također se u tom izborniku može odabrati i *Property* i *Type* elementa, slika 20, koji su prethodno zadani. Isti postupak se koristi i kod Beam elemenata, slika 19, gdje se još mora zadati orijentacija.

Takav način izrade elemenata se koristi ukoliko nemate točne koordinate čvorova. Drugi način odnosno brži način izrade mreže elemenata je opcija *Between*, slika 21.

Defir	ne PLATE EI	ement -	Enter I	Nodes or Sel	ect with Curs	or		<u> </u>
ID	386715	Color	124	Palette	Layer 1	Property	- 1	Type
Node	es					Quad O Triangle	OK	Cancel

Slika 18 Kreiranje pločastih elemenata

ID 386715 Color	124 Palette Layer 1	Property	•	Type
Nodes	Orientation	Offsets	erence Point	
Nodes		End A	No Offsets	ОК
Releases	Vector	Fod B.	EndB=EndA	Cancel

Slika 19 Kreiranje grednih elemenata

🕅 Paral	bolic Elements
Line Elements	Plane Elements
🔿 Rod	Shear Panel
🔘 Tube	O Membrane
🔘 Curved Tube	Bending Only
🔘 Bar	Plate
问 Beam	🔘 Laminate
🖱 Link	O Plane Strain
🔘 Curved Beam	Axisymmetric Shell
Spring/Damper	Plot Only
DOF Spring	Volume Elements
🔘 Gap	Aviaumaatria
Plot Only	Axisymmetric Solid
	Solid Laminate
)ther Elements	
🗇 Mass	🔘 Rigid
🔘 Mass Matrix	🔘 General Matrix
Spring/Damper to Gr	ound 🔘 Slide Line
DOF Spring to Groun	d 🔘 Weld/Fastener
Element Material Orien	tation OK
Formulation	Cancel

Slika 20 Odabir vrste elementa za izradu

Node and	Element Option	s					2
Node ID	367727	CSys	0Basic Rec	tangular	• E	GenClockwise	Node Param
Elem ID	386715	Property	912AH32	6		- 1	Elem Param
Generate	Corners	Mesh 8	Size	2.2	21.0	Element Shape	
🔿 Nodes	O 2 O 4T	#Node	DIF 1	Dir 2		O Line O Te	etra 🔘 Right
🖱 Elems	© 3 ^{© 5}	Bias	1.	1.	1.	🔘 Tri 🛛 🔿 W	edge 🔿 Left
Both	4 0 8	Node I Geome	increment etric Bias 🛛 🕅	1		Quad Br	ick 📝 Alternate
Corner No	odes (Blank to Er	nter Coordi	nates)				ОК

Slika 21 Definiranja fine mreže preko opcije Between

U alatnoj tracij se nalazi kartica *Mesh* koja kada se otvori izbacuje padajući izbornik sa funkcijama. Kliknuvši na opciju *Between* otvara nam se sljedeći izbornik, slika 21. Opcija *Between* služi definiranje mreže pločastih elemenata. Postoji opcija za definiranje Property elemenata. Bitno je odabrati da se generiraju i elementi i čvorovi preko četiri kornera čvorova gdje želimo dobiti mrežu elemenata. Nakon odabira kornera čvorova određujemo koliko čvorova (npr. Ako želimo 10 elemenata u jednom smjeru upisati ćemo broj 11) želimo u jednom i u drugom smjeru.

Moguće je i doraditi mrežu konačnih elemenata, vidljivo na slici 22. Preko napravljenog pločastog elementa može se stvoriti finija mreža elemenata manjih veličina. Na već spomenutu karticu *Mesh* otvara se padajući izbornik gdje se nalazi funkcija *Edit* sa određenim podfunkcijama.

Slika 22 Dorada pločastih elemenata

Tema diplomskog rada je modeliranje glavnog rebra s tri okvira. Prvo je napravljen polovični model kojeg je trebalo reflektirati na drugu stranu te kopirati u smjeru osi x dva puta. Koriste se funkcije *Reflect* i *Copy* element. Funkcije *Reflect* i *Copy* nalaze se u kartici *Mesh* na alatnoj traci. Za funkciju *Reflect* trebaju se odabrati svi elementi, *Select All*, te ravnina oko koje želimo reflektirati polovični model. Nakon obavljenog prvog koraka ostalo je još kopirati model dva puta u smjeru osi x za razmak okvira. Razmak okvira iznosi 3200 mm. Kod funkcije *Copy* odaberu se svi elementi, *Select All*, koliko ponavljanja želimo, *Repetitions*, te u kojem smjeru želimo kopirati. Na sljedećim slikama se nalazi postupak stvaranja modela s tri okvira.

Add (🔿 Remove	C Exclude			Select All	Reset	Pick ^
ID 386714	🔰 🔪 to	by	1		Previous	Delete	ОК
Group			-		More	Method ^	Cancel
eneration Op	otions						Σ
Node Offset	ing Nodes nent 1	Property Color, Copy Met Along Norma	0Match Origin , Layer, Formulatin , Constraints, Rei thod Vector als	nal ons gions Update Ev Copy in Sz	very Repetition	Repetitions Trap Width	1
ector Loc	ate - Sele	C Norma	als with Thickness Copy Along 0.	Correction	0.		Cancel
īp X	1.	Y	0.	z	0.		OK
		na state da se se		de a			

Slika 23 Postupak kopiranja elemenata

Add	0	Remove	C Exclude		+ 1;386714;1		Select All	Reset	Pick 4	~
ID		to 🗌	by	1			Previous	Delete		ОК
or Group				•			More	Method ^	Ca	an <mark>ce</mark> l
Plane Lo	ocat	e - Specify	Plane to S	Select	round	1.2			8	23
Plane Lo Base	x x	e - Specify 0.	Plane to S	Select	round	z	0.		Previ	کٽ iew
Plane Lo Base Point 1	x x x	e - Specify 0. 1.	Plane to S	Select Y 0. Y 0.	z z	z (o. o.		Previ	کن iew
Plane Lo Base Point 1 Point 2	x x x x	e - Specify 0. 1. 0.	Plane to S	Select Y 0. Y 0. Y 1.	round z	z (z (z (0. 0. 0.		Previ	کن iew

Slika 24 Reflektiranje modela

3.3.4. Kreiranje krutih elemenata

Osim već opisanih pločastih i grednih elemenata korišteni su i kruti elementi. Poslije modeliranja i kreiranja fine mreže elemenata, svi čvorovi, prednjeg i zadnjeg presjeka, povezani su za definirano kruto tijelo za svaki presjek. Translacija i rotacija čvorova koji su pričvršćeni za svako kruto tijelo su kontrolirani od strane kontrolne točke. Kontrolna točka/čvor je izabrana u centar površine pripadajućeg presjeka. Za sve slučajeve analize koristi se kontrola rotacije. To znači da se rotacija primjenjuje na dvije kontrolne točke. Zakrivljenost modela i moment savijanja je reakcijski moment koji je razvijen od kontrolnih točaka kako bi se postigla primijenjena zakrivljenost [9].

Izrada krutih (engl. *Rigid*) elemenata se vrši na isti način kao i ostali elementi. Pod funkciju *Element* odabere se vrsta elementa *Rigid* i otvori se sljedeći izbornik koji je prikazan na sljedećoj slici.

D 386/15 Color	124 Palette Layer	Property Type
RBE1 RBE2 RBE3	(Interpolation)	
DOF VTX VRX VTY VRY VTZ VRZ	Nodes	Independent Node Node New Node At Center
Thermal Expansion		

Slika 25 Definiranje *Rigid* elemenata

U novo otvorenom izborniku označe se svih 6 stupnjeva slobode jer ćemo *Rigid* elementu, u njegovom čvoru, zadati rubne uvjete koji će odgovarati za cijeli model. Prije klikanja svih čvorova po presjeku potrebno je odabrati funkciju *New Node At Center*. Funkcija *New Node At Center* stvara čvor na sredini presjeka s kojim će svi čvorovi po presjeku biti povezani. Sljedeći korak je opcija *Nodes*. Kliknuvši na opciju *Nodes* otvara nam se novi izbornik, slika 25.

Add Remove ()) Exclude		(Prest	
		Select All	Reset	
D 367726 Ya to	by 1	Previous	Delete	ОК

Slika 26 Odabir čvorova

Base	Х	0.	Y	0.	Z	0.	Preview
Point 1	х	1.	Y	0.	Z	0.	
Point 2	х	0.	Y	1.	z	0.	

Slika 27 Odabir ravnine

Outsid	Max Offset Min Offset
Positive Side	
© Betwe	en 🎇 🕺
Negative Side	ation
ALLO	

Slika 28 Odabir udaljenosti od ravnine u mm

Slike 26, 27 i 28 govore nam o završnom i ubrzanom postupku stvaranja *Rigid* elementa. Na slici 26 odaberu se čvorovi po presjeku, ali umjesto klikanja svakog pojedinog čvora može se označiti cijeli presjek sa čvorovima, slika 27. Klikne se opcija *Pick^* i funkcija *Around Plane* gdje se odabere ravnina za odabrane čvorove po presjeku.

U sljedećem koraku, prikazano na slici 28, mora se odrediti je li pozitivna strana (*Positive Side*) ili negativna strana (*Negative Side*) te koliki će *offset* biti. U završnom koraku FEMAP stvori *Rigid* elemente, slika 28.

Slika 29 Kruti elementi

3.3.5. Rubni uvjeti i opterećenje

Nakon definiranja geometrije i fine mreže konačnih elemenat zadaju se rubni uvjeti (eng. *Constraints*) i opterećenje (eng. *Load*). Može se zadati preko čvorova ili skupa elemenata.

U alatnoj tracl postoji opcija *Model* gdje se otvara padajući izbornik sa više podfunkcija. Prvo, za definiranje rubnih uvjeta klikne se funkcija Constraint. Kliknuvši na funkciju *Constraint* otvara se izbornik gdje se odabere funkcija *Nodal* i otvori se izbornik gdje se odabere čvor na koji se postavljaju rubni uvjeti, slika 30 i slika 31.

Constraint Set 1 boundary nodes				
Title	Coord	Sys 0Ba	asic Rectangula	ri 🖉
Color 120 Palette Layer 1				
	Dinand X Sy	nmetry	X AntiSym	NonZero Constraint >>
DOF	Pinned X Syn	nmetry	X AntiSym Y AntiSym	NonZero Constraint >>

Slika 30 Rubni uvjeti na čvoru 1

Constraint Se	t 1 ł	ooundary node	s			
Title Color 12) Palette.	Layer	, 1	Coord Sys 0	Basic Rectangula	r -
DOF				· · · · · ·		
	DV 🗐 T7	Fived	Pinned	X Symmetry	X AntiSym	NonZero Constraint >>
		Fixed	Pinned	X Symmetry Y Symmetry	X AntiSym Y AntiSym	NonZero Constraint >> OK

Slika 31 Rubni uvjeti na čvoru 2

Tablica 4 Rubni uvjeti

	T _x	T _Y	Tz	R _x	R _Y	R _z
Node 1	1	0	0	0	0	0
Node 2	0	0	0	0	0	0

*1-slobodno

*0-spriječeno

Slike 30 i 31 prikazuju rubne uvjete na dva središnja čvora od *Rigid* elemenata. Također, postoji opcija osim ručnog odabira da rubni uvjeti budu fiksirani ili uklješteni, slobodni, bez rotacije, simetrični u x smjeru itd.

U tablici 4 prikazani su rubni uvjeti koje sam koristio u diplomskom radu. Oznaka 1 znači da je dopuštena translacija u određenom smjeru ili rotacija oko zadane osi, a 0 da je onemogućena translacija i rotacija.

Prije početka analize ostalo je još zadati opterećenje. Opterećenje se zadaje u istoj kartici *Model* pod funkcijom *Load*. Kliknuvši na funkciju Load otvara se izbornik gdje se odabere opterećenje, na čvorove ili elemente. Odabere se ista opcija *Nodal*, kao i kod rubnih uvjeta. Opterećenje će djelovati na čvorove *Rigid* elemenata koji se nalaze na sredini poprečnih presjeka.

Create Loads on Nodes									x
Load Set 1 load									
Title Color 10 Palette	L	ayer 1			Coor	d Sys 0	Basic Rectangular	8	•
Force Moment Displacement Enforced Rotation Velocity Rotational Velocity Acceleration Rotational Acceleration		Direction Con Vec Alor Nor Nor	npon tor ng Ci mal t mal t	ents urve to Plane to Surface	Speafy		Method Constant Variable Data Surface Advan	ced]
Temperature		Load		Value	Time/Freq Dependenc	e	Data Surfa	ace	
Heat Flux Heat Generation	m	RX		0.	0None	✓ f _{xy}	0None		
Static Fluid Pressure Total Fluid Pressure General Scalar		RY RZ	V V	0. 0.			0None	*	
Steam Quality Relative Humidity Fluid Height Condition Unknown Condition		Ph	ase	0.	0None	 f_{xy}]		
Fan Curve	-						ОК	Cancel	

Slika 32 Zadavanje opterećenja

Na slici 32 prikazano je odabir opterećenja preko čvorova. Opterećenjima treba se zadati njihov smjer i iznos (sila, gravitacija, moment, temperatura itd.). Konkretno, u mom slučaju, zadana su opterećenja uslijed potaknute rotacije (engl. *Enforced Rotation*). Zadana je rotacija oko osi y koja iznosi 0.0009 rad oko jednog čvora, a oko drugog čvora -0.0009 rad. U suprotnim su smjerovima jer želimo postići da model bude u progibu, a za pregib će se rotirati u suprotnom smjeru.

Prije odabira analize potrebno je pripazit na koincidente čvorove, slobodne rubove i koincidente elemente. Provjere za koincidentne čvorove i elemente za cijeli model ide preko kartice *Tools* gdje se u padajućem izborniku odabere funkcija *Check*. Kliknuvši funkciju *Check* otvara nam se izbornik gdje odaberemo što želimo provjeriti. Odaberemo li čvorove ili elemente bitno je da odaberemo cijeli model, funkcija *Select All*. Koincindentni čvorovi (engl. *Coincidents nodes*) i koincidentni elementi

(engl. *Concidents Elements*) provjeravamo je li na određenim mjestima postoje dupli čvorovi ili elementi koji će smetati prilikom provođenja analize. Postupak je prikazan na sljedećim slikama.

	1921 2012	
Add Remove Exclude	Select All	leset 🛛 🛛 Pick ^ 🗋 🔖
ID 367726 to by 1	Previous	elete OK
Group	More	thod A Cancel

Slika 33 Odabir čvorova za provjeru

a				
Add O Remove	© Exclude	Select All	Reset	Pick ^
D 386714 Ya to	by 1	Previous	Delete	ок
Group	-	More	Method ^	Cancel

Slika 34 Odabir elemenata za provjeru

Check/Merg	e Coincident	
Tolerance	4 02854	Options
rolerance		
Action	Merge	
Keep ID	Automatic	Merge Across Output CSys
Move To	Current Location	Set Output Csys To -1Use Nodal Output System
	Preview	OK Cancel

Slika 35 Provjera koincidentnih čvorova

Check Coincident Elements	23
Check Options	
O Quick Check (Just Corners)	
Full Check	
Check Elements with Different Typ	es
Check Elements with Different Sha	pes
Check Mass Elements	
Check Rigid Elements	
Group Options	
Make Primary Group	
Make Secondary Group	
OK Cancel]

Slika 36 Provjera koincidentih elemenata

Postojanje duplih čvorova riješi se preko opcije *Merge*, slika 35, dok duple elemente je potrebno izbrisati. Prvo se dupli elementi pronađu preko funkcije *Show Entities* koja se nalazi u padajućem izborniku *Window*. Odabere se opcija *Element* i u odgovarajući prozor se upiše *ID* da ga program pronađe. Drugi dio zadatka je njegovo brisanje. Brisanje elementa vrši se preko funkcije *Delete* i opcije *Model* gdje se u padajućem izborniku odabere podfunkcija *Mesh*. Podfunkcija *Mesh* briše element i pripadajuće čvorove. Pronalazak i brisanje elemenata je prikazan na slikama 37 i 38.

Add C Remove	© Exclude	Select All Reset Pick ^
	-	Previous Delete OK
up		More Method ^ Cancel
ntity Show		×
/iew 7 Untit	Hed	
Entity Type		Style
O Point	🔘 Coord Sys	Erase Background First
🔘 Curve	🔘 Node	✓ Transparent Highlight
🖱 Surface	Element	Autoscale
🔘 Solid / Volume	Material	I abel with ID
	O Property	Show Normals
Region	🔘 Layup	
Connector	🔘 Global Ply	Show Color 24600 Palette

Slika 37 Postupak pronalaska duplih elemenata

Add	ove 🔘 Ex	clude	Select All	Reset	Pick ^	
ID 386714	to	by 1	Previous	Delete	ОК	
Group		•	More	Method ^	Cano	el

Slika 38 Brisanje elemenata i čvorova

Zadnji kriterij koji se mora provjeriti je li postoje slobodni rubovi (engl. *Free Edge*). Opcija *Free Edge* pokazuje nam jesu li svi elementi povezani u jednu cjelinu. U alatnoj traci nalazi se opcija *View* sa svojim padajućim izbornikom. Odabere se funkcija *Select* gdje se otvori sljedeći izbornik i klikne se opcija *Free Edge.*, slika 39. Na slici 40 nalazi se slika modela koji zadovoljava sve potrebne kriterije prije zadavanja i izvršenja analize.

View 7 Untitled			
Model Style	Deformed Style	Contour Style	
O Draw Model	None - Model Only	None - Model Only	
O Hidden Line	O Deform	Contour	
Free Edge	🔿 Animate	🕐 Criteria	
Free Face	🕐 Animate-MultiSet	🕖 Beam Diagram	
	C Arrow	🔘 IsoSurface	
	🔘 Trace	Section Cut	
	Skip Deformation	Arrow	
	🔘 Streamline		
	Deform	ed and Contour Data	
	Derorin	eu anu comour bata	

Slika 39 Provjera slobodnih rubova

Slika 40 Model bez slobodnih rubova

3.3.6. Zadavanje parametara analize

Predzadnji korak u modeliranju je zadavanje analize. Korištena je nelinearna analiza koja je provedena u programskom paketu LS-DYNA. Postupak provedbe analize biti će objašnjen na sljedećim slikama.

U alatnoj traci preko kartice *Model* otvori se padajući izbornik gdje se odabere funkcija analize (eng. *Analysis*). Kliknuvši na funkciju *Analysis* otvara nam se sljedeći izbornik, slika 41. U otvorenom izborniku odaberemo opciju *New* te odaberemo, u novom izborniku, pod *Analysis Program 28.LS-DYNA* te zadamo ime analize.

Slika 41 Postavke analize

Title	Nelinearna	analiza	
Analys	is Program	28LS-DYNA	- 23
Analys	is Type	9Explicit Transient Dynamics	- 35
Solve	Using		
🗇 In	tegrated Solve	27	
) Lir	ked Solver		
So	olver is undefir	ned. Go to File Preferences Solvers.	
O Vis	O		

Slika 42 Odabir analize

Slika 43 Pokretanje analize

3.3.7. LS-DYNA model

Zadnji korak prije pokretanje analize je prebaciti datoteku iz programa FEMAP u LS-DYNA. U alatnoj traci nalazi se kartica *File* sa svojim padajućim izbornikom. U padajućem izborniku postoji kartica *Export* gdje se odabere funkcija *Analysis Model*. U novom izborniku *Export method* odaberemo analizu koju smo zadali i stisnemo *OK*, slika 44.

xport Method	23
Export Using Analysis Set Activate Analysis Set	
1NELINEARNA	•
Create/Edit Set	
Other Interfaces	OK Cancel

Slika 44 Export u LS-DYNA

3.3.8. Dodatni ulazni podaci za definiranje NLMKE u programskom paketu LS-DYNA

LS-Dyna je, uz ostalo, programski paket za nelinearnu analizu metodom konačnih elemenata. Razlikujemo:

- LS-Dyna manager softver kojim se pokreće analiza (rješavač) i upravlja nekim postavkama rješavača, kao što su izbor broja procesora, verzija rješavača, rad s licencnom datotekom i sl.
- LS-Prepost softver pomoću kojega se izrađuju modeli i analiziraju rezultati proračuna.

LS-Dyna čita ulaznu tekstualnu datoteku koja se sastoji od ključnih riječi i pripadajućih parametara. Čitav model, kao i svi parametri analize, jasno su i razumljivo opisani u toj datoteci. Po potrebi, moguće je dodati komentare i uređivati je kao i svaku drugu tekstualnu datoteku.

Moguće je "ručno" upisati sve potrebne podatke u ulaznu datoteku: definirati čvorove, elemente, parametre analize itd. I zatim pokrenuti proračun upućivanjem rješavača na tu datoteku.

U praksi, mreža konačnih elemenata generira se u prikladnom softveru, LS-Prepostu, FEMAP-u ili drugačije, i zapisuje u zasebnu datoteku. Ta datoteka sadržat će veliki broj čvorova i elemenata koji su sada izdvojeni, a datoteka se može nazvati npr. mesh.txt ili uobičajenije za LS-Dyna-u: mesh.k. U tom slučaju "ručno" se generira samo manja i pregledna ulazna datoteka koja sadrži najvažnije parametre krutosti, analize i slično., naziva npr. analiza-model1.k.

Na taj način ulazna datotka je pregledna i u njoj se lako prate i mijenjaju potrebni parametri. Velika datoteka, najčešče nepromijenjiva, s mrežom konačnih elemenata poziva se zatim odgovarajućom naredbom iz same ulazne datoteke.

Osim spomenutog načina koji podrazumijeva dvije datoteke, moguće je tijek rada prilagoditi svojim potrebama. Koliko god tekstualnih datoteka da je stvoreno, one se automatski učitavaju jedna za drugom ukoliko je tako određeno u ulaznoj datoteci koja pokreće proračun.

Kada je proračun gotov, nastaje datoteka *.d3plot, kao prva (ili jedina) od d3plot datoteka s rezultatima. Za proračune u vremenskoj domeni, broj d3plot datoteka ovisit će o trajanju proračuna i učestalosti zapisa rezultata, a što određuje korisnik.

Najosnovnije ključne riječi koje su potrebne za provedbu analize u programu LS-DYNA:

• ELEMENT (označava konačne elemente)

Npr.

*ELEMENT_SHELL \$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

1, 1, 1, 2, 271, 270

2, 1, 2, 3, 272, 271

3, 1, 3, 4, 273, 272

4, 1, 4, 5, 274, 273

• NODE (označava čvorove)

Npr. :

*NODE

\$# nid x y z tc rc

1, 0.00400381, 0.120266, 0

2, 0.00501273, 0.120266, 0

3, 0.00602164, 0.120266, 0

4, 0.00703056, 0.120266, 0

5, 0.00803947, 0.120266, 0

6, 0.00904839, 0.120266, 0

7, 0.0100573, 0.120266, 0

• PART (definira svojstvo krutosti koje se pridružuju elementima, Uz svaki element uvijek je navedeno koje mu svojstvo krutosti pripada, odnosno koji je njegov Part ID (ili PID).

Npr.:

*PART

\$# title

\$# pid secid mid eosid hgid grav adpopt tmid

11124

Poslije dorade ulaznih datoteka pokreće se analiza u LS-Dyna Manager-u što prikazuje sljedeća slika.

Slika 45 Pokretanje analize u LS-DYNA Manager

4. Analiza rezultata

4.1. Analiza rezultata iterativno-inkrementalne metode

Za iterativno-inkrementalnu metodu korišteni su programski paketi:

- LUSA/MAESTRO
- MARS

4.1.1. Analiza rezultata iz programa LUSA/MAESTRO

Slika 46 Model glavnog rebra u MAESTRU

Slika 46 prikazuje sliku modela glavnog rebra. Prilikom provedbe analize dobiveni su rezultati:

- za stanje pregiba
- za stanje progiba

Slika 47 Ovisnost momenta savijanja o zakrivljenosti u stanju pregiba

Na slici 47 vidimo da ovisnost momenta savijanja o zakrivljenosti u stanju pregiba i progiba. Iz te slike možemo vidjeti trenutak dosezanja graničnog momenta savijanja, odnosno gubitak nosivosti konstrukcije.

Slika 48 Ovisnost udaljenost neutralne linije i zakrivljenost

Slika 49 Kolapsna sekvenca za stanje pregiba

	Hogging						
	Voj	Element	Kolapsno naprezanje	Vrsta	Ciklus	Zakrivljenost	Moment savijanja
	-		[N/mm2]	kolapsa		[1/m]	[kNm]
Paluba	239	454	3.15E+02	2	86	1.37E-04	6.76E+06
Jaki nosač	167	398	-1.82E+02	3	123	1.96E-04	7.51E+06
Paluba	249	459	3.15E+02	2	84	1.34E-04	6.67E+06
Unutarnja oplata boka	229	445	2.35E+02	2	87	1.39E-04	6.80E+06
Bok	62	308	-7.65E+01	3	94	1.50E-04	7.03E+06
Uzvojni tank	60	297	-1.75E+02	4	128	2.04E-04	7.54E+06
Uzvojni tank	178	407	-2.62E+02	3	232	3.70E-04	7.50E+06
donja stula	175	472	-2.37E+02	3	200	3.19E-04	7.61E+06
Dno	5	265	-2.56E+02	4	115	1.83E-04	7.44E+06
	1	370	-2.63E+02	3	114	1.82E-04	7.43E+06
Unutarnja oplata boka	218	437	2.35E+02	2	154	2.46E-04	7.67E+06
Pokrov dvodna	151	380	-2.59E+02	4	159	2.54E-04	7.69E+06
Proveza	182	415	-9.24E+01	3	102	1.63E-04	7.22E+06
Bok	208	429	2.35E+02	2	201	3.20E-04	7.60E+06

Tablica 5 Kolaps pojedinih strukturnih elemenata uslijed pregiba

Iz tablice 5 u stanju pregiba pojavljuju se tri vrste kolapsa:

- 2. Elasto-plastični kolaps (popuštanje)
- 3. Globalno gredno-štapno izvijanje
- 4. Torzijsko izvijanje

Slika 49 prikazuje nam redoslijed kolabriranja pojedinih strukturnih elemenata. Prvi strukturni element koji je kolabrirao je paluba. U stanju pregiba prva "odlazi" paluba, a proces kolapsa nastavlja se preko unutarnje oplate dvoboka i boka broda. Bok broda, osim procesa popuštanja, izvija se zbog uzdužnog sustava orebrenja tj. gredno-štapno izvijanje. Proces kolapsa prelazi na donje strukturne elemente: dno, uzvojni tank, jaki nosači u dnu i pokrov dvodna. Kolaps donjeg dijela konstrukcije broda (dno, pokrov dvodna,...) dogodio se zbog torzijskog izvijanja uzdužnjaka i grednog štapnog izvijanja (jaki nosači u dnu).Ubrzo nakon kolabiranja pokrova dvodna dogodio se potpuni kolaps konstrukcije. Potpuni kolaps konstrukcije znači da je došlo do gubitka nosivosti konstrukcije. Crvena točka označava granični moment savijanja.

Granični moment savijanja za stanje pregiba iznosi:

 $M_{ult} = 7,69 \times 10^6 \, kNm$

Na sljedećoj slici prikazano je ponašanje naprezanja po visini broda u stanju pregiba.

Slika 50 Raspodjela naprezanja po visini u stanju pregiba

Slika 51 Kolapsna sekvenca za stanje progiba

			Progib				
	Voj	Element	Kolapsno naprezanje	Vrsta kolapsa	Ciklus	Zakrivljenost	Moment
			[N/mm2]			[1/m]	[kNm]
Paluba	130	364	-2.90E+02	4	75	-1.20E-04	-5.71E+06
Paluba	254	465	-2.46E+02	3	76	-1.21E-04	-5.77E+06
Bok	96	335	-2.04E+02	3	83	-1.32E-04	-5.95E+06
Unutarnja oplata dvoboka	241	450	-2.53E+02	3	86	-1.37E-04	-5.98E+06
Proveza	204	421	-1.57E+02	3	150	-2.39E-04	-5.60E+06
Unutarnja oplata dvoboka	199	425	-2.05E+02	4	199	-3.17E-04	-5.16E+06
Bok	192	414	-2.21E+02	3	253	-4.03E-04	-4.70E+06

Tablica 6 Kolaps pojedinih strukturnih elemenata uslijed pregiba

Iz tablice 6 u stanju progiba pojavljuju se tri vrste kolapsa:

- 3. Globalno gredno-štapno izvijanje
- 4. Torzijsko izvijanje

Slika 51 prikazuje nam kolaps pojedinih strukturnih elemenata u progibu. Kao i kod pregiba, u progibu prvo "odlazi" paluba. Kolaps koji nastaje na palubi je zbog gredno-štapnog izvijanja uzdužnjaka koji se kasnije prenosi na unutarnju oplatu dvoboka i boka broda. Na unutarnjoj oplati dvoboka i boka broda nastaje kolaps uslijed torzijskog izvijanja uzdužnjaka. Nedugo nakon kolapsa unutarnje oplate dvoboka i boka broda dolazi do kolapsa cijele konstrukcije, odnosno gubitka nosivosti cijele konstrukcije. Zeleni trokut označava granični moment savijanja za stanje u progibu.

Granični moment savijanja u stanju progiba iznosi:

$$M_{ult} = -5,998 \times 10^6 \, kNm$$

4.1.2. Analiza rezultata iz programa MARS

Slika 53 Model glavnog rebra tankera u MARSU

Slika 54 Moment savijanja u ovisnosti o zakrivljenosti u MARSU

Granični moment savijanja u stanju pregiba iznosi:

$$M_{ult} = 7,711 \times 10^6 \ kNm$$

Granični moment savijanja u stanju progiba iznos:

$$M_{ult} = -6,086 \times 10^6 \ kNm$$

4.1.3. Usporedba rezultata za iterativno-inkrementalnu metodu

Tablica 7 Usporedba rezultata za iterativno-inkrementalnu metodu

	M _{ULT} (kNm)		
	Pregib	Progib	
MARS	7,711x10 ⁶	-6,086x10 ⁶	
LUSA/MAESTRO	7,689x10 ⁶	-5,998x10 ⁶	
Razlika (%)	0,3	1,5	

Slika 55 Usporedba ovisnosti graničnog momenta savijanja o zakrivljenosti u programima MARS i LUSA

Preko tablice 7 i slike 55 vidimo da se granični momenti savijanja u stanju pregiba preklapaju kod jednog i drugog programa, odnosno za 0,3% je moment veći u programu MARS od momenta u programu LUSA. U stanju progiba je granični moment izraženiji kod programa MAESTRO te je veći za 1,5% od momenta savijanja kod programa MARS.

4.2. Analiza rezultata NLMKE

Kao što je već spomenuto, MKE model je napravljen u programskom paketu FEMAP, a nelinearna analiza je provedena u programskom paketu LS-DYNA. Ispitivao se model u stanju pregiba i progiba, ali i utjecaj korugirane uzdužne pregrade. Na temelju dobivenih rezultata, zaključeno je da korugirana pregrada ne utječe na granični moment savijanja pa je bitno spomenuti da se kod iterativno-inkrementalne metode nije projektirala korugirana pregrada.

Tablica 8 Utjecaj korugirane pregrade na granični moment savijanja

M _{ult} [kNm]				
	Bez korugirane	Sa korugiranom		
	pregrade	pregradom		
Pregib	7,895x10 ⁶	7,896x10 ⁶		
Progib	-6,928x10 ⁶	-6,951x10 ⁶		

4.2.1. Analiza rezultata u stanju pregiba iz programa LS-DYNA

Slika 56 Ovisnost graničnog momenta savijanja i vremena u pregibu sa korugiranom pregradom

Slika 57 Ovisnost graničnog momenta savijanja i vremena u pregibu bez korugirane pregrade

Slike 56 i 57 prikazuju nam ovisnost graničnog momenta savijanja i vremena u pregibu bez korugirane pregrade i sa korugiranom pregradom. Iz jedne i druge slike vidi se da korugirane pregrada ne utječe na granični moment savijanja. U periodu između 4. i 5. sekunde javlja se maksimalni granični moment savijanja što znači da je konstrukcija ušla u plastično područje. Između 5. i 6. sekunde dolazi do konačnog kolapsa nosivosti cijele konstrukcije.

Granični moment savijanja u stanju pregiba sa korugiranom pregradom iznosi :

$$M_{ult} = 7,896 \times 10^6 \ kNm$$

a bez korugirane pregrade iznosi:

$$M_{ult} = 7,895 \times 10^6 \ kNm$$

Kod NLMKE metode u stanju pregiba prva kolabira paluba. Paluba već počinje kolabirati na vrijednosti 0,8M_{ult}. Vrsta kolapsa koja se događa kod palube je popuštanje te se smanji njen kapacitet nosivosti. Na slici 58 vide se naznake kolabiranja dna gdje dostiže svoju granicu razvlačenja.

Slika 59 prikazuje Von Mises naprezanja za granični moment savijanja M_{ult}. Dno će kolabirati uslijed izvijanja i to torzijskog izvijanja uzdužnjaka te štapnog grednog izvijanja kod jakih nosača u dnu broda. Vrste kolapsa su objašnjene u poglavlju 2.1.1.1.. Nakon kolabiranja dna broda došlo je do potpunog kolapsa konstrukcije odnosno gubitka nosivosti.

Slika 60 i 61 prikazuju nam naprezanja u smjeru osi x za vrijednost 0,8 M_{ult} i M_{ult}. Vidimo da i kod naprezanja u smjeru osi x najveći dio otpada na palubu koja je u stanju pregiba opterećena vlačnim naprezanjem.

Slika 58 Von Mises naprezanje za 0,8M_{ULT}

Slika 59 Von Mises naprezanja za M_{ULT}

Slika 60 Naprezanja u smjeru osi x za 0,8M_{ULT}

Slika 61 Naprezanja u smjeru osi x za M_{ULT}

4.2.2. Analiza rezultata u stanju progiba iz programa LS-DYNA

Slika 62 Ovisnost graničnog momenta savijanja i vremena u progibu sa korugiranom pregradom

Slika 63 Ovisnost graničnog momenta savijanja i vremena zakrivljenosti u progibu bez korugirane pregrade

Slike 62 i 63 prikazuju nam ovisnost graničnog momenta savijanja i vremena zakrivljenosti u pregibu sa korugiranom i bez korugirane pregrade. Kao i u stanju pregiba, korugirana pregrada ne utječe na granični moment savijanja. U periodu između 3. i 4. sekunde pojavljuje se granični moment savijanja što znači da je cijela konstrukcija dostigla svoju nosivost.

Granični moment savijanja u stanju progiba sa korugiranom pregradom iznosi:

 $M_{ult} = -6,951 \times 10^6 \ kNm$

a bez korugirane pregraden iznosi:

 $M_{ult} = -6,928 \times 10^6 \ kNm$

Kao i kod stanja pregiba, u pregibu prva paluba dostigne svoju graničnu čvrstoću. Paluba već pri 0,8M_{ULT} počne "odlaziti", vidljivo na slici 64. Razlog kolabiranja palube u stanju progiba je zbog izvijanja uzdužnjaka te se odvija proces redistribucije naprezanja na palubi i prenosi se na unutarnju oplatu dvoboka. Paluba pri vrijednosti graničnog momenta savijanja potpuno kolabira, odnosno gubi svoju nosivost, prikazano na slici 65.

Slike 66 i 67 prikazuju naprezanja u smjeru osi x za vrijednost M_{ULT} i 0,8M_{ULT}. Na tim slikama vidi se da je konstrukcija dna nosi najvećio dio naprezanja konstrukcije u smjeru osi x upravo zbog vlačnog naprezanja koje je dominatno u stanju progiba. *Fringe levels* označava relativno produljenje u postotcima [mm/mm].

Slika 64 Von Mises naprezanja za 0,8M_{ULT}

Slika 65 Von Mises naprezanja za M_{ULT}

Slika 66 Naprezanja u smjeru osi x za 0,8M_{ULT}

Slika 67 Naprezanja u smjeru osi x za M_{ULT}

4.3.Usporedba rezultata

Uspoređeni su rezultati dobivenih graničnih momenata savijanja kod iterativno-inkrementalne metode i nelinearne analize metodom konačnih elemenata.

M _{ult} [kNm]				
	Iterativno-inkren	NLMKE metoda		
	MARS	LUSA	LS-DYNA	
Pregib	7,711x10 ⁶	7,689x10 ⁶	7,895x10 ⁶	
Progib	-6,086x10 ⁶	-5,998x10 ⁶	-6,928x10 ⁶	

Tablica 9 Usporedba rezultata graničnog momenta savijanja

Tablica 10 Usporedba rezultata između metoda

M _{ult} [kNm]				
	Pregib	Progib		
Iterativno-inkrementalna metoda	7,689x10 ⁶	-5,998x10 ⁶		
Nelinearna metoda konačnih elemenata	7,895x10 ⁶	-6,928x10 ⁶		
Razlika (%)	-2,6	-13,42		

Tablica 9 prikazuje nam usporedbu rezultata dobivenih u pojedinim programima. Kod programa MARS i LUSA vidljivo je da se granični momenti savijanja u stanju pregiba i progiba odlično podudaraju i odstupanja su minimalna. Rezultati dobiveni u programu LS-DYNA veći od rezultata dobivenim u programima MARS i LUSA.

Tablica 10 prikazuje razliku, izraženu u postotcima, graničnih momenata u stanju pregiba i progiba između metoda. Vidimo da je razlika između momenata u stanju pregiba iznosi 2,6% odnosno da program LS-DYNA daje moment veći za 2,6%. Za stanje progiba razlika iznosi više od 10% odnosno granični moment u iterativno-inkrementalnoj metodi veći je za 13,42% od momenta dobivenog u nelinearnoj metodi konačnih elemenata.

Rezultati se dobro poklapaju sa sličnim istraživanjima provedenih kroz International Ship and Offshore Structure Progress (ISSC, 2015.) [5] gdje je također istraživana razlika između iterativnoinkrementalne i NLMKE metode. Kao u članku [5] koji kaže da se granični momenti savijanja u stanju pregiba ne odstupaju mnogo dok je u stanju progiba odstupanje veće. Kolapsna sekvenca za stanje progiba i pregiba dobro se poklapa za obje korištene metode. U pregibu kod obje metode paluba prva dostigne graničnu čvrstoću uslijed popuštanja i smanji se njen kapacitet nosivosti. Sljedeći na redu je dno broda koje dostigne graničnu čvrstoću uslijed tlačnog naprezanja. U stanju progiba, paluba također prva dostigne graničnu čvrstoću uslijed izvijanja i smanji se njen kapacitet nosivosti. Redistribucija naprezanja u palubi traje, ali cijela sekcija dostigne graničnu čvrstoću zbog smanjenja kapaciteta nosivosti dijelova koji su izvijeni.

Kod izgradnje strukturnog modela za potrebe NLMKE nisu implementirane inicijalne imperfekcije konstrukcije koja dodatno utječu na rezultate graničnog momenta savijanja. U pregibu je paluba opterećena na popuštanje i nema utjecaja inicijalne imperfekcije te smanjenje granične čvrstoće uslijed imperfekcija je beznačajno stoga se rezultati dobiveni u iterativno-inkrementalnoj metodi odlično slažu sa rezultatima dobivenim u nelinearnoj metodi konačnih elemenata.

U stanju progiba odstupanje između metoda je veće (13,42%). Uzrok tome je utjecaj inicijalnih imperfekcija koji dominatno utječu na smanjenje izdržljivosti palube izložene tlačnim naprezanjima. Kako je istraživanje provedeno u sklopu ISSC 2015 [5] utvrdilo redukcija graničnog momenta u progibu uslijed inicijalnih imperfekcija može ići i do 25%, te je u skladu s rezultatima dobivenim kroz ovaj rad.

5. Zaključak

U radu je bilo potrebno je provesti proračun graničnog momenta savijanja trupa broda za prijevoz tekućeg tereta koristeći nelinearnu metodu konačnih elemenata (NLMKE) te inkrementalnoiterativnu metodu propisanu unutar IACS-ovih Združenih pravila za projektiranje tankera i brodova za rasuti teret (IACS H_CSR).

Modeli su napravljeni u programskim paketima FEMAP/NX NASTRAN i MAESTRO dok su potrebne provedene u programima LS-DYNA, LUSA i MARS. Jedna analiza zasnovana je na inkrementalnoiterativnoj metodi (LUSA, MARS) dok je druga na nelinearnoj metodi konačnih elemenata (LS-DYNA).

Cilj diplomskog rada je usporedba dobivenih graničnih momenata savijanja u stanju pregiba i progiba iz dviju metoda. Za stanje pregiba rezultati graničnih momenata savijanja kod obje metode se poklapaju odnosno odstupanje je minimalno. Granični moment savijanja kod NLMKE metode u stanju pregiba je veći za 2,6% od graničnog momenta savijanja kod inkrementalno-iterativne metode. U stanju progiba rezultati graničnih momenata savijana više odstupaju. Granični moment savijanja kod inkrementalno-iterativne metode je veći za 13,42% od momenta savijanja dobivenog NLMKE metodom.

Kolapsna sekvenca za stanje progiba i pregiba dobro se poklapa za obje korištene metode. Kolaps cijele konstrukcije označava trenutak kada je konstrukcija izgubila svoju nosivost. Kod obje metode u stanju pregiba i progiba vidiljivo je da je kritični strukturni element paluba koja prva kolabira. Paluba u stanju pregiba se prije plastificira nego se struktura dna izvije dok u stanju progiba kolabira uslijed izvijanja.

Za sve brodove granični moment savijanja u pregibu veći je od onog u progibu, te bi mogli ustvrditi da je progibni slučaj opterećenja kritičniji za sigurnost broda od pregibnog.

Iterativno-inkrementalna metoda je metoda koja je manje zahtjevna, a daje nam dovoljno točne rezultate. Koristi se kod uobičajenih projektnih postupaka upravo zbog pouzdanosti , a i kod programa kod kojih je implementirana omogućuje jednostavniju i brzu izradu modela (nekoliko sati) uz kratko proračunsko vrijeme (oko 5 sekunda za jedan presjek). NLMKE metoda je najkorisnija za razumijevanje kolapsnog scenarija, ali zbog složenosti i dugotrajnosti izrade MKE modela (oko 20 dana), te dugog proračunskog vremena (oko 15 sati) nije uobičajena kod projektnih postupaka. Rezultati dobiveni iz NLMKE metode mogu pomoći razvoju jednostavnijih metoda i validaciji rezultata.

Literatura

[1] Žiha, K., Parunov, J, Tušek, B., Granična čvrstoća brodskog trupa, stručni rad, časopis Brodogradnja 58 (1), pp 29-41, 2007.

[2] Žiha, K., Nastavni materijali za predavanja iz konstrukcije broda II., Uzdužna čvrstoća broda, http://www.fsb.unizg.hr/kziha/shipconstruction.

[3] IACS: Harmonize Common Structural Rules for Bulk Carrier and Oil Tankers, London, 2015.

[4] Andrić, J., Metodologija konceptualnog projektiranja brodskih konstrukcija s interakcijom trupnadgrađe, Doktorski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2007.

[5] 19th International Ship and Offshore Structure Congress, Committee III.1., "Ultimate Strength", Cascais, Portugal, 7-10 September, 2015.

[6] Smith, C.S.:Influence of local compressive failure on ultimate longitudinal strength of a ship's hull;, Proceedings of the International Symposium on Practical Design in Shipbuiliding, Tokyo, 1977.

[7] FEMAP/NX Nastran. Software documentation. Siemens Product Lifecycle Management Software, 2010.

[8] <u>https://en.wikipedia.org/wiki/Femap.</u>

[9] Samuelide, M.S., Koukounas, D., Pollalis, C., "Residual Strength of Damaged Ship's Hull", Proceedings of the PRAD2013, pp 1003-1010, CECO, Changwon City, Korea, 20-25 October, 2013.

[10] Notaro G, Kippenes J, Amlashi H, Russo M and Steen E, (2010), "Residual Hull Girder Strength of Ships with Collision or Grounding Damages", proceedings of PRADS 2011 Conference, Rio de Janeiro Brasil.

[11] MAESTRO Version 8.9.3: "Program documentation", Proteus Engineering, Stevensville, MD, USA.