
Implicitly coupled finite volume algorithms

Uroić, Tessa

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:593963

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-06

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:593963
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fsb:5544
https://dabar.srce.hr/islandora/object/fsb:5544

9

Priručnik grafičkih standarda za
oblikovanje vizualnih identiteta sastavnica

Sveučilište u Zagrebu
Vizualni identitet

Znak Sveučilišta
Verzija 2
c/b pozitiv

2.2.

Crno – bijeli pozitiv znaka Sveučilišta u Zagrebu (verzija
2) standardno je reproduciran u crnoj boji Pantone
Black, odnosno njenom cmyk ekvivalentu.
Detaljne specifikacije nalaze se u poglavlju Program
boja Priručnika grafičkih standarda za oblikovanje
vizualnih identiteta sastavnica.

Radi kvalitete i preciznosti reprodukcije, znak
Sveučilišta nije dozvoljeno rekonstruirati (precrtavati,
skenirati...) Vektorizirani znak nalazi se na elektroničkom
mediju koji je sastavni dio Priručnika grafičkih
standarda za oblikovanje vizualnih identiteta sastavnica.

korekcija znaka za smanjenje od 14 mm

University of Zagreb
Faculty of Mechanical Engineering and Naval Architecture

Tessa Uroić

Implicitly Coupled Finite Volume

Algorithms

DOCTORAL THESIS

Zagreb, 2019.

9

Priručnik grafičkih standarda za
oblikovanje vizualnih identiteta sastavnica

Sveučilište u Zagrebu
Vizualni identitet

Znak Sveučilišta
Verzija 2
c/b pozitiv

2.2.

Crno – bijeli pozitiv znaka Sveučilišta u Zagrebu (verzija
2) standardno je reproduciran u crnoj boji Pantone
Black, odnosno njenom cmyk ekvivalentu.
Detaljne specifikacije nalaze se u poglavlju Program
boja Priručnika grafičkih standarda za oblikovanje
vizualnih identiteta sastavnica.

Radi kvalitete i preciznosti reprodukcije, znak
Sveučilišta nije dozvoljeno rekonstruirati (precrtavati,
skenirati...) Vektorizirani znak nalazi se na elektroničkom
mediju koji je sastavni dio Priručnika grafičkih
standarda za oblikovanje vizualnih identiteta sastavnica.

korekcija znaka za smanjenje od 14 mm

University of Zagreb
Faculty of Mechanical Engineering and Naval Architecture

Tessa Uroić

Implicitly Coupled Finite Volume

Algorithms

DOCTORAL THESIS

Supervisor: prof. Hrvoje Jasak, PhD

Zagreb, 2019.

9

Priručnik grafičkih standarda za
oblikovanje vizualnih identiteta sastavnica

Sveučilište u Zagrebu
Vizualni identitet

Znak Sveučilišta
Verzija 2
c/b pozitiv

2.2.

Crno – bijeli pozitiv znaka Sveučilišta u Zagrebu (verzija
2) standardno je reproduciran u crnoj boji Pantone
Black, odnosno njenom cmyk ekvivalentu.
Detaljne specifikacije nalaze se u poglavlju Program
boja Priručnika grafičkih standarda za oblikovanje
vizualnih identiteta sastavnica.

Radi kvalitete i preciznosti reprodukcije, znak
Sveučilišta nije dozvoljeno rekonstruirati (precrtavati,
skenirati...) Vektorizirani znak nalazi se na elektroničkom
mediju koji je sastavni dio Priručnika grafičkih
standarda za oblikovanje vizualnih identiteta sastavnica.

korekcija znaka za smanjenje od 14 mm

Sveučilište u Zagrebu
Fakultet strojarstva i brodogradnje

Tessa Uroić

Implicitno spregnuti algoritmi u metodi

kontrolnih volumena

DOKTORSKI RAD

Mentor: prof. dr. sc. Hrvoje Jasak

Zagreb, 2019.

Dedicated to friends.

Acknowledgements

I would like to express my sincere gratitude to individuals who contributed to
the quality and completion of this thesis.

Foremost, I thank my supervisor prof. Hrvoje Jasak, for sharing his knowledge
and expertise in the field of computational fluid dynamics and finite volume
method and for patiently reviewing my work. The debugging sessions of SAMG
are also greatly appreciated.

I am grateful to Vuko Vukčević, who worked on the first versions of the
implicitly coupled solver and has implemented the ILUC preconditioner into
foam-extend.

Images which make this thesis easier to understand were generated with the
help of my dear student Luka Balatinec, who I am indebted to.

There were also many others who (un)intendedly helped me in some way, and
I dedicate the past 5 years to them.

Abstract

In this thesis a comparison of pressure–velocity coupling algorithms is conducted
with special emphasis on the implicit coupling of momentum and pressure equa-
tions in a single linear system as an improvement on the conventional segre-
gated methods. The research is done in the scope of the finite volume method,
and carried out in foam-extend, a community driven fork of the open source
computational fluid dynamics software OpenFOAM. We focus on the equations for
steady–state, incompressible, single–phase turbulent flow. To counteract the zero
block on the diagonal of the system, the pressure equation is derived as a Schur
complement. A description of the OpenFOAM matrix format is given as well as
the structure of the finite volume matrices which arise from the computational
mesh connectivity. Contributions from finite volume equation discretisation to
each term of the implicitly coupled block–matrix are illustrated. The computa-
tional effort is directed mostly to solving the pressure Poisson equation, thus it is
very important to employ an efficient solver for elliptic equations, which is also
effective for the hyperbolic momentum equation. An overview of linear solvers is
given: fixed–point methods, algebraic multigrid and some versions of the Krylov
subspace solvers are analysed in the context of Finite Volume Method. Two
methods for constructing coarse matrices in algebraic multigrid are compared:
additive correction method, which is the usual choice for the implicitly coupled
pressure–velocity system in recent literature, and the newly implemented selec-
tion algebraic multigrid. Incomplete lower–upper factorisation based on Crout’s
algorithm is used as an error smoother with the algebraic multigrid method. Par-
allelisation issues regarding the selection algebraic multigrid are laid out, with
additional comments on the possible parallelisation strategies. The performance
of both segregated and implicitly coupled pressure–velocity solver is compared
for multiple complex test cases including external aerodynamics cases (Formula
1 front wing, bluff body with a diffuser, submarine) and internal flow cases (cool-
ing of an engine jacket, centrifugal pump, Francis turbine) both on structured
and unstructured meshes. A comparison of convergence against computation

time and number of non–linear iterations is given, both in terms of field residuals
as well as integral values. The influence of the linear solver on the convergence
of implicitly coupled pressure–velocity solver is investigated, as well as the im-
pact of different settings of selection algebraic multigrid on convergence rate and
computation time.

Keywords:
Implicit coupling, Block matrix, Pressure–velocity coupling, Algebraic multigrid,
Conjugate gradient method

Prošireni sažetak

I Sprega jednadžbi brzine i tlaka

Stacionarno, nestlačivo, jednofazno i turbulentno strujanje fluida opisano je jed-
nadžbom očuvanja količine gibanja koja sadrži nelinearni konvekcijski član, difu-
zijski član te površinske sile u obliku gradijenta tlaka, i jednadžbom kontinuiteta,
koja nameće uvjet konzervativnosti polja brzine u nestlačivom strujanju. Budući
da ne postoji analitička metoda za rješavanje ovog sustava jednadžbi, koriste se
iterativni algoritmi. U opisanom sustavu ne postoji eksplicitna jednadžba koja
opisuje polje tlaka, što onemogućava korištenje klasičnih iterativnih metoda u
kojima se neizbježno provodi dijeljenje dijagonalnim elementom matrice. Stoga
se iz jednadžbe količine gibanja izvodi izraz za polje brzine te uvrštava u jed-
nadžbu kontinuiteta kako bi se dobila jednadžba iz koje se može izračunati polje
tlaka. Dobivena jednadžba tlaka ima oblik Poissonove jednadžbe, eliptičnog je
karaktera te predstavlja najzahtjevniji dio rješenja linearne sprege brzine i tlaka.

Zbog ograničenih računalnih resursa, 70.–tih i 80.–tih godina prošlog stoljeća
razvijaju se algoritmi koji jednadžbu količine gibanja i tlaka rješavaju u odvo-
jenim linearnim sustavima, uvrštavajući prethodno izračunate vrijednosti druge
varijable. Pristup razdvajanja jednadžbi linearnog sustava prisutan je do danas,
a algoritmi SIMPLE i PISO te njihove inačice još se uvijek koriste u modernim
kodovima za računalnu dinamiku fluida.

U ovom je radu predstavljen postupak implicitne sprege jednadžbe količine
gibanja i tlaka u jedinstveni linearni sustav, koji je implementiran u program
otvorenog koda za računalnu dinamiku fluida OpenFOAM. Matrica implicitno spreg-
nutog sustava ima 4 puta veći broj redaka i stupaca u odnosu na matrice u SIM-
PLE algoritmu, dok su nepoznanice u vektoru poredane s obzirom na indeks
kontrolnog volumena za koji se računaju. Zbog toga su matrični elementi koji
odgovaraju jednadžbama za pojedini kontrolni volumen, i sami matrice dimenzije
4× 4, a matrica implicitno spregnutog sustava naziva se blok–matricom. Budući
da se u jednom sustavu javljaju jednadžbe različitih karaktera, hiperbolična jed-

nadžba količine gibanja te eliptična jednadžba tlaka, izbor algoritma za rješavanje
linearnog sustava dodatno je otežan.

II Linearni algoritmi

Osnovni linearni algoritmi za rješavanje linearnih sustava su iteracije fiksne točke,
tj. Jacobijeva i Gauss–Seidelova metoda. Na temelju spektralne analize matrice
iteracije spomenutih metoda, uočeno je da konvergencija metoda usporava nakon
što se eliminiraju greške čije komponente odgovaraju najvećim svojstvenim vri-
jednostima (visoke frekvencije), tj. preostala greška smatra se glatkom. Grešku je
moguće ponovno učiniti oscilatornom zadržavajući samo komponente koje odgo-
varaju malim svojstvenim vrijednostima, što je uloga multigrid algoritma.

U ovom se radu koriste algebarske multigrid metode, koje ne trebaju infor-
macije iz početne (fine) proračunske mreže, već za konstrukciju grubih razina
koriste matrične elemente. Predstavljene su dvije metode: additive correction
(dodane korekcije – AAMG) i selection (selekcijska – SAMG) metoda. AAMG
metoda konstruira grubu matricu zbrajanjem elemenata fine matrice, što se
opravdava konzervativnošću jednadžbi količine gibanja i kontinuiteta za kontrolni
volumen. Kada bismo promatrali proračunsku mrežu, mreža grube razine AAMG
metode dobila bi se grupiranjem volumena fine mreže u jedan veći volumen. Do-
dana korekcija odnosi se na član koji se dodaje izračunatom rješenju kako bi se
kompenzirala pogreška koja se javlja zbog preslikavanja izračunatog rješenja s
grubog na fini nivo. U SAMG metodi, matrica na gruboj razini konstruira se
koristeći Galerkinov varijacijski princip, odnosno, u fiktivnoj proračunskoj mreži
grube razine preostaje određeni broj odabranih kontrolnih volumena s fine razine.
Budući da se u SAMG metodi koristi linearna interpolacija rješenja izračunatog
na gruboj razini u linearni sustav na finoj razini, ostvaruje se bolja konvergencija
rješenja u usporedbi s AAMG metodom. Multigrid metode optimalne su upravo
za rješenje Poissonovog tipa jednadžbi jer osiguravaju efikasan prijenos lokalnih
informacija na globalnoj razini sustava.

Poseban izazov predstavlja paralelizacija SAMG algoritma, budući da je pro-
ces odabira jednadžbi za grubu razinu u potpunosti sekvencijalan. Kako bi se
očuvala efikasnost algoritma, uvode se sljedeća ograničenja:

• odabir jednadžbi grube razine provodi se nezavisno na svakom procesoru,

• nije moguća interpolacija korekcije sa susjednog procesora,

• matrični elementi koji se nalaze na granici procesora na gruboj razini raču-
naju se također Galerkinovim principom pomoću filtrirane matrice interpo-
lacije i restrikcije.

Budući da se u matricama grubih razina pojavljuju novi elementi, raste po-
punjenost matrice, a ujedno i broj elemenata na procesorskoj granici.

Kao dopunu kojom se efikasno rješava i hiperbolična jednadžba količine gibanja,
odabrali smo algoritme koji komponente rješenja konstruiraju linearnom kombi-
nacijom vektora iz Krylovljevih potprostora. U radu je detaljno opisan izvod
metode konjugiranih gradijenata (CG), te inačica za nesimetrične matrice stabi-
liziranih bikonjugiranih gradijenata (BiCGStab). BiCGStab korišten je kao algo-
ritam za efikasno rješavanje sustava fine razine multigrid algoritma, dok multigrid
ciklus služi kao prekondicioniranje kojim se dobiva rješenje Poissonove jednadžbe
tlaka. Budući da klasične iterativne metode fiksne točke nisu dale zadovoljavajuću
konvergenciju za izglađivanje greške (ili su čak divergirale), implementirali smo
nepotpunu LU faktorizaciju matrice temeljenu na Croutovom algoritmu (ILUC).
Konvergencija ILU algoritma ovisi o stukturi matrice te je poželjno zadržati vrp-
častu formu.

III Rezultati i zaključak

Konvergenciju SIMPLE i implicitno spregnutog algoritma usporedili smo na nizu
slučajeva s kompleksnim turbulentnim strujanjem: opstrujavanje krila bolida
Formule 1, analiza strujanja u pojednostavljenom difuzoru bolida, opstrujavanje
modela podmornice BB2 na tri gustoće mreže, te slučajeve sa zonama rotacije
u centrifugalnoj pumpi i Francisovoj turbini. Simulacije su provedene na struk-
turiranim i nestrukturiranim mrežama, veličine od 2 do 14 milijuna kontrolnih
volumena. Na temelju rezultata simulacija, doneseni su sljedeći zaključci o algo-
ritmima:

• implicitno spregnuti algoritam u usporedbi sa SIMPLE algoritmom konver-
gira s manjim oscilacijama reziduala i integralnih veličina,

• budući da se u implicitno spregnutom algoritmu ne podrelaksira polje tlaka,
a jednadžba količine gibanja se podrelaksira minimalno, ostvaruje se brža
konvergencija u pogledu broja iteracija, te ukupnog računalnog vremena,

• konvergencija implicitno spregnutog algoritma vrlo malo ili uopće ne ovisi
o gustoći i tipu proračunske mreže, što nije slučaj kod SIMPLE algoritma,

• za proračune s implicitno spregnutim algoritmom potrebna je značajno veća
količina radne memorije nego za SIMPLE algoritam, budući da je matrica
sustava 16 puta veća.

Analizirali smo postavke i konvergenciju SAMG algoritma za implicitno spregnuti
sustav te je primijećeno sljedeće:

• korištenje SAMG algoritma za rješenje linearnog implicitno spregnutog sus-
tava jednadžbi količine gibanja i kontinuiteta daje manje oscilatornu kon-
vergenciju reziduala u usporedbi s AAMG i BiCGStab algoritmima, no za
jednu iteraciju SAMG–a potreban je veći broj operacija,

• SAMG često postiže teoretsku brzinu konvergencije (smanjuje rezidual jedan
red veličine po iteraciji), ali na početku simulacije, dok se rješenje još uvijek
značajno mijenja, potreban je veći broj iteracija kako bi se ostvarila željena
konvergencija,

• najbolja konvergencija postiže se korištenjem Poissonove jednadžbe tlaka
za računanje težinskih faktora interpolacije,

• odabir broja jednadžbi u matrici najgrublje razine, kao i odabir multigrid
ciklusa utječu ne samo na konvergenciju nego i ukupno vrijeme proračuna:
kako bi se smanjilo potrebno vrijeme, koristi se V–ciklus i veći broj jed-
nadžbi grube razine,

• konvergencija ILUC algoritma za izglađivanje greške ovisi o strukturi ma-
trice te se preporučuje i na grubim razinama očuvati vrpčastu strukturu
postignutu optimalnim pobrojavanjem kontrolnih volumena u mreži,

• odabir jednadžbi koje će se rješavati na gruboj razini SAMG–a, ovisi o tipu
kontrolnih volumena proračunske mreže: rješenje na mrežama s anizotrop-
nim kontrolnim volumenima mogu lošije konvergirati od onih na mrežama
s uniformnim volumenima,

• paralelizacija SAMG–a u kojoj se proces interpolacije ograničava na lokalnu
procesorsku jezgru ne umanjuje značajno stopu konvergencije linearnog i
nelinearnog algoritma.

Na temelju dosadašnjeg istraživanja, predlažemo sljedeće korake kao dopunu
ili potencijalni nastavak istraživanja:

• izmjeriti performanse implicitno spregnutog algoritma polja tlaka i brzine
na superračunalu s velikim brojem jezgara,

• proučiti moguće aproksimacije matrice konvekcije i difuzije čiji se inverz
koristi kao difuzijski koeficijent u Poissonovoj jednadžbi tlaka,

• implementirati implicitne rubne uvjete (npr. rubni uvjet sa zadanim total-
nim tlakom),

• proširiti implicitno spregnuti algoritam i za stlačiva strujanja, za čiju je
stabilnost nužno implicitno tretirati rubne uvjete,

• razmotriti raspodjelu poslova između pojedinih procesora u paralelnim si-
mulacijama sa SAMG algoritmom,

• implementirati FLEX multigrid ciklus, što može poboljšati konvergenciju
linearnog algoritma (slično W–ciklusu): FLEX ciklus ima svojstvo samore-
gulacije, tj. rješenje se dinamički prebacuje s finog na grube razine i obrnuto
u ovisnosti o vrijednosti reziduala,

• implementirati ILU algoritam s pivotiranjem kako bi se spriječila divergen-
cija algoritma u slučaju matričnih elemenata različitih redova veličine.

Ključne riječi
Implicitno spregnuti algoritmi, blok–matrica, sprega polja brzine i tlaka, alge-
barski multigrid, metoda konjugiranih gradijenata

Contents

1. Introduction . 1
1.1. Previous and Related Studies . 1
1.2. Present Contributions . 6
1.3. Thesis Outline . 7

2. Pressure–velocity system . 10
2.1. Introduction . 10
2.2. Governing Equations . 10
2.3. Pressure–Velocity Coupling Algorithms 11

2.3.1. SIMPLE Algorithm . 12
2.3.2. PISO Algorithm . 17
2.3.3. Implicitly Coupled Pressure–Velocity System 20

2.4. Finite Volume Equation Discretisation 25
2.4.1. Mesh and Matrix . 25
2.4.2. Preliminaries for Spatial Terms 33
2.4.3. Convection Term . 34
2.4.4. Velocity Diffusion Term . 37
2.4.5. Pressure Gradient . 39
2.4.6. Velocity Divergence . 42
2.4.7. Pressure Laplacian . 42
2.4.8. Source Terms . 43
2.4.9. Boundary Conditions . 44
2.4.10. Overview of the Implicitly Coupled Pressure–Velocity System 50

2.5. Closure . 52

3. Linear Solvers . 54
3.1. Introduction . 54
3.2. Algebraic Multigrid . 54

3.2.1. Basic iterative solvers . 55

Contents ii

3.2.2. Multigrid Cycle . 59
3.2.3. Algebraic Smoothness . 64
3.2.4. Additive Correction Algebraic Multigrid 72
3.2.5. Selection Algebraic Multigrid 77
3.2.6. AMG Solvers for Block–Matrices 84
3.2.7. Parallelisation of AMG Solvers and Smoothers 87

3.3. Conjugate Gradient Method . 100
3.3.1. Introduction to Conjugate Gradient Method 100
3.3.2. Conjugate Gradient Method 107
3.3.3. Preconditioning . 113
3.3.4. Krylov Subspace Methods for Nonsymmetric Matrices 126

3.4. Closure . 136

4. Case Studies . 137
4.1. Introduction . 137
4.2. Segregated vs. Implicitly Coupled Pressure–Velocity Solver 138
4.3. Performance of the Selection Algebraic Multigrid Algorithm 161
4.4. Closure . 181

5. Conclusions and Future Work . 182

Appendices . 187

A Mesh Statistics and Images, Boundary Conditions, Flow Field Im-

ages . 188

List of Figures

2.1 A method for enforcing the mass continuity in incompressible flow
is to manipulate the pressure field. If there is too much inflow,
increase the pressure in the control volume to induce outflow. If
there is too much outflow, decrease the pressure to turn the gra-
dient in the opposite direction and pull the flow into the volume. . 12

2.2 Arbitrary polyhedral finite volume cell with distinctive features:
cell index i, position of the cell centre ri, face centre f , face area
vector sf , distance d between cell centres of adjacent cells i and j. 26

2.3 A two–dimensional finite volume mesh. Each cell is marked with
an index, which corresponds to the matrix row, Fig. 2.4. “Onion”
numbering is used: each new index is assigned to an unmarked cell
which is a neighbour of the cell with the smallest index, similar to
layers of an onion. 27

2.4 A finite volume matrix corresponding to a two–dimensional mesh
shown in Fig. 2.3. Dark blue denotes the diagonal elements, light
blue the upper triangle and grey lower triangle elements. Row
corresponding to cell 4 is highlighted to ilustrate the addresing
principles. 28

2.5 A simple 2D finite volume mesh. Cell indices are shown in black,
while the face indices are shown in red. 31

2.6 OpenFOAM LDU matrix format. Matrix elements are stored in
three arrays: diagonal, lower and upper. Red arrows illustrate the
order of writing the elements into these arrays. Non–zero elements
in the upper triangle are stored row–wise, while the elements in
lower triangle are stored column–wise (for a symmetric matrix L =

UT). 32
2.7 NVD diagram of blended convection schemes. 36

LIST OF FIGURES iv

2.8 Non–orthogonal correction. When calculating the face gradient,
take into account the non–orthogonality](d, sf) of the mesh and
split the face area vector sf into two parts: orthogonal component
∆ and non–orthogonal component k. The magnitude of ∆ can
vary depending on the splitting: ∆min for minimum correction,
∆ortho for orthogonal correction and ∆over for overrelaxed correction. 39

2.9 A finite volume cell at the boundary of the computational domain. 45

3.1 Two level multigrid V–cycle. 60
3.2 Multi–level multigrid V–cycle. 63
3.3 Multi–level multigrid W–cycle. 63
3.4 Full multigrid cycle. 63
3.5 Scaling of eigenvectors with a matrix A. The eigenvectors cannot

rotate (except in the opposite direction, but they always lie on
the same line), however, they can contract if the corresponding
eigenvalue is smaller than 1, or dilate if the eigenvalue is larger
than 1. 66

3.6 Coarsening in AAMG: grouping of the cells eliminates the anisotropy
of the mesh. 73

3.7 The direction of influences and dependencies in a coefficient matrix. 78
3.8 2D mesh coarsening pattern produced by the sequential SAMG

algorithm, for a Laplacian operator. 88
3.9 2D mesh coarsening pattern produced by the parallel SAMG al-

gorithm, for a Laplacian operator, on two neighbouring processors
P0 and P1. 88

3.10 Coarse matrix connectivity of cell 12 in the sequential SAMG al-
gorithm. The formulae on the arrows represent the off–diagonal
matrix elements. The diagonal element is written out on the right. 97

3.11 Full blocking parallel SAMG: there is a layer of only coarse cells
on the processor boundary. There is no need for processor com-
munication since the boundary matrix elements remain the same
on all multigrid levels. 98

LIST OF FIGURES v

3.12 Minimum blocking parallel SAMG: there is a layer of cells on the
processor boundary which is separated from interior cells in the
coarsening process. There is some processor communication since
the boundary matrix elements change based on the multigrid level. 99

3.13 Quadratic function of a positive definite matrix has a shape of a
convex paraboloid, shown on the left. A negative definite matrix
is a negative positive definite matrix and quadratic function is a
concave paraboloid, shown on the right. 101

3.14 Isocontours of a quadratic function corresponding to a positive
definite matrix (left) and a negative definite matrix (right). The
black arrows correspond to the eigenvectors of matrix A, while the
red arrows represent the eigenvectors of a Jacobi preconditioned
matrix I−D−1A. 101

3.15 Residual vectors plotted on the isocontours of the quadratic func-
tion, pointing in the direction of the greatest decrease of the function.103

3.16 Convergence of steepest descent for a 2x2 matrix: left – matrix
with two distinct eigenvalues, right – matrix with duplicate eigen-
values. 104

3.17 Quadratic functions of two symmetric positive definite matrices
with eigenvalues of different magnitudes. The black arrows corre-
spond to the eigenvectors of matrix A, while the red arrows rep-
resent the eigenvectors of a Jacobi preconditioned matrix I−D−1A.105

3.18 Subspace D(2) for the approximation of the solution in the second
iteration is spanned by the initial vectors u(0) and u(1). It is also
spanned by A–orthogonal vectors d(0) and d(1). The error e(2) is
A–orthogonal to D(2), while the residual r(2) is orthogonal. The
new search direction is a linear combination of r(2) and d(1) and it
is A–orthogonal to D(2). 111

3.19 On the left: quadratic function of a symmetric positive definite
matrix and eigenvectors with the corresponding eigenvalues. On
the right: diagonally preconditioned matrix with the correspond-
ing eigenvectors and eigenvalues, no longer symmetric. 116

LIST OF FIGURES vi

3.20 Demonstration of explicit diagonal preconditioning using the Ger-
shgorin theorem: the eigenvalues of the preconditioned matrix
(red) are clustered closer together in comparison to the eigenvalues
of the original matrix (black). 117

3.21 Versions of LU factorisation: KIJ (left), IKJ (center), Crout (right).122
3.22 Sparsity pattern of a matrix, corresponding to mesh shown in

Fig. 3.8, with extended addressing depending on the level of fill–in. 126

4.1 Bluff body: convergence of drag and lift coefficient against non–
linear iterations and execution time for the segregated (SIMPLE)
and implicitly coupled pressure–velocity solver. 141

4.2 Bluff body: the pattern of the flow on the bottom surface. 142
4.3 Front wing: convergence of the residual for segregated and coupled

solver against the number of non–linear iterations. 146
4.4 Front wing: convergence of the residual for segregated and coupled

solver against execution time. 147
4.5 Front wing: convergence of the drag and lift force for segregated

and coupled solver. 147
4.6 BB2 submarine: comparison of experimental data vs. data ob-

tained from the simulation with implicitly coupled pressure–velocity
solver. Pressure coefficient cp = p

1
2
ρu2∞

on the bottom of the hull,
and non–dimensional wall shear stress in x–direction τx = τx

1
2
ρu2∞

on the bottom of the hull. 149
4.7 BB2 submarine: convergence of the total force onto the hull for

three mesh densities, segregated and coupled solver. 149
4.8 BB2 submarine: convergence of field variables for three mesh den-

sities, segregated and coupled solver. 151
4.9 Francis turbine: GGI interfaces between the stay vanes and rotor,

and between rotor and the draft tube. 154
4.10 Francis turbine: convergence of turbine head and power for the

implicitly coupled and SIMPLE algorithm. 155
4.11 Centrifugal pump: convergence of pump head and power for the

implicitly coupled and SIMPLE algorithm. 157

LIST OF FIGURES vii

4.12 Centrifugal pump: slice showing a detail of a hybrid computational
mesh. 158

4.13 Centrifugal pump: GGI interface which connects the structured
and unstructured section of the mesh (left), and the position of
the impeller (right). 158

4.14 Centrifugal pump: convergence of field variables for the segregated
and coupled solver against the number of non–linear iterations.
Coupled solver was run with block–selection AMG and BiCGStab
linear solvers, as well as explicit MRF terms. 159

4.15 Centrifugal pump: convergence of field variables for the segregated
and coupled solver against execution time. Coupled solver was run
with block–selection AMG and BiCGStab linear solvers, as well as
explicit MRF terms. 160

4.16 Engine cooling: convergence of field variables for different linear
solvers in the 15th non–linear iteration of the implicitly coupled
pressure–velocity solver. 162

4.17 Backward–facing step: convergence of field variables for different
settings (IDs in Table 4.4) of linear solver in the 50th non–linear it-
eration of the implicitly coupled pressure–velocity solver and non–
linear convergence for the same settings. 171

4.18 First coarse level for 7 cases in Table 4.4, top to bottom image
corresponds to ascending ID. Colours of the rainbow denote the
order of selection or cluster formation, blue first to magenta last,
grey cells are eliminated as fine. 172

4.19 Second coarse level for 7 cases in Table 4.4, top to bottom image
corresponds to ascending ID. Colours of the rainbow denote the
order of selection or cluster formation, blue first to magenta last,
grey cells are eliminated as fine. 173

4.20 Third coarse level for 7 cases in Table 4.4, top to bottom image
corresponds to ascending ID. Colours of the rainbow denote the
order of selection or cluster formation, blue first to magenta last,
grey cells are eliminated as fine. 174

LIST OF FIGURES viii

4.21 Fourth coarse level for 7 cases in Table 4.4, top to bottom image
corresponds to ascending ID. Colours of the rainbow denote the
order of selection or cluster formation, blue first to magenta last,
grey cells are eliminated as fine. 175

4.22 Last coarse level for 7 cases in Table 4.4, top to bottom image
corresponds to ascending ID. Colours of the rainbow denote the
order of selection or cluster formation, blue first to magenta last,
grey cells are eliminated as fine. 176

4.23 Generic submarine: convergence of linear solver residuals for cases
with corresponding settings presented in Table 4.6, non–linear it-
eration 3. 177

4.24 Generic submarine: convergence of linear solver residuals for cases
with corresponding settings presented in Table 4.7, non–linear it-
eration 10. 178

4.25 BB2 submarine: number of linear iterations per non–linear itera-
tion depending on the number of CPU cores. 179

4.26 BB2 submarine: parallel efficiency calculated for the 10th non–
linear iteration of the implicitly coupled pressure–velocity solver.
The total number of linear iterations for 10 non–linear iterations
is annotated for each number of processors. 180

A1 Backward facing step: two–dimensional finite volume mesh. 188
A2 Centrifugal pump: velocity and pressure field on a slice through

the impeller. 189
A3 Generic submarine: a slice through the finite volume mesh. 190
A4 Engine cooling: finite volume mesh, inlet surface is purple, outlet

is yellow. 191
A5 Engine cooling: streamlines couloured by the values of velocity. . . 192
A6 Francis turbine: impeller surface mesh. 193
A7 Francis turbine: slice showing the velocity field arount stay vanes

and impeller (top), velocity field at the diffuser outlet (bottom). . 194
A8 Front wing: crinkled slices through the finite volume mesh. 195
A9 Front wing: pressure on the surface of the wing. 195

LIST OF FIGURES ix

A10 Front wing: vortices in the wake of the wing coloured by the values
of velocity. 196

A11 Bluff body: slice through the finite volume mesh. 197
A12 Bluff body: pressure on the surface of the body. 197
A13 BB2 submarine: slices through the finite volume mesh showing

three densities - coarse to fine, from top to bottom. 198

List of Tables

2.1 Arrays corresponding to LDU matrix format in OpenFOAM. . . . 32
2.2 Contribution of finite volume discretisation schemes and boundary

conditions to diagonal and off–diagonal matrix elements, and right
hand side vector of the implicitly coupled pressure–velocity system. 52

4.1 Setup of linear solvers for segregated and implicitly coupled solver
for all test cases. 143

4.2 BB2 submarine: mesh properties and boundary conditions. 148
4.3 Centrifugal pump: dependence of performance of linear and non–

linear implicitly coupled solver on underrelaxation factor. 156
4.4 Backward–facing step: comparison of different settings for the

multigrid solver (non–linear iteration 50). 164
4.5 Backward–facing step: coarsening statistics for the 50th non–linear

iteration. 164
4.6 Generic submarine: coarsening statistics for the 3rd non–linear it-

eration. 167
4.7 Generic submarine: coarsening statistics for the 10th non–linear

iteration. 167
4.8 BB2 submarine: statistics of parallel simulation tests. 169

A1 Backwardfacing step: mesh statistics and boundary conditions. . . 188
A2 Centrifugal pump: mesh statistics and boundary conditions. . . . 188
A3 Generic submarine: mesh statistics and boundary conditions. . . . 190
A4 Engine cooling: mesh statistics and boundary conditions. 191
A5 Francis turbine: mesh statistics and boundary conditions. 192
A6 Front wing: mesh statistics and boundary conditions. 193
A7 Bluff body: mesh statistics and boundary conditions. 196

Nomenclature

Af face surface area m2

Li cluster i in additive correction multigrid -

N number of cells in computational mesh, dimension of the coefficient matrix-

û pseudo–velocity m/s

C set of coarse equations in multigrid -

F set of fine equations in multigrid -

N set of neighbouring equations in multigrid -

Aij block matrix element -

Au convection–diffusion matrix -

D diagonal matrix -

Eu matrix with off–diagonal elements of the convection–diffusion matrix -

G discretised gradient operator -

GT discretised divergence operator -

GR Givens rotations matrix -

H(u) matrix which contains only the off–diagonal part of the momentum matrix
multiplied by the values of velocity -

H Hessenberg matrix -

I identity matrix -

L lower triangular matrix -

M multigrid matrix -

Nomenclature xii

PA preconditioning matrix -

P prolongation matrix in multigrid -

Q unitary matrix -

R restriction matrix in multigrid -

S smoothing matrix in multigrid -

U upper triangular matrix -

W Hodge dual of angular velocity -

b general right hand side vector

d distance vector between two cell centres m

e error -

k non–orthogonal vector component in orthogonal correction

q columns of the unitary matrix -

rb right hand side vector -

r residual vector -

rd distance from the axis of rotation m

sf surface normal face area vector m2

uR relative velocity m/s

u velocity m/s

u∗ intermediate velocity field in SIMPLE m/s

v eigenvector -

x general unknown vector

aii diagonal matrix element -

Nomenclature xiii

aij off–diagonal matrix element -

b center of the boundary face -

f cell face centre -

f(x) quadratic function of the unknown vector x -

gb specified gradient value -

k turbulent kinetic energy m2/s2

p kinematic pressure m2/s2

p∗ intermediate pressure field in SIMPLE m2/s2

w weighting factor in selection multigrid -

wCD interpolation weight Gauss linear scheme -

Calligraphy letters

D Krylov subspace -

Greek letters

α length of the step in the direction of the residual in steepest descent -

αu underrelaxation factor for the momentum equation -

αMG strength of connection factor in agglomeration multigrid -

β projection operator in conjugate gradients -

βMG strength of connection factor in selection multigrid -

ε rate of dissipation of turbulent kinetic energy m2/s3

γ scaling factor in selection multigrid -

κ matrix condition number -

λ eigenvalue -

Nomenclature xiv

∆ orthogonal vector component in orthogonal correction

ν kinematic viscosity m2/s

Ω angular velocity rad/s

ω specific rate of dissipation of turbulent kinetic energy s−1

ωBCGS smoothing coefficient in biconjugate gradient stabilised -

Φ volumetric flux m3/s

φ general scalar quantity -

φBCGS polynomial in biconjugate gradient stabilised -

π polynomial in biconjugate gradient stabilised -

ψ smoothing function in biconjugate gradient stabilised -

ξ residual normalisation factor -

ζ length of component of e -

Superscripts

(k) current time step or iteration -

T transpose operation -

C value on the coarse level of multigrid -

F value on the fine level of multigrid -

S strong connection in selection algebraic multigrid -

W weak connection in selection algebraic multigrid -

Subscripts

f value which belongs to a face -

i value which belongs to the cell centre of cell i -

j value which belongs to the cell centre of neighbouring cell j -

1. Introduction

This thesis is motivated by and aimed at the computational fluid dynamics (CFD)
community, especially those using the OpenFOAM [1] CFD library, among whom
treatment of non–linear and linear solvers as black–box tools is broadly spread.
Many (more or less) experienced users and even developers tend to copy–paste
the settings of the solution algorithms without taking into consideration the un-
derlying physics, discrete equations and structure of the linear system. Since
recent development in the scope of the finite volume method is dedicated to
implicit coupling of equation sets, we have derived and implemented an implic-
itly coupled pressure–velocity system, which is the basis for the solution of the
majority of problems in CFD. We have analysed the structure of the linearised
pressure–velocity system and identified the appropriate solvers for the solution
of the linear system. The mathematical background and nuances of each type of
linear solvers are illustrated from an engineer’s point of view, in hope that it will
be useful to others when their simulations end with a floating point exception.

1.1. Previous and Related Studies

Since the 1960s, following the development of modern computers, there has been
a continuous effort to develop a suitable, accurate and efficient solver for the
Navier–Stokes equations in the scope of computational fluid dynamics and the
finite volume method (FVM). The first step is the transformation of these non–
linear partial differential equations into a linear system which will represent the
continuous solution sufficiently well in a discrete manner. Even today, each dis-
cretisation technique - finite differences, finite elements, finite volumes - has its
dedicated users, depending on the underlying physics of the problem they are
trying to solve. Due to its conservation properties, the most popular method
for the solution of turbulent fluid flow equations in practical applications is the
FVM, which will be used in the scope of this thesis. We focus on the solution
techniques for the steady–state, incompressible, single–phase and turbulent flow

1. Introduction 2

equations. Here, incompressibility actually generates a constraint on the velocity
field. That is, velocity field must be divergence free or - what comes in, must
come out. The pressure field appears only in the momentum equation, under
the gradient operator. This means that there doesn’t exist a unique solution for
the pressure field, since there is an infinite number of pressure values which could
result in a certain pressure gradient. The issue is remedied by assigning a value of
pressure somewhere in the domain, whether it is a single point or a set of points,
e.g. on the outlet boundary.

The incompressibility constraint has led researchers to a natural choice of spa-
tial discretisation - using staggered meshes, where the pressure values are stored
in cell centres, while velocity components are stored at face centres. However,
in OpenFOAM, collocated meshes are used, where all variables are calculated and
stored at cell centres. This will cause certain issues which will be discussed in
Chapter 2..

The solution of discretised Navier–Stokes equations using a direct linear solver
such as Gaussian elimination [2] is formidable, since the application on sparse co-
efficient matrices would require a high amount of storage. Since there does not
exist an equation for pressure, zero elements appear on the diagonal of the coeffi-
cient matrix. This is a serious obstacle for common iterative solution techniques
in FVM CFD, since most of them include a division by the diagonal element.
These issues motivated researchers to invent an equation for pressure and the
limits of contemporary computers prompted the segregated solution techniques.
Due to low memory capacities, the momentum and (invented) pressure equation
were decoupled and solved sequentially in separate linear systems, using old val-
ues of the other variable, even though the coupling of velocity and pressure is
linear. The most recognisable segregated solver is the SIMPLE algorithm (Semi
IMplicit Pressure Linked Equations) [3] by Patankar and Spalding. The pressure
equation is derived by combining the momentum and continuity equation and
yielded a Poisson type equation for pressure. The Poisson equation for pressure
is elliptic in nature, i.e. the value at each point in space is affected by values at
other points. This effect was (unintentionally) beautifully described by Dosto-
evsky in his Brothers Karamazov: “For all is like an ocean, all flows and connects;
touch it in one place and it echoes at the other end of the world”. If only von

1. Introduction 3

Neumann boundary conditions are used for pressure, the resulting coefficient ma-
trix is diagonally equal, which causes convergence problems for iterative methods.
In this case as well, assigning a value of pressure in a single point relieves the
issue. Since the pressure field is used as a correction to achieve a divergence free
velocity field, the pressure field requires substantial underrelaxation, i.e. using
a certain fraction of old values to stabilise the solution in the following itera-
tion. Other methods emerged from SIMPLE by adding corrections to certain
assumptions which were made in the derivation of the algorithm. For example
Patankar [4] proposed SIMPLER (SIMPLE Revised), where he tried to remedy
the fact that a good velocity field (which is easier to guess) is often ruined by a
bad pressure correction, and the rest of the iteration is trying to fix that. That
is, he devised a procedure where values of the velocity are used to calculate the
pressure field and a solution of an additional Poisson equation is required, which
diminishes the overall efficiency. Another attempt was made by van Doormaal
and Raithby [5] with their SIMPLEC (SIMPLE Consistent) algorithm, where
they included a term containing the sum of off–diagonal matrix elements in the
momentum equation, which was neglected in SIMPLE. It yielded a solver very
similar to SIMPLE, but with no need for underrelaxation of the pressure field.
Issa presented the PISO (Pressure Implicit by Splitting of Operators) [6] method
where pressure was corrected twice in each non–linear iteration, which required
the solution of a Poisson type equation twice.

Some researchers tried to avoid solving the pressure Poisson equation since
it caused a great deal of difficulty in the solution procedure in terms of compu-
tational effort. Some authors even reported that it took up to 90% of overall
computational time [7]. Raithby and Schneider [8] proposed a method which did
not require a solution of the Poisson equation but it performed integration of
the momentum equation along two paths, starting from a reference point where
the value of pressure was set. Mazhar and Raithby [9] updated the method by
adding additional integration paths. A different approach can be taken by step-
ping back from the primitive flow variables and solving the flow field using the
velocity–vorticity [10] formulation or stream function–vorticity formulation. In
[11], the flow field was solved using the mass fluxes through cell faces, rather than
cell centred velocity values. The algorithm outperformed SIMPLE in terms of

1. Introduction 4

the number of iterations and the convergence did not deteriorate with increase
of mesh density. It was proposed that the method should be improved by inves-
tigating the properties of the corresponding linear system.

There were also attempts to retain the implicit linear coupling of pressure
and velocity, instead of solving them as two separate systems. Zedan and Schnei-
der [12, 13] tried an implicit solution for two–dimensional flows by arranging the
momentum and pressure equation into a single linear system, but it underper-
formed compared to segregated systems. At the beginning of the new millennium,
Mazhar [14, 15] using the natural form of two–dimensional equations, i.e. without
inventing the pressure equation, and rearranged the pressure–velocity system. He
ordered the unknowns by writing the two momentum equations as two consecu-
tive blocks, followed by the continuity equation. Even though there was a zero
matrix on the diagonal, a special incomplete factorisation was used to create
nonzero elements on the diagonal. He reported a significant speedup of conver-
gence.

The implicitly coupled algorithms have gained popularity over the last decade:
there have been numerous publications by multiple authors. Darwish et al. [16,
17] have adopted a derivation of equations similar to SIMPLE algorithm, which
they solve implicitly and have reported the performance for different applications:
turbomachinery [18, 19], compressible flows [20, 21] and two–phase flows [22]. A
similar solution technique was employed by Uroić et al. [23] for incompressible
and compressible flow, as well as Chen [24] and Falk and Schäfer [25]. The
procedure was even extended to non–Newtonian fluids: Fernandes et al. [26]
implemented a block coupled algorithm for the solution of laminar, incompressible
viscoelastic flow in OpenFOAM.

During our research, we have confirmed the findings reported in literature that
the bottleneck of implicitly coupled pressure–velocity solvers is the efficient solu-
tion of the pressure Poisson equation, which counteracts a saddle point problem,
i.e. the zero matrix on the diagonal. We have already discussed the global nature
of the elliptic pressure equation and the mutual dependence of all points in the
domain. Thus, a linear solver which could instantly deliver the information about
variations of pressure in a certain point to other points would be highly efficient
in solving the equation. Swift propagation of information is a characteristic of

1. Introduction 5

the multigrid method. Since we are dealing with industrial applications, where
computational meshes are often suboptimal in terms of structure and quality, the
focus is on the algebraic multigrid method (AMG), which operates only on the
linear algebraic equations, i.e. coefficient matrix and does not need any informa-
tion about or from the mesh. It relies on the strategy from geometric multigrid
method, where coarse level meshes can be selected using the Galerkin operator
[27] and it can be constructed purely algebraically. The implementation in this
thesis follows the work of Stüben and Ruge [28, 29] who described what is now
known as the classic algebraic multigrid algorithm in the finite element method.
The coarse levels are constructed by selecting equations from the previous fine
level, while the transfer of residual and coarse level correction are done with re-
striction and prolongation matrices. The algorithm was extended for implicitly
coupled systems by Clees and Stüben [30, 31] for a class of reaction–diffusion and
drift–diffusion equations.

Other options for the construction of coarse levels are the smoothed aggrega-
tion algebraic multigrid techniques [32] by Vanka and the additive correction al-
gebraic multigrid [33] by Hutchinson and Raithby. Both algorithms create coarse
levels by grouping the cells, rather than selecting them. In smoothed aggregation
a tentative interpolation operator is first created by assuming that the correction
from coarse levels will be applied as an injection. However, a Jacobi smoothing
sweep is performed on the interpolation operator to obtain a smoothed inter-
polation. Coarse level matrix is creted by Galerkin projection, as in the classic
method. In the scope of this thesis, we did not investigate the smoothed ag-
gregation multigrid. The additive correction multigrid does not exploit Galerkin
coarse level matrices. Instead, it relies on geometric multigrid principles: a coarse
level finite volume mesh can be constructed by grouping the fine level cells into
clusters. Since the assembled linear equations are conservative (integral balance),
the method retains this property by summing up the fine matrix elements which
correspond to equations grouped into a single cluster. That is, boundary val-
ues are “absorbed” into the cluster centre. An additional correction is added to
solution calculated on coarse level for each fine equation, to satisfy the integral
balance. Since it arises from the finite volume method naturally, it is the most
used algebraic multigrid metdod for the solution of Navier–Stokes equations. The

1. Introduction 6

method was also applied to implicitly–coupled pressure–velocity system for two–
dimensional flows by the same authors [34], later by Raw [35, 36] and adopted
by Darwish et al. [20].

Multigrid methods are state–of–the–art iterative solver and are still being
intensively developed as a part of several commercial codes for solving partial
differential equations. The most recent reports are dedicated to parallelisation
strategies, since some components of the algorithm are purely sequential. An
overview of many parallelisation attempts is given in [37]. The core of the re-
search is done by a group of authors who aspire to massively parallel multigrid
algorithms. Some deal with challenges of efficient parallel scaling [38], some try
to find optimal interpolation and relaxation methods for different types of equa-
tions [39] or explore aggresive coarsening techniques [40]. Multigrid is still an
active topic of research and we hope that other users of foam-extend will help
in the continuation of our efforts to efficiently apply it to general finite volume
problems.

1.2. Present Contributions

The objective of this thesis is to establish a “best–practice” procedure for the
solution of steady–state, single phase, incompressible and turbulent flows using
implicit coupling of the momentum and continuity equations in the framework
of arbitrary polyhedral finite volume method. The scientific contribution of the
thesis can be summarised into the following statements:

1. Implicit coupling of the momentum and continuity equations is imple-
mented in the framework of a publicly available open–source library for
computational fluid dynamics foam-extend, which is a community driven
fork of the OpenFOAM library. An overview of the derivation, discretisation
and the underlying properties of the implicitly coupled system is presented
in detail with additional comments on the implementation, structure and
challenges stemming from the system in foam-extend. Such an extensive
analysis cannot be found in present literature.

2. An overview of the state–of–the–art linear solvers, all available in foam-extend

1. Introduction 7

is given from an engineer’s point of view. Based on this overview, an appro-
priate linear algorithm is chosen for the solution of the linearised implicitly
coupled pressure–velocity system: an algebraic multigrid method based on
the selection of equations for construction of coarse levels, which was up
to now, used in the finite element method. To the best of author’s knowl-
edge, there has been no report on the application or performance of the
mentioned multigrid algorithm for the solution of the implicitly–coupled
pressure–velocity system.

3. The block–selective algebraic multigrid, which did not exist in any publicly
available open–source software until the implementation into foam-extend

in the scope of this thesis, is adapted for arbitrary implicitly coupled equa-
tion sets, as well as scalar equations. It is now one of the standard linear
solvers available in foam-extend, which allows further investigation for fi-
nite volume method applications. The algorithm is parallelised by modify-
ing the coarsening process, which was also not investigated or reported in
the scope of the finite volume method.

4. We have investigated the performance of the implicitly coupled pressure–
velocity solver in comparison to the segregated algorithm based on the
SIMPLE method for several test cases, using several linear solvers. Af-
ter we concluded that block–selective algebraic multigrid provides superior
performance, we investigated the influence of several algorithm parameters,
which cannot be found in literature.

1.3. Thesis Outline

The remainder of the thesis is organised into the following chapters:

• In Chapter 2. the governing equations of steady–state, single phase, incom-
pressible and turbulent flow are presented with emphasis on the pressure–
velocity coupling issues and strategies, i.e. iterative procedures for the so-
lution of the non–linear system are described. The conventional segregated
approach is presented first, to familiarise the reader with the (currently)

1. Introduction 8

most popular best–practice procedure for the solution of coupled equations.
A derivation of the implicit solution technique, which is an improvement
on the segregated algorithms, for the linearised momentum and continuity
equation is given and the structure of the resulting block–coefficient matrix
is laid out. In the last section of the chapter we focused on the well–known
finite volume discretisation and the resulting structure and properties of
the linear system.

• In Chapter 3. the attention is shifted onto iterative solution techniques for
the linear system, obtained after linearisation of the momentum equation.
Three classes of algorithms are presented: basic fixed–point iterations, al-
gebraic multigrid methods and Krylov subspace algorithms. Since multi-
grid methods proved to be the most efficient option for the solution of the
implicitly–coupled pressure velocity system, we describe the algorithm im-
plemented into foam-extend in the scope of this thesis, which is based
on the selection of equations as a coarsening technique. The challenges
of the implementation, such as the choice of the block–element norm for
the calculation of interpolation weights, choice of the optimal smoothing
algorithm and parallelisation of the sequential setup phase are discussed in
detail. Since Krylov subspace methods are an integral part in our multigrid
algorithm, used as a method for obtaining the approximate fine level solu-
tion, an overview of the most frequently used methods is given: conjugate
gradients, generalised minimal residual and biconjugate gradient stabilised.
We also discuss the role and implementation of preconditioning techniques,
specifically the incomplete lower upper factorisation.

• Chapter 4. is divided into two sections. The first section is dedicated to
comparison of segregated and implicitly coupled non–linear solution tech-
niques, where we illustrate the advantages and disadvantages of each solver.
To be as close as possible to real engineering applications, we chose test
cases of different complexities, mesh properties and densities: external flow
around a Formula 1 front wing and a simplified diffuser section, flow around
a BB2 submarine hull, internal flow inside a Francis turbine and centrifu-
gal pump. The second section investigates the properties of linear solvers,

1. Introduction 9

with emphasis on block–selection algebraic multigrid settings and resulting
convergence rates. Three test cases were run: two–dimensional backward
facing step, cooling of an engine jacket, a generic submarine model. A
parallel scaling test is presented in this section as well to show the perfor-
mance of the multigrid algorithm, since it has limitations in comparison to
the same sequential algorithm.

• Chapter 5. contains the summary and conclusion drawn from this thesis.
We have also given guidelines for future research.

2. Pressure–velocity system

2.1. Introduction

This chapter is dedicated to pressure–velocity coupling algorithms, i.e. resolving
the linear coupling of the two fields. The non–linear part of the momentum
equation (convection term) is eliminated by linearisation, thus non–linear itera-
tive process will also be applied. Since there is no explicit equation for pressure,
we show the derivation of the equation based on the Schur complement. Once
the pressure equation is derived, there are two options for solving the system.
In the segregated approach, reduced system of equations is being solved, i.e. the
momentum and pressure equation are solved as two separate discrete systems,
using the available values of the other variable. In the scope of this thesis we
focus on an alternative approach, an implicitly coupled system in which both
equations are solved simultaneously. We present the possible structures of the
implicit block–matrix, as well as the relationship between the finite volume mesh
and the structure of the matrix in OpenFOAM. The last section deals with various
contributions to the linear system arising from the finite volume discretisation
and the obtained linear equation properties. In the remainder of the thesis, we
shall use symbolic notation to represent both continuous and discrete operators,
which will be noted where necessary. Matrices and tensors are denoted using bold
capitalised Latin letters, vectors are denoted with bold lower case Latin letters,
while scalars are usually denoted by Greek letters.

2.2. Governing Equations

The governing equations of transient, incompressible, single–phase fluid flow are
the continuity equation:

∇ · u︸ ︷︷ ︸
velocity divergence

= 0, (2.1)

2. Pressure–velocity system 11

and the momentum equation:(
∂u

∂t

)T
︸ ︷︷ ︸

local rate of change

+∇ · (uuT)︸ ︷︷ ︸
convection

−∇ · (ν∇uT)︸ ︷︷ ︸
diffusion

= − (∇p)T︸ ︷︷ ︸
pressure gradient

, (2.2)

where u is the velocity, p is the kinematic pressure (p = P/ρ) and ν is the kine-
matic viscosity. In the scope of this thesis, turbulent flow was modelled using the
Reynolds–averaged Navier–Stokes equations (RANS) in which the variables are
decomposed into mean and fluctuating parts. The forces acting on the mean flow
imposed by turbulent fluctuations (Reynolds stress tensor) are modeled using the
two–equation turbulence models: k–ε [41] and k–ω–SST models [42], where k is
the turbulent kinetic energy, ε is the rate of dissipation of k and similarly ω is the
specific rate of dissipation. Eqn. (2.2) is non–linear due to the convection term
∇·(uuT). Since we want to avoid using non–linear solvers, the convection term in
the momentum equation will be linearised which is shown in section 2.4.3. Find-
ing an analytical solution of the continuity and momentum system of equations
is impossible, except in cases of simplified, special types of flow. Instead, the
equations are solved numerically, using iterative procedures, which is elaborated
in section 2.3.

2.3. Pressure–Velocity Coupling Algorithms

A very important issue, which this section is dedicated to, is the mutual influ-
ence of pressure and velocity. The equation set consists of one vector equation
(momentum) and one scalar equation (continuity), thus the system is closed.
The problem is that the pressure does not appear in the continuity equation,
Eqn. (2.1), i.e. we have a saddle point system of partial differential equations.
Also, the pressure is present in the momentum equation, Eqn. (2.2), only as a
gradient. Thus, the velocity is not affected by the absolute value of pressure, but
rather by pressure differences. The pressure field can be determined to within an
arbitrary constant. The methods for solving the pressure–velocity system rely on
deriving an equation for the pressure from the continuity equation and using the
calculated values of pressure to enforce the continuity of the velocity field. An
illustration of asserting continuity for incompressible flow is given in Fig. 2.1: if

2. Pressure–velocity system 12

Φin > Φout

increase pressure in the cell to
drive mass out.

Φout > Φin

decrease pressure in the cell to
pull mass in.

Φin

Φin

Φin

Φin

Φin

ΦinΦout

Φout

Φout

Φout

Φout

Φout

Figure 2.1: A method for enforcing the mass continuity in incompressible flow is to manipulate
the pressure field. If there is too much inflow, increase the pressure in the control volume to
induce outflow. If there is too much outflow, decrease the pressure to turn the gradient in the
opposite direction and pull the flow into the volume.

there is too much inflow, increase the pressure in the control volume to affect the
pressure gradient and push the flow out, and vice versa. In the following sections,
we shall present iterative algorithms for solving the pressure–velocity system in
framework of the finite volume method.

2.3.1. SIMPLE Algorithm

The SIMPLE (Semi–Implicit Method for Pressure Linked Equations) algorithm
[3] was conceived in 1972 by Suhas Patankar and his professor Brian Spalding, in a
train somewhere between Wimbledon and Imperial College London [S. Patankar,
private communication]. It is an iterative procedure for solving the steady–state
pressure–velocity system which relies on decoupling the equations and solving
them sequentially until the desired convergence criterion is reached. To define
the steps of the SIMPLE algorithm, we shall use the discretised form of equations
obtained from the finite volume method, written in terms of matrix elements, in
line with [43]. The finite volume discretisation of the individual terms will be
presented in section 2.4. The discretised momentum equation has the following

2. Pressure–velocity system 13

form:
Auu = −∇p, (2.3)

where Au is a matrix which contains the discretised convection and diffusion
operators. For a cell (control volume) i, the equivalent discretised momentum
equation can be written as:

au
iiui +

N∑
j 6=i

au
ijuj = rb −∇p, (2.4)

where i denotes a value which belongs to the cell centre of cell i, while j denotes
the values in the cell centres of neighbouring cells, with which cell i shares a
face, see definitions in section 2.4.1. Thus, au

ii is the diagonal element and au
ij

off–diagonal element of matrix Au. The vector rb originates from Auu and it
contains all the contributions which arise in the discretisation procedure and are
chosen to be treated explicitly. For simplicity, Jasak [43] introduces a linear
operator H which contains the off–diagonal part of the momentum matrix Au

and the right hand side vector rb:

H(u) = rb −
N∑
j 6=i

au
ijuj. (2.5)

The momentum equation can then be written as:

au
iiui = H(u)−∇p, (2.6)

and ui expressed as:
ui = (au

ii)
−1 [H(u)−∇p] . (2.7)

Substituting the expression for ui into the continuity equation, ∇ · u = 0, yields
the final form of the pressure equation:

∇ · [(au
ii)
−1∇p] = ∇ · [(au

ii)
−1H(u)]. (2.8)

which is a variable coefficient Poisson equation. To solve the system, SIMPLE
algorithm sequentially operates on Eqn. (2.4) and Eqn. (2.8). Here, a procedure
implemented in foam-extend will be outlined. For clarity, we will simultaneously
write both the differential (in symbolic notation) and discretised version of the
governing equations.

2. Pressure–velocity system 14

1. In a single non–linear iteration k, the discretised momentum equation is
solved to obtain the velocity field. The pressure gradient is explicitly cal-
culated using the available values (guessed or calculated) of pressure, as
indicated by the superscript k − 1:

∇ · (Φ(k−1)u)−∇ · (ν∇u) = −∇p(k−1). (2.9)

Here, Φ(k−1) is the volumetric flux from the previous iteration k− 1, which
appears in the linearisation of the convection term, section 2.4.3. It is
defined on the cell face as the scalar product of the velocity u

(k−1)
f at the

face, and the corresponding face normal vector sf , which has the magnitude
equal to the face area (‖sf‖ = Af):

Φ(k−1) = sTf u
(k−1)
f . (2.10)

The linear system obtained from the discretisation of Eqn. (2.2) also in-
cludes an implicit underrelaxation:

1

αu

au
iiui +

N∑
j 6=i

au
ijuj = rb −∇p(k−1) +

1− αu

αu

au
iiu

(k−1)
i , (2.11)

where 0 < αu ≤ 1 is the underrelaxation factor for the momentum equation.
Implicit underrelaxation is built into the equation, rather then applied onto
the solution, and it alleviates solving the linear system by increasing diag-
onal dominance of the equations, see Section 3.2.1. The underrelaxation is
formulated so that once the final solution is reached, i.e. it stops changing in
successive iterations, the terms affected by underrelaxation in the momen-
tum equation, Eqn. (2.11), cancel out. The intermediate solution obtained
from Eqn. (2.11), denoted as u∗, does not satisfy the continuity equation!

2. After obtaining the solution of the momentum equation, i.e. the inter-
mediate velocity field u∗, the pressure equation is assembled in line with
Eqn. (2.8):

∇ · [(au
ii)
−1∇p] = ∇ · [(au

ii)
−1H(u∗)]. (2.12)

It is important to notice that the effects of momentum underrelaxation
are not included in the pressure equation, for consistency: the solution

2. Pressure–velocity system 15

should not be affected by the underrelaxation factor. The term under di-
vergence on the right hand side can be interpreted as a pseudo–velocity û,
and it also carries the boundary conditions from the momentum equation
(e.g. Dirichlet at the inlet):

û = (au
ii)
−1H(u∗). (2.13)

The pseudo–velocity û is interpolated onto the cell faces and mulitiplied by
the surface normal area vector to obtain the volumetric flux Φ̂:

Φ̂ = sTf û, (2.14)

where overline indicates the interpolation of û from cell centres onto faces.
The final form of the pressure equation is:

∇ · [(au
ii)
−1∇p] = ∇ · Φ̂, (2.15)

or in discrete form:

apiipi +
N∑
j 6=i

apijpj = ∇ · Φ̂. (2.16)

The solution of the pressure equation p∗ contains both the physical pressure
field which originates from the flow field, as well as the correction part which
is responsible for enforcing the mass continuity and compensating the error
in the initial pressure field. The corrected volumetric flux Φ for each face
f , shared by cells i and j is calculated as:

Φ(k) = Φ̂−
∑
f

apij(p
∗
j − p∗i). (2.17)

The calculated pressure field is explicitly underrelaxed to counteract the
unphysical component of the solution (implicit underrelaxation is not per-
mitted as it would be inconsistent with the elliptic nature of the pressure
equation):

p(k) = (1− αp)p(k−1) + αpp
∗, (2.18)

where 0 < αp ≤ 1 is the pressure underrelaxation factor, p∗ is the value
of pressure calculated from the pressure equation and p(k−1) is the value of
pressure which was used in the momentum equation. Thus, only αp fraction
of the new pressure field is taken into the final solution.

2. Pressure–velocity system 16

3. The velocity field u∗ obtained from the momentum equation is corrected
to satisfy the continutiy equation, using the underrelaxed values of the
pressure field, and taking into account the implicit underrelaxation of the
momentum equation:

u(k) = αu

(
û− 1

au
ii

∇p
)

+ (1− αu) u∗. (2.19)

The sequence of these three steps is repeated until the linear and non–linear part
of the solution converge to the desired tolerance. The repetition of this sequence is
called the outer or non–linear iteration, while the solution of individual equations
is the inner or linear iteration. Due to its age, the point of the SIMPLE algorithm
is memory saving – once the momentum equation is solved, the same storage can
be reused for the matrix elements of the pressure equation (the sparsity pattern
of both matrices is identical). Thus, the memory peak of SIMPLE consists of a
single matrix storage and working variables.

Rhie–Chow Correction

Since it causes confusion among OpenFOAM users, we shall discuss on the Rhie–
Chow correction [44] in context of the presented implementation of the SIMPLE
algorithm. The correction is necessary on collocated meshes, where all the un-
knowns are calculated at the centre of the cell. When calculating the pressure
gradients for cell i in the momentum equation, i.e. the net pressure force acting on
the faces of the cell, values of the pressure pi cancel out due to the discretisation
procedure (linear interpolation from cell centres). Since the pressure equation is
derived by expressing the velocity from the momentum equation and inserting it
into the divergence operator of the continuity equation, the connection between
pressure values in neighbouring cells is lost here as well. This leads to oscilla-
tions in the solution of the pressure field, known as pressure checkerboarding [45].
Rhie–Chow interpolation provides a connection between the values of pressure in
adjacent cells and smooths out the pressure field. The correction is applied when
calculating the velocity at the face:

uf = uf −
1

au
ii

(∇pf −∇pf), (2.20)

2. Pressure–velocity system 17

where overline indicates interpolation from cell centres onto faces. Face velocity
defined by Eqn. (2.20) is used to calculate the volumetric flux in the continutiy
equation, which takes the role of the pressure equation. Analysis of the SIMPLE
algorithm in Section 2.3.1. reveals no explicit Rhie–Chow correction, since it
is hidden by the H(u) operator. Recall the discretised momentum equation,
Eqn. (2.4):

au
iiui +

N∑
j 6=i

au
ijuj = rb −∇p,

rb −
N∑
j 6=i

au
ijuj︸ ︷︷ ︸

H(u)

= au
iiui +∇p,

1

au
ii

H(u) = ui +
1

au
ii

∇p. (2.21)

We shall now expand the Rhie–Chow correction, Eqn. (2.20):

uf = uf −
1

au
ii

∇pf +
1

au
ii

∇pf =

(
uf +

1

au
ii

∇pf
)

︸ ︷︷ ︸
(auii)

−1H(u)

− 1

au
ii

∇pf . (2.22)

The bracketed term on the right hand side is the pseudo–velocity û interpolated
onto the cell faces, which was exactly done in the SIMPLE algorithm and inserted
into the right hand side of the pressure equation, Eqn. (2.15). The second term is
the pressure gradient which becomes the Laplacian of pressure when inserted into
the divergence operator of the continuity equation. Thus, instead of introducing
an artificial pressure term as proposed by Rhie and Chow, the same is achieved
by using the face interpolation of the H(u) operator.

2.3.2. PISO Algorithm

The PISO algorithm (Pressure Implicit with Splitting of Operators) was devel-
oped by Raad Issa in 1986 [6]. It is similar to the SIMPLE algorithm with added
pressure correction steps and it is usually used for simulation of transient flows.
The idea behind multiple pressure correctors is to fully resolve the pressure–
velocity coupling in a single timestep, thus eliminating the need for multiple

2. Pressure–velocity system 18

non–linear iterations. The algorithm presented in this section is a version imple-
mented in foam-extend, with additional interpretation of certain segments. In a
single timestep k, the following procedure is applied:

1. Solve the momentum equation using the pressure field from the previous
timestep k − 1, or guess the pressure field if there is none available:

∂u

∂t
+∇ · (Φ(k−1)u)−∇ · (ν∇u) = −∇p(k−1), (2.23)

where Φ(k−1) is the volumetric flux from the linearisation of the convection
term, calculated in the previous timestep. The linear system obtained after
discretising the momentum equation has the following form:

∆u

∆t
+ au

iiui +
N∑
j 6=i

au
ijuj = rb −∇p(k−1). (2.24)

Note that no underrelaxation is used, since the momentum equation is
solved only once per timestep. The discretised inertial term ∆u/∆t is
written separately to emphasise the consistent derivation of the pressure
equation in the next step of the algorithm. The solution of the momen-
tum equation is the velocity field u∗ which does not satisfy the continuity
equation.

2. The pressure equation is assembled in the same way as in the SIMPLE algo-
rithm, without taking into account the inertial effects of the time derivative
in the momentum equation. This is important for consistency: the solu-
tion of the system should not depend on the timestep size [46]. Thus, the
differential form of the pressure equation is:

∇ · [(au
ii)
−1∇p] = ∇ · [(au

ii)
−1H(u∗)], (2.25)

where H(u∗) contains the off–diagonal contributions from the momentum
equation as well as any right hand side contributions, excluding the pressure
gradient. For simplicity, the term on the right hand side is interpreted as a
pseudo–velocity:

û = (au
ii)
−1H(u∗), (2.26)

2. Pressure–velocity system 19

and it is interpolated onto the cell faces and mulitiplied by the surface
normal area vector to obtain the volumetric flux Φ̂:

Φ̂ = sTf û, (2.27)

where overline indicates the interpolation of û onto cell faces. The final
form of the pressure equation is:

∇ · [(au
ii)
−1∇p] = ∇ · Φ̂, (2.28)

or in discrete form:

apiipi +
N∑
j 6=i

apijpj = ∇ · Φ̂. (2.29)

Once the solution of the pressure equation p(k) is obtained, the volumetric
flux Φ which satisfies the continutiy equation for each face f , shared by
cells i and j is calculated as:

Φ(k) = Φ̂−
∑
f

apij(p
(k)
j − p

(k)
i). (2.30)

The pressure field is not underrelaxed since the pressure equation will be
solved multiple times.

3. The calculated velocity field is updated, taking into account the effects of
time discretisation:

u(k) =
1

au
ii + diag(∆u

∆t
)

[
au
iiû−∇p(k) + source

(
∆u

∆t

)]
, (2.31)

where diag(∆u/∆t) is the diagonal contribution of the time discretisation
and source(∆u/∆t) is the right hand side contribution of the time discreti-
sation. This is the point where the SIMPLE algorithm ends, while PISO
returns to step 2, and solves the pressure equation again (until it reaches
the user defined number of iterations). During the iterations, the updated
velocity field affects the values of the pseudo–velocity û and the volumet-
ric flux Φ̂ on the right hand side of the pressure equation. It is possible
to use PISO–like algorithm for steady–state flows, but the system is then
stabilised using the underrelaxation of the momentum equation.

2. Pressure–velocity system 20

Both SIMPLE and PISO algorithms rely on decoupling the momentum and
continutiy equations, i.e. a single unknown field is being solved while keeping
the other constant, and successively repeating this procedure until convergence.
Thus, SIMPLE and PISO belong to a group of segregated algorithms. The advan-
tage of segregated algorithms is low memory peak during simulations (contains
only one scalar matrix and solution field). Also, the solution of the linear sys-
tem is somewhat easier since for each equation type (momentum – hyperbolic,
pressure – elliptic) an appropriate and efficient linear solver can be chosen. The
disadvantages of the segregated approach lie in the fact that the linear coupling
of pressure and velocity has been broken by separating the equations into two
independent systems. To prevent the divergence of the solution, underrelaxation
is used in SIMPLE algorithm: implicit in the momentum equation and explicit
for the pressure field. The PISO algorithm is more stable since the pressure equa-
tion is solved multiple times to counteract the non–physical, correction part of
the solution, but requires small timestep sizes since the momentum equation is
kept “frozen” during pressure iterations. Also, it has almost double memory peak
compared to SIMPLE since both the momentum and pressure matrices must be
kept in memory simultaneously.

2.3.3. Implicitly Coupled Pressure–Velocity System

SIMPLE and PISO algorithms were presented in sections 2.3.1. and 2.3.2. In
segregated algorithms of this type, the pressure–velocity system is assembled by
decoupling the momentum and pressure equations by treating the other unknown
explicitly, using the value from the previous iteration, and solving the equations
sequentially (Picard iterations [47, 48]). However, such treatment of the pressure–
velocity system is unnatural since the connection between the two variables is
linear and can be resolved simultaneously in a single linear system. The exact
application of this procedure and the implications on the solution will be given
in this section. Since the focus of this work was primarily on the linear system
and the implementation and development of optimal linear solvers, steady–state
problems shall be investigated and the time derivative in Eqn. (2.2) is omitted
in the derivation of the implicitly coupled pressure–velocity algorithm. We shall

2. Pressure–velocity system 21

consider the steady–state versions of Eqn. (2.1) and Eqn. (2.2) (∂u
∂t

= 0) in matrix
format: [

Au ∇
∇· 0

][
u

p

]
=

[
0

0

]
,

where the linear combination of diffusion and linearised convection is replaced by
a single term Au. Since the gradient operator is a transpose of the divergence
operator:

∇ = (∇·)T
∂
∂x
∂
∂y

∂
∂z

 =
[
∂
∂x

∂
∂y

∂
∂z

]T
,

we shall define ∇ = G to obtain:[
Au G

GT 0

][
u

p

]
=

[
0

0

]
. (2.32)

The system defined in Eqn. (2.32) corresponds both to the differential and dis-
cretised form of equations but in the remainder of the section, we will assume
that the system is discretised using the finite volume method, as described in
section 2.3. Thus, Au is the linear operator obtained by discretising convection
and diffusion terms, while G and GT are the discrete gradient and divergence
operator, respectively, made implicit in the appropriate variable. Since there is a
zero term on the diagonal, the solution of the system is a saddle point [47]. We
shall use a preconditioning technique to obtain a stabilised version of the linear
system by starting from a general linear system which contains two unknowns:

Ax + By = a (2.33)

Cx + Dy = b, (2.34)

where Am×m, Bm×q, Cq×m and Dq×q are square matrices with dimensions m and
q, as denoted in the indices, x and y are the unknown vectors, while a and b are
the right hand side vectors. This system can be written using a block matrix M:

M(m+q)×(m+q) =

[
Am×m Bm×q

Cq×m Dq×q

]
, (2.35)

2. Pressure–velocity system 22

to obtain: [
Am×m Bm×q

Cq×m Dq×q

][
xm

yq

]
=

[
am

bq

]
. (2.36)

Assuming that A is invertible, we will express x from Eqn. (2.33) as:

x = A−1a−A−1By, (2.37)

and substitute it into Eqn. (2.34) to obtain:

C(A−1a−A−1By) + Dy = b

(D−CA−1B)︸ ︷︷ ︸
Schur complement

y = b−CA−1a. (2.38)

The first term in Eqn. (2.38) can be recognised as Schur complement of A in
the block matrix M [49]. Using the Schur complement, it is possible to reduce
the dimensions of the linear system: instead of solving the system with a (m +

q) × (m + q) matrix M, first find the solution y of Eqn. (2.38) (q × q problem)
and then use y to calculate x (m ×m problem), which is known as the Uzawa
method for saddle point systems [48], and is equivalent to the SIMPLE algorithm.
Comparison of Eqn. (2.32) and Eqn. (2.36) reveals the corresponding terms in the
block pressure–velocity system:

A = Au, B = G, C = GT , D = 0,

x = u, y = p, a = 0, b = 0.

Thus, the Schur complement of the pressure–velocity system is obtained from
Eqn. (2.38) by inserting the appropriate terms:

(D−CA−1B)y = b−CA−1a

−GTA−1
u Gp = 0. (2.39)

Using Eqn. (2.39) the block linear system 2.32 can be written as:[
Au G

0 −GTA−1
u G

][
u

p

]
=

[
0

0

]
. (2.40)

The pressure equation is the Poisson equation, where the diffusion coefficient
is equal to the inverse of the linearised convection–diffusion operator from the
momentum equation:

−∇ · (A−1
u ∇p) = 0. (2.41)

2. Pressure–velocity system 23

However, this formulation of the pressure equation is not used in the solution
procedure due to numerical issues: inverting the linearised sparse convection–
diffusion matrix Au obtained from the finite volume discretisation is not trivial
and produces a dense inverse which is too expensive to store! The remedy is to
replace Au with an approximation which is easy to invert. For example, it is
possible to write Au as a sum of diagonal, Du, and off–diagonal part, Eu and
rewrite Eqn. (2.32): [

Du G

GT 0

][
u

p

]
=

[
−(Eu)u

0

]
. (2.42)

The off–diagonal part of Au is treated explicitly, i.e. it is moved into the right hand
side vector, while the diagonal part is implicit, i.e. it remains in the coefficient
matrix. Inserting the corresponding components of system 2.42 into Eqn. (2.38),
yields the following form of the pressure equation:

(D−CA−1B)y = b−CA−1a,

(−GTD−1
u G)p = −GTD−1

u [−(Eu)u]︸ ︷︷ ︸
= (Du)u + Gp

(2.43)

= −GT D−1
u Du︸ ︷︷ ︸

I

u−GTD−1
u Gp, (2.44)

where I is the identity matrix and the inverse of the diagonal part of Au is easy to
calculate. Eqn. (2.43) can be identified in the SIMPLE algorithm as the pressure
correction, Eqn. (2.8):

(−GTD−1
u G)p = −GTD−1

u [−(Eu)u]

∇ · D−1
u︸︷︷︸

(auii)
−1

∇p = ∇ · [D−1
u︸︷︷︸

(auii)
−1

(Eu)u︸ ︷︷ ︸
H(u)

]. (2.45)

We shall write Eqn. (2.44) using the gradient and divergence operators to obtain:

∇ · u−∇ · (D−1
u ∇p) = −∇ · (D−1

u ∇p). (2.46)

Eqn. (2.46) is the pressure equation which consists of the divergence of velocity
term as well as two identical Laplacians of pressure field, where the diffusion
coefficient is equal to the inverse of the diagonal part of the convection–diffusion
matrix Du. The same equation for pressure would be obtained by inserting the

2. Pressure–velocity system 24

face velocity from the Rhie–Chow correction, Eqn. (2.20), into the continuity
equation. The term on the right hand side was hidden in the SIMPLE algorithm
by the interpolation of the H(u) operator. Thus, the saddle point problem is
remedied by inserting a pressure Laplacian (symmetric positive definite matrix,
Section 2.4.) in place of the zero term on the diagonal and counteracting it by
adding the same term on the right hand side:[

Au ∇
∇· −∇ · (D−1

u ∇)

][
u

p

]
=

[
0

−∇ · (D−1
u ∇p)

]
, (2.47)

where the explicit term −∇ · (D−1
u ∇p) is interpolated from cell centres to faces,

in line with the Rhie–Chow correction. Thus, the solution procedure of the
implicitly coupled pressure–velocity system consists of the following steps:

1. In a non–linear iteration k, the linear system which includes the linearised
momentum equation and the continuity equation with the Rhie–Chow in-
terpolation is assembled:[

Au ∇
∇· −∇ · (D−1

u ∇)

][
u

p

]
=

[
0

−∇ · (D−1
u ∇p(k−1))

]
.

As denoted by the superscript (k − 1), for the explicit Rhie–Chow correc-
tion, old values of the pressure field are used. Also, the convection–diffusion
matrix Au contains the values of the volumetric flux Φ(k−1) from the previ-
ous iteration. The momentum equation may be implicitly underrelaxed for
stability (as in the SIMPLE algorithm), while there is no underrelaxation
of pressure. The system is solved to obtain the values of pressure p(k) and
velocity u(k).

2. From the continuity equation, the new volumetric flux which will be used
in the convection term in the following non–linear iteration is calculated:

Φ(k) = sTf u
(k)
f +

∑
f

apij(p
(k)
i − p

(k)
j) + D−1

u ∇p(k−1). (2.48)

The non–linear iterative procedure is repeated until the desired convergence
criterion is reached.

2. Pressure–velocity system 25

Since the majority of information in this approach is treated implicitly (put into
the coefficient matrix), the convergence is more stable and the solution procedure
requires very little or no underrelaxation. That is, there is no underrelaxation of
the pressure since the equation is linear and the effects of the pressure gradient
are implicitly included in the momentum equation. In the momentum equation,
non–linear effects are present due to the convection term and some equation
underrelaxation can be used, Eqn. (2.11). The finite volume discretisation of the
momentum and continuity equation will be presented in the following section.
The resulting block–matrix of the implicitly coupled system will be layed out to
illustrate the various contributions of the discretisation technique.

2.4. Finite Volume Equation Discretisation

In this section the finite volume discretisation of the governing equations and
show the contribution of individual terms to the coefficient matrix and the right
hand side of the linear system will be laid out. The objective of this section
is to clearly demonstrate the structure of the coefficient matrix of the implicitly
coupled pressure–velocity system and subsequently justify the choice of the linear
solver, which is covered in chapter 3.

2.4.1. Mesh and Matrix

The discretisation of equations will be carried out on a finite volume mesh
which fills the solution domain, using the terminology and procedures introduced
by Jasak in [43]. The mesh consists of non–overlapping three–dimensional cells,
i.e. control volumes (Fig. 2.2), which are bounded by two–dimensional (“flat”)
surfaces called cell faces. Vi is the cell volume while ri is the position of the cell
centroid (cell centre). All variables are calculated (stored) at cell centres, which
is a characteristic of the collocated finite volume method. Cells are distinguished
by their index. If a mesh consists of n cells, the indices range from 0 to n − 1.
Each cell face has its surface area Af , centre, normal vector sf and it is shared
between maximally two cells. In OpenFOAM, the cell with the lower index is called
the owner of the face and the one with the higher index is the neighbour. The

2. Pressure–velocity system 26

origin of the face normal is at the face centre, it points outwards from the cell
and the length (magnitude) is equal to the face area (‖sf‖ = Af). The termi-
nology is general, even though the topology of cells can be arbitrary (hexahedra,
tetrahedra, polyhedra, pyramids, prisms).

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

x

z

y

i

j

f

Vi

d

ri

sf

Figure 2.2: Arbitrary polyhedral finite volume cell with distinctive features: cell index i, posi-
tion of the cell centre ri, face centre f , face area vector sf , distance d between cell centres of
adjacent cells i and j.

An example of a two–dimensional finite volume mesh is shown in Fig. 2.3. The
dimensions of the matrix A corresponding to a n–cell mesh are n×n, i.e. a linear
equation for a cell is represented in the matrix by a single row. Depending on
the indices of the elements, the matrix is split into its diagonal, upper and lower
triangular parts, shown in dark blue, light blue and grey in Fig. 2.4, respectively.
The diagonal contains elements aii have equal row and column indices, i.e. they
represent the influence of the cell i on itself. Off–diagonal elements aij represent
the influence of neighbouring cells j onto cell i. The lower triangle contains
elements which have column indices smaller than row indices (j < i), while the
upper triangle has elements which have column indices larger than row indices

2. Pressure–velocity system 27

(j > i). The matrices arising from finite volume discretisation are sparse (have
more zero than non–zero elements).

y

x

75

2 4 6

8

0 1 3

Figure 2.3: A two–dimensional finite volume mesh. Each cell is marked with an index, which
corresponds to the matrix row, Fig. 2.4. “Onion” numbering is used: each new index is assigned
to an unmarked cell which is a neighbour of the cell with the smallest index, similar to layers
of an onion.

The sparsity pattern, i.e. the position of the non–zero elements in the matrix
depends on mesh connectivity and numbering. As we shall see in the following
sections, row i in the finite volume matrix will contain the diagonal element
and as many off–diagonal elements as there are neighbours j of cell i. The
tendency is to keep the off–diagonal elements as close as possible to the diagonal,
to obtain a banded matrix. A banded matrix has a specific structure: apart from
the main diagonal, it is possible to identify secondary diagonals above or below
the main diagonal. Banded matrices are a result of optimisation algorithms for
mesh numbering, e.g. the “onion” algorithm (reverse Cuthill–McKee, [50]), as in
Fig. 2.3.

In foam-extend matrices can be distignuished by the type of elements: ma-
trices with scalar elements, which correspond to a mesh where in each cell there
is only one unknown, and block–elements, where there are multiple unknowns in a
single cell. The reason for using block–elements is the efficiency of programming:
the algorithms for scalar and block–matrices are equivalent since the addressing
(sparsity pattern) of matrix elements is the same. For example, in SIMPLE algo-
rithm the momentum and pressure equations are solved sequentially. Thus, two

2. Pressure–velocity system 28

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

aii = a4,4ai, j< i = a4,2 ai, j> i = a4,7

Figure 2.4: A finite volume matrix corresponding to a two–dimensional mesh shown in Fig. 2.3.
Dark blue denotes the diagonal elements, light blue the upper triangle and grey lower triangle
elements. Row corresponding to cell 4 is highlighted to ilustrate the addresing principles.

matrices are constructed: a matrix for the momentum equation and a matrix for
the pressure equation. In SIMPLE, the pressure matrix is a scalar matrix as each
cell i contains a single value of pressure pi. Thus, the matrix elements are scalars
aii and aij.

When solving the momentum equation, in a single cell i there exist three
components of velocity, thus the unknown xi is a vector:

xi =


uxi

uyi
uzi

 .
The matrix elements in the momentum matrix should be 3 × 3 matrices them-
selves, but there is no coupling between the components of the velocity. Thus,

2. Pressure–velocity system 29

the solution procedure is simplified even more, by solving a scalar system for each
component of the velocity.

When pressure and velocity are implicitly coupled, in a three–dimensional
space four equations are being solved for each cell i. The system can be arranged
in two ways:

• variable–ordered system, where in the unknown vector a single variable
is written for all cells, followed by other variables in the same manner. For
example, the unknown–ordered pressure–velocity system:

Ux Uxy Uxz Uxp

Uyx Uy Uyz Uyp

Uzx Uzy Uz Uzp

Px Py Pz P




ux

uy

uz

p

 =


bux

buy

buz

bp

 ,

where block matrices have the dimension n× n (U, P ∈ Rn×n):

Ux =


aux0,ux0

. . . aux0,uxn−1

...
auxn−1,ux0

. . . auxn−1,uxn−1

 , Uxy =


aux0,uy0

. . . aux0,uyn−1

...
auxn−1,uy0

. . . auxn−1,uyn−1

 ,

P =


ap0,p0 . . . ap0,pn−1

...
apn−1,p0 . . . apn−1,pn−1

 , Py =


ap0,uy0

. . . ap0,uyn−1

...
apn−1,uy0

. . . apn−1,uyn−1

 ,
and elements a·,· are scalars which describe the coupling between variables
in adjacent cells. For example, aux0,uxn−1

describes the coupling of velocity
component in x–direction in cells 0 and n − 1, while apn−1,uyn−1

corresponds
to the coupling of pressure and y–velocity component in cell n− 1. When the
usual linearisation of convection term is used, there is no coupling between
components of velocity in different directions, i.e. matrices Uxy, Uxz, Uyx,
Uyz, Uzx and Uzy are zero matrices. The structure of the system corresponds
to the block matrix in Eqn. (2.47).

• cell–ordered system, where in the unknown vector all variables are written
sequentially for a single cell, followed by other cells. The cell–ordered pressure–

2. Pressure–velocity system 30

velocity system has the following structure:
A0,0 . . . A0,n−1

...

An−1,0 An−1,n−1




x0

...

xn−1

 =


b0

...

bn−1

 ,
The unknown variable in each cell is a vector with 4 components (x ∈ R4×1),
while the matrix elements are 4× 4 matrices (Aij ∈ R4×4):

xi =


uxi

uyi
uzi

pi

 , Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 .
The diagonal element Aii describes the mutual influence of velocity components
and pressure in cell i, while the off–diagonal element Aij contains the coupling
of velocity components and pressure in adjacent cells i and j. The structure
of the block–elements in the cell–ordered implicitly coupled pressure–velocity
system emerges from the matrix form of the governing equations, Eqn. (2.47):

[
Au ∇
∇· −∇ · (D−1

u ∇)

]
≡


aux,ux aux,uy aux,uz aux,p

auy ,ux auy ,uy auy ,uz auy ,p

auz ,ux auz ,uy auz ,uz auz ,p

ap,ux ap,uy ap,uz ap,p

 . (2.49)

Thus, the upper 3 × 3 block (in red) corresponds to the discretisation of the
convection–diffusion operator for the velocity, the blue column vector corre-
sponds to the pressure gradient term, the green row vector is the discretised
velocity divergence operator and the orange scalar is the discretised pressure
Poisson equation. The elements which describe the coupling between different
components of velocity (off–diagonal in the momentum matrix) are equal to 0.

In the scope of this thesis, we have chosen the latter approach of a cell–ordered
system, which is more natural in the framework of foam–extend (mesh and ma-
trix addressing presented in the following section) and the collocated finite volume
method.

2. Pressure–velocity system 31

0 1 3

2 4 6

5 7 8
5 108

4 7

631

0 2

119

Figure 2.5: A simple 2D finite volume mesh. Cell indices are shown in black, while the face
indices are shown in red.

OpenFOAM Matrix Format

The structure of matrices in OpenFOAM is directly related to the structure
and numbering of the computational mesh. Since these matrices are sparse and
often symmetric, an arrow format is used, where only the non–zero elements are
stored. The matrix elements are divided into three arrays depending on the ad-
dress (row and column index) in the matrix: diagonal, lower and upper array, and
this format is called LDU matrix [H. Jasak, private communication]. For a sym-
metric matrix, it is only necessary to store the upper or lower triangle elements
since L = UT , where L is the lower triangular matrix and UT is the transpose
of the upper triangle. The addressing of matrix elements in OpenFOAM is collo-
quially known as face addressing, since the elements in the upper and lower array
are sorted depending on whether they are the owner or a neighbour of a face.
This type of addressing is not straightforward in terms of access to the elements
at a certain position in the matrix (which is important for the implementation
of linear solvers), but it is very convenient for efficient access when needed in the
finite volume equation discretisation (e.g. interpolation).

The LDU matrix for a mesh shown in Fig. 2.5 is presented in Table 2.1.
Face index f indicates the position in the array, e.g. face 3 is shared by cells 1
(owner) and 4 (neighbour), which are both stored in their corresponding array
in position 3. The matrix elements obtained from the finite volume equation
discretisation which correspond to communication between cells 1 and 4 are also
located in position 3 of their corresponding arrays. The indexing of cells is done

2. Pressure–velocity system 32

Table 2.1: Arrays corresponding to LDU matrix format in OpenFOAM.

Face index f Owner cell i Neighbour cell j Upper element aij Lower element aji
0 0 1 a0,1 a1,0

1 0 2 a0,2 a2,0

2 1 3 a1,3 a3,1

3 1 4 a1,4 a4,1

4 2 4 a2,4 a4,2

5 2 5 a2,5 a5,2

6 3 6 a3,6 a6,2

7 4 6 a4,6 a6,4

8 4 7 a4,7 a7,4

9 5 7 a5,7 a7,5

10 6 8 a6,8 a8,6

11 7 8 a7,8 a8,7

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Figure 2.6: OpenFOAM LDU matrix format. Matrix elements are stored in three arrays:
diagonal, lower and upper. Red arrows illustrate the order of writing the elements into these
arrays. Non–zero elements in the upper triangle are stored row–wise, while the elements in
lower triangle are stored column–wise (for a symmetric matrix L = UT).

2. Pressure–velocity system 33

prior to indexing of faces: face indices are consecutively assigned to an unnamed
face which has the owner and corresponding neighbour with the smallest indices.
The lower array contains the column–wise sorted elements of the lower triangle,
while the elements in the upper array are sorted row–wise (beneficial for storing
symmetric matrices). Additionaly, for easier access to elements, an index pointing
to the beginning of each row/column in the upper and lower array is uses, which
is equivalent to compressed row matrix format.

2.4.2. Preliminaries for Spatial Terms

The discretisation procedure starts by integrating the differential equations over
each control volume. Assuming that a general variable changes linearly through
space and time (second order accuracy), the surface and volume integrals which
arise from the governing equations will be evaluated using the Gauss–Ostrogradsky
theorem for transformation of volume integrals into surface integrals, [43]. The
integral of a scalar quantity φ over a control volume (cell) i is:∫

Vi

φ(x) dV = φiVi, (2.50)

where Vi is the volume of cell i. The integral over a cell of the divergence of a
vector a is equal to:∫

Vi

∇ · a dV =

∮
nTa dS =

∑
f

sTf af =
∑
f (j>i)

sTf af −
∑
f (j<i)

sTf af , (2.51)

where sf is the normal face area vector and af is vector a evaluated at the cell
face. The splitting of the sum is done according to the sign of sf : positive for
owned faces (j > i) and negative for neighbour’s faces (j < i), since only the
normal from the owner side of the face is stored. Thus, divergence of a field can
be replaced by a sum over the faces of a cell. The integral over a cell of the
gradient of a scalar field φ is equal to:∫

Vi

∇φ dV =

∮
nφ dS =

∑
f

sfφf , (2.52)

where φf is the value evaluated at the face. In the software implementation, face
interpolation is achieved by a single face loop which handles both the owner and
neighbour cell and it is extremely efficient.

2. Pressure–velocity system 34

2.4.3. Convection Term

The non–linear convection term appears in the momentum equation. The term
is linearised since we want to avoid using non–linear solvers, usually by using the
values from the previous iteration:

uuT = u(k−1)(u(k))T , (2.53)

where k denotes the current iteration. The linearised term is then discretised for
cell i: ∫

Vi

∇ · [u(k−1)(u(k))T] =
∑
f

sTf u
(k−1)
f (u

(k)
f)T =

∑
f

Φfu
(k)
f , (2.54)

where Φf is the volumetric flux, which in SIMPLE and PISO algorithm is calcu-
lated via Eqn. (2.17), while in the implicitly coupled solver Eqn. (2.48) is used.
The value of velocity u

(k)
f on the cell face has to be estimated from the values of

u(k) in cell centres. This approximation should preserve the boundedness of the
variable, since the convection operator is bounded. There are several options for
convection discretisation:

1. Central differencing (linear interpolation) Central differencing is sec-
ond order accurate [45], but boundedness cannot be guaranteed:

uf = wCD ui + (1− wCD) uj, (2.55)

where wCD is the weighting factor calculated as a ratio of the distance be-
tween the face centre and cell centre of j, and the distance ‖d‖ between cell
centres of i and j. Central differencing for convection contributes to the lin-
ear system of the implicitly coupled equations in the coefficient matrix, both
to diagonal and off–diagonal elements. The contribution for off–diagonal el-
ements (j 6= i) is skew–symmetric due to the sign of the face normal vector,
i.e. Aij = −Aji:

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 .

2. Pressure–velocity system 35

2. Upwind differencing

Upwind differencing guarantees boundedness of the solution, but causes the
loss of accuracy for meshes which are not aligned with the flow, through
numerical diffusion [43]. The value of velocity at the face depends on the
direction of the flow, i.e. volumetric flux Φ. It is copied from the cell centre
located upstream:

uf =

ui for Φ ≥ 0,

uj for Φ < 0.
(2.56)

Upwind differencing for convection contributes to the linear system in the
coefficient matrix, and the contribution is nonsymmetric, i.e. Aij 6= Aji:

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 .
3. Blended differencing

Blended differencing (by Perić [51]) is a hybrid between central and upwind
differencing, a compromise between accuracy and boundedness. A constant
blending factor γ is proposed for all faces:

uf = (1− γ)uUD + γ uCD

= {(1− γ) max[sign(Φ), 0] + γwCD} ui

+ {(1− γ) min[sign(Φ), 0] + γ(1− wCD)} uj, (2.57)

where indices UD and CD denote the face velocity obtained by upwind and
central differencing, respectively. The scheme reduces to upwind differenc-
ing for γ = 0, and to central differencing for γ = 1. The contribution of
blended differencing to the linear system appears in the matrix elements,
and the symmetry of the elements depends on the blending factor γ, but it
is generally nonsymmetric (Aij 6= Aji):

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 .

2. Pressure–velocity system 36

4. Higher order convection schemes

An improvement in terms of accuracy and boundedness trade–off are blended
schemes which try to locally determine the value of the blending factor γ,
i.e. variants of total variation diminishing (TVD) [52] and normalised vari-
able diagram (NVD) schemes [53]. Gamma differencing scheme, derived
by Jasak [43] for unstructured meshes, is one of the variants of an NVD
scheme: a boundedness criterion is defined using a non–dimensional trans-
ported variable φ̃. Central differencing is used as a default discretisation
scheme across the entire domain, except when the criterion is breached,
i.e. when the boundedness of the variable is no longer preserved. In that
case, a blending factor 0 ≤ γ ≤ 1 is calculated and it depends on the local
value of the normalised variable φ̃i and a user defined constant of the scheme
βm. The scheme is shown in an NVD diagram, as well as other common
blended schemes, Fig. 2.7. Details of other schemes and a comparison of
TVD and NVD diagrams can be found in [54].

0 1

0

1

0,5

Φ̃c

0,75

βm

Φ̃f 0,5

upwind

central differencing

(linear, midpoint)

limited linear

linear upwind

gamma

van Leer

Figure 2.7: NVD diagram of blended convection schemes.

Deferred correction approach [55] can be applied for higher order schemes to

2. Pressure–velocity system 37

achieve the stability of upwind discretisation. The upwind part of the higher
order scheme is always treated implicitly and inserted into the coefficient
matrix, while the higher order term is calculated using the old values of u

and inserted into the right hand side.

2.4.4. Velocity Diffusion Term

Disretisation of the diffusion term relies on turning the volume integral into
a surface integral and finally, into a sum over cell faces:∫

Vi

∇ · (ν∇u) =
∑
f

(ν)f sTf (∇u)f . (2.58)

Diffusion coefficient on the face is calculated by linear interpolation. For meshes
which are orthogonal, i.e. the face area vector sf is parallel to the vector d which
connects the two cell centres, the gradient on the face can be calculated using
the cell centre values of u [56]:

(∇u)f =
ui − uj
‖d‖

. (2.59)

Orthogonal meshes are very rare in practice. The measure of non–orthogonality is
the angle formed by sf and d,](d, sf). Eqn. (2.59) is not used in this form if the
mesh is non–orthogonal. Instead, the face area vector is split into an orthogonal
vector ∆, which coincides with the distance vector d, and non–orthogonal vector
k:

sTf (∇u)f = (∆ + k)T (∇u)f = ∆T (∇u)f︸ ︷︷ ︸
orthogonal part

+ kT (∇u)f︸ ︷︷ ︸
non–orthogonal part

. (2.60)

The orthogonal part of Eqn. (2.60) is treated implicitly, i.e. put into the coeffi-
cient matrix, using Eqn. (2.59). The non–orthogonal part is treated explicitly
and contributes to the right hand side vector b. The interpolation of (∇u)f is
done using the face values of u to calculate the cell centered gradient (Gaussian
integration):

(∇u)i =
1

Vi

∑
f

sTf uf . (2.61)

The gradient is then linearly interpolated to the face:

(∇u)f = wCD (∇u)i + (1− wCD) (∇u)j. (2.62)

2. Pressure–velocity system 38

Thus, the contribution of the diffusion term to the linear system occurs in the
matrix elements (orthogonal part, off–diagonal is symmetric Aij = Aji) and the
right hand side vector (non–orthogonal part):

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 , bi =


buxi

buyi

buzi

bpi

 .
To boost the convergence of the system, it is beneficial to have as much informa-
tion in the coefficient matrix as possible. Having that in mind, the length of the
orthogonal contribution can be defined in several ways:

• by keeping the non–orthogonal vector k as small as possible, i.e. ensuring
that ∆ and k are orthogonal. This is the minimum correction ap-

proach. Orthogonal vector is calculated as:

∆ =
dT sf
dTd

d, (2.63)

while k = sf−∆. As non–orthogonality of the mesh increases, the contribu-
tion to the coefficient matrix decreases, which is detrimental for convergence
of linear solvers. Meshes with non–orthogonality angles](d, sf) ≥ 90◦ are
invalid.

• By keeping the implicit contribution the same as on the orthogonal mesh,
irrespective of the non–orthogonality. This is the orthogonal correction
approach:

∆ =
d

‖d‖
‖sf‖, (2.64)

‖∆‖ = ‖sf‖. (2.65)

• By increasing the magnitude of the implicit orthogonal contribution. This
is the overrelaxed approach:

∆ =
d

dT sf
‖sf‖2. (2.66)

The choice of the diffusion discretisation scheme depends on the mesh quality,
i.e. the stability of the simulation. The application of non–orthogonal correction

2. Pressure–velocity system 39

f

ji

k

∆min ∆ortho ∆over

sf

Figure 2.8: Non–orthogonal correction. When calculating the face gradient, take into account
the non–orthogonality](d, sf) of the mesh and split the face area vector sf into two parts:
orthogonal component ∆ and non–orthogonal component k. The magnitude of ∆ can vary
depending on the splitting: ∆min for minimum correction, ∆ortho for orthogonal correction and
∆over for overrelaxed correction.

can cause unboundedness, and sometimes it has to be limited or not used at
all. The limiter Υ is user defined, 0 ≤ Υ ≤ 1, where Υ = 1 denotes no limiter
(i.e. orthogonal correction approach is applied), and Υ = 0 denotes that there is
no orthogonal correction:

Υ ‖sf‖︸︷︷︸
‖∆‖

ui − uj
‖d‖

> kT (∇u)f . (2.67)

2.4.5. Pressure Gradient

Pressure gradient which appears in the momentum equation is treated explicitly
in SIMPLE and PISO algorithms, i.e. it is calculated from the available (old)
values of pressure and put onto the right hand side of the linear system. However,
in the implicitly coupled system, the effects of the pressure gradient are inserted
into the coefficient matrix. In the scope of this thesis, the following gradient
discretisation schemes were used:

1. Gauss gradient Discretisation begins by converting the volume integral
into a surface integral, i.e. a sum over cell faces where the pressure gra-
dient is replaced by the pressure at the face, as shown in Section 2.4.2.,

2. Pressure–velocity system 40

Eqn. (2.52): ∫
Vi

∇p dV =
∑
f

sfpf .

Thus, the remaining task is to choose the appropriate interpolation tech-
nique for the value of the pressure at the face. The face value of pressure
is calculated using the values from adjacent cells:

pf = wCD pi + (1− wCD) pj, (2.68)

where wCD is the weighting factor calculated as a ratio of the distance
between the face centre and cell centre of j, and the distance ‖d‖ between
cell centres of i and j, which yields:

(∇p)i =
∑
f

sf [wCD pi + (1− wCD) pj]. (2.69)

The contribution to the coefficient matrix in off–diagonal elements is skew–
symmetric (Aij = −Aji):

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 .

2. Least squares discretisation

The order of accuracy of Gauss gradient diminishes in case of skewed
meshes. Least squares discretisation is unconditionally second order ac-
curate. The value in an adjacent cell j can be evaluated using the value
in cell i and the gradient of the corresponding field. The error at cell j
produced by extrapolation is:

ej = pj − [pi + dT (∇p)i], (2.70)

2. Pressure–velocity system 41

where ej is the error term in pj and dT (∇p)i is the component of the
gradient in the direction of the distance vector d. In reverse, the value
of the gradient can be evaluated by minimising the weighted error ei [56],
i.e. by minimising the sum of the squares of weighted errors ej:

e2
i =

∑
j

(wLSQej)
2, (2.71)

where the weighting factor is defined as wLSQ = 1/‖d‖. Assuming that
e2
i = 0 yields:

e2
i =

∑
j

w2
LSQ(pj − [pi + dT (∇p)i])2 = 0 (2.72)

(∇p)i =
∑
j

GLSQ
−1 d (pj − pi). (2.73)

GLSQ is assumed to be an invertible 3× 3 symmetric matrix:

GLSQ =
∑
j

w2
LSQddT (2.74)

=
∑
j

‖d‖2


dx

dy

dz

[dx dy dz

]
(2.75)

=
∑
j

‖d‖2


dxdx dxdy dxdz

dydx dydy dydz

dzdx dzdy dzdz

 , (2.76)

where dx, dy and dz are the components of the distance vector d parallel
to the corresponding coordinate axes. Matrix GLSQ depends only on mesh
topology and, for non–moving meshes, it can be calculated once and stored
for future iterations. The value of the gradient for cell i is calculated as:

Vi(∇p)i =
∑
j

ViGLSQ
−1 d (pj − pi), (2.77)

where Vi is the volume of i, and it produces a symmetric contribution to

2. Pressure–velocity system 42

off–diagonal elements to the coefficient matrix (Aij = Aji):

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 .

2.4.6. Velocity Divergence

The divergence of velocity is treated implicitly in the pressure equation. From
the structure of the saddle point system, it is equal to a transpose of the pressure
gradient term. Thus, to preserve the symmetry the same discretisation procedure
should be used for these two terms. Here, we shall present the central differencing
discretisation: ∫

Vi

∇ · u dV =
∑
f

sTf uf

=
∑
f

sTf [wCDui + (1− wCD)uj], (2.78)

where wCD is the central differencing weighting factor, equal to the ratio of the
distance between the face centre and cell centre of j and the length of the distance
vector ‖d‖. Velocity divergence contributes to the diagonal and off–diagonal
elements of the coefficient matrix and the contribution to off–diagonal elements
is skew–symmetric (Aij = −Aji):

Aij =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 .

2.4.7. Pressure Laplacian

Implicit term in the pressure equation is a Laplacian operator where the diffusivity
is equal to the inverse of the diagonal element of the momentum matrix. It
is discretised using the sum–over–the–faces procedure, as it was shown for the
diffusion term in the momentum equation, section 2.4.4.:∫

Vi

∇ · (D−1
u ∇p) dV =

∑
f

(
aii
−1
)
f
sTf (∇p)f . (2.79)

2. Pressure–velocity system 43

Interpolation of the pressure gradient to cell faces is done using central differ-
encing, with or without non–orthogonal correction. Discretisation of pressure
Laplacian produces a contribution to diagonal and off–diagonal matrix elements
and to the source term, when non–orthogonal correction is applied:

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 , bi =


buxi

buyi

buzi

bpi

 .

The contribution to off–diagonal elements is symmetric (Aij = Aji), and the sum
of contributions in block–matrix elements in a single row (for internal cells) is
equal to zero: ∑

j (i = const)

api,pj = 0. (2.80)

Such matrix rows are called diagonally equal (sum of magnitudes of off–diagonal
elements is equal to the magnitude of the diagonal element). The sign of diagonal
and off–diagonal elements is opposite (negative diagonal, positive off–diagonal
element).

2.4.8. Source Terms

The only source term, i.e. explicit right hand side contribution which appears in
the system is the term in the pressure equation which corresponds to Rhie–Chow
correction: ∫

Vi

∇ · (D−1
u ∇p) dV =

∑
f

(
(aii)

−1
)
f
sTf (∇p)f . (2.81)

The overline indicates interpolation from cell centres to cell faces. First, the cell
centred pressure gradient is calculated, using the available (old, k − 1) values of
pressure:

(∇p)(k−1)
i =

∑
f sf p

(k−1)
f

Vi
, (2.82)

where p(k−1)
f is calculated via central differencing, using the cell centre values of

the pressure field. Then, the cell centred gradient is linearly interpolated on the

2. Pressure–velocity system 44

faces, as well as the inverse of the diagonal element a−1
ii . The contribution of

Rhie–Chow appears only in the right hand side vector:

bi =


buxi

buyi

buzi

bpi

 .

2.4.9. Boundary Conditions

Boundary conditions are assigned on the borders of the computational domain,
for the boundary faces. Boundary conditions can be divided into numerical and
physical boundary conditions. Numerical boundary conditions are:

• Dirichlet boundary condition, where the value of the variable is prescribed
on the boundary,

• von Neumann boundary condition, where the value of the gradient of a
variable (∇φ) is prescribed, and projected onto the boundary face area
vector:

sf
‖sf‖
∇φ = gb, (2.83)

• Robin (mixed) boundary condition, where the linear combination of a fixed
value and gradient is prescribed on the boundary.

Physical boundary conditions are impermeable walls, flow inlets and outlets, sym-
metry planes, cyclic and periodic planes, etc. and they can be represented by a
set of numerical boundary conditions for each unknown variable. The topology
of a boundary cell is shown in Fig. 2.9. Distance vector d points from the cell
centre to the boundary face centre b. As shown in the figure, d and the face area
vector sf do not have to be parallel (similar to non–orthogonality between cells),
and an orthogonal projection dN of vector d is defined as:

dN =
sf
‖sf‖

dT sf
‖sf‖

. (2.84)

Since boundary cells are usually fully or nearly orthogonal, the non–orthogonal
component k is not used. The common boundary conditions used for incompress-
ible flows are:

2. Pressure–velocity system 45

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

x

z

y

BOUNDARY

i

∆

d

k

dN

b

Vi
ri

sf

Figure 2.9: A finite volume cell at the boundary of the computational domain.

• inlet boundaries, where the velocity field is prescribed (Dirichlet), while the
value of the pressure is extrapolated from the interior (pressure gradient set
to zero);

• outlet boundaries, where the velocity is extrapolated from the interior (ve-
locity gradient set to zero) and the value of static pressure is assigned. In
some cases, it is possible to use a zero gradient for pressure as well, but
then a value of pressure has to be set in a point (or cell) somewhere in the
domain;

• impermeable no–slip walls which are modelled with a fixed value of fluid
velocity at the wall. The pressure at the wall is extrapolated from the
interior of the domain (pressure gradient equal to zero);

• symmetry planes which imply that the component of the gradient normal
to the boundary is equal to zero. Components parallel to the boundary are

2. Pressure–velocity system 46

projected to the boundary face from the interior of the domain.

Boundary contributions to the linear system can again be analysed term by term
for both equations:

• Convection term According to the discretisation, the face value of velocity
uf is needed: ∑

f

Φfu
(k)
f .

For a fixed value (Dirichlet) boundary condition, the value ub is directly
used and contributes to the right hand side vector:

bi =


buxi

buyi

buzi

bpi

 . (2.85)

For a fixed gradient (von Neumann) boundary condition, the value of ve-
locity at the boundary face is extrapolated using the cell centre value and
the specified gradient gb of u:

ub = ui + ‖dN‖gb. (2.86)

Fixed gradient for convection contributes to the diagonal element Aii and
the right hand side as in Eqn. (2.85):

Aii =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 . (2.87)

• Velocity diffusion term

For velocity diffusion, the estimate of the boundary face gradient (∇u)f is
needed: ∑

f

νf sTf (∇u)f .

2. Pressure–velocity system 47

If a fixed value boundary condition is prescribed, the gradient is calculated
using the face value ub:

(∇u)f =
ub − ui
‖dN‖

, (2.88)

and a contribution to the diagonal element and right hand side emerges,
Eqn. (2.87) and Eqn. (2.85). For a von Neumann boundary condition, the
given value of the gradient gb is directly used and inserted into the right
hand side vector Eqn. (2.85). If a symmetry (Robin) boundary condition
is used, cross–coupling elements between components of velocity appear.
At the symmetry plane, normal component of the velocity is equal to zero,
while the tangential component is equal to the projection of the velocity
in the cell centre to the boundary. The face normal gradient of tangential
velocity is equal to zero. Thus, there exists only the gradient of the normal
component of velocity. The normal component can be expressed as:

uN = (uTn) n (2.89)

= (uxnx + uyny + uznz) n (2.90)

=


(uxnx + uyny + uznz)nx

(uxnx + uyny + uznz)ny

(uxnx + uyny + uznz)nz

 , (2.91)

where uTn denotes the projection of velocity vector onto the face normal
unit vector n and n = sf/‖sf‖. Since the normal component of velocity
on the boundary face is equal to zero ((uN)b = 0), and there exists a
symmetrical contribution from the “mirrored” side, the value of the velocity
gradient on the face is equal to:

(∇u)f = 2
−uN

‖dN‖
. (2.92)

Thus, cross–coupling terms between different components of velocity appear
due to the symmetry plane boundary condition:

Aii =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 . (2.93)

2. Pressure–velocity system 48

• Pressure gradient

If a fixed value of pressure pb is prescribed at the boundary, the value is used
instead of the value at the centre of adjacent cell j, i.e. pj = pb, to calculate
the value of the gradient at the face in the case of central differencing
scheme: ∑

f

sfpf

pf =
pi − pb
‖d‖

.

For least squares interpolation, the corresponding component is calculated
using the boundary value:

(∇p)i = GLSQ
−1 d(pb − pi).

Fixed boundary value in the pressure gradient term contributes to the di-
agonal element and right hand side vector:

Aii =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 , bi =


buxi

buyi

buzi

bpi

 . (2.94)

If a pressure gradient gb is assigned on the boundary, the same procedure
as for the convection term is applied:

pb = pi + ‖dN‖gb. (2.95)

Fixed gradient contributes to the diagonal element Aii and the right hand
side as in Eqn. (2.94).

• Velocity divergence

When a fixed value of velocity is prescribed on the boundary, the face value
in discretisation of velocity divergence∑

f

sTf uf

2. Pressure–velocity system 49

is replaced with the boundary value uf . The contribution goes into the
right hand side vector:

bi =


buxi

buyi

buzi

bpi

 . (2.96)

If there is a velocity gradient gb imposed on the boundary, the value of
velocity is calculated by extrapolation:

ub = ui + ‖dN‖gb. (2.97)

This produces a contribution to the diagonal element and source term as
in Eqn. (2.96):

Aii =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 . (2.98)

• Pressure Laplacian

The boundary conditions for the Laplacian of pressure are treated in the
same way as for the diffusion term in the momentum equation. The follow-
ing equation was obtained from discretisation procedure:∑

f

(
1

aii

)
f

sTf (∇p)f .

For a fixed value of pressure on the boundary, the gradient of pressure on
the face is calculated using the assigned value:

(∇p)f =
pb − pi
‖dN‖

, (2.99)

and the contributions are inserted into the right hand side vector Eqn. (2.96),
and the diagonal matrix element:

Aii =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 . (2.100)

2. Pressure–velocity system 50

When there is an imposed value of pressure gradient gb on the boundary, it
is directly used as the value of the gradient on the face and it produces a
term on the right hand side, Eqn. (2.96).

2.4.10. Overview of the Implicitly Coupled Pressure–Velocity

System

In this section, a summary of this chapter will be given, with an emphasis to
Section 2.3.3. in which the derivation of the implicitly coupled pressure–velocity
system was given, and sections 2.4.3.–2.4.9. where all the contributions to the
linear system from the finite volume discretisation were presented. The govern-
ing equations, namely the incompressible, steady–state, turbulent, single–phase
momentum and continuity equation are written in a block form:[

Au ∇
∇· −∇ · (D−1

u ∇)

][
u

p

]
=

[
0

−∇ · (D−1
u ∇p(k−1))

]
,

where:

• Au is the momentum matrix, which consists of the discretised convection
and diffusion terms,

• ∇ is the pressure gradient matrix in the momentum equation,

• ∇· is the velocity divergence in the pressure equation,

• −∇·(D−1
u ∇) is the Laplacian of the pressure, obtained as an approximation

of the Schur complement,

• −∇ · (D−1
u ∇p(k−1)) is the explicit Rhie–Chow correction for counteracting

the oscillations of the pressure field.

The linear system is written in cell–ordered manner to keep the mesh and matrix
indexing consistent, and the sparsity pattern of the matrix is a consequence of

2. Pressure–velocity system 51

mesh connectivity (cell–to–cell–communication):

A0,0 . . . A0,n−1

. . .
... Aii Aij

...
. . .

An−1,0 . . . An−1,n−1





x0

...
xi
...

xn−1


=



b0

...
bi
...

bn−1


.

Aij =


auxi,uxj

auxi,uyj
auxi,uzj auxi,pj

auyi,uxj
auyi,uyj

auyi,uzj
auyi,pj

auzi,uxj
auzi,uyj

auzi,uzj auzi,pj

api,uxj
api,uyj

api,uzj api,pj

 , xi =


uxi

uyi
uzi

pi

 , bi =


buxi

buyi

buzi

bpi

 .
The four unknowns are assembled into vectors, and for each cell there exists a
single unknown vector. Thus, each cell is represented by a single block–matrix
row. Dimensions of the matrix are n × n, where n is the number of cells, while
elements are matrices with dimensions l × l, where l = 4 is the number of un-
knowns per cell. The position of the element in the matrix is marked by row and
column index. Cell number i corresponds to row index, while column indices j of
non–zero elements correspond to indices of neighbouring cells. Matrix elements
are divided into three sets: diagonal (i = j, dark blue), upper (i < j, light blue)
and lower (i > j, grey) triangle elements. The off–diagonal elements Aij describe
the influence of neighbouring cells j onto the solution in cell i. The structure of
the block–elements stemms from the structure of the block system of the gov-
erning equations. The contribution of the individual terms to parts of the block
system is summed up in Table 2.2. In general, the pressure part of the system
(4th row in the block element) is symmetric in pressure since it contains a Lapla-
cian term. Additionaly, Laplacian gives a positive definite matrix with diagonal
and off–diagonal elements of opposite sign and the sum of row elements is equal
to 0, except the rows wich contain boundary conditions (diagonally dominant).
The velocity divergence part is skew–symmetric (upper and lower off–diagonal
elements with opposite signs), as well as the pressure gradient in the momentum
equation. If the same discretisation scheme is used for velocity divergence and
pressure gradient, it gives equal elements, i.e. the block–element is symmetric.
The convection–diffusion part of the system contains the sum of elements from

2. Pressure–velocity system 52

Table 2.2: Contribution of finite volume discretisation schemes and boundary conditions to
diagonal and off–diagonal matrix elements, and right hand side vector of the implicitly coupled
pressure–velocity system.

diagonal Aii off–diagonal Aij right hand side bi

CONVECTION

- central differencing
- upwind
-von Neumann b.c.

- central differencing (skew–symmetric)
- upwind

- Dirichlet b.c.
- von Neumann b.c.

DIFFUSION

- orthogonal part
- Dirichlet b.c.

- orthogonal part (symmetric)
- non-orthogonal correction
- Dirichlet b.c.
- von Neumann b.c.

PRESSURE GRADIENT

- central differencing
- least squares interpolation
- Dirichlet b.c.
- von Neumann b.c.

- central differencing (skew–symmetric)
- least squares (symmetric)

- Dirichlet b.c.
- von Neumann b.c.

VELOCITY DIVERGENCE

- central differencing
- von Neumann b.c.

- central differencing (skew–symmetric)
- Dirichlet b.c.
- von Neumann b.c.

PRESSURE LAPLACIAN

- orthogonal part
- Dirichlet b.c.

- orthogonal part (symmetric)

- non-orthogonal correction
- Dirichlet b.c.
- von Neumann b.c.
- Rhie-Chow correction

unsymmetric convection term and symmetric diffusion. If the standard lineari-
sation of convection is used, there is no coupling between components of velocity
in different directions.

2.5. Closure

In this chapter we have presented the possible options for the solution of the linear
coupling of incompressible, steady state, single–phase, turbulent pressure and ve-
locity equations. The derivation of the pressure equation as a Schur complement
of the convection–diffusion matrix has been shown, as well as segregated and im-

2. Pressure–velocity system 53

plicitly coupled solution technique for the resulting linear system. A connection
between the OpenFOAMmesh and the structure of the coefficient matrix was shown,
while the last section of the chapter was dedicated to various contributions of the
finite volume discretisation to the linear system. Since the resulting implicitly
coupled pressure velocity system contains both the hyperbolic momentum equa-
tion and elliptic pressure equation, choosing the appropriate and efficient linear
solver is not straightforward. Thus, we shall present and analyse the possible al-
gorithms for solving the linear pressure–velocity system in the following chapter.

3. Linear Solvers

3.1. Introduction

In the previous chapter we presented the iterative algorithms for the solution of
the pressure–velocity system, whether in segregated or implicitly coupled form.
The nature of the equations in question has brought doubts about the optimal
algorithm for the solution of the linear system. In this chapter, the state–of–
the–art linear algorithms will be laid out and discussed. We shall begin with
the most basic, fixed–point methods in section, whose drawbacks will lead to
the complementary algebraic multigrid algorithm (AMG). Another important
class of algorithms which are based on the Krylov subspace will be described:
conjugate gradients (CG) and its extensions biconjugate gradients (BiCG) and
biconjugate gradient stabilised (BiCGStab), as well as the generalised minimal
residual method (GMRES). The complement to these algorithms in terms of
matrix preconditioning will also be covered.

3.2. Algebraic Multigrid

In this section a general overview of the Algebraic Multigrid (AMG) linear solver
will be given. Unlike the geometric multigrid, AMG solver does not operate on
the computational mesh, but uses only the information in the coefficient matrix
A of the linear system. However, it is much easier to think about multigrid in
terms of the computational mesh, and the analogy between mesh and matrix will
be used at various points in this chapter.

Two AMG coarsening strategies will be presented in detail for the scalar and
block matrix: additive correction method (AAMG), also known as the agglom-
erative algebraic multigrid, and the selection method (SAMG). A description
of multigrid smoothers and cycles will be given, as well as the application of
the coarsening strategies to the block matrix. In the last section, parallelisation

3. Linear Solvers 55

strategies for SAMG will be presented and discussed.

3.2.1. Basic iterative solvers

The simplest choice for solving a sparse linear system Ax = b is a class of so called
fixed–point iterative methods such as the Jacobi and Gauss–Seidel algorithms, [2].
To clarify the idea of multigrid methods, Gauss–Seidel algorithm will be briefly
presented.

Gauss–Seidel relies on splitting the coefficient matrix A into a sum of diagonal
and off–diagonal parts. Additionaly, the off–diagonal part is split into a lower
and upper triangular matrix:

A = D + U + L. (3.1)

The linear system can then be written in the following form, using the distributive
properties of matrix–vector multiplication:

(D + U + L)x = b (3.2)

Dx + Ux + Lx = b. (3.3)

The iterative procedure begins by choosing a forward or backward solution tech-
nique. The forward technique propagates from the first to last component of
the solution (top to bottom), i.e. the components xi of the solution which mul-
tiply the upper triangular matrix U are treated explicitly, using the previously
calculated values:

xnew = D−1(bi − Lxnew −Uxold). (3.4)

Here, superscripts old and new correspond to the values in the current and pre-
vious iteration, respectively, while index i denotes the component of the solution
vector. In the remainder of the chapter, old and new will be replaced by a brack-
eted number or letter, denoting the iteration of the algorithm. Indices denoting
the components of a vector will be written in subscript, while the powers of
vectors and matrices will be written in superscript with no bracket.

A backward technique of Gauss–Seidel goes in the opposite direction, from
last to first component of the solution (bottom to top). The components of the

3. Linear Solvers 56

solution which multiply the lower triangular matrix are treated explicitly:

x(k+1) = D−1(bi − Lx(k) −Ux(k+1)). (3.5)

The two directions of calculating the components of the solution vector can be
used in sequence (symmetric sweep) and multiple times per iteration, which will
be discussed further in Section 3.2.3..

The criterion for declaring the solution approximation good enough is defined
using the residual :

r(k) = b−Ax(k), (3.6)

where r(k) is the vector of residuals and x(k) is the approximation of the solution
in interation k of the iterative sequence. The number of iterations for finding an
acceptable solution approximation depends on the initial solution x(0) and the
spectral properties (eigenvalues, eigenvectors) of the matrix A. The residual is
the best available indication of how far the current solution is from the correct
value, because the error is unknown:

e(k) = x− x(k), (3.7)

where e(k) is the error and x the correct solution of the system. However, the resid-
ual can be a misleading indication of convergence if the matrix is ill–conditioned,
which will be discussed in the following sections. The relation between the error
and the residual is:

r(k) = b−Ax(k) = Ax−Ax(k) = A(x− x(k)) = Ae(k). (3.8)

Eqn. (3.8) can be used for calculating the correction of the solution based on the
residual:

x(k+1) = x(k) − e(k). (3.9)

It was proven that Gauss–Seidel converges for strictly diagonally–dominant ma-
trices (sum of the magnitudes of off–diagonal elements in a single row is smaller
than the magnitude of the diagonal element) or symmetric and positive definite
matrices [2]. If the matrix is diagonally equal (sum of magnitudes of off–diagonal
elements is equal to the magnitude of diagonal element), the method converges
so slowly that it is not practical. That is, the method is efficient if the component

3. Linear Solvers 57

being solved for (multiplying the diagonal element) has the largest contribution
to the right hand side.

There are methods for improving the convergence of fixed–point algorithms,
such as the Successive Over–Relaxation (SOR) [2], where a relaxation factor ω is
used, 0 < ω < 2, to increase or decrease the influence of off–diagonal contributions
to the currently calculated component of the solution. It is not used in the scope
of this thesis and will not be further examined.

Since it will be widely used in this chapter, the analogy between the com-
putational mesh and matrix has to be established. A computational mesh in
OpenFOAM consists of 3D cells which are connected to their neigbouring cells
through cell faces. Since the discretisation of linear(ised) equations is done for
each cell, every cell is represented in a coefficient matrix by a single row. The
index of the row corresponds to the index of the cell. The diagonal element
represents the local contribution in the cell, while off–diagonal elements corre-
spond to contributions from neighbouring cells. The column of an off–diagonal
element is the same as the index of the neighbouring cell, while the magnitude
of the off–diagonal element determines the strength of connection between two
equations, i.e. the influence of a field value from a neigbouring cell. It was shown
in Section 2.4.1. that matrices arising from the Finite Volume discretisation are
sparse, meaning that a single component of the solution depends only on a few
other solution components. The effect can be easily visualised in a computa-
tional mesh: the value in a cell will only be affected by the values in the closest
neighbouring cells. Thus, fixed–point methods such as Gauss–Seidel, use only
local information when calculating the solution, which is efficient if the matrix is
strongly diagonally dominant. If the matrix is not strongly diagonally dominant,
the convergence of the method will decrease because there is a greater influence
from the neighbourhood, while global propagation of information is not possible.

In the context of algebraic multigrid, only the information from the matrix
is used. It was even proposed by multigrid experts to change the name of the
method to multilevel since no mesh (grid) is used.

Multigrid methods enable global propagation of information by creating a
hierarchy of coarse matrices. Here, coarse denotes matrices which have a smaller
dimension (fewer rows and columns). Equations which had no communication

3. Linear Solvers 58

in the fine matrix (off–diagonal element equal to zero), can become neighbours
in the coarse matrix (off–diagonal element is non–zero) and thus expand the
contribution of their local solution. The propagation of information on coarse
levels is done by applying the aforementioned fixed–point methods, which are
called smoothers in this context. The smoothing property will be discussed in
the next section as well as the motivation for multigrid methods, based on the
convergence behaviour of fixed–point algorithms.

A basic outline of an algebraic multigrid algorithm is given here, to establish
the terminology. For simplicity, this algorithm is presented with only two levels
(one fine and one coarse), while in practice multiple coarse levels are constructed.

1. On the fine level, calculate the approximate solution of the system:

AF
n×nx̄

F = b, (3.10)

where AF
n×n is the coefficient matrix on the fine level, n × n denotes the

matrix dimensions, i.e. the number of equations which are being solved, x̄F

is the approximate solution on the fine level, and b is the right hand side
vector.

2. Using the obtained approximate solution, calculate the fine level residual
rF:

rF = b−AF
n×nx̄

F. (3.11)

3. Based on some criterion, create a coarse matrix AC
m×m, where m is the

number of equations on the coarse level, and m < n. The procedure for
choosing the equations which are being solved on the coarse level is called
coarsening.

4. Transform the residual from fine level rF to coarse level rC, using the re-
striction matrix Rm×n:

rC = Rm×n rF. (3.12)

5. On the coarse level, solve the correction equation Eqn. (3.8):

AC
m×meC = rC, (3.13)

where eC is the coarse level error.

3. Linear Solvers 59

6. Transform the error from coarse level eC to fine level eF, using the prolon-
gation matrix Pn×m:

eF = Pn×m eC. (3.14)

7. Use the error calculated on the coarse level to correct the solution on the
fine level:

x̄F = x̄F + eF. (3.15)

In the following sections we shall elaborate and expand the key points of the
presented basic algorithm. Since this algorithm has only two levels, one fine
and one coarse, we shall present the effect of introducing multiple coarse levels
which is governed by multigrid cycle, section 3.2.2. An overview of smoothing
properties of fixed–point algorithms was presented in this section, while the con-
cept of algebraic smoothness with respect to matrix elements will be presented
in Section 3.2.3.. In sections 3.2.4.–3.2.5. we shall present two strategies for the
calculation of coarse level matrices and the corresponding restriction and pro-
longation matrices. Sections 3.2.6. and 3.2.7. are dedicated to application of
the presented algorithms onto block–matrices and to parallelisation of selection
algebraic multigrid, respectively.

3.2.2. Multigrid Cycle

In this section, an overview of a two level multigrid will be given as well as the
reasons for using the V– and W–cycle. First, a multigrid matrix will be derived
to interpret the effect of a single two level V–cycle onto the error.

A V–cycle with only two levels, fine and coarse, is shown in Fig. 3.1 with all
the algebraic operations denoted at the appropriate positions:

3. Linear Solvers 60

FINE LEVEL

• Use a fixed–point method to calculate the approximate solution x̄F of the
linear system AFx = b.

• Calculate the residual: rF = b−AFx̄F = AFēF.

• Restrict the residual: rC = RrF.

COARSE LEVEL

• Solve the residual equation ACeC = rC to obtain eC = (AC)−1rC.

• Prolongate the correction: eF = PeC.

FINE LEVEL

• Correct the solution: xF = x̄F − eF.

• “Smooth out” the solution using a fixed–point method.

smooth → xF

correct: xF = x̄F + eF

eF = PeC

prolongate:

COARSE LEVEL solve: ACeC = rC

eC = (AC)−1rC

restrict:

rC = RrF

calculate:

AC = RAFP

FINE LEVEL

AFx = b
smooth → x̄F

rF = b−AFx̄F

= AFēF

Figure 3.1: Two level multigrid V–cycle.

3. Linear Solvers 61

The multigrid matrix M can now be derived, using all the operations listed above,
except the smoothing steps, [27]:

P (AC)−1 R AFēF︸ ︷︷ ︸
fine level residual︸ ︷︷ ︸
restrict residual︸ ︷︷ ︸

solve coarse system︸ ︷︷ ︸
prolongate correction

= eF. (3.16)

Here, we can identify the multigrid matrix:

M := P(AC)−1RAF, (3.17)

where AC is the coarse level matrix defined as AC = R ·AF ·P. The correction
equation in terms of the fine level error ēF is obtained from the correction of the
solution:

xF = x̄F − eF

��xF = ��xF + ēF −MēF

ēF −MēF = 0

(I−M)ēF = 0. (3.18)

Thus, the correction term is scaled by matrix M and it is necessary to inspect its
spectral properties to determine the effect of a single two level multigrid V–cycle
on the convergence of the solution. The key is the definition of the coarse level
matrix AC as a Galerkin matrix. If we insert it into the multigrid matrix:

M = P(RAFP)−1RAF,

and square it, the same multigrid matrix is obtained:

M2 = P(RAFP)−1����
RAFP������

(RAFP)−1RAF

= P(RAFP)−1RAF

= M. (3.19)

A conclusion can now be made about the eigenvalues of M:Mv = λv

M2v = λ2v.

3. Linear Solvers 62

Since M2 ≡M:

λv = λ2v

λ2 − λ = 0

(λ− 1)λ = 0.

The eigenvalues of matrix M are λ1 = 0 and λ2 = 1. According to Eqn. (3.18), the
components of the error with the eigenvalue λ2 = 1 will be completely eliminated,
while multigrid will have no effect on the components with the eigenvalue λ1 = 0.
Looking at Eqn. (3.17) , it can be seen that the dimensions of M are the same
as the dimension of the fine level matrix AF. The rank of M (number of linearly
independent columns, i.e. the number of non–zero rows in echelon form) is equal
to the dimension of the coarse level matrix AC. That is, the multiplicity of
eigenvalue λ2 = 1 is equal to the dimension of the coarse level matrix, as that
is the number of error components which are completely eliminated on the fine
level.

Since a single two level multigrid V–cycle has absolutely no effect on some
components of the error, there is no point in doing multiple cycles. This is where
fixed–point methods complement the multigrid two level cycle. Application of
these methods, which smooth out the solution, is performed on the fine level
system before the calculation of the residual (pre–smoothing) and after correction
of the solution (post–smoothing) and the corresponding matrix is:

S︸︷︷︸
post–smoothing

(I−M) S︸︷︷︸
pre–smoothing

, (3.20)

where S is the smoother. The smoothing step can be repeated multiple times,
in attempt to further reduce the high–frequency components of the error. For
example, the matrix for a multigrid two level V–cycle with two pre–smoothing
and two post–smoothing sweeps is:

S2(I−M)S2. (3.21)

It is uncertain how many pre– and post–smoothing sweeps are optimal for con-
vergence but it was shown that it is beneficial to recursively repeat the multigrid
algorithm, i.e. create multiple coarse levels and move through them while repeat-
ing all the steps of a two level algorithm. The most used cycles are shown:

3. Linear Solvers 63

• V–cycle with several coarse levels, Fig. 3.2,

• W–cycle which is a V–cycle with multiple solutions on the coarser levels,
Fig. 3.3,

• full multigrid cycle, which starts at the coarsest level and gradually moves
towards the finest one, Fig. 3.4.

Figure 3.2: Multi–level multigrid V–cycle.

Figure 3.3: Multi–level multigrid W–cycle.

Figure 3.4: Full multigrid cycle.

In conclusion, the application of fixed–point methods to calculate the approx-
imate solution of the linear system is limited by the eigenspectrum of the co-
efficient matrix. The error components which correspond to eigenvectors with
very small eigenvalues are reduced very slowly, i.e. the residual is very small but
the error is still quite large. Since these methods efficiently reduce some compo-
nents of the error, and do not increase other components, the name smoothers

3. Linear Solvers 64

intuitively describes the effect. In the following section we shall describe how
algebraic smoothness is related to application of fixed–point methods.

3.2.3. Algebraic Smoothness

In geometric multigrid, the error term on the fine mesh can be characterised
as smooth if it can be well approximated on the coarse mesh (smoothness of a
function). The definition of error smoothness in the context of algebraic multigrid
is not the same, as the coarse mesh does not physically exist. In AMG, an error
is called smooth if it cannot be eliminated, i.e. the chosen fixed–point method,
see Section 3.2.1., stalls. The iterative solution of a linear system Ax = b can
be written in the following form:

x(k+1) = (I−A︸ ︷︷ ︸
S

)x(k) + b, (3.22)

where I is the identity matrix and (I − A) is the iteration matrix S, i.e. the
smoother. This equation represents a general fixed–point iteration: when the
correct value of x is reached, term −Ax + b vanishes and the solution does not
change in the subsequent iteration. Thus, the correct solution of the system
is called the stationary point. To analyse the effect of an iteration onto the
solution, we shall write the current x(k+1) and the previous solution x(k) using
the corresponding errors:

(x + e(k+1)) = (I−A︸ ︷︷ ︸
S

)(x + e(k)) + b

= x + e(k) −��Ax−Ae(k) + ��b

= x + e(k) −Ae(k)

= x + (I−A︸ ︷︷ ︸
S

)e(k). (3.23)

It can be seen from Eqn. (3.23) that the iteration matrix S does not affect the
correct part of the solution x, but only the error term e. Finally, the fixed–point
iteration expressed in terms of the solution error is:

e(k+1) = (I−A)e(k)

= e(k) −Ae(k). (3.24)

3. Linear Solvers 65

The condition for convergence of the fixed–point methods can be shown by assum-
ing that the error term can be represented as a linear combination of eigenvectors
of the coefficient matrix A, [57]:

e =
n∑
i

ζi · vi, (3.25)

where subscript i denotes the i–th component of the error e, ζi is a scalar constant
describing the length of each component of e, n is the dimension of the matrix
and vi is an eigenvector with the corresponding eigenvalue λi:

Av = λv. (3.26)

The behaviour of eigenvectors is well–known, Fig. 3.5 and it can be used to anal-
yse other vectors. For example, if a vector can be represented as a linear combi-
nation of eigenvectors, the component whose eigenvalue is larger than 1 will grow
when the matrix is applied to it. If the corresponding eigenvalue of a component
is smaller than 1, the repeated application of the matrix will “eliminate” it (it
will become a null vector). Thus, to guarantee the convergence of a fixed–point
iterative method, all eigenvalues of the iteration matrix should be smaller than 1.
That is, the spectral radius ρ(S) (the largest eigenvalue) of the iteration matrix
should be smaller than 1. Looking at Eqn. (3.24), the goal is to eliminate the
error to reach the correct solution, i.e. e(k+1) = 0, which gives:

e(k) −Ae(k) = 0. (3.27)

Thus, the components of the error which have the corresponding eigenvalue clos-
est to 1 will be eliminated by the fixed–point method the fastest. These error
components are called high–frequency errors and were descibed in Section 3.2.1.
as the components which can be eliminated locally (using the information from
the neighbouring cells). The components which have small eigenvalues will be
the slowest to converge, as the component ζj ·vj will not be reduced significantly
by the corresponding scaled component of the term Ae(k), and are called low–
frequency errors. In the context of multigrid, methods which efficiently reduce
the high–frequency components of the error are called smoothers. Smoothing can
be visually explained for Jacobi and Gauss–Seidel: the error term is locally aver-
aged using the available (local) information. Residual does not have to be a good

3. Linear Solvers 66

λ v = A v

v

v

x1

λ v = A v

λ2 v = A2 v

λ > 1

x2

x1λ < 1

λ2 v = A2 v

x2

Figure 3.5: Scaling of eigenvectors with a matrix A. The eigenvectors cannot rotate (except in
the opposite direction, but they always lie on the same line), however, they can contract if the
corresponding eigenvalue is smaller than 1, or dilate if the eigenvalue is larger than 1.

indication of the correct solution since a small residual doesn’t necessarily imply
a small error: we can recognise the residual as the second term in Eqn. (3.27),
r(k) = Ae(k). This is one of the definitions of the algebraically smooth error - the
residual (error scaled by the coefficient matrix A) is much smaller than the error
itself [30].

The role of the algebraic multigrid algorithm is to identify the direction of
low–frequency components of the error, turn them into high–frequency errors on
the coarse mesh, and use the smoother to efficiently eliminate them.

To derive the starting point for the multigrid coarsening process, i.e. an equa-
tion for identification of the direction of low–frequency errors, recall Eqn. (3.4),
describing the forward propagating iteration of the Gauss–Seidel method:

x(k+1) = D−1(bi − Lx(k+1) −Ux(k)),

which for each component xi of the solution, can be written as:

x
(k+1)
i =

1

aii
(bi −

∑
i 6=j

aijx
(k)
j) =

1

aii
(aiix

(k)
i + bi −

∑
j

aijx
(k)
j)

= x
(k)
i +

r
(k)
i

aii
, (3.28)

where superscript (k + 1) indicates the solution in the current iteration, while
other values are taken from previous kth iteration. The equation can also be
expressed for the corresponding error:

e
(k+1)
i = e

(k)
i −

r
(k)
i

aii
. (3.29)

3. Linear Solvers 67

From the previous analysis, smooth (low–frequency) components of the error are
characterised by slow reduction using the fixed–point method, i.e. the error does
not significantly change between two iterations, e(k+1)

i ≈ e
(k)
i , and from that we

can conclude that the second term in Eqn. (3.29) is negligible, i.e.:

|ri| � aii|ei|∣∣∣∣∣aiiei +
∑
j∈Ni

aijej

∣∣∣∣∣� aii|ei|. (3.30)

Eqn. (3.30) illustrates that the error can be approximated by the values of the
error in the neighbouring cells:

aiiei +
∑
j∈Ni

aijej = 0. (3.31)

This equation is directly applied in the SAMG algorithm to describe the alge-
braically smooth error and derive the criterion for the coarsening process as well
as the elements in restriction and prolongation matrices. The coherence between
the multigrid algorithm and smoothers is based on Eqn. (3.31): since the equation
originates from the limitations of the fixed–point methods, it is natural to exploit
it for the definition of coarse levels, i.e. for the interpolation of the correction
term from coarse level equations into the fine level equations.

Matrix Elements and Smoothness

Eqn. (3.27) describes the behavior of smooth errors: the corresponding residual is
small, while the error itself remains large. Since the residual is actually the error
transformed by the coefficient matrix A, we shall introduce a unique measure
of how the coefficient matrix affects vectors, i.e vector norms based on inner
products [30]:

(u,w)D = wTDu, (3.32)

(u,w)A = wTAu, (3.33)

(u,w)AT D−1A = (Aw)TD−1Au, (3.34)

where u an w are vectors, (•, •) denotes a vector inner product, A is a positive
definite matrix and D is the matrix containing only the diagonal of A. The

3. Linear Solvers 68

corresponding vector norms are defined as:

‖z‖D = (Dz, z)
1
2 =
√

zTDz, (3.35)

‖z‖A = (Az, z)
1
2 =
√

zTAz, (3.36)

‖z‖AT D−1A = (D−1Az,Az)
1
2 =

√
(Az)TD−1Az. (3.37)

The norm defined in Eqn. (3.36) is called the energy norm – a vector norm
weighted by the coefficient matrix A. It will also be significant in the context of
Krylov subspace methods. The norm in Eqn. (3.35) is weighted by the diagonal
of matrix A, while the norm in Eqn. (3.37) is weighted by a scaled matrix A,
where all diagonal elements are equal to 1. A smooth error is not affected by the
smoother, i.e. the energy norm of the error remains the same [2]:

‖Se‖A ≈ ‖e‖A. (3.38)

To derive an equation which defines the smoothing property of an iterative metod,
we will use the set of norms in Eqn. (3.35)–Eqn. (3.37) on the eigenvectors v of
the matrix D−1A [30], i.e. matrix A with diagonal elements equal to 1:

D−1Av = λv

‖v‖2
D =

(√
vTDv

)2

= vTDv, (3.39)

‖v‖2
A =

(√
vTAv

)2

= vTD D−1Av︸ ︷︷ ︸
λv

= λ‖v‖2
D, (3.40)

‖v‖2
AT D−1A =

(√
(Av)TD−1Av

)2

= (Av)T D−1Av︸ ︷︷ ︸
λv

= λ‖v‖2
A, (3.41)

where λ is an eigenvalue of D−1A corresponding to eigenvector v. From Eqn. (3.27)
we have seen that the components of the error which correspond to the smallest
eigenvalues (λ ≈ 0) will be the slowest to converge. Comparing the three norms
using Eqn. (3.39)–Eqn. (3.41) reveals that they are very different in size if the
eigenvalues are close to 0:

‖v‖AT D−1A � ‖v‖A � ‖v‖D. (3.42)

On the contrary, when applied to a high–frequency error (λ ≈ 1), the three norms
are similar. A smoothing property of a matrix is defined using the behaviour of
these norms for smooth and oscillatory error [30]:

3. Linear Solvers 69

Definition 3.1. A smoothing matrix S satisfies a smoothing property with respect
to a positive definite matrix A if for all vectors e

‖Se‖2
A ≤ ‖e‖2

A − σ‖e‖2
AT D−1A (3.43)

where σ > 0, and σ is independent of e.

To demonstrate how the connectivity affects the smoothness, we will rewrite the
inner product defined in Eqn. (3.33) in terms of matrix elements [2]:

(e, e)A = eTAe

=
∑
i,j

aijeiej

=
1

2

∑
i,j

−aij
[
(ei − ej)2 − e2

i − e2
j

]
=

1

2

∑
i,j

−aij(ei − ej)2 +
1

2

∑
i,j

aij
(
e2
i + e2

j

)
︸ ︷︷ ︸

(A is symmetric!)

=
1

2

∑
i,j

−aij(ej − ei)2 +
∑
i

(∑
j

aij

)
e2
i . (3.44)

The inequality of norms from Eqn. (3.42) can be rewritten as:

‖e‖2
A = ε‖e‖2

D,

eTAe = ε · eTDe, (3.45)

where 0 < ε� 1. If we consider a special case when the row sums of matrix A are
0 (the sign of the diagonal element is opposite to signs of off–diagonal elements
and rows are diagonally equal), Eqn. (3.45) can be rewritten using Eqn. (3.44):

1

2

∑
i,j

|aij|(ej − ei)2 +
∑
i

(∑
j

aij

)
︸ ︷︷ ︸

0

e2
i = ε

∑
i

aiie
2
i

1

2

∑
i,j

|aij|(ej − ei)2 = ε
∑
i

aiie
2
i (3.46)

∑
i

aiie
2
i

[∑
j 6=i

|aij|
aii

(
ei − ej
ei

)2

− 2ε

]
= 0. (3.47)

3. Linear Solvers 70

For Eqn. (3.47) to hold, the term in the square brackets must vanish, thus it is
expected that the first part of the term is of order 2ε [2], that is:

∑
j 6=i

|aij|
aii

(
ei − ej
ei

)2

� 1. (3.48)

Thus, if |aij|/aii is large, (ei − ej)/ei must be small. That is, the components
of the error change slowly in the direction of large off–diagonal elements with
sign opposite to diagonal element. To see the behaviour of the error for large
off–diagonal elements with sign equal to the diagonal, a measure of diagonal
dominance ti, for each matrix row i is introduced [30]:

ti = aii −
∑
j 6=i

aij. (3.49)

We shall reformulate Eqn. (3.44) using the measure of diagonal dominance to
rewrite the ith row sum∑

j

aij = aii −
∑
j 6=i

|aij|︸ ︷︷ ︸
ti

+2
∑
j 6=i

a+
ij,

where a+
ij are elements with sign equal to the sign of the diagonal element (“pos-

itive”). Also, the first sum in Eqn. (3.44) can be split into sums of diagonal
elements and “positive” and “negative” off–diagonal elements:∑

i,j

−aij(ej − ei)2 =
∑
i=j

−aij(ej − ei)2

︸ ︷︷ ︸
0

+
∑
i

∑
j 6=i

−a+
ij(ej − ei)2

+
∑
i

∑
j 6=i

−a−ij(ej − ei)2. (3.50)

3. Linear Solvers 71

Putting it all together yields:

eTAe =
1

2

∑
i,j

−aij(ej − ei)2 +
∑
i

(
ti + 2

∑
j 6=i

a+
ij

)
e2
i

=
1

2

[∑
i

∑
j 6=i

−a−ij(ej − ei)2 +
∑
i

∑
j 6=i

−a+
ij(ej − ei)2

]
+
∑
i

∑
j 6=i

2a+
ijej +

∑
i

tie
2
i

=
1

2

[∑
i

∑
j 6=i

−a−ij(ej − ei)2 +
∑
i

∑
j 6=i

−a+
ij(ej − ei)2

]
+
∑
i

∑
j 6=i

a+
ije

2
j + a+

ije
2
i +

∑
i

tie
2
i

=
1

2

∑
i

∑
j 6=i

−a−ij(ej − ei)2 +
∑
i

tie
2
i

+
∑
i

∑
j 6=i

1

2
(−a+

ij)(ej − ei)2 + a+
ije

2
j + a+

ije
2
i

=
1

2

∑
i

∑
j 6=i

−a−ij(ej − ei)2 +
∑
i

tie
2
i +

1

2

∑
i

∑
j 6=i

a+
ij(ej + ei)

2. (3.51)

The corresponding norm is equal to:

‖e‖2
A =

1

2

∑
i

[∑
j 6=i

|a−ij|(ej − ei)2 +
∑
j 6=i

a+
ij(ej + ei)

2

]
+
∑
i

tie
2
i . (3.52)

For a weakly diagonally dominant matrix (ti ≈ 0) comparison of norms according
to Eqn. (3.42) yields:

‖e‖A � ‖e‖D,∑
j 6=i

|a−ij|(ej − ei)2 +
∑
j 6=i

a+
ij(ej + ei)

2 � aiie
2
i ,

∑
j 6=i

|a−ij|
aii

(ej − ei)2

e2
i

+
∑
j 6=i

a+
ij

aii

(ej + ei)
2

e2
i

� 1. (3.53)

It follows from Eqn. (3.53): if aij is “positive” (has the sign equal to diagonal
element), and if connection aij/aii is large, ej will be close to −ei, i.e. the error in
that direction oscillates. Thus, the algebraically smooth error tends to oscillate
along strong positive connections [30].

3. Linear Solvers 72

3.2.4. Additive Correction Algebraic Multigrid

Multigrid algorithms create a hierarchy of coarse matrices using the projection
methods to efficiently eliminate components of the error corresponding to coarse
level unknowns. Fixed–point methods complement the multigrid algorithm by
reducing fine level components of the error and the compatibility is achieved
through the construction of the prolongation matrix and the definition of the
coarse level matrices as Galerkin matrices. For simplicity, the coarsening strate-
gies presented in the current and the following section will be described in a
cycle with only two multigrid levels (fine and coarse), although multiple coarse
levels are usually used. In this section, we shall present a heuristic algorithm for
construction of coarse level and transfer matrices.

It was shown in sections 3.2.2. and 3.2.2. that fixed–point iterative solvers
reduce the high–frequency errors, i.e. the errors whose components correspond to
eigenvectors with eigenvalues close to 1. That is, the difficulty in convergence
arises from the non–uniformity of matrix elements. To illustrate, we shall use a
non–uniform mesh shown in Fig. 3.6 on which we attempt to solve a discretised
diffusion equation, where diffusivity is equal to 1:

∇•(∇φ) = 0.

It was shown in Chapter 2. that the discretised diffusion operator is written
as a sum over the faces of a finite volume cell and the equation elements are
proportional to the face surface area. The cells at the fine level in Fig. 3.6 are
elongated in x–direction, thus there appear matrix elements with different magni-
tudes, which stem from the difference in the face surface area. The solution from
neighbouring cell j influences the solution in cell i proportionally to the matrix
element aij. Thus, the influence from a greater face surface area is much stronger
– in this case the strong influence exists in y–direction due to anisotropy of the
cells, which is the direction in which the information spreads quickly during the
fixed–point iteration.

The motivation for Additive Correction Algebraic Multigrid (AAMG), pro-
posed by Hutchinson and Raithby [33] in the context of FVM, is to even out
the face surface area, similar to principles in geometric multigrid, by grouping
the fine level cells in the direction of strong connections to create cell clusters

3. Linear Solvers 73

FINE LEVEL

2nd LEVEL

1st LEVEL

X

Y

Figure 3.6: Coarsening in AAMG: grouping of the cells eliminates the anisotropy of the mesh.

which will represent coarse level cells. An example is shown in Fig. 3.6, where
uniformity was achieved on the 2nd multigrid level, after grouping two fine level
cells into one coarse level cell.

Since the approach is purely algebraic, coarse level equations have to be con-
structed from the fine level matrix, without any knowledge about the compu-
tational mesh or corresponding boundary conditions. The construction of the
coarse matrix is based on the conservativeness of the FVM equations.

Navier–Stokes equations are conservative by nature, i.e. the momentum in a
finite volume cell can only be changed by the flow through the face or by the
surface or volumetric forces acting on the cell. The mass conservation in the

3. Linear Solvers 74

continuity equation follows the same principles. The conservation property is
valid for the FVM discretised equations as well. An integral over the whole
domain is equal to the sum of integrals over the control volumes and it can
be reduced to a sum over the surface of the domain. That is, if a property is
conserved over a single finite volume cell, it has to be conserved over a group
of finite volume cells. Thus, the correction calculated on the coarse level which
will be applied onto fine level solution, must preserve the conservativeness over
a cluster of cells. The derivation given in [33] starts from a general conservation
law in algebraic form:

aiixi +
∑
j

aijxj = bi. (3.54)

It is presumed that the final fine level solution is obtained after a correction from
coarse level is applied:

xFi = x̃Fi + eFI/i, (3.55)

where x̃Fi is the uncorrected (initial) solution on the fine level, xFi is the fine level
solution after correction, while eFI/i is the correction calculated for coarse cell I,
which the fine level cell i was grouped into.

Since it is expected that the residual on the coarse level will be reduced to
zero for each cluster, to keep the conservativeness on the fine level, the sum of
the residual over a single cluster should be zero:∑

i in I

rFi = 0, (3.56)

where rFi is the residual obtained after correction on the fine level. The residual
after correction is calculated as:

rFi = bi − (aiix
F
i +

∑
j

aijx
F
j) (insert expression for xFi),

rFi = bi − (aiix̃
F
i +

∑
j

aijx̃
F
j)︸ ︷︷ ︸

r̃Fi

−(aiie
F
I/i +

∑
j

aije
F
I/j), (3.57)

where r̃Fi is the uncorrected (initial) residual in the fine level matrix. Inserting
Eqn. (3.57) into Eqn. (3.56) yields:∑

i in I

rFi =
∑
i in I

[
r̃Fi − (aiie

F
I/i +

∑
j

aije
F
I/j)

]
= 0,

3. Linear Solvers 75∑
i in I

(aiie
F
I/i +

∑
j

aije
F
I/j) =

∑
i in I

r̃Fi . (3.58)

Eqn. (3.58) represents the coarse level equation in AAMG and it reveals that
the coarse level matrices are obtained by summing the fine level matrix elements
which correspond to a single cluster, while the right hand side is obtained by sum-
ming the fine level residual. Thus, addition of elements in the direction of strong
connections is equivalent to enforcing the integral equation of a conservation law
over a cluster which consists of the corresponding fine equations. After the addi-
tion of correction on the fine level, the conservativeness is satisfied globally (due
to consistent sum of residuals). Local conservation (residual equal to zero in each
cell which belongs to a cluster) is achieved by the fixed–point method, which
efficiently eliminates the error inside a cluster.

As shown for the example in Fig. 3.6, the approach is straightforward for
a structured computational mesh, and since the construction of coarse levels is
purely algebraic, it can efficiently be applied to systems stemming from unstruc-
tured meshes.

AAMG algorithm implemented in foam-extend begins by determining the
strength of connectivity in the fine level matrix, i.e. searching for large off–
diagonal elements. This part of the algorithm is highly sequential. A strong
connection between two equations exists, if the magnitude of the off–diagonal
element squared, which represents the connection of two cells, is larger than the
scaled product of the two diagonal elements. Thus, the criterion for declaring a
strong connection between equations k and m is:

a2
km > αMG · akkamm, (3.59)

where akm is the off–diagonal element representing the connection between equa-
tions k and m, and akk and amm are diagonal elements. αMG is a chosen scaling
factor. There are special cases when the equation has no strong connections.
These equations are sorted into a so–called zero cluster, and their correction is
calculated separately. After determining the strong connections for each equa-
tion, the first equation, called the seed is chosen based on the smallest index
(lexicographically). Equations coupled to the seed are added to the cluster if the
connection is strong enough, based on Eqn. (3.59). The size of a cluster is limited

3. Linear Solvers 76

by the user: a maximum number of equations which can be grouped into a single
cluster is prescribed. If the cluster is not full after serching the coupled equa-
tions, couplings of already grouped coupled equations are then searched. After
all the equations have been grouped into clusters, each cluster is marked with an
index, in our case, in order of appearance of the cluster. The index of the cluster
corresponds to the index of the equation in the coarse matrix.

As shown in Eqn. (3.58), the coarse level matrix is obtained by summing up
the elements from the fine matrix.

The dimensions of the matrix for transferring the residual from fine level,
i.e. restriction matrix R are equal to total number of clusters × number of cells
on the fine level. The elements of the restriction matrix are either 0 or 1:

• if equation m belongs to a cluster I, the element in row I and column m of
the restriction matrix is equal to 1,

• otherwise, the element in the restriction matrix is equal to 0.

There is no need for explicit formulation of the restriction matrix, since the
residual on the coarse level is obtained as the sum of residuals on the fine level:

rCi =
∑
i∈I

rFi . (3.60)

Prolongation matrix P has the dimensions equal to number of cells on the fine
level × total number of clusters and its elements are also either 0 or 1:

• if equation m belongs to a cluster I, the element in row m and column I of
the prolongation matrix is equal to 1,

• otherwise, the element in the prolongation matrix is equal to 0.

Again, there is no explicit formation of the prolongation matrix, as the correction
calculated for each cluster is directly applied to all the fine level equations which
were grouped into that particular cluster:

xi = x̄Fi + eCi∈I . (3.61)

3. Linear Solvers 77

3.2.5. Selection Algebraic Multigrid

The second coarsening strategy is the Selection Algebraic Multigrid (SAMG) [28],
in which the coarsening is achieved by selecting representative equations from the
fine level matrix, i.e. choosing the representative cells from the fine mesh. On the
coarse level, the equations are solved only for the selected cells. The selection of
the cells is based on a heuristic procedure which, similar to AAMG, depends on
the strength of connectivity in the coefficient matrix A, i.e. the magnitude of off–
diagonal elements. Here, in contrast to AAMG, the restriction and prolongation
matrices are explicitly formed. For clarity, SAMG algorithm can be divided into
separate phases:

1. Selecting representative equations in the fine level matrix;

2. Calculating the scaling factors to take into account the eliminated equa-
tions;

3. Calculating the prolongation weights ;

4. Forming the prolongation and restriction matrices;

5. Calculating the coarse level matrix.

Each phase will be described in detail in the following sections.

Selection of representative equations

For easier understanding, the terminology used in this section will be introduced.
For a single equation, the set of strongly coupled equations can be divided into
two subsets, influences and dependencies, illustrated in Fig. 3.7:

• In a matrix row i, if there exists an off–diagonal element aij larger than some
value, the equation with the column index j is an influence of equation i.

• In a matrix column j, if there exists an off–diagonal element aij larger than
some value, equation with the row index i is a dependency of the equation
with index of the column j.

3. Linear Solvers 78

d
e
p
e
n
d
e
n
c

e
s
i

influences

U

D

L

Figure 3.7: The direction of influences and dependencies in a coefficient matrix.

For a symmetric matrix, the number of influences and dependencies of an equa-
tion is equal. Also, for reasons mentioned in Section 3.2.3., it is important to
distinguish between the signs of matrix elements:

• In a matrix row, if there exists an off–diagonal element with the sign opposite
to the sign of the diagonal element in that row, the connection is called
negative.

• In a matrix row, if there exists an off–diagonal element with the sign equal
to the sign of the diagonal element in that row, the connection is called
positive.

The task of the selection algorithm is to form a subset of coarse level equations
from the set of fine level equations. The equations which were not selected into
the coarse subset will receive the coarse correction by interpolation, which implies
that the eliminated equations must be well represented by the chosen subset on
the coarse level. To ensure optimal performance of the solver, the goal is to find
the largest possible set of equations which will remain on the coarse level in such
a way that they do not depend on each other. The algorithm for selection of the
coarse subset is taken from Ruge and Stüben [28]. The first step is to find all
negative elements aij in row i of the coefficient matrix. The element with the
largest magnitude is chosen to be the strongest negative connection aSij in row

3. Linear Solvers 79

i. All negative elements a−ij which are larger than the fraction of the strongest
negative connection:

a−ij > βMG · aSij, where βMG < 1, (3.62)

represent an influence from equation j onto equation i. Based on the same cri-
terion, all negative connections a−ji in row j represent a dependency of equation
i. After finding influences and dependencies for each row, an auxiliary matrix
containing only these strong connections is formed. Based on the auxiliary ma-
trix, the equations are ranked. Each equation is assigned a weight which is equal
to the number of dependencies for that equation. The equation with the largest
weight becomes coarse and all its dependencies are eliminated from the coars-
ening procedure, i.e. they only exist on the fine level. Weights of the unsorted
equations are then updated: weights of neighbours of the selected coarse equation
are decremented (they have less chance to become coarse). Weights of influences
of the eliminated fine equations are incremented (to increase the chance of them
becoming coarse). The process continues with the next unsorted equation which
has the largest weight and is repeated until all the equations are either chosen as
coarse or eliminated as fine.

The final division of equations should satisfy the condition that every fine
equation has at least one influence in the coarse subset from which it will receive
the coarse level correction. However, in some cases, there will be equations with-
out any influences (for example, if all connections are positive). These equations
will automatically be eliminated, and solved only on the fine level. It would be
ideal if all the influences of a fine equation become coarse level equations (local
maximum), but in general, this will not be the case. These eliminated influences
will be treated in a special way which will be described in the following section.

Scaling factors and prolongation weights

After separating the equations into two sets, coarse and fine, it is necessary to
define how the correction calculated on the coarse level will be applied to fine
level equations. The idea is that every fine equation will receive a coarse level
correction from its coarse influences (neighbours) through weighted interpolation.
The interpolation weights will be assembled into the prolongation matrix. The

3. Linear Solvers 80

starting point for calculating the weights is the residual equation, Eqn. (3.8), for a
single matrix row, split into diagonal and off–diagonal part, in which the residual
is completely eliminated (ri = 0), i.e. Eqn. (3.31):

aiiei +
∑
j∈Ni

aijej = 0,

where aii is the diagonal element in row i, ei is the error corresponding to row
i, Ni is the set of all the equations coupled to equation i, aij is the off–diagonal
element and ej is the error corresponding to solution of equation j.

In Section 3.2.4., it was said that equations coupled to equation i can be either
coarse or fine, and it would be ideal if all the influences of a fine equation are
coarse. However, there will be some influences which are fine. These fine influ-
ences will be specially treated and put into a special subset. Thus, all equations
j coupled to equation i in set Ni are divided into subsets:

• Coarse influences Ci of equation i;

• Fine influences FS
i of equation i. Superscript S denotes the strong connec-

tion of the two equations;

• Other fine neighbours FW
i of equation i. Superscript W denotes the weak

connection between the two equations. Usually, only positive connections
appear in this subset.

Using this classification, Eqn. (3.31) can be written in the following form:

aiiei = −
∑
j∈Ci

aijej −
∑
j∈FS

i

aijej −
∑
j∈FW

i

aijej. (3.63)

The subset of weak connections FW
i is collapsed and added to the diagonal ele-

ment: aii +
∑
j∈FW

i

aij

 ei = −
∑
j∈Ci

aijej −
∑
j∈FS

i

aijej. (3.64)

To derive the equation for calculating interpolation weights, consider an equation
eliminated on the fine level which has only one coarse influence:aii +

∑
j∈FW

i

aij

 ei = −aCijej −
∑
j∈FS

i

aijej, (3.65)

3. Linear Solvers 81

where aCij is the off–diagonal matrix element connecting the fine equation i to
coarse coupled equation j. There are multiple possibilities for the treatment of
fine influences FS

i [27, 28].

• Direct interpolation in which only the coarse influences of an equation are
used for interpolation. Fine influences are included in a scaling factor. We
use this option in the scope of the thesis.

• Standard interpolation in which the contribution of fine influences is in-
cluded through their coarse influences. The set of interpolatory variables
is extended in comparison to standard interpolation. It is also possible to
include the coarse influences of weak fine neighbours which further extends
the number of variables used for interpolation.

• Multi–pass interpolation which is used in combination with aggressive coars-
ening procedure in which there is no guarantee that every fine equation will
have a coarse connection. It is not considered in the scope of this work.

In line with direct interpolation, fine influences of an equation are included in the
scaling factor γ:

γ =

∑
j∈Ci aij +

∑
j∈FS

i
aij∑

j∈Ci aij
≥ 1. (3.66)

The scaling factor increases the contribution of coarse influences (it is always
greater or equal to 1) used in the interpolation. Also, it ensures that the matrix
row sum is preserved. Finally, the interpolation weight for a fine equation i from
a coarse influence j:

w = −γ · 1

aii +
∑

j∈FW
i
aij
aCij. (3.67)

Obviously, interpolation weights will only be calculated for the fine level equations
which were not chosen into the coarse subset. Coarse equations will directly apply
their correction calculated on the coarse level, thus the interpolation weight is
equal to 1.

The dimensions of the prolongation matrix are equal to number of fine level
equations × number of equations in the coarse subset. For a diagonally equal row
in the fine matrix, sum of the weights in the row of the prolongation matrix is

3. Linear Solvers 82

equal to 1, i.e. the row sum is preserved, meaning that a constant will be exactly
interpolated.

Restriction matrix and coarse level matrix

The restriction matrix is used to transfer the residual from fine to coarse level and
it is defined consistently with a variational principle valid for a positive definite
matrix A (Galerkin principle), as shown in section 3.2.2. The correction from the
coarse level PeC which minimises the A–norm of the corrected error satisfies:

PTAPeC = PT (b−Ax), (3.68)

and then the restriction matrix is set to be the transpose of the prolongation
matrix:

R = PT . (3.69)

The coarse level matrix is calculated as a matrix product of the restriction matrix,
fine level matrix and prolongation matrix:

AC = RAFP. (3.70)

If we have to calculate a product of the coarse level solution xC and coarse level
matrix AC, it is not necessary to explicitly calculate the coarse level matrix.
Instead, calculate the fine level solution xF as a product of prolongation and
coarse level solution:

xF = PxC.

Then, we shall multiply the fine level solution with the fine level matrix:

AFxF = AFPxC,

and finally restrict the matrix–vector product onto the coarse level:

RAFxF = RAFP︸ ︷︷ ︸xC = AC︸︷︷︸xC.

Thus, a coarse level vector–matrix product can be calculated without explic-
itly assembling the coarse level matrix. Since coarse level multiplications are
conducted multiple times in a linear iteration, we want to avoid redundant oper-
ations with the eliminated rows of the fine level matrix AF. Instead, coarse level

3. Linear Solvers 83

matrix can be explicitly calculated as a triple product RAFP, which eliminates
unnecessary operations.

In conclusion, compared to additive correction method (AAMG), the compu-
tational effort is much larger for the selection method (SAMG). Both algorithms
include two phases: setup and solution phase. This section has been dedicated
only to the setup phase, while the solution phase is covered in Section 3.2.2. How-
ever, it is already evident that SAMG has a more complex setup phase compared
to AAMG.

The first part of the algorithm for both methods is the construction of the
coarse level (coarsening). Both methods use the strength of connectivity in the
coefficient matrix, but in a different way. In AAMG, it is assumed that the
connection between two equations is symmetric. If this connection is strong
enough compared to the diagonal elements of both equations, the equations are
grouped into a cluster which represents a single equation on the coarse level. In
SAMG, there is no assumption about the symmetry of the matrix, although all
the proofs regarding the performance of the solver found in literature are derived
for a symmetric positive definite matrix. However, it is important to note that
FVM matrices may have unsymmetric elements but the addressing is always
symmetric. In SAMG, all off–diagonal elements are taken into consideration in
order to determine the largest influence for each equation and use it as a criterion
for determining other strong connections. The equations are then sorted into
coarse and fine subsets.

The prolongation in AAMG is a simple injection and the prolongation matrix
is not assembled explicitly. In SAMG, it is necessary to explicitly calculate the
weights which will be assembled into the prolongation matrix for all equations
belonging to the fine subset.

The restriction of fine level residual onto the coarse level in AAMG is done by
summing the fine level residuals for all cells which belong to a single cluster. In
SAMG, the restriction step is a matrix–vector product of the restriction matrix
and fine level residual.

It can already be seen that there are two matrix–vector products in SAMG,
while there are none in AAMG. However, the largest computational difference
in the setup phase is the formation of the coarse level matrix. The formation

3. Linear Solvers 84

of the matrix in AAMG is done by simply summing the fine matrix elements.
The coarse matrix in SAMG is calculated as a triple product of matrices which
is computationally significantly more expensive.

3.2.6. AMG Solvers for Block–Matrices

The algorithms presented in sections 3.2.4. and 3.2.5. are described in terms
of a matrix with scalar elements. However, the implicitly coupled pressure–
velocity system is dicretised as a block–matrix and the matrix element is a 4× 4

block, as described in Section 2.4.1. Block AMG methods have been analysed in
literature: the most detailed classification and terminology has been given in [30],
and will be used in this section. AAMG and SAMG can be used in the exact
form that was described in previous sections by introducing a primary matrix.
A primary matrix is a matrix with scalar elements which represents the block–
matrix in some way. Obviously, it is important that the strength of connection
in the block–matrix is well represented by the primary matrix. It is important
also, especially for SAMG, to take into account the signs of the matrix elements.
Since the equations are discretised on the same computational mesh, it is natural
to create the same hierarchy of coarse levels for all unknowns.

To explain what lies under the term “same hierarchy”, it is again practical to
think about coarsening of the computational mesh rather than the matrix. In
the mesh, each cell has its own set of unknown variables (three components of
velocity and pressure). It is ill–advised to split the unknowns which belong to
a single cell and do the coarsening procedure for each unknown separately. In
that case, for a three–dimensional flow, four coarse level matrices would be cre-
ated: one corresponding to each component of velocity and one corresponding to
pressure. There would have to exist separate restriction and prolongation matri-
ces for each unknown variable. Also, the variables would have to be decoupled
on coarse levels (the cross–couplings between variables would have to be treated
explicitly). This approach is called variable–based AMG in [30]. The approach
used in this thesis is the point–based AMG, although in the framework of Finite
Volume method, it would be more precise to call it a cell–based AMG. The start-
ing point is the definition of the primary matrix. One of the possibilities is to

3. Linear Solvers 85

choose a single unknown variable and use its connectivity pattern to define the
primary matrix. For example, one may choose the pressure equation and exclude
the cross–couplings to velocity. Then, the sparsity pattern of the primary matrix
is the same as the block–matrix, since the pressure equation is defined for each
cell. The elements taken from the block–matrix are reduced to a scalar value in
the primary matrix:

Ablock
ij =


auxi,uxj auxi,uyj auxi,uzj auxi,pj

auyi,uxj auyi,uyj auyi,uzj auyi,pj

auzi,uxj auzi,uyj auzi,uzj auzi,pj

api,uxj api,uyj api,uzj api,pj

→ aprimaryij = api,pj . (3.71)

The choice of the pressure equation as the primary matrix is appropriate con-
sidering its properties: the discretisation of the Laplacian produces a symmetric
positive definite matrix, as required by AMG. Also, pressure is a scalar solu-
tion variable and it significantly (linearly) influences the velocity field. It is also
convenient to create the primary matrix based on a norm of the block element:

aprimaryij = ‖Ablock
ij ‖. (3.72)

The primary matrix defined using the element–wise norm of block elements also
has the same sparsity pattern and the scalar elements reflect the contribution of
all unknown variables, depending on the definition of the norm. For example,
using the Frobenius norm:

‖Ablock
ij ‖F =

√∑
a2

u,u +
∑

a2
u,p +

∑
a2
p,u +

∑
a2
p,p, (3.73)

where ‖ ‖F is the Frobenius norm, au,u denotes all the elements coupling the
velocity components (convection, diffusion), au,p the contribution of pressure in
the momentum equation (pressure gradient), ap,u the contribution of velocity
in the pressure equation (velocity divergence) and ap,p the pressure Laplacian.
Variable cross–coupling terms could be excluded from the norm and it would be
calculated as:

‖Ablock
ij ‖NCC =

√
a2

uxi,uxj
+ a2

uyi,uyj
+ a2

uzi,uzj
+ a2

pi,pj
. (3.74)

Since both the Frobenius norm and the norm without cross–couplings produce
positive scalar elements, the criterion for the sign of off–diagonal elements is no

3. Linear Solvers 86

longer applicable. In [30], it is suggested that all off–diagonal scalar elements
in the primary matrix obtained from the norm–based procedure, take the sign
opposite to diagonal, thus all the connections are considered to be negative. It
was reported that in the norm–based construction of the primary matrix, the
choice of the norm did not affect the convergence significantly since usually the
off–diagonal elements are dominated by a one or more large elements which largely
contribute to different types of norms.

After the primary matrix has been constructed, the coarsening procedure
is applied to it, in line what has already been described in previous sections:
agglomeration of equations in clusters for AAMG and selection of coarse and fine
equations in SAMG.

The construction of prolongation, restriction and coarse level matrices in
AAMG is straightforward: prolongation is again an injection, restriction is done
by summing the residuals and the coarse level matrix is constructed by summa-
tion of fine matrix elements. In contrast to the scalar version of AAMG, the
unknown variables and the corresponding residuals and coarse level corrections
are in vector form, e.g.:

eC =
[
eux , euy , euz , ep

]T
. (3.75)

In SAMG, the splitting into coarse and fine equations is based on the primary
scalar matrix and it is the same for all unknowns. However, it is possible to
define the prolongation and restriction based on the fine block–matrix for each
variable separately, known as the multiple–unknown interpolation [30]. The cor-
responding matrices are block–matrices, which requires additional storage. Since
the coupling between pressure and velocity is linear, and the momentum equation
is highly anisotropic, the approach chosen in this work is the single–unknown in-
terpolation [30]: the interpolation formulae are calculated based on the primary
matrix and are applied to all variables belonging to a cell. Thus, the restriction
and prolongation matrices can be compressed into scalar matrices which saves
memory.

3. Linear Solvers 87

3.2.7. Parallelisation of AMG Solvers and Smoothers

In this section the parallelisation of algebraic multigrid will be discussed. To
achieve textbook performance, it is desirable to stay as close as possible to the
sequential outline of the algorithm. The challenge lies in the fact that the Galerkin
triple matrix product which is used to create coarse level matrix in SAMG, pro-
duces additional off–diagonal elements, meaning that the matrices on coarse levels
become more dense. This leads to high parallel communication costs on coarse
levels. Also, there exists a problem of load balancing and the issue of possible
idle processors.

As mentioned before, the multigrid algorithm can be divided into two phases:
setup phase, which includes creating the hierarchy of the coarse level matrices,
and the solution phase, which includes smoothing of the error and correction of
the solution. Decision on the coarsening process in the setup phase will have
an effect on the performance (convergence) in the solution phase. For easier
understanding of the parallel algorithm, an illustration is given in Fig. 3.9: a mesh
split between two processors, with the coresponding matrices belonging to each
processor and off–diagonal elements located on processor boundaries illustrated
by Eqn. (3.77).

For SAMG, the critical point is to decide whether to include the elements on
the processor boundary in the strength of connectivity criterion. If these connec-
tions are included, the resulting coarsening should be identical to the coarsening
produced by the sequential algorithm. However, this means that more informa-
tion will have to be communicated between the two processors and it is possible
that on the following coarse levels in the cycle, the communication costs will be
greater than the calculation costs in the setup phase. Thus, a different strategy
has to be employed in order to keep the algorithm efficient.

We have chosen to limit the coarsening process and make it local for each
processor, similar to Ruge–Stüben coarsening described in [58]: the connections
which are located on a neighbouring processor are not considered in the selection
of influences and dependencies. Consequently, the subset of coarse equations will
be different than in the sequential algorithm. Also, minimal number of coarse
equations is defined to be the same for each processor and the number of coarse

3. Linear Solvers 88

9 16 19

8

2 7

1 6

13 18

1715

11

0 3

14

10

Fine Coarse

5 12

4

Figure 3.8: 2D mesh coarsening pattern produced by the sequential SAMG algorithm, for a
Laplacian operator.

9 13

5

0

8

42 7

31

19

14

6

15

1816

12 17

11

10

Fine Coarse

P0 P1

Figure 3.9: 2D mesh coarsening pattern produced by the parallel SAMG algorithm, for a
Laplacian operator, on two neighbouring processors P0 and P1.

levels is enforced to be the same. That is, there will be no idle processors and no
mapping of data from one processor to another.

3. Linear Solvers 89

An example of sequential coarsening on a single processor is shown in Fig. 3.8:
the coarsening pattern corresponds to a Laplacian operator discretised on a reg-
ular hexahedral mesh (all off–diagonal elements have the sign opposite to the
diagonal element, all have the same magnitude, matrix rows are diagonally equal,
except on the boundaries). Thus, the coarsening is expected to be similar to a
red–black distribution of a chessboard. Since there are multiple equations with
the same weight (same number of dependencies, equations 4, 7, 8, 11, 12, 15), the
choice of the strongest equation is determined by the smallest cell index (equation
4). The remainder of the coarsening process is guided by the weights being in-
cremented or decremented, as described in section 3.2.6. The correction from the
coarse level is interpolated into fine equations following Eqn. (3.67), and copied
into the corresponding coarse equations. All fine equations have multiple coarse
neighbours, which is in accordance with the local maximum principle. However,
the number of coarse equations could be smaller if a more aggressive coarsen-
ing algorithm is employed, where each fine equation has fewer coarse neighbours
(some only one), which is not the case in this thesis. We found that the stan-
dard coarsening algorithm provides a satisfactory interpolation formula for the
smooth error components. Aggressive coarsening could be a good choice if we
used extended interpolation formulae, which take into account coarse neighbours
of fine influences.

In the case of parallel multigrid, it can be seen in Fig. 3.9 that the coarsening
algorithm chooses the same pattern of coarse equations on processor P0, which
is the implication of the matrix chosen for this demonstration and the same
hierarchy of cell indices. However, on processor P1, the pattern of coarse and
fine cells is mirrored compared to the sequential algorithm. The reason lies in
the fact that connections to cells across the processor boundary were not taken
into account. Thus, the weighting factors of equations on processor P1 were not
updated as in the sequential algorithm and the first equation to become coarse
was the one with the largest weight (equation 15). Weight updates on processor
P1 are performed independently of processor P0 and the resulting subset of
coarse equations is different from the sequential algorithm. The limitation of
communication in the setup phase can have a negative effect on the convergence:
the formulae in the prolongation matrix are somewhat truncated compared to

3. Linear Solvers 90

the sequential algorithm. The matrices corresponding to meshes in Figs. 3.8 and
3.9, respectively, have the following structure:



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 a0,0 a0,1 a0,2

1 a1,0 a1,1 a1,3 a1,4

2 a2,0 a2,2 a2,4 a2,5

3 a3,1 a3,3 a3,6 a3,7

4 a4,1 a4,2 a4,4 a4,7 a4,8

5 a5,2 a5,5 a5,8 a5,9

6 a6,3 a6,6 a6,10 a6,11

7 a7,3 a7,4 a7,7 a7,11 a7,12

8 a8,4 a8,5 a8,8 a8,12 a8,13

9 a9,5 a9,9 a9,13

10 a10,6 a10,10 a10,14

11 a11,6 a11,7 a11,11 a11,14 a11,15

12 a12,7 a12,8 a12,12 a12,15 a12,16

13 a13,8 a13,9 a13,13 a13,16

14 a14,10 a14,11 a14,14 a14,17

15 a15,11 a15,12 a15,15 a15,17 a15,18

16 a16,12 a16,13 a16,16 a16,18

17 a17,14 a17,15 a17,17 a17,19

18 a18,15 a18,16 a18,18 a18,19

19 a19,17 a19,18 a19,19



(3.76)



0 1 2 3 4 5 7 8 9 13 6 10 11 12 14 15 16 17 18 19

0 a0,0 a0,1 a0,2

1 a1,0 a1,1 a1,3 a1,4

2 a2,0 a2,2 a2,4 a2,5

3 a3,1 a3,3 a3,7 a3,6

4 a4,1 a4,2 a4,4 a4,7 a4,8

5 a5,2 a5,5 a5,8 a5,9

7 a7,3 a7,4 a7,7 a7,11 a7,12

8 a8,4 a8,5 a8,8 a8,13 a8,12

9 a9,5 a9,9 a9,13

13 a13,8 a13,9 a13,13 a13,16

6 a6,3 a6,6 a6,10 a6,11

10 a10,6 a10,10 a10,14

11 a11,7 a11,6 a11,11 a11,14 a11,15

12 a12,7 a12,8 a12,12 a12,15 a12,16

14 a14,10 a14,11 a14,14 a14,17

15 a15,11 a15,12 a15,15 a15,17 a15,18

16 a16,13 a16,12 a16,16 a16,18

17 a17,14 a17,15 a17,17 a17,19

18 a18,15 a18,16 a18,18 a18,19

19 a19,17 a19,18 a19,19



(3.77)

3. Linear Solvers 91

The matrix in Eqn. (3.77) illustrates the situation after the domain has been
split onto two processors. It has the same number of elements as the matrix
in the sequential algorithm, Eqn. (3.76), and they have the same value. Red
elements correspond to the matrix on processor P0, blue elements represent the
matrix elements on processor P1. Cell indices and the corresponding equation
rows are renumbered locally for each processor, but we have kept the sequential
numbering for a more clear comparison. The elements in black correspond to cell
communication across processor boundaries and are stored and available on both
processors. In case of a symmetric matrix (Laplacian), boundary elements are
identical on both processors. It is clear now that on processor P0, only the red
elements are used in the coarsening process, and on processor P1, only the blue
elements are included in coarsening. However, it is very important to preserve
matrix row sum when calculating the interpolation formulae, and the boundary
elements need to be included in the scaling factor:

γ =

∑
j∈Ci aij +

∑
j∈FS

i
aij +

∑
j∈Bi aij∑

j∈Ci aij
≥ 1, (3.78)

where B is a set of boundary elements describing the influence of equation j,
located on a neighbouring processor, onto equation i, located on the local proces-
sor. The calculated weighting factors are assembled into the local prolongation
matrix:

PP0 =



0 3 4 5 13

0 w0,0 = 1

1 w1,0 w1,3 w1,4

2 w2,0 w2,4 w2,5

3 w3,3 = 1

4 w4,4 = 1

5 w5,5 = 1

7 w7,3 w7,4

8 w8,4 w8,5 w8,13

9 w9,5 w9,13

13 w13,13 = 1



3. Linear Solvers 92

PP1 =



6 14 15 16 19

6 w6,6 = 1

10 w10,6 w10,14

11 w11,6 w11,14 w11,15

12 w12,15 w12,16

14 w14,14 = 1

15 w15,15 = 1

16 w16,16 = 1

17 w17,14 w17,15 w17,16

18 w18,15 w18,16 w18,19

19 w19,19 = 1



. (3.79)

Restriction matrices are obtained by transposing the prolongation matrices:

RP0 =



0 1 2 3 4 5 7 8 9 13

0 w0,0 = 1 w0,1 w0,2

3 w3,1 w3,3 = 1 w3,7

4 w4,1 w4,2 w4,4 = 1 w4,7 w4,8

5 w2,5 w5,5 = 1 w5,8 w5,9

13 w13,8 w13,9 w13,13 = 1


(3.80)

RP1 =



6 10 11 12 14 15 16 17 18 19

6 w6,6 = 1 w6,10 w6,11

14 w14,10 w14,11 w14,14 = 1 w14,17

15 w15,11 w15,12 w15,15 = 1 w15,17 w15,18

16 w16,12 w16,16 = 1 w16,17 w16,18

19 w19,18 w19,19 = 1


. (3.81)

When calculating coarse level matrices on both processors, the coarse level pro-
cessor boundary elements also need to be calculated. To set up the triple product
on the processor boundary, the local prolongation matrices are filtered to include

3. Linear Solvers 93

only the rows for cells located on the processor boundary:

Pfiltered
P0 =



3 4 5 13

3 w3,3 = 1

7 w7,3 w7,4

8 w8,4 w8,5 w8,13

13 w13,13 = 1


Pfiltered
P1 =



6 14 15 16

6 w6,6 = 1

11 w11,6 w11,14 w11,15

12 w12,15 w12,16

16 w16,16 = 1


. (3.82)

The restriction matrices for the processor boundaries are created as a transpose
of filtered prolongation matrices:

Rfiltered
P0 =



3 7 8 13

3 w3,3 = 1 w3,7

4 w4,7 w4,8

5 w5,8

13 w13,8 w13,13 = 1


Rfiltered
P1 =



6 11 12 16

6 w6,6 = 1 w6,11

14 w14,11

15 w15,11 w15,12

16 w16,12 w16,16 = 1


. (3.83)

Before calculating the triple product on the processor boundary, the local filtered
prolongation matrix is sent to the neighbouring processor, and the neighbour’s fil-
tered prolongation matrix is received. The calculation of coarse processor bound-
ary elements is done locally on each processor, following the Galerkin projection
method. On processor P0, the coarse level boundary elements BC

P0 which connect
it to processor P1 are calculated from the triple matrix product:

BC
P0 = RP0B

F
P0PP1, (3.84)

where BF
P0 is the submatrix of the fine matrix AF which contains the processor

boundary elements, shown in Eqn. (3.77) as the black elements in the upper
right part. Similarly, on processor P1, the coarse level boundary elements are
calculated as:

BC
P1 = RP1B

F
P1PP0, (3.85)

where BF
P0 is the submatrix of the fine matrix AF, shown in Eqn. (3.77) as the

black elements in the lower left part.
Employing a standard coarsening algorithm which does not differentiate between
interior equations and equations on the processor boundary (except that it does
not allow interpolation across the boundary), means that the equations on the

3. Linear Solvers 94

boundary can be sorted into both the coarse and fine subset. To visually explain
how the communication between equations on coarse level is established, we have
to consider three situations which can occur in the coarsening process:

1. two coupled equations on the boundary of neighbouring processors are
sorted into coarse subset,

2. one equation on the boundary is sorted into fine subset, while the coupled
equation on the neighbouring processor is sorted into coarse subset,

3. two coupled equations on the boundary of neighbouring processors are
sorted into fine subset.

The first case is the simplest one. If there are two equations which were sorted
into the coarse subset, the communication remains the same on the coarse level,
i.e. there are no additional off–diagonal elements. However, the off–diagonal ele-
ment can increase in magnitude if there are common fine neighbours, which will
be further discussed for the case with two coupled equations sorted into the fine
subset. However, in the sequential algorithm, this can happen only under special
circumstances as the coarsening algorithm should not produce a coarse subset
containing two coupled equations. In parallel multigrid, this situation is common
on shared processor boundaries since there are two coarsening algorithms which
independently produce coarse subsets. An example is shown in Fig. 3.9: coarse
cells 3 and 6 share a face, as well as cells 13 and 16. Here, there are no additional
off–diagonal elements in the coarse level matrix in equations 3, 6, 13 or 16. When
two coupled equations on the opposite sides of a processor boundary are sorted
into the fine and coarse subset, it is possible that new off–diagonal elements will
appear on the coarse level. For example, in Fig. 3.9 assume that equation which
corresponds to cell 2 interpolates its coarse level correction from all its couplecd
coarse equations: 0, 4 and 5, i.e. there exist weighting elements in the prolonga-
tion and restriction matrix. In the triple product, new off–diagonal elements will
be created which means that the three coarse equations will be coupled through
their common coupled fine equation 2. For example, the contributions to coarse

3. Linear Solvers 95

equation 0 are:

wR0,2 · aF2,0 · wP0,0 → aC0,0,

wR0,2 · aF2,2 · wP2,0 → aC0,0,

wR0,2 · aF2,2 · wP2,4 → aC0,4,

wR0,2 · aF2,2 · wP2,5 → aC0,5,

wR0,2 · aF2,4 · wP4,4 → aC0,4,

wR0,2 · aF2,5 · wP5,5 → aC0,5.

The arrows denote the contribution to a element, i.e. the result of the expression
on the left hand side is added to the element. The weights in the restriction
and prolongation matrix are always positive, thus the sign of the matrix element
is preserved. Thus, there is an increase of diagonal element aC0,0 due to the
communication of cells 0 and 2 on the fine level and the diagonal element of eqn.
2. New off–diagonal elements have appeared in the coarse matrix: aC0,4 and aC0,5.
These new elements can visually be interpreted as new faces shared by cells 0 and
4, and 0 and 5, due to the “collapse” of cell 2 on the coarse level. The off–diagonal
elements will also appear in rows 4 and 5 of the coarse matrix, and the matrix
will remain symmetric.

The final possibility is that two coupled equations on the boundary of neigh-
bouring processors are sorted into the fine subset. For example, equations corre-
sponding to cells 8 and 12 in Fig. 3.9. Assume that equation 8 is strongly coupled
to equations 4, 5 and 13, and equation 12 is strongly coupled to cells 15 and 16.
On the coarse level, a connection will be established through fine equations 8

and 12, between equations 4, 5, 13, 15 and 16. Consider equation 4 and the
contributions created through cell 8 on processor P0 :

wR4,8 · aF8,4 · wP4,4 → aC4,4,

wR4,8 · aF8,5 · wP5,5 → aC4,5,

wR4,8 · aF8,8 · wP8,4 → aC4,4,

wR4,8 · aF8,8 · wP8,5 → aC4,5,

wR4,8 · aF8,8 · wP8,13 → aC4,13,

wR4,8 · aF8,13 · wP13,13 → aC4,13.

3. Linear Solvers 96

These contributions are all a consequence of collapsing a single fine equation on
the coarse level. However, looking at the situation on the processor boundary,
new boundary elements also appear through fine equations 8 and 12:

wR4,8 · aF8,12 · wP12,15 → aC4,15,

wR4,8 · aF8,12 · wP12,16 → aC4,16.

Thus, new processor boundary elements have appeared from collapsing two fine
equations and connecting the coarse equations which are coupled to them. It is
important to notice that the connection between two coarse equations, 13 and
16, becomes stronger, i.e. the off–diagonal elements aC13,16 and aC16,13 increase in
magnitude in comparison to a13,16 and a16,13 in the fine level matrix, as there is
a contribution from collapsed fine equations 8 and 12:

wR13,8 · aF8,12 · wP12,16 → aC13,16,

wR16,12 · aF12,8 · wP8,13 → aC16,13.

The resulting coarse level submatrices have the following structure:

AC
P0 =



0 3 4 5 13

0 aC
0,0 aC

0,3 aC
0,4 aC

0,5

3 aC
3,0 aC

3,3 aC
3,4

4 aC
4,0 aC

4,3 aC
4,4 aC

4,5 aC
4,13

5 aC
5,0 aC

5,4 aC
5,5 aC

5,13

13 aC
13,4 aC

13,5 aC
13,13


AC
P1 =



6 14 15 16 19

6 aC
6,6 aC

6,14 aC
6,15

14 aC
14,6 aC

14,14 aC
14,15 aC

14,19

15 aC
15,6 aC

15,14 aC
15,15 aC

15,16 aC
15,19

16 aC
16,15 aC

16,16 aC
16,19

19 aC
19,14 aC

19,15 aC
19,16 aC

19,19


(3.86)

BC
P0 =



6 14 15 16 19

0

3 aC
3,6 aC

3,14 aC
3,15 aC

3,16

4 aC
4,6 aC

4,14 aC
4,15 aC

4,16

5 aC
5,15 aC

5,16

13 aC
13,15 aC

13,16


BC
P1 =



0 3 4 5 13

6 aC
6,3 aC

6,4

14 aC
14,3 aC

14,4

15 aC
15,3 aC

15,4 aC
15,5 aC

15,13

16 aC
16,3 aC

16,4 aC
16,5 aC

16,13

19


. (3.87)

3. Linear Solvers 97

Using these local and boundary matrices, the coarse level matrix can be repre-
sented as a block matrix: AC

P0 BC
P0

BC
P1 AC

P1

 , (3.88)

although the processor boundary elements are not stored in a conventiontional
LDU–matrix format.

+
w

12,6 · a
16,13 · w

13,13

w
12,8 · a

8,12 · w
13,13

+w
12
,8
· a 8,4
· w 4,4

w 12
,7
· a 7,4
· w 4,4

12

w
12
,1

5
· a

15
,1

8
· w

18
,1

8

w12,15 · a15,17 · w17

+w
12,15 · a

15,11 · w
11,11

17

11

3

4

5

13 18

w
1
2
,7 ·

a
7
,3 ·

w
3
,3

+
w

12
,1

6
· a

16
,1

8
· w

18
,1

8

w
12,7 · a

7,11 · w
11,11

w12,8 · a8,5 · w5,5

w12,7 · a7,12 · w12,12

+w12,8 · a8,12 · w12,12

+w12,12 · a12,12 · w12,12

+w12,15 · a15,12 · w12,12

+w12,16 · a16,12 · w12,12

aC12,12 =

Figure 3.10: Coarse matrix connectivity of cell 12 in the sequential SAMG algorithm. The
formulae on the arrows represent the off–diagonal matrix elements. The diagonal element is
written out on the right.

It can be seen that the coarse level matrix has more non–zero entries per row,
i.e. it becomes denser. The number of processor boundary elements also increases,
and the rate depends on the domain decomposition method, and the initial coars-
ening pattern. The number of boundary elements increases if there are equations
on the processor boundary identified as fine. This fact has contributed to devel-
opment of parallel multigrid algorithms using the subdomain blocking principles,

3. Linear Solvers 98

15

9 19

Fine Coarse

P0 P1

5

0 1

4

18

10

142

3

7

8

13

12

11

6

16

17

Figure 3.11: Full blocking parallel SAMG: there is a layer of only coarse cells on the processor
boundary. There is no need for processor communication since the boundary matrix elements
remain the same on all multigrid levels.

[59]. The idea is to prevent the coarse level matrices from penetrating into the
neighbouring processor domains by modifying the coarsening algorithm. The full
subdomain blocking, shown in Fig. 3.11, creates a layer of only coarse equations
on the processor boundary. In this way, the communication between two proces-
sors, i.e. the number of processor boundary matrix elements remains the same,
but the number of equations on coarse levels increases. This increased number
of coarse level equations leads to better convergence, as reported in literature
[59], at a cost of significantly denser coarse level matrices. The second approach,
minimum subdomain blocking shown in Fig. 3.12, also relies on separating the
layer of equations on processor boundaries, but it is not necessary to sort them all
into the coarse subset. Instead, the coarsening algorithm is performed separately
inside the layer: fine equations can only interpolate the correction from coarse
equations in the layer. In this way, the matrices cannot penetrate into the inte-
rior of other processors, but there is some communication necessary for taking
into account the collapsed fine elements on processor boundaries (strengthening
the connection between coarse equations). The number of processor boundary

3. Linear Solvers 99

1

15

Fine Coarse

P0 P1

9

2

5

0

4

1918

10

14

3

7

8

13

12

11

6

16

17

Figure 3.12: Minimum blocking parallel SAMG: there is a layer of cells on the processor bound-
ary which is separated from interior cells in the coarsening process. There is some processor
communication since the boundary matrix elements change based on the multigrid level.

matrix elements on the coarse level reduces.
There are also other methods for reducing computation and communication

costs, which operate directly on the assembled interpolation and/or coarse level
matrices: truncation of the prolongation matrix or sparsification of the coarse
level matrix. Truncation of interpolation implies removing the elements in the
prolongation matrix and rescaling the formula to preserve row sums, [27]. Spar-
sification of coarse level matrix eliminates entries in the calculated coarse matrix
which does not preserve the properties of the Galerkin projection and can lead
to serious convergence issues [60]. Both are based on reducing the density of the
coarse level matrix.

3. Linear Solvers 100

3.3. Conjugate Gradient Method

Methods for solving a linear system based on the Krylov subspace will be pre-
sented in this section. First, the distinct property of the positive definite matrix
will be illustrated as it is the basis for deriving the idea of the method of steep-
est descent and afterwards, Conjugate Gradients (CG). Section 3.3.3. deals with
methods for matrix preconditioning and their impact on the convergence rate.
Other CG–like methods for nonsymmetric matrices will be discussed.

3.3.1. Introduction to Conjugate Gradient Method

Derivation of the conjugate gradient method in this thesis is inspired and closely
follows the publication of J. Shewchuk [57]. A linear system, Ax = b, can be
reformulated into a minimisation problem. The objective is to find an extreme
value (minimum or maximum) of the following function:

f(x) =
1

2
xTAx− bTx + c, (3.89)

where x is the vector of the unknowns, A is the coefficient matrix, b is the
right–hand side vector and c is a constant (take c = 0). f(x) is a quadratic
function [57] of x. For a system consisting of two equations, it is easy to draw
the quadratic function: an example is shown in Fig. 3.13. f(x) in the shape
of a convex paraboloid belongs to a positive definite matrix, while a concave
paraboloid corresponds to a quadratic function of a negative definite matrix.
Both of these types of matrices have a quadratic function with a clear extremum,
a minimum for a positive definite matrix and maximum for a negative definite
matrix. The first term in Eqn. (3.89) corresponds to the inner product used in
the energy norm defined in section 3.2.2., Eqn. (3.33) and Eqn. (3.36). Thus,
for a positive definite matrix, finding the minimum of the quadratic function is
equivalent to minimising the energy norm ‖e‖1, i.e. finding the correct solution.

The quadratic function can be represented in two dimensions, using the iso-
contours which connect the points with the same value of f(x), Fig. 3.14. Black
arrows represent the eigenvectors of the matrix with the corresponding eigenval-
ues. The eigenvector with the larger eigenvalue coincides with the minor axis of

3. Linear Solvers 101

the elliptic isocontour, while the eigenvector with the smaller eigenvalue coincides
with the major axis.

-100

0

-50-100

2000

4000

-50

x
1

0

6000

x
2

0

f(
x
) 8000

50
50

10000

12000

100100

14000

-100-14000

-50-100

-12000

-50

x
1

0

-10000

x
2

-8000

0

f(
x
)

50

-6000

50

-4000

100100

-2000

0

Figure 3.13: Quadratic function of a positive definite matrix has a shape of a convex paraboloid,
shown on the left. A negative definite matrix is a negative positive definite matrix and quadratic
function is a concave paraboloid, shown on the right.

-6 -4 -2 0 2 4 6

x
1

-6

-5

-4

-3

-2

-1

0

1

2

3

4

x
2

1
= 1.22

2
= 1.48

1
= 0.0889

2
= -0.0889

-8 -6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

1
= -1.48

2
= -1.22

1
= 0.0889

2
= -0.0889

Figure 3.14: Isocontours of a quadratic function corresponding to a positive definite matrix
(left) and a negative definite matrix (right). The black arrows correspond to the eigenvectors
of matrix A, while the red arrows represent the eigenvectors of a Jacobi preconditioned matrix
I−D−1A.

At the extremum of the quadratic function, the gradient of the function is
equal to 0:

f ′(x) =
1

2
ATx +

1

2
Ax− b = 0. (3.90)

3. Linear Solvers 102

For a symmetric (A = AT) positive definite matrix, Eqn. (3.90) reduces to:

f ′(x) = Ax− b = 0, (3.91)

which is equal to the initial linear system. Thus, the solution of the system is a
minimum of the quadratic function. For every point

x =

[
x1

x2

]

it is possible to calculate the value of the gradient of the quadratic function,
which is a vector and it can be seen that for a symmetric positive definite matrix,
it is equal to the negative residual:

f ′(x) = −(b−Ax) = −r. (3.92)

The gradient of the quadratic function points in the direction of the largest in-
crease of the function, and the residual points in the opposite direction, that is,
in the direction of the largest decrease of the function. The iterative method for
solving a linear system as a minimisation problem, which uses the residual as a
search direction is called steepest descent. Each iteration of steepest descent has
the following form:

x(k+1) = x(k) + αr(k), (3.93)

where k denotes the value calculated in the previous iteration, r is the residual
and α is the length of the step in the direction of the residual. α is calculated using
a line search procedure. In Fig. 3.15, residual vectors are plotted on the contours
of the quadratic function for several points. Each residual is orthogonal to the
contour on which it lies. Also, if we extend the line in the direction in which the
residual points, the line is tangent to the isocontour where the quadratic function
begins to increase. This point is where the step should end, as the function begins
to increase and we would be stepping away from the minimum. The point on the
isocontour also corresponds to a residual, which is orthogonal to the isocontour,
and consequently to the previous search direction (residual from the previous
iteration), which is a tangent on the contour. To find α, a directional derivative

3. Linear Solvers 103

3

Figure 3.15: Residual vectors plotted on the isocontours of the quadratic function, pointing in
the direction of the greatest decrease of the function.

of the quadratic function is calculated as:

d

dα
f(x(1)) = f ′(x(1))T

d

dα
(x(1)) = f ′(x(1))T

d

dα
(x(0) + αr(0)) = f ′(x(1))T r(0)

= (r(1))T r(0). (3.94)

A minimum of the function is found where the derivative is equal to 0, thus:

(r(1))T r(0) = 0 (3.95)

(b−Ax(1))T r(0) = 0 (3.96)

(b−A(x(0) + αr(0)))T r(0) = 0 (3.97)

(b−Ax(0))T︸ ︷︷ ︸
(r(0))T

r(0) − α(Ar(0))T r(0) = 0 (3.98)

α =
(r(0))T r(0)

(r(0))TAr(0)
. (3.99)

The final algorithm of steepest descent consists of the following steps.

3. Linear Solvers 104

1

3

2

4

0

1

0

1

2

Figure 3.16: Convergence of steepest descent for a 2x2 matrix: left – matrix with two distinct
eigenvalues, right – matrix with duplicate eigenvalues.

1. For the current solution x(k), calculate the residual:
r(k) = b−Ax(k).

2. Calculate the length of the step in the direction of the residual r(k):
αk = (r(k))T r(k)

(r(k))T Ar(k)
.

3. Update the solution x(k+1) = x(k) + α(k)r(k).
It is also possible to update the residual instead of the solution (to avoid
one matrix–vector multiplication): r(k+1) = r(k) − αArk.

4. Repeat the procedure from step 1 if the convergence criterion is not met.

An example of convergence of steepest descent for a 2 × 2 symmetric positive
definite matrix is shown in Fig. 3.16. It is obvious that the method needs a large
number of iterations, compared to the size of the system, to reach the correct
solution. The reason can be found in the eigenspectrum of the coefficient matrix.

3. Linear Solvers 105

Similar to fixed–point methods, the problem appears if the magnitudes of the
eigenvalues are different in size. An example is shown in Fig. 3.17.

-100

0

-50-100

2000

4000

-50

x
1

0

6000

x
2

0

f(
x
) 8000

50
50

10000

12000

100100

14000

-100

0

-50-100

0.5

-50

x
1

0

1

x
2

0

10
4

f(
x
)

50

1.5

50

2

100100

2.5

-6 -4 -2 0 2 4 6

x
1

-6

-5

-4

-3

-2

-1

0

1

2

3

4

x
2

1
= 1.22

2
= 1.48

1
= 0.0889

2
= -0.0889

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

1
= 0.149

2
= 2.55

1
= 0.889

2
= -0.889

Figure 3.17: Quadratic functions of two symmetric positive definite matrices with eigenvalues
of different magnitudes. The black arrows correspond to the eigenvectors of matrix A, while
the red arrows represent the eigenvectors of a Jacobi preconditioned matrix I−D−1A.

The quadratic function on the left belongs to the matrix
[

1.4 −0.12

−0.12 1.3

]
, and it has

two eigenvalues with similar magnitudes and both are positive (positive definite
matrix). The shape of the isocontours is almost circular. The quadratic function
on the left corresponds to matrix

[
1.4 −1.2

−1.2 1.3

]
, and its shape is more stretched. The

eigenvalues are of different order of magnitude and it can be seen that the larger
eigenvalue belongs to the eigenvector which coincides with the minor axis of the
elliptic isocontour. Steepest descent will quickly converge for the first shape of
the quadratic function, since the residual at every point is directed towards the
centre of the circle. To show the convergence limitations, the error is decomposed

3. Linear Solvers 106

into a sum of components which coincide with the eigenvectors of the coefficient
matrix A:

e(k) =
n∑
j=1

ζjvj,

and the same can be done for the residual:

r(k) = Ae(k) =
n∑
j=1

ζjλjvj,

where ζj is the length of the component in the direction of eigenvector vj and λj
are the eigenvalues corresponding to vj. The matrix is assumed to be symmet-
ric, which means it has n linearly independent mutually orthogonal eigenvectors
(vTi vj = 0). The length of the residual is scaled with the eigenvalue: λjζj. All
eigenvectors are normalized to have unit length (vTi vi = 1). The iteration of
steepest descent in terms of the error can be written as:

e(k+1) = e(k) + α(k)r(k) = e(k) +
(r(k))T r(k)

(r(k))TAr(k)
r(k)

= e(k) +

∑n
j=1 ζ

2
j λ

2
j∑n

j=1 ζ
2
j λ

3
j

r(k). (3.100)

If all the eigenvalues are equal (circular isocontours of the quadratic function):

e(k+1) = e(k) +
λ2
∑n

j=1 ζ
2
j

λ3
∑n

j=1 ζ
2
j

(λe(k)) = 0. (3.101)

Thus, the error is eliminated in the first iteration and the convergence is instant.
Another way to look at the convergence is to remember that the eigenvectors of
the matrix do not rotate when multiplied by the matrix. If the initial solution of
the system lies on an eigenvector, i.e. the axis of the elliptic isocontour, the error
consists of a single eigenvector component. The convergence will also be instant,
since the residual is a scaled eigenvector (Ae = λe) and points to the correct
solution. In general, if there are multiple components of the error with different
eigenvalues, there is no such α which will eliminate all the error components at
once. The priority in eliminating the error is given to longer components, which
can be seen from the weighted average of 1

λj
in Eqn. (3.100). The convergence

depends on the ratio of eigenvalues, i.e. the condition number of the (symmetric,
positive definite) matrix:

κ =
λmax

λmin
. (3.102)

3. Linear Solvers 107

With larger condition numbers, the quadratic function becomes more elongated.
This is the cause of the main drawback od steepest descent: the method will
do multiple steps in the same direction to reach the correct solution, shown in
Fig. 3.16. To decrease the number of iterations, it is neccessary to do a single step
in one direction and completely eliminate the corresponding error component.
The application of this idea is described in the following section.

3.3.2. Conjugate Gradient Method

As described in the previous section, method of steepest descent is used for
solving the linear system as a minimisation problem. The method utilises the
residual, which is the direction of the largest decrease of the quadratic function,
Eqn. (3.89). For a symmetric positive definite coefficient matrix, the solution of
the linear system coincides with the minimum of the quadratic function. Using
the residual as the search direction does not yield fast convergence, since it is
neccesary to correct the solution in a single direction multiple times.

The idea is to use n mutually orthogonal search directions and eliminate
each of the n components of the error in one step. This is achieved by locating
the point on the line corresponding to the search direction which minimises the
quadratic function. This is similar to line search, but using mutually orthogonal
search directions means that the final solution will be reached in maximally n

steps, because we cannot step in the same direction more than once. Using the
directional derivative and setting it to zero yields:

d

dα
f(x(1)) = f ′(x(1))T

d

dα
(x(1)) = f ′(x(1))T

d

dα
(x0 + αd0)

= f ′(x(1))Td(0) = (r(1))Td(0) = 0. (3.103)

Thus, the minimum is found where the residual is orthogonal to the search di-
rection. If the residual is written in terms of the scaled error, the definition of
conjugate or A–orthogonal vectors appears:

d(k)Ae(k+1) = 0. (3.104)

The search direction is orthogonal to the residual, and it is A–orthogonal to the
error. It can be shown that by defining the search directions to be mutually

3. Linear Solvers 108

conjugate, correct solution is also reached in n iterations. If the function is
minimised at some point along the direction d(0), the gradient of the function
at that point is equal to zero. The search in the new direction should not affect
the gradient of the previous step, since the function is already minimised in that
previous direction. The change of the gradient of the function can be expressed
as:

∆f ′(x) = f ′(x(1))− f ′(x(0)) = (Ax(1) − b)− (Ax(0) − b)

= A(x(0) + d(0))−Ax(0) = Ad(0).

Since the step in the next direction d(1) shouldn’t affect the gradient in direction
d(0), the change of the gradient ∆f ′(x) should be orthogonal to the new direction:

d(1)Ad(0) = 0, (3.105)

which is identical to Eqn. (3.104). Thus, defining the search directions to be
A–orthogonal, produces an iteration which will minimise the function (find the
solution of the system) in n steps, since the minimum in one direction won’t be
compromised by the minimum in another direction.

To ensure that the method steps in a certain direction only once, the compo-
nent of the error in that direction should be eliminated, i.e. equal to zero. Thus,
the remaining error is A–orthogonal to the search direction, and the length of
the next step can be obtained:

(d(k))TAe(k+1) = 0,

(d(k))TA(e(k) + α(k)d(k)) = 0,

α(k) = − (d(k))TAe(k)

(d(k))TAd(k)
= − (d(k))T r(k)

(d(k))TAd(k)
. (3.106)

The construction of the sequence of mutually A–orthogonal vectors is done using
the Gram–Schmidt process [2]:

• The process begins with a set of linearly independent vectors:

u(0),u(1), ...,u(n−1).

3. Linear Solvers 109

• To obtain an orthonormal set, take the previous directions d(k) and calcu-
late the A–orthogonal projection of the new vector u(i) onto each previous
direction

(u(i))TAd(j)

(d(j))TAd(j)
d(j). (3.107)

• Subtract the components parallel to the previous search directions

d(i) = u(i) −
i−1∑
j=0

(u(i))TAd(j)

(d(j))TAd(j)
d(j). (3.108)

• Normalise the new direction by dividing it with its magnitude.

d(i) =
d(i)

‖d(i)‖
. (3.109)

In order to calculate the projection of the new search direction onto the old ones,
it is necessary to store all the previous vectors in memory, and the complexity of
the entire procedure is estimated at O(n3) [57]. In order to improve the method,
similar to steepest descent, use the residuals for the starting set of linearly inde-
pendent vectors: u(i) = r(i). The residuals have several useful properties:

• Residuals are orthogonal to previous search directions. From the fact that
the error is reduced one by one component, and length of each component
is α(k):

e(i) =
n−1∑
k=i

α(k)d(k)
∖
· (d(j))TA,

(d(j))TAe(i) =
n−1∑
k=i

α(k) (d(j))TAd(k)︸ ︷︷ ︸
= 0, A–orthogonality

,

(d(j))T r(i) = 0 j < i. (3.110)

• Residuals are orthogonal to the initial set of linearly independent vectors.
From the Gram–Schmidt procedure:

d(i) = u(i) −
i−1∑
k=0

(u(i))TAd(k)

(d(k))TAd(k)
d(k)

∖
· r(j),

d(i)r(j)︸ ︷︷ ︸
= 0

= u(i)r(j) −
i−1∑
k=0

(u(i))TAd(k)

(d(k))TAd(k)
d(k)r(j)︸ ︷︷ ︸

= 0

,

u(i)r(j) = 0 i < j. (3.111)

3. Linear Solvers 110

If i = j:

d(i)Ae(i)︸ ︷︷ ︸
6= 0

= u(i)Ae(i) −
i−1∑
k=0

(u(i))TAd(k)

(d(k))TAd(k)
d(k)Ae(i)︸ ︷︷ ︸

= 0

d(i)r(i) = u(i)r(i). (3.112)

• Residual is a linear combination of the previous residual and Ad(k):

r(k+1) = Ae(k+1) = A(e(k) + α(k)d(k)) = r(k) + α(k)Ad(k). (3.113)

For each new direction, the approximation of the solution comes closer to the
actual solution, i.e. the method always finds the optimal point in the space (com-
bination of vectors) where it is possible to explore (new dimensions are added to
the space with each new direction). Gram–Schmidt procedure guarantees that the
initial set of vectors u(i) spans the same space (hyperplane) as the orthonormal
set of search directions d(i). If the search direction is defined using the residuals,
the space is defined as:

D(k) = span{d(0),d(0),d(2), . . . ,d(k−1)} = span{r(0), r(1), r(2), . . . , r(k−1)},

where span denotes a vector space which contains all the linear combinations of
vectors in the curly brackets.
Each new iteration (step in new direction) adds a new dimension to the solution
space (hyperplane spanned by search directions d). According to Eqn. (3.113),
new residual r(k+1) is a linear combination of the previous residual r(k) and Ad(k),
which means the space for the approximation of the solution D(k+1) can be written
as a union of the previous space and the new search direction:

D(k+1) = span{D(k), r(k+1)} = span{D(k), r(k)︸︷︷︸
already in D(k)

+α(k)Adk} = span{D(k),Ad(k)}.

Since the residuals are chosen as the initial set of search vectors, and each new
residual contains the old residual and a search direction multiplied by matrix A,
it can be shown by mathematical induction that each subsequent step adds a
new dimension equal to the initial residual r(0) multiplied by the power of the

3. Linear Solvers 111

u0

u1

d1

d0

e2

d2r2

d2 = r2 + β2 d1

D2

Figure 3.18: Subspace D(2) for the approximation of the solution in the second iteration is
spanned by the initial vectors u(0) and u(1). It is also spanned by A–orthogonal vectors d(0)

and d(1). The error e(2) is A–orthogonal to D(2), while the residual r(2) is orthogonal. The
new search direction is a linear combination of r(2) and d(1) and it is A–orthogonal to D(2).

coefficient matrix A. Thus, the approximation space is called the Krylov subspace
due to the continuous repetition of multiplying a vector with the same matrix:

D(k) = span{d(0),Ad(0),A(2)d(0), . . . ,A(k−1)d(0)} (3.114)

= span{r(0),Ar(0),A(2)r(0), . . . ,A(k−1)r(0)}. (3.115)

The solution of the linear system, i.e. the minimum of the quadratic function is
a linear combination of the vectors in space D(i). The subspace has a property
which makes storing all the search directions redundant: since the residual r(k+1)

is orthogonal to all the previous search directions, it is orthogonal to the whole
space D(k+1) spanned by them. As shown before, the space D(k+1) contains:

D(k+1) = span{D(k),AD(k)}.

r(k+1) is conjugate to D(k) and all the search directions d0, . . . ,d(k−1) it contains.
It is only necessary to make d(k) conjugate to r(k+1), thus the projection is done

3. Linear Solvers 112

onto only one vector. The projection operator β(k) can be calculated as:

r(k+1) = r(k) + α(k)Ad(k)
∖
· r(i),

r(i)r(k+1) = r(i)r(k) + α(k)r(i)Ad(k),

α(k)r(i)Ad(k) = r(i)r(k+1) − r(i)r(k),

r(i)Ad(k) =


−1
α(k) r

(k)r(k) if i = k,

1
α(k) r

(k+1)r(k+1) if i = k + 1,

0 otherwise

(u(i))TAd(j)

(d(j))TAd(j)
=

 1
α(k)

(r(k+1))T r(k+1)

(d(k))T Ad(k) if i = k + 1,

0 if i > k + 1.
,

Inserting the expression for α(k), Eqn. (3.106) into the projection operator yields:

β(k) =
1

α(k)

(r(k+1))T r(k+1)

(d(k))TAd(k)
=

(d(k))TAd(k)

(d(k))T r(k)
· (rk+1)T r(k+1)

(d(k))TAd(k)

=
(r(k+1))T r(k+1)

(d(k))T r(k)
=

(r(k+1))T r(k+1)

(r(k))T r(k)
, (3.116)

since (d(k))T r(k) = (u(k))T r(k), and u(k) = r(k). Finally, a single iteration of the
conjugate gradient method can be written as:

1. In the beginning assume x(0) = 0, and then d(0) = r(0) = b−Ax(0).

2. Calculate the length of the step in direction d(k):

α(k) =
(r(k))T r(k)

(d(k))TAd(k)
.

3. Calculate the new solution:

x(k+1) = x(k) + α(k)d(k).

4. Calculate the new residual:

r(k+1) = r(k) + α(k)Ad(k).

5. Calculate the projection operator of the new residual onto the previous
search direction:

β(k) =
(r(k+1))T r(k+1)

(r(k))T r(k)
d(k).

3. Linear Solvers 113

6. Calculate the new search direction by making it A–orthogonal to the new
residual:

d(k+1) = r(k+1) + β(k)d(k).

7. Return to step 2 if the convergence criterion is not satisfied.

The conjugate gradient method will converge to the correct solution in n iter-
ations, where n is the dimension of the system. However, for applications in
computational fluid dynamics, even this number is inadequate, since the dimen-
sion of the system depends on the number of cells and, for implicitly coupled
systems, the number of physical variables. Usually, it is not necessary to conduct
the maximum number of iterations, since, as it was seen with steepest descent,
the largest components of the error will be eliminated first. A satisfactory ap-
proximation of the solution can be achieved in significantly less than n iterations.
The convergence of the method can also be drastically improved by manipulat-
ing the shape of the quadratic function to be more spherical, i.e. closer to the
quadratic function of the identity matrix. This transformation of the coefficient
matrix A is called preconditioning and it is described in the following section.

3.3.3. Preconditioning

The idea of preconditioning is to transform the coefficient matrix of the linear
system Ax = b so that the system becomes easier to solve:

P−1
A A. (3.117)

Matrix PA is called a preconditioner. The ideal preconditioner is identical to the
coefficient matrix, PA = A:

Ax = b→ P−1
A Ax = P−1

A b

A−1Ax = P−1
A b

Ix = P−1
A b,

because when multiplied by P−1
A the coefficient matrix reduces to the identity

matrix I and the system can be solved in a single iteration. This ideal case
is unfeasible since inverting the coefficient matrix is analogous to solving the

3. Linear Solvers 114

system. The desired property of the preconditioner is to be as close as possible to
the original coefficient matrix A, but that the construction and inversion of PA

is not computationally expensive. Also, to achieve an efficient solver, the system
PAy = z should be much easier to solve than the original system [61]. The
transformed matrix P−1

A A will not be explicitly formed, except for some simple
preconditioning techniques. Instead, two linear systems are solved:

P−1
A Ax = P−1

A b

substitute Ax = y, P−1
A b = z→ P−1

A y = z

y = PAz

x = A−1y,

where A−1 denotes (approximately) solving the system, rather than calculating
the inverse of A. Since the preconditioner is applied from the left side of the
coefficient matrix, this is called left preconditioning. The application of left pre-
conditioning affects the residual: r = P−1

A (b−Ax) and the convergence criteria
should be carefully formulated since the preconditioned residual may be very
different from the true residual. Right preconditioning does not affect the right
hand side of the system:

AP−1
A y = b, where PAx = y.

However, the error in y is scaled by the preconditioner, ‖P−1
A (y−yapprox)‖, com-

pared to the error in x, ‖x− xapprox‖. Left and right preconditioning are special
cases of two–sided preconditioning, where the preconditioner is split into two fac-
tors:

PA = (PA)1(PA)2 →

(PA)−1
1 A(PA)−1

2 y = P−1
A b

where (PA)2x = y.

To obtain left preconditioning, (PA)2 is equal to the identity matrix I, while for
right preconditioning, (PA)1 is equal to identity.

For different iterative algorithms, the desired effect of the preconditioner is
not the same. For example, for fixed–point methods, the objective is to achieve

3. Linear Solvers 115

that the norm of the iteration matrix ‖I−P−1
A A‖ is much smaller than 1, which

guarantees a fast reduction of the norm of the error. For conjugate gradients,
it is desirable to transform the shape of the quadratic function of the coefficient
matrix A to be less elongated in certain directions and the isocontours to be
circular. This means that there are duplicated eigenvalues or the eigenvalues are
very similar in magnitude (clustered together).

Jacobi and Gauss–Seidel splittings of matrix A are considered as precondi-
tioners for a general fixed–point iteration, Eqn. (3.22):

x = (I−A)x + b

add a preconditioner: PAx = (PA −A)x + b

x(k) = (I−P−1
A A)x(k−1) + b.

The simplest choice of approximating A is to use the diagonal of the matrix DA

as PA. This is called diagonal preconditioning and it is equivalent to the Jacobi
method. The inverse of the preconditioning matrix can be easily calculated, since
it is a diagonal matrix: the elements on the diagonal are equal to reciprocal value
of the diagonal elements of A. Diagonal preconditioning is an anisotropic scaling
along the coordinate axes x1,x2, . . . ,xn. In comparison, using the coefficient
matrix A as a preconditioner is equivalent to scaling the quadratic function in
the direction of the eigenvectors.

Fig. 3.19 on the left shows the quadratic function of a symmetric positive
definite matrix

[
1.4 −1.2

−1.2 10

]
and the eigenvectors with the corresponding eigenvalues.

The right part of Fig. 3.19 shows the same, diagonally preconditioned matrix[
1 −0.857

−0.12 1

]
which is still positive definite, but no longer symmetric. Diagonal

preconditioner is easy and inexpensive to compute, and it is usually directly
applied to the coefficient matrix A. But, the preconditioned matrix D−1

A A does
not have to be symmetric, as it depends on the magnitude of diagonal elements
of A. In the majority of cases, diagonal elements of the finite volume matrix will
not have the same magnitude.

To demonstrate the effect of explicit diagonal preconditioning on the eigen-
spectrum, and generally estimating the range in which the eigenvalues lie, we
shall use the Gersghorin’s theorem. The theorem states that each row i of a
matrix A can be represented in the form of a disc: the centre of the disc is equiv-

3. Linear Solvers 116

-100

0

-50-100

1

-50

2

x
1

0

x
2

3

0

f(
x
)

10
4

4

50
50

5

100100

6

7

-100

0

-50-100

-50

x
1

0

5000

x
2

0

f(
x
)

50
50

10000

100100

15000

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

1
= 1.24

2
= 10.2

-6 -4 -2 0 2 4 6

x
1

-6

-4

-2

0

2

4

6

x
2

1
= 1.32

2
= 0.679

Figure 3.19: On the left: quadratic function of a symmetric positive definite matrix and eigen-
vectors with the corresponding eigenvalues. On the right: diagonally preconditioned matrix
with the corresponding eigenvectors and eigenvalues, no longer symmetric.

alent to the diagonal element, cG = aii, while the radius of the disc is equal to
the sum of magnitudes of off–diagonal elements in that row, rG =

∑
i 6=j |aij|. All

eigenvalues of the matrix A lie within the set of n discs corresponding to the rows
or columns of that matrix. Also, if there is a disjoint subset of Gershgorin discs,
meaning that the discs in that subset do not intersect any of the discs outside the
subset, and if there is r non–concentric discs in the subset, then there are at least
r distinct eigenvalues. Two examples are shown in Fig. 3.20, for matrices with
real elements. The top figure corresponds to a diagonally dominant symmetric
matrix where all the elements are of the same order of magnitude:

[
1.4 −1.2

−1.2 1.3

]
.

Two black circles are Gershgorin discs constructed from the matrix rows, and
two distinct eigenvalues (black dots λ1, λ2) lie outside the intersection area of the

3. Linear Solvers 117

D1 = 1

D2 = 1

Im

Re

D2 = 1.3 D1 = 1.4

R1 = 0.857

λ2 = 0.111
λ1 = 1.89

R2 = 0.12

λ1 = 0.149

R1 = 1.2

R2 = 1.2

λ2 = 2.55

D1 = 1

D2 = 1

Im

Re

λ2 = 0.679

λ1 = 1.32

λ1 = 1.24

D1 = 1.4

R2 = 0.12

R1 = 0.857

D2 = 10

R2 = 1.2

R1 = 1.2

λ2 = 10.2

Figure 3.20: Demonstration of explicit diagonal preconditioning using the Gershgorin theorem:
the eigenvalues of the preconditioned matrix (red) are clustered closer together in comparison
to the eigenvalues of the original matrix (black).

discs. Red concentric circles are the discs of the diagonally preconditioned ma-
trix. The centre of all discs of a diagonally preconditioned matrix are cG = 1 and
the radii are smaller compared to the discs of the original matrix. The clustering
of the eigenvalues closer together is evident, even more so in the bottom part of
Fig. 3.20, for the matrix with a strongly diagonally dominant row:

[
1.4 −1.2

−1.2 10

]
. As

3. Linear Solvers 118

mentioned earlier, conjugate gradient method will converge in fewer iterations if
there are multiple eigenvalues or if the eigenvalues are very similar in magnitude.
However, conjugate gradient method works for symmetric positive definite ma-
trices, and the preconditioned matrix should remain symmetric. To retain the
symmetry of the preconditioned matrix, it is possible to factorise the symmetric
positive definite matrix PA as:

PA = EET .

Then matrices P−1
A A and E−1A(ET)−1 have the same eigenvalues λ, but the

eigenvectors of E−1A(ET)−1 are scaled by ET compared to eigenvectors v of
P−1

A A:

(E−1A(ET)−1)(ETv) = ET (ET)−1E−1︸ ︷︷ ︸Av = ETP−1
A Av = ETλv. (3.118)

Since E−1A(ET)−1 is symmetric, the system can be transformed into:

Ax = b → E−1A(ET)−1︸ ︷︷ ︸
Ã

ETx︸︷︷︸
x̃

= E−1b︸ ︷︷ ︸
b̃

, (3.119)

and conjugate gradient can be applied to the transformed system to calculate x̃.
To avoid the explicit factorisation of P, it is sufficient to introduce two substitu-
tions:

r̃(k) = E−1r(k),

d̃(k) = ETd(k)

and insert them into the transformed algorithm:

1. Initialise the solution:

x̃(0) = ETx(0) = 0,

r̃(0) = b̃,

E−1r(0) = E−1b→ r(0) = b. (3.120)

2. Determine the initial search direction:

d̃(0) = r̃(0) → ETd(0) = E−1r(0),

d(0) = (ET)−1E−1r(0) = P−1
A r(0). (3.121)

3. Linear Solvers 119

3. Calculate the length of the step:

α̃(k) =
(r̃(k))T r̃(k)

(d̃(k))T Ãd̃(k)
=

(E−1r(k))TE−1r(k)

(ETd(k))TE−1A(ET)−1ETd(k)

=
(r(k))T

P−1
A︷ ︸︸ ︷

(ET)−1E−1 r(k)

(d(k))T EE−1︸ ︷︷ ︸
I

A (ET)−1ET︸ ︷︷ ︸
I

d(k)
=

(r(k))TP−1
A r(k)

(d(k))TAd(k)
. (3.122)

4. Update the solution:

x̃(k+1) = x̃(k) + α̃(k)d̃(k),

→ ETx(k+1) = ETx(k) + α̃(k)ETd(k),

x(k+1) = x(k) + α̃(k)d(k). (3.123)

5. Calculate the residual:

r̃(k+1) = r̃(k) + α̃(k)Ãd̃(k),

→ E−1r(k+1) = E−1r(k) + α̃(k)E−1A (ET)−1ET︸ ︷︷ ︸
I

d(k),

r(k+1) = r(k) + α̃(k)Ad(k). (3.124)

6. Calculate the projection operator:

β̃(k) =
(r̃(k+1))T r̃(k+1)

(r̃(k))T r̃(k)
=

(E−1r(k+1))TE−1r(k+1)

(E−1r(k))TE−1r(k)

=
(r(k+1))T (ET)−1E−1r(k+1)

(r(k))T (ET)−1E−1r(k)
=

(r(k+1))TP−1
A r(k+1)

(r(k))TP−1
A r(k)

. (3.125)

7. Find the new search direction:

d̃(k+1) = r̃(k+1) + β̃(k)d̃(k),

ETd(k+1) = E−1r(k+1) + β̃(k)ETd(k) \ ·(ET)−1,

d(k+1) = P−1
A r(k+1) + β̃(k)d(k). (3.126)

8. Return to step 3 if the convergence criterion is not satisfied.

3. Linear Solvers 120

The additional cost of the preconditioned conjugate gradient method is the term
P−1

A r(k+1) which is equivalent to solving a linear system. Thus, PA should be
chosen in such a way that this system can be solved quickly and efficiently. Besides
the aforementioned diagonal and Gauss–Seidel preconditioners, another popular
method is the incomplete lower–upper factorization, ILU and it will be presented
in the next section.

Incomplete Lower–Upper Preconditioning

Factoring a matrix into a product of lower triangular and upper triangular matri-
ces is done using the Gaussian elimination. Gaussian elimination, Algorithm 3.2,
is a direct solution method which eliminates the elements in the lower triangle of
the matrix to obtain an upper triangular matrix, and the solution of the system
is then trivial to calculate [2].

Algorithm 3.2. Gaussian Elimination

1: for i = 2, . . . , n do . Go into row i.
2: for k = 1, . . . , i− 1 do . Access all previous rows k.
3: aik := aik

akk
. Calculate the multiplier.

4: for j = k + 1, . . . , n do . Go through elements of row i.
5: aij := aij − aik · akj . Update the element of row i with the

contribution from row k.
6: end for

7: end for

8: end for

The multipliers used to eliminate the coefficents below the diagonal can be put
into the corresponding positions of a lower triangular matrix which has a unit
diagonal. Matrix A can then be written as a product of the obtained upper and
lower triangular matrices:

A = LAUA. (3.127)

However, LU factorisation of a sparse matrix will generally produce dense factors,
which is prohibitive in terms of storage. For preconditioning, it is sufficient to use
an approximation Ã of the original matrix, thus it is not necessary to compute
the exact factors and they can be truncated in some way. Thus, the product of

3. Linear Solvers 121

two factors Ã will not be the same as the original matrix A, and there exists an
error matrix R:

A = Ã︸︷︷︸
LU

−R, (3.128)

where L and U are approximations of LA and UA, respectively. Incomplete
lower–upper factorisation of a matrix is a modification of the Gaussian elimina-
tion where some of the off–diagonal elements in L and U are dropped, i.e. the
factors have a different fill–in (structure or pattern). Factorisation by Gaussian
elimination preserves the positive definiteness of the matrix, even when arbitrary
off–diagonal elements are ignored [61]. There are two possibilities for deciding
which elements will be dropped:

• using a threshold value (dynamic ILU), or

• using a predefined pattern of fill–in (static ILU).

The dynamic ILU uses a tolerance for deciding whether an element obtained
in the factorisation is large enough to keep. In this method, the level of fill–in
is difficult to control. This version is known as ILUT. In static ILU, the level of
fill–in is usually defined using the pattern of the original matrix A. For example,
the factors will have non–zero elements only at the positions where A has non–
zero elements. This algorithm is called ILU0 and the fill–in level is 0. Fill–in
can be extended to a structure different than the structure of A, and include
more elements. The method is beneficial in terms of memory capacity, since it
is easy to control the amount of stored data. Hybrid algorithms which employ
the threshold strategy and predetermined fill–in of factors are also used. In the
scope of this thesis, we decided to use a static ILU algorithm with arbitrary level
of fill–in.

Algorithm 3.3. Static ILU, and F is a set of locations where there is no fill

1: for i = 2, . . . , n do

2: for k = 1, . . . , i− 1 and if (i, k) /∈ F do

3: aik := aik
akk

4: for j = k + 1, . . . , n and for (i, j) /∈ F do

5: aij := aij − aik · akj
6: end for

3. Linear Solvers 122

7: end for

8: end for

Algorithm 3.3 is the so–called IKJ (delayed–update) version of ILU, and the
name comes from the ordering of the three for–loops. In this version, the rows
of factors L and U are generated sequentially. When in row i, all previous rows
k are accessed to use the diagonal element akk and eliminate the off–diagonal
element in i which belongs to the lower triangle, as shown in centre of Fig. 3.21.
In contrast, KIJ ordering of the loops would produce a computational pattern
shown on the left in Fig. 3.21: multiple rows are modified using the elements from
a single row.

���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

modified

accessed

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
��������������� accessed

modified
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��

��
��
��

accessed

modified

Figure 3.21: Versions of LU factorisation: KIJ (left), IKJ (center), Crout (right).

Depending on the matrix storage format and whether the static or dynamic
variant of ILU is used, the general IKJ algorithm can be computationally very ex-
pensive. A more practical version of the IKJ algorithm is the Crout factorisation
[62], Algorithm 3.4.

Algorithm 3.4. Crout LU factorisation

1: for k = 1, . . . , n do

2: for i = 1, . . . , k − 1 and if aki 6= 0 do

3: ak,k:n := ak,k:n − aki · ai,k:n

4: end for

5: for i = 1, . . . , k − 1 and if aik 6= 0 do

6: ak+1:n,k := ak+1:n,k − aik · ak+1:n,i

7: end for

8: for i = k + 1, . . . , n do

3. Linear Solvers 123

9: aik := aik
akk

10: end for

11: end for

The computational pattern of Crout LU is shown on the right in Fig. 3.21. The
algorithm can be viewed as an IJK variant for computing the upper triangle and
a transpose of the same algorithm for calculating the lower triangle. The kth step
calculates the kth row in U and kth column of L. Thus, it is desirable to store the
elements in U by rows and the elements in L by columns, as is the case with the
LDU–matrix in OpenFOAM and this is a clear motivation for implementation.

In the scope of the thesis, a static Crout ILU algorithm is used: the sparsity
of factors L and U is equivalent to the sparsity of matrix A. This is called fill–in
level 0 (ILUC0), i.e. only the indices of columns belonging to first neighbours of
the cell (sharing a common face) are non–zero. Fill–in level 1 extends the sparsity
to include the positions in the matrix corresponding to neighbours of neighbours
of the cell. One step further would be to include the indices of columns belonging
to third neighbours (neighbours of neighbours of first neighbours of the cell),
which is fill–in level 2. An illustration of how quickly the density of the factors
increases is shown in Fig. 3.22: dark blue is the sparsity for fill–in level 0 (original
matrix), dark blue and light blue combined correspond to fill–in level 1, while all
three colours belong to the sparsity pattern of factors for fill–in level 2. However,
the pattern shown in Fig. 3.22 is not the expected sparsity pattern of the ILU
factorisation.

The result of an incomplete LU factorisation depends on the ordering of equa-
tions. If the matrix is banded, factors L and U will also be banded matrices,
where the positions inside the outermost band will be filled in [27]. This implies
that the structure of the matrix should be optimised using mesh renumbering
techniques, in order to keep the bands as close to the diagonal as possible.

The incomplete Crout LU factorisation is done according to the predetermined
sparsity pattern. Two temporary working variables are added in the algorithm:
z corresponds to the active row k of the upper triangle, w corresponds to the
active column k of the lower triangle, Algorithm 3.5 [62].

Algorithm 3.5. Crout ILU factorisation

3. Linear Solvers 124

1: for k = 1, . . . , n do

2: z1:k−1 := 0, zk:n := ak,k:n

3: for i = 1, . . . , k − 1 and if lki 6= 0 do

4: zk:n := zk:n − lki · ui,k:n

5: end for

6: w1:k := 0, wk+1:n := ak+1:n,k

7: for i = 1, . . . , k − 1 and if uik 6= 0 do

8: wk+1:n := wk+1:n − uik · lk+1:n,i

9: end for

10: uk,: = z

11: l:,k = w
ukk

, lkk = 1

12: end for

When the factorisation is completed, the preconditioning step consists of solving
two systems by forward and back substitution, respectively:

Ly = b, (3.129)

Ux = y. (3.130)

It was proved by Wittum [63] that ILU has smoothing properties for symmetric
matrices with elements of different magnitudes. Thus, in addition to using ILU
as a preconditioner for conjugate gradients, it can also be used as a smoother in
a multigrid cycle.

Parallelisation of ILU preconditioners is a challenging task. A matrix corre-
sponding to a decomposed computational domain is shown in Eqn. (3.131). The
red elements correspond to the local matrix on processor P0, while blue elements
represent the local matrix on processor P1. Black elements in the upper right
triangle belong to processor boundary P0 and black elements in the lower left
tringle belong to boundary P1. The factorisation can be performed independently
on P0 (and for the interior equations on P1 also), since no elements from other
processors need to be included in the elimination process. However, equations
from P0 need to be used for the elimination of elements on the processor bound-
ary of P1. Thus, factored equations from P0 have to be sent to P1 after the
elimination on P0 has been completed.

3. Linear Solvers 125



0 1 2 3 4 5 7 8 9 13 6 10 11 12 14 15 16 17 18 19

0 a0,0 a0,1 a0,2

1 a1,0 a1,1 a1,3 a1,4

2 a2,0 a2,2 a2,4 a2,5

3 a3,1 a3,3 a3,7 a3,6

4 a4,1 a4,2 a4,4 a4,7 a4,8

5 a5,2 a5,5 a5,8 a5,9

7 a7,3 a7,4 a7,7 a7,11 a7,12

8 a8,4 a8,5 a8,8 a8,13 a8,12

9 a9,5 a9,9 a9,13

13 a13,8 a13,9 a13,13 a13,16

6 a6,3 a6,6 a6,10 a6,11

10 a10,6 a10,10 a10,14

11 a11,7 a11,6 a11,11 a11,14 a11,15

12 a12,7 a12,8 a12,12 a12,15 a12,16

14 a14,10 a14,11 a14,14 a14,17

15 a15,11 a15,12 a15,15 a15,17 a15,18

16 a16,13 a16,12 a16,16 a16,18

17 a17,14 a17,15 a17,17 a17,19

18 a18,15 a18,16 a18,18 a18,19

19 a19,17 a19,18 a19,19



(3.131)

After receiving the boundary equations from P0, elimination of (black) boundary
elements on P1 can be performed. Then factorisation for the boundary equa-
tions in blue can be completed. The procedure is applicable to any number of
processors as long as there exists a global ordering in which the factorisation
will be performed [2]. Also, the preconditioning sweeps can be parallelised by
gathering the updated values of variables from neighbouring processors based on
the global ordering. The local ordering of equations on each processor is even
more important. The standard approach is to number the interior equations first,
followed by the boundary equations which is natural in terms of the presented
parallelisation approach. However, there are other equation ordering strategies
whose overview is given by H. van der Vorst [61]. Different equation orderings
produce different, but equally valid preconditioners.

3. Linear Solvers 126

0 7 8 9 10 11 12 13 14 15 16 17 181 2 3 4 5 6 19

fill-in level 0

fill-in level 1

fill-in level 219
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 3.22: Sparsity pattern of a matrix, corresponding to mesh shown in Fig. 3.8, with
extended addressing depending on the level of fill–in.

3.3.4. Krylov Subspace Methods for Nonsymmetric Matri-

ces

Krylov subspace methods all explore the subspace spanned by a vector and
the same vector multiplied by increasing powers of matrix A. Each metod
is connected to an optimality condition which guarantees finding the correct
solution of the linear system. For example, conjugate gradient method con-
structs the solution x(k) from the available components, so that the correspond-
ing residual r(k) = b − Ax(k) is orthogonal to the current Krylov subspace
D(k) = span{r(0),Ar(0),A2r(0), . . . ,A(k−1)r(0)}. According to the optimality con-
dition, CG belongs to a family of Ritz–Galerkin methods [61]. Another large
group of algorithms takes the minimum norm residual approach in which the
solution is constructed so that the Euclidean norm of the residual ‖b−Ax(k)‖2

is minimal over D(k), e.g. GMRES (Generalised Minimal Residual Method) [64].
For nonsymmetric matrices, the solution x(k) is found so that the residual r(k)

is orthogonal to some other k–dimensional space, e.g. a space constructed using

3. Linear Solvers 127

the transpose of A:

D(k) = span{r(0),AT r(0), (AT)2r(0), . . . , (AT)k−1r(0)}. (3.132)

This approach is called Petrov–Galerkin [61] and BiCG (BiConjugate Gradient
method) [65] is a method which employs it. The derivation of these methods is
closely related to CG and it is beneficial to shift the focus from minimisation of
the quadratic function to another viewpoint [66].

GMRES – Generalised Minimal Residual Method

Gram–Schmidt – procedure for A–orthogonalising a sequence of vectors was pre-
sented in Section 3.3.2., as a part of the conjugate directions method. Another
option for orthogonalisation is the Arnoldi’s method, Algorithm 3.6 [67]. The
method is equivalent to modified Gram–Schmidt procedure, as it remedies the
problem of round–off errors which cause the loss of orthogonality of the search
directions.

Algorithm 3.6. Arnoldi’s iteration

1: An initial vector q(0) is given and ‖q(0)‖ = 1.
2: for j = 0, . . . , n do

3: q̃(j+1) = Aq(j)

4: for i = 0, . . . , j do

5: hi,j := q̃(j+1) · q(i) . Projection of q̃(j+1) onto q(i).
6: q̃(j+1) := q̃(j+1) − hi,j · q(i) . Subtracting the parallel component.
7: end for

8: hj+1,j = ‖q̃(j+1)‖
9: q(j+1) = q̃(j+1)

hj+1,j

10: end for

A construction of an orthonormalised Krylov subspace by Arnoldi can be in-
terpreted as a projection of matrix A onto the Krylov subspace. A similarity
transformation of matrix A is defined as:

QTAQ = H. (3.133)

where Q is the basis matrix. Matrices A, Q and H are square with dimensions
n× n. Similarity transformation in Eqn. (3.133) can be reorganised and written

3. Linear Solvers 128

as a factorisation:
AQ = QH, (3.134)

Arnoldi’s iteration produces a part of the system Eqn. (3.134), i.e. the dimensions
of the basis matrix Q and the r.h.s. matrix H are not n × n, which is indicated
by the overline:

An×nQn×m = Qn×(m+1)H(m+1)×m, (3.135)Aq(0) . . . Aq(m−1)


︸ ︷︷ ︸

AQ

=

q(0) . . . q(m)


︸ ︷︷ ︸

Q



h0,0 h0,1 . . . h0,m−1

h1,0 h2,2
.

0
.

0 0
. . . hm−1,m−1

0 0 0 hm,m−1


︸ ︷︷ ︸

H

,

where m < n. The columns of Q are orthonormal vectors q(j), thus Q is unitary
(QT = Q−1, QQT = QTQ = I). H is an upper Hessenberg matrix, i.e. matrix A

projected onto the Krylov subspace by Q.
If A is symmetric, Hessenberg matrix H is symmetric tridiagonal, i.e. it has

two diagonals just above and below the main diagonal. CG actually solves a
tridiagonal system Hy = f [66], i.e. the original linear system projected by Q

onto a Krylov subspace:

Ax = b (3.136)

QTAQ︸ ︷︷ ︸
H

QTx︸︷︷︸
y

= QTb︸︷︷︸
f

, (3.137)

where f = [‖b‖, 0, . . . , 0]T , since q(0) = b
‖b‖ and every next q(i) is orthogonal

to q(0). The elements of the Hessenberg matrix are not explicitly calculated in
CG, but they do appear in the calculation of the length of the step α and the
projection of the current residual onto the previous one. An unsymmetric system
cannot be solved by CG, as the A–orthogonality of directions while calculating α
is lost. However, the Hessenberg matrix approach can be used if the optimality
criterion is altered. In GMRES, the goal is to minimise the norm of the residual:

‖r(j)‖ = ‖b−Ax(j)‖ = ‖b−A(x(0) + Q(j)y)‖

= ‖b−Ax(0)︸ ︷︷ ︸−AQ(j)︸ ︷︷ ︸y‖ = ‖r(0) −Q(j+1)Hj+1,jy‖, (3.138)

3. Linear Solvers 129

where x(j) = x(0) +Q(j)y is the solution update in iteration j of GMRES. 2–norm
is unitarily invariant, i.e. it does not change when multiplied by a unitary matrix
(Q(j+1))T :

‖r(j)‖ = ‖r(0) −Q(j+1)Hj+1,jy‖ = ‖(Q(j+1))T r(0) − (Q(j+1))TQ(j+1)︸ ︷︷ ︸
I

Hj+1,jy‖

= ‖ (Q(j+1))T r(0)︸ ︷︷ ︸
f

−Hj+1,jy‖, (3.139)

where f = (Q(j+1))T r(0) = [‖b‖, 0, . . . , 0]T when x(0) = 0. The minimisation
of Eqn. (3.139) is an ordinary least squares problem where y is the minimiser,
and it is found by factorising the Hessenberg matrix Hj+1,j using Givens plane
rotations [2]. Since Hj+1,j has one diagonal below the main diagonal, only those
elements need to be eliminated to achieve an upper triangular form and calculate
y by back substitution. In a single iteration of GMRES, Givens rotation matrices
have the dimension (m+ 1)× (m+ 1), where m is the number of columns of the
Hessenberg matrix:

G
(i)
R =



1
. . .

c(i) s(i)

−s(i) c(i)

. . .

1


, (3.140)

where c(i) = cos θ(i) and s(i) = sin θ(i) and θ(i) is the angle of rotation. To
eliminate the diagonal in the lower triangle, Hessenberg matrix and r.h.s. vector
are multiplied from the left by a sequence of Givens matrices. An example given
in [2] illustrates two steps in the elimination of the lower triangular elements of
a 5× 5 Hessenberg matrix:

H6,5 =



h0,0 h0,1 h0,2 h0,3 h0,4

h1,0 h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

h3,2 h3,3 h3,4

h4,3 h4,4

h5,4


, f (0) = (Q(6))T r(0) =



‖b‖
0

0

0

0

0


.

3. Linear Solvers 130

The following two multiplications will eliminate elements h1,0 and h2,1 from the
lower triangle, and modify the r.h.s. vector:

G
(2)
R G

(1)
R H6,5,

G
(2)
R G

(1)
R f (6).

Here, Givens plane rotation matrices are defined as:

G
(1)
R =



c(1) s(1)

−s(1) c(1)

1

1

1

1


, G

(2)
R =



1

c(2) s(2)

−s(2) c(2)

1

1

1


,

and the scalar elements s and c are calculated using the elements from the Hes-
senberg matrix:

s(1) =
h1,0√

(h
(0)
0,0)2 + h2

1,0

, c(1) =
h

(0)
0,0)√

(h
(0)
0,0)2 + h2

1,0

,

s(2) =
h2,1√

(h
(1)
1,1)2 + h2

2,1

, c(2) =
h

(1)
1,1√

(h
(1)
1,1)2 + h2

2,1

.

Upper triangular Hessenberg matrix and the modified r.h.s. vector are obtained
after applying the final Givens matrix G

(5)
R :

G
(5)
R G

(4)
R G

(3)
R G

(2)
R G

(1)
R H

(0)
=



h
(5)
0,0 h

(5)
0,1 h

(5)
0,2 h

(5)
0,3 h

(5)
0,4

h
(5)
1,1 h

(5)
1,2 h

(5)
1,3 h

(5)
1,4

h
(5)
2,2 h

(5)
2,3 h

(5)
2,4

h
(5)
3,3 h

(5)
3,4

h
(5)
4,4

0


, f (5) = (Q(6))T r(0) =



γ0

γ1

γ2

γ3

γ4

γ5


.

The product of matrices G
(i)
R is a unitary matrix:

Vm = G
(m)
R G

(m−1)
R . . .G

(1)
R . (3.141)

3. Linear Solvers 131

Thus, the result after Givens rotations can be written as:

VmH
(0)

m+1,m = H
(m)

m+1,m = R
(m) (3.142)

Vmf = g(m) = [γ0, . . . , γm]T . (3.143)

2–norm is unitarily invariant, and the minimisation problem is reduced to:

min ‖f −Hj+1,jy‖ = min ‖g(m) −R
(m)

y‖. (3.144)

The last row of R
(m) contains only zero elements, i.e. the last component of g(m)

is not relevant for the solution of the system. To prove that the solution of the
upper triangular system produced by Givens rotations minimises the residual [2],
use the fact that 2–norm is unitarily invariant and for any vector y:

‖f −Hj+1,jy‖2 = ‖Vm(f −Hj+1,jy)‖2

= ‖g(m) −R
(m)

y‖2

= |γm|2 + ‖g(m) −R(m)y‖2, (3.145)

where γm is the last component of the r.h.s. vector g(m), g(m) is equal to g(m)

without the last component, R(m) is equal to R
(m) where the last zero row is

deleted. The minimum of the l.h.s. is reached when ‖g(m) −R(m)y‖2 is equal to
zero, i.e. solving the upper triangular system (y = R(m))−1g(m)) gives the solution
of the minimisation problem.

Also, looking at Eqn. (3.139), if y nullifies all components of g(m) except the
last one, the last component of g(m) corresponds to the norm of the residual
produced by the solution x(m) = x(0) + Q(m)y [2]:

‖r(m)‖2 = ‖f −Hm+1,my‖2

= |γm|2 + ‖g(m) −R(m)y‖2︸ ︷︷ ︸
0

. (3.146)

Thus, it is not necessary to explicitly calculate the solution after each iteration,
but only when the residual r(m) = |γm| is declared small enough.

The number of orthogonalised vectors in the Krylov subspace m, used for the
construction of the approximate solution x(m) is smaller than the dimension of
the coefficient matrix n. When m = n, GMRES should converge to the exact

3. Linear Solvers 132

solution in maximally n steps (assuming no round–off errors). However, when n
is very large, storage and computational requirements of GMRES grow linearly
with each iteration [68]. To avoid high computational costs, restarted versions of
GMRES are used, where after a chosen number of m iterations, the accumulated
data is discarded and the intermediate data is used as the input in the next
iteration. The restarted approach could cause the solution to stall as the old
search directions are lost. The choice of optimal m is not trivial.

BiCGStab – Biconjugate Gradient Stabilised

It was shown in Section 3.3.2. that CG method converges for symmetric matrices,
i.e. the solution of the symmetric system Ax = b is a minimum of the quadratic
function f(x), Eqn. (3.89). However, if the coefficient matrix A is not symmetric,
it is still possible to employ the CG algorithm by applying it to a surrogate
symmetric system: [

0 A

AT 0

][
x̃

x

]
=

[
b

0

]
, (3.147)

where x̃ is a solution of the system AT x̃ = 0. When applied to this system,
CG method will produce two sequences of search directions and residuals, one
corresponding to A and the other to AT . That is, two approximation spaces are
created:

D(k) = span{d(0),Ad(0),A2d(0), . . . ,Ak−1d(0)}, (3.148)

D∗(k) = span{d∗(0),ATd∗(0), (AT)2d∗(0), . . . , (AT)k−1d∗(0)}, (3.149)

where D(k) is the Krylov subspace corresponding to matrix A in the kth iteration,
while W(k) is the subspace obtained by repetitively multiplying vector d∗ with
the transpose of A. Note that the superscript (∗) does not denote the conjugate
transpose, rather it symbolises the additional vectors and subspace, correspond-
ing to AT . Since there are two subspaces created, the algorithm is called the
biconjugate gradient method (BiCG) [65]. The aim of BiCG is to orthogonally
project D(k) onto D∗(k):

(r∗(i))T r(j) = 0 where i 6= j, (3.150)

(d∗(i))TAd(j) = 0 where i 6= j. (3.151)

3. Linear Solvers 133

It uses the Lanczos method [2] for orthogonalisation. The algorithm resembles
the CG algorithm with additional operations using the transpose of A.

1. At the beginning assume x(0) = 0 and d(0) = r(0) = b−Ax(0).
Choose r∗(0) = d∗(0) such that (r(0))T r∗(0) 6= 0.

2. Calculate the length of the step in direction of the search vectors:

α(k) =
(r∗(k))T r(k)

(d∗(k))TAd(k)
. (3.152)

3. Calculate the new solution:

x(k+1) = x(k) + α(k)d(k). (3.153)

4. Update the residuals:

r(k+1) = r(k) + α(k)Ad(k) (3.154)

r∗(k+1) = r∗(k) + α(k)ATd∗(k). (3.155)

5. Calculate the projection operator:

β(k) =
(r(k+1))T r∗(k+1)

(r(k))T r∗(k)
. (3.156)

6. Update the search directions:

d(k+1) = r(k+1) + β(k)d(k) (3.157)

d∗(k+1) = r∗(k+1) + β(k)d∗(k). (3.158)

In BiCG, AT must be explicitly multiplied with the previous search direction to
update the residual, which is a drawback of BiCG compared to CG (parallelisation
issues [67]). Also, oscillatory convergence was noticed in practice [68]. Contrary
to GMRES, BiCG does not have any minimisation effects, and it is not necessary
to store all previous search directions. However, there are additional vector–
matrix products.

3. Linear Solvers 134

Multiplication with AT in BiCG was remedied in the conjugate gradient
squared (CGS) method (by Sonneveld [69]) which uses the fact that residuals
and search directions are polynomial combinations of A and r(0) [70]:

r(k) = (φBCGS)k(A)r(0), (3.159)

d(k) = πk(A)r(0), (3.160)

r∗(k) = φk(A
T)r∗(0), (3.161)

d∗(k) = πk(A
T)r∗(0), (3.162)

where (φBCGS)k and πk are polynomials with degree k ((φBCGS)0(A) = 1, π0(A) =

0). These polynomials are presumed to act as contraction functions, since the
residual vector shrinks in each subsequent iteration. Inserting the polynomial
expressions into BiCG algorithm and manipulating the terms [70], produces an
improvement in terms of eliminating the multiplication with AT . The “squared”
in the name of the method comes from squaring the polynomials, i.e. applying
the contraction function twice in a single iteration. However, the oscillatory
behaviour of BiCG still remains.

Van der Vorst introduced a stabilised version of BiCG (BiCGStab) [71] by
applying a smoothing function ψk(A), which reduces the convergence oscillations
of BiCG:

r(k) = ψk(A) (φBCGS)k(A)r(0), (3.163)

d(k) = ψk(A) πk(A)r(0), (3.164)

where
ψk+1(A) = (I− ω(k)

BCGSA)ψk(A). (3.165)

The new residual and search direction are defined as:

r(k+1) = ψk(A) (r(k) − α(k)Ad(k)) = (I− ω(k)
BCGSA)(r(k) − α(k)Ad(k)), (3.166)

d(k+1) = r(k+1) + β(k)(I− ω(k)
BCGSA)d(k). (3.167)

BiCGStab is a very popular Krylov subspace method for solving large sparse sys-
tems. The efficiency and stability are achieved by applying a smoothing function
ψk which, by ensuring A–orthogonality between r(k+1) and r(k), locally reduces
the 2–norm of the residual vector to improve convergence. The algorithm of
BiCGStab consists of the following steps:

3. Linear Solvers 135

1. Assume x(0) = 0, calculate r(0) = b−Ax(0), arbitrarily choose r∗(0).
Set d(0) = r(0).

2. Calculate the length of the step in direction of the search vectors:

α(k) =
(r∗(0))T r(k)

(r∗(k))TAd(k)
. (3.168)

3. Update the residual before orthogonalisation using an auxilliary variable s:

s(k) = r(k) − α(k)Ad(k). (3.169)

Check the stopping criterion. If it is satisfied, terminate the algorithm.

4. Calculate the smoothing coefficient:

ω
(k)
BCGS =

(s(k))TAs(k)

(As(k))TAs(k)
. (3.170)

5. Calculate the new solution:

x(k+1) = x(k) + α(k)d(k) + ω
(k)
BCGSs

(k). (3.171)

6. Calculate the new residual:

r(k+1) = s(k) − ω(k)
BCGSAs(k). (3.172)

7. Calculate the projection operator:

β(k) =
(r∗(0))T r(k+1)

(r∗(0))T r(k)

α(k)

ω
(k)
BCGS

. (3.173)

8. Establish the next search direction:

d(k+1) = r(k+1) + β(k)(d(k) − ω(k)
BCGSAd(k)). (3.174)

9. Return to step 2 if the convergence criterion is not satisfied.

3. Linear Solvers 136

3.4. Closure

The main topic of this chapter were the efficient state–of–the–art algorithms for
the solution of the linear system. Fixed–point methods were presented as the
first step towards an algebraic multigrid algorithm. Algebraic multigrid aids the
convergence of fixed–point methods by constructing a hierarchy of matrices with
smaller dimensions, which enables the propagation of information carried by the
fixed–point method. Two methods for construction of coarse levels were outlined:
additive correction (AAMG) and selection method (SAMG). Selection method
has a better compatibility between interpolation and smoothing, which should
prove as an advantage in terms of convergence rate. A separate class of efficient
solvers based on assembling the solution from the Krylov subspace was presented.
First a derivation of the steepest descent method and its upgrade, the conjugate
gradient (CG) method was given. CG is an alternative to the multigrid method
for symmetric positive definite matrices, but it is inefficient for unsymmetric sys-
tems. Krylov subspace methods are often paired with preconditioning techniques
which improve convergence: we presented the incomplete lower–upper (ILU) fac-
torisation as an example, which can also be used as a smoother for multigrid.
Since the block–matrix of the implicit pressure–velocity system is unsymmetric,
it is necessary to employ appropriate Krylov subspace methods such as the gener-
alised minimal residual (GMRES) or biconjugate gradient stabilised (BiCGStab)
which were also described in this chapter. In the following chapter, we shall in-
vestigate the performance of these linear algorithms for the implicitly–coupled
pressure velocity system, as well as highlight the advantages and disadvantages
of the implicit coupling.

4. Case Studies

4.1. Introduction

In Chapter 2. we have presented the concept of segregated and implicitly
coupled solution techniques for the pressure–velocity system as well as the finite
volume discretisation and the resulting linear system. In chapter 3. different types
of algorithms for the solution of linear system were presented: multigrid (selection
– SAMG, and agglomeration – AAMG) and Krylov subspace (CG, GMRES,
BiCGStab) solvers. Also, some techniques for acceleration of convergence were
presented: preconditioners and smoothers (Jacobi, Gauss–Seidel, ILU).

In this chapter, we will try to resolve some uncertainties which arise when
thinking about the appropriate choice of solution strategy and linear solver, by
showing the simulation settings and results of several complex flow cases. Some
of the questions we seek to answer are:

• Is it better to use segregated (SIMPLE) or implicitly coupled pressure–
velocity solver, in terms of stability, robustness and speed of convergence?

• Which linear solver should we choose for the block–matrix of the implicitly
coupled system?

• What is the effect of mesh density on the convergence of SIMPLE versus
implicitly coupled solver?

• Is it better to treat inter–equation coupling terms implicitly or explicitly,
considering the properties of the coefficient matrix?

Since the main topic of this thesis was the implementation of the selection
algebraic multigrid algorithm (SAMG) we shall explore its performance on the
implicitly–coupled system:

• Which is the optimal smoother?

• Which is the optimal multigrid cycle in terms of efficiency?

4. Case Studies 138

• Does the weighting factor, i.e. coarsening norm in SAMG have an effect on
convergence?

• What is the influence of number of cells on the coarsest level? Is the number
of levels important?

• What is the optimal criterion for determining a strong connection between
two equations?

• How does the algorithm scale and perform on parallel high–performance
computers in domain decomposition mode?

In the following sections we shall present observations and conclusions derived
from several test cases. It is important to emphasise that these observations are
not case specific, i.e. to keep the chapter concise we did not repeat the same
conclusions multiple times, even though they are confirmed for multiple cases.
Simulations were run on a high performance computer with the following specifi-
cations: 28 CPUs (Intel Xeon Processor E5-2637 v3 15M Cache) with a total of
112 cores (3.50 GHz per core). Most cases were run using 8 or 16 cores in domain
decomposition mode, using a message passing interface (MPI).

4.2. Segregated vs. Implicitly Coupled Pressure–

Velocity Solver

Since the equations in the coupled solver, presented in Section 2.3.3. are solved
in a single linear system and include the cross–coupling terms implicitly in the
coefficient matrix, it is expected that the solver will reach the desired convergence
criterion (i.e. solution) in fewer non–linear iterations, compared to the segregated
(SIMPLE) algorithm, Section 2.3.1. However, the implicitly–coupled linear sys-
tem is more demanding in terms of storage capacity (16 times larger matrix),
choice of linear solver (different types of equations are solved simultaneously,
which requires employing complex preconditioners and solvers) and overall com-
putational time per iteration. Thus, the implicitly coupled pressure–velocity
solver may outperform the segregated solver based on the SIMPLE algorithm
regarding the number of non–linear iterations, but it could be slower when com-

4. Case Studies 139

paring the overall execution time of the simulation.
In this chapter we shall illustrate the advantages and disadvantages of the cou-

pled solver compared to the traditional segregated solver based on the SIMPLE
algorithm, for several test cases: flow inside a Francis turbine and a centrifugal
pump, external flow around a bluff body, a Formula 1 front wing and a BB2–
submarine. To keep this concise, additional data for each case such as mesh
statistics, flow features, boundary conditions are listed in Appendix A.

The main criterion for comparison is the rate of decrease of the normalised
residual per iteration. Since it is expected that a single iteration of the implicitly–
coupled solver requires more memory and CPU time than one iteration of the
segregated solver, we shall also compare convergence against required computa-
tion time.

To be able to compare convergence of different cases, the residual r = b −
Ax is normalised by dividing it with a normalisation factor ξ [H. Jasak, private
communication]:

ξ =
n∑
i

(|Ax−Ax|+ |b−Ax|), (4.1)

where x is the current value of the solution vector and every component of x is
equal to an average value of x over n (all) equations:

x =

∑n
i xi
n

. (4.2)

Note that the terms in Eqn. (4.1) are assembled to take into account two possi-
bilities: if the solution vector x is equal to zero (at the beginning of the iteration
process), or if the right hand side vector b is equal to zero (no source terms).
Eqn. (4.1) returns a scalar normalisation factor for each unknown (ξUx , ξUy , ξUz ,
ξp). For the implicitly coupled solver, | • | denotes the absolute value of each
component of the obtained vector rather than the Euclidean norm.

Thus, the normalised residual rn for the segregated and coupled solver is
calculated as:

rn =

[∑n
i |rUxi

|
ξUx

,

∑n
i |rUyi

|
ξUy

,

∑n
i |rUzi

|
ξUz

,

∑n
i |rp|
ξp

]T
. (4.3)

4. Case Studies 140

Non–linear and linear convergence is evaluated by monitoring the reduction of
the 1–norm of the residual, i.e. a sum of magnitudes of residuals for all equations
corresponding to a single variable. An absolute convergence criterion is used for
the non–linear solver: if the residual drops below a prescribed value after the
non–linear solution update, the solver has converged. Absolute and relative con-
vergence criterion is used for the linear solver. Absolute criterion is similar to
the non–linear solution, i.e. the iteration will end as soon as the residual reaches
some predetermined value. A relative tolerance is defined as a ratio of the initial
and final residual of the linear iterative process. For example, if a relative toler-
ance 10−3 is prescribed for a linear solver, the solution process will end as soon
as the residual drops three orders of magnitude compared to the residual at the
beginning of the linear iteration.

Bluff body

The first test case is a simulation of external turbulent flow around a bluff body.
Mesh statistics are given in Table A7 while a slice through the volume mesh is
shown in Fig. A11. A definition of a bluff body is given by Fackrell [72]: “A bluff
body can be defined as a body of any shape, which experiences complete boundary
layer separation before the trailing edge, due to large adverse pressure gradient set
up over that part of the body behind the position of maximum thickness. This
pressure gradient decelerates the slow moving fluid within the boundary layer
near the surface and eventually causes a reversed flow and hence separation”.
In the scope of this work, we chose a simple geometry which resembles a bullet
with an upswept surface at the back, enclosed with two flat plates. When placed
near the ground, the upswept surface behaves as a diffuser used on Formula 1
racing cars to increase downforce (negative lift). The half–width of the diffuser
is d = 157mm, length l = 1315mm, height h = 326mm and the diffuser angle is
17◦.

The pattern of the flow is quite complex and it depends on the distance of the
diffuser section from the ground (ride height): when the diffuser is sufficiently
high, two vortices are formed along the two sideplates and additional (high en-
ergy) air is pulled in from the outside [73]. This causes a pressure drop at the
start of the diffuser which pulls in even more airflow from the front section. The

4. Case Studies 141

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700

C
d

Non-linear iteration

segregated

coupled

-3

-2.9

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 0 100 200 300 400 500 600 700

C
l

Non-linear iteration

segregated

coupled

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
d

Execution time, s

segregated

coupled

-3

-2.9

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
l

Execution time, s

segregated

coupled

Figure 4.1: Bluff body: convergence of drag and lift coefficient against non–linear iterations and
execution time for the segregated (SIMPLE) and implicitly coupled pressure–velocity solver.

flow is symmetrical and as the ride height is decreased, downforce increases while
a separation bubble is formed at the back between the two vortices. At a critical
(too low) ride height, one of the vortices will fall apart which will cause immediate
drop of downforce. The two vortices at 40 mm ride height and 20m/s freestream
velocity are illustrated in Fig. 4.2. The pressure field acting on the surface of the
body is shown in Fig. A12.

The two integral values of interest are the drag and lift coefficients, defined
as:

4. Case Studies 142

Figure 4.2: Bluff body: the pattern of the flow on the bottom surface.

CD =
FD

1
2
ρu2A

, (4.4)

CL =
FL

1
2
ρu2A

, (4.5)

respectively, where FD is the drag force in the direction of the flow, FL is the lift
force, perpendicular to the direction of the flow, ρ is the fluid density, u is the
freestream flow velocity and A is the representative surface area. The reported
experimental values for this model and freestream velocity u = 20m/s [74] are
CD = 0.49 and CL = −1.90.

The convergence of force coefficients is shown in Fig. 4.1 for the segregated
and the implicitly coupled solver. Block–selection AMG was used for the coupled
coefficient matrix, underrelaxation factor of the momentum equation was αu =

0.9. The momentum equation in the segregated solver was solved using the
BiCGStab solver preconditioned by ILU0, αu = 0.7, while the pressure equation
was solved using a scalar selection AMG solver, αp = 0.3. The equations of the k–
ω–SST turbulence model in both cases were solved with BiCGStab preconditioned
by Cholesky ILU. The setup of linear solvers for all cases mentioned in this section
is listed in Table 4.1. Identical discretisation schemes were used in all cases for

4. Case Studies 143

the segregated and implicitly coupled solver. Note that two turbulence models
were used: k-ω-SST [42] and an implicitly coupled version of the same model
[75], where the equations for k and ω are solved in a single linear system, which
improves the stability of convergence.

Table 4.1: Setup of linear solvers for segregated and implicitly coupled solver for all test cases.

COUPLED SIMPLE TURBULENCE

CASE u, p u p k ω

Bluff body

SAMG, V–cycle,
smoother ILUC0,

1 pre–sweep,
2 post–sweeps,

no. coarse equations 10,
relative tolerance 10−3,
convergence at 10−7

αu = 0.85

BiCGStab,
preconditioner ILU0,
convergence at 10−6

αu = 0.7

SAMG, V–cycle,
smoother symmetric Gauss–Seidel,

1 pre–sweep,
3 post–sweeps,

no. coarse equations 4,
relative tolerance 10−4,
convergence at 10−6

αp = 0.3

coupled k–ω–SST
BiCGStab,

preconditioner Cholesky,
convergence at 10−12

(αk)C = 0.9

(αω)C = 0.9

(αk)S = 0.7

(αω)S = 0.7

Front wing

SAMG, V–cycle,
smoother ILUC0,

1 pre–sweep,
2 post–sweeps,

no. coarse equations 10,
relative tolerance 10−3,
convergence at 10−7

αu = 0.85

BiCGStab,
preconditioner ILU0,
convergence at 10−6

αu = 0.7

SAMG, V–cycle,
smoother symmetric Gauss–Seidel,

2 pre–sweep,
2 post–sweeps,

no. coarse equations 4,
relative tolerance 10−3,
convergence at 10−5

αp = 0.3

BiCGStab,
preconditioner ILU0,
convergence at 10−8

(αk)C = 0.9

(αk)S = 0.7

BiCGStab,
preconditioner ILU0,
convergence at 10−8

(αω)C = 0.9

(αω)S = 0.7

BB2

submarine

SAMG, W–cycle,
smoother ILUC0,

1 pre–sweep,
2 post–sweeps,

no. coarse equations 20,
convergence at 10−7

αu = 0.95

BiCGStab,
preconditioner ILU0,
convergence at 10−6

αu = 0.7

SAMG, V–cycle,
smoother symmetric Gauss–Seidel,

1 pre–sweep,
3 post–sweeps,

no. coarse equations 4,
relative tolerance 10−4,
convergence at 10−6

αp = 0.3

coupled k–ω–SST
BiCGStab,

preconditioner Cholesky,
convergence at 10−8

(αk)C = 0.95

(αω)C = 0.95

(αk)S = 0.7

(αω)S = 0.7

Francis turbine

SAMG, V–cycle,
smoother ILUC0,

1 pre–sweep,
2 post–sweeps,

no. coarse equations 20,
relative tolerance 10−4,
convergence at 10−6

αu = 0.9

BiCGStab,
preconditioner ILU0,
convergence at 10−6

αu = 0.7

SAMG, V–cycle,
smoother symmetric Gauss–Seidel,

1 pre–sweep,
3 post–sweeps,

no. coarse equations 4,
relative tolerance 10−4,
convergence at 10−7

αp = 0.3

coupled k–ω–SST
BiCGStab,

preconditioner Cholesky,
convergence at 10−12

(αk)C = 0.95

(αω)C = 0.95

(αk)S = 0.7

(αω)S = 0.7

Centrifugal

pump

SAMG, V–cycle,
smoother ILUC0,

1 pre–sweep,
2 post–sweeps,

no. coarse equations 20,
relative tolerance 10−4,
convergence at 10−7

αu = 0.95

BiCGStab,
preconditioner ILU0,
relative tolerance 10−3,
convergence at 10−5

αu = 0.7

SAMG, V–cycle,
smoother symmetric Gauss–Seidel,

2 pre–sweep,
2 post–sweeps,

no. coarse equations 10,
relative tolerance 10−3,
convergence at 10−7

αp = 0.3

coupled k–ω–SST
BiCGStab,

preconditioner Cholesky,
convergence at 10−12

(αk)C = 0.95

(αω)C = 0.95

(αk)S = 0.7

(αω)S = 0.7

In this case, both solvers give approximately the same values of the force.
The coupled solver is not faster in terms of execution time. However, the con-

4. Case Studies 144

vergence of the force coefficients demonstrates one of the distinct advantages of
the implicitly coupled pressure–velocity solver, and that is stability. The value of
drag and lift coefficients steadily converges (red line in Fig. 4.1), while the values
calculated by the SIMPLE solver oscillate, quite heavily at the beginning of the
simulation, until the amplitude decreases to reach a repetitive oscillation pattern.
The oscillation is caused by the changes in the values of the pressure field, since
the pressure component dominates the viscous component of the force. It can be
suggested that the oscillation comes from the unsteady components of the solu-
tion. However, the oscillation of the force comes not only from the transient part
of the solution, but also from the instabilities caused by decoupling the linearly
coupled equations.

4. Case Studies 145

Front wing

In addition to the rear diffuser, an equally important aerodynamics component
on a Formula 1 car is the front wing, which we have also simulated to compare
the performance of the implicitly coupled and segregated solver. Front wing is an
essential part, since it directs the flow towards the rear of the car where most of
the downforce is generated. Thus, the geometry is very sensitive and it includes
numerous small segments such as pylons, flaps, winglets and vanes, which poses
a challenge in the meshing process. The cells which surround the surface of the
wing must be very small to capture the smallest features of the geometry, while
the overall number of cells must be as small as possible for efficiency reasons.
Mesh statistics and boundary conditions are given in Table A6, while the slice
through the volume mesh is shown in Fig. A8. The convergence of the residuals
is shown in Fig. 4.4. Since we use consistent normalisation of the residuals, we
can conclude that the implicitly coupled pressure velocity solver converges to a
tighter tolerance than the SIMPLE algorithm.

However, convergence of the residual can sometimes be misleading regarding
the behaviour of the flow field, i.e. the residual can locally be large, while the
flow variables have converged and do not change anymore, or vice versa. For
external aerodynamics, it is beneficial to monitor the convergence of an integral
value, such as the drag force. The convergence of drag acting on the front wing
is shown in Fig. 4.5. The superior stability of the coupled solver compared to
the segregated solver is apparent, which also yields faster convergence both in
terms of number of iterations and execution time. The pressure field acting on
the surface of the wing is shown in Fig. A9. The vortices in the wake of the wing
are shown in Fig. A10.

4. Case Studies 146

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 200 400 600 800 1000

R
e
s
id

u
a
l

Non-linear iteration

Ux

coupled

segregated

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 200 400 600 800 1000

R
es

id
u

al

Non-linear iteration

Uy

coupled

segregated

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 200 400 600 800 1000

R
e
s
id

u
a
l

Non-linear iteration

Uz

coupled

segregated

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 200 400 600 800 1000

R
es

id
u

al

Non-linear iteration

p

coupled

segregated

Figure 4.3: Front wing: convergence of the residual for segregated and coupled solver against
the number of non–linear iterations.

4. Case Studies 147

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2000 4000 6000 8000 10000 12000 14000

R
e
si

d
u

a
l

Execution Time, s

Ux

coupled

segregated

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2000 4000 6000 8000 10000 12000 14000

R
es

id
u

al

Execution Time, s

Uy

coupled

segregated

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2000 4000 6000 8000 10000 12000 14000

R
e
si

d
u

a
l

Execution Time, s

Uz

coupled

segregated

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 2000 4000 6000 8000 10000 12000 14000

R
es

id
u

al

Execution Time, s

p

coupled

segregated

Figure 4.4: Front wing: convergence of the residual for segregated and coupled solver against
execution time.

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 20 40 60 80 100 120 140

D
ra

g
,

N

Non-linear iteration

segregated

coupled

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400

D
ra

g
,

N

Execution time, s

segregated

coupled

Figure 4.5: Front wing: convergence of the drag and lift force for segregated and coupled solver.

4. Case Studies 148

BB2–submarine

A mesh refinement study was conducted for the generic BB2 submarine test
case, which is a collaborative project of several institutions, in order to generate
a deeper understanding of the fluid dynamics processes and relative capabilities
of the computational methods, by gathering and interchanging data among all
participants.

Table 4.2: BB2 submarine: mesh properties and boundary conditions.

BB2 SUBMARINE

Mesh data Boundary conditions

FINE

No. cells 14 357 865 Boundary u p k ω

Cell type hexahedral (structured) inlet
Dirichlet
(-3 0 0)

von Neumann
(0)

Dirichlet
(0.00135)

Dirichlet
(112.5)

Average
non–orthogonality

10.95 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)
Maximum

non–orthogonality
82.30

top wall,
bottom wall

Dirichlet
(-3 0 0)

von Neumann
(0)

wall function wall function

Maximum
skewness

1.69
front wall,
back wall

Dirichlet
(-3 0 0)

von Neumann
(0)

von Neumann
(0)

von Neumann
(0)

MEDIUM

No. cells 6 958 240 submarine hull
Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

Cell type hexahedral (structured)
Average

non–orthogonality
11.0

Maximum
non–orthogonality

79.61

Maximum
skewness

1.78

COARSE

No. cells 2 777 304
Cell type hexahedral (structured)
Average

non–orthogonality
11.12

Maximum
non–orthogonality

80.16

Maximum skewness 2.53

The length of the model in this study is Loa = 3.826m. Straight flight con-
ditions were simulated with freestream velocity u∞ equal to 3m/s. Three mesh
densities were used for the simulations: statistics for each mesh are shown in
Table 4.2, as well as boundary conditions. The three mesh densities are shown
in Fig. A13. The comparison of the measured and simulated pressure coefficient
and non–dimensional wall shear stress in x–direction, exhibits good quantitative
agreement between the two data sets, Fig. 4.6.

The stability of the implicitly coupled solver is highlighted once more by
the convergence of the force acting on the submarine hull, Fig. 4.7. Another

4. Case Studies 149

Figure 4.6: BB2 submarine: comparison of experimental data vs. data obtained from the sim-
ulation with implicitly coupled pressure–velocity solver. Pressure coefficient cp = p

1
2ρu

2
∞

on the
bottom of the hull, and non–dimensional wall shear stress in x–direction τx = τx

1
2ρu

2
∞

on the
bottom of the hull.

important advantage of the coupled solver is evident - the convergence of the
non–linear solver in terms of the number of iterations does not depend (or only
slightly depends) on mesh density. We have also tested the segregated SIMPLE
algorithm with two mesh densities, the coarse and the fine one. It can be seen
that the convergence of the force for SIMPLE changes with the mesh density,
i.e. it deteriorates as the number of cells increases.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0 50 100 150 200 250 300 350 400

F
o

rc
e
,

N

Non-linear iteration

segregated (fine)

segregated (coarse)

coupled (coarse)

coupled (medium)

coupled (fine)

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
o

rc
e
,

N

Execution time, s

segregated (fine)

segregated (coarse)

coupled (coarse)

coupled (medium)

coupled (fine)

Figure 4.7: BB2 submarine: convergence of the total force onto the hull for three mesh densities,
segregated and coupled solver.

4. Case Studies 150

However, as the number of cells and consequently size of the matrix increases,
CPU time needed to reach convergence increases as well, i.e. each non–linear iter-
ation becomes more time–consuming, which is expected due to a larger number of
floating point operations. It is also interesting to observe the convergence of the
residual, Fig. 4.8, especially the residual of the pressure equation. For coarse and
medium mesh density, the coupled solver stalls at a higher value (10−4), while it
drops to 10−6 for the fine mesh. Since the mesh density was mainly increased in
the submarine wake (the mesh close to the surface was constructed to satisfy the
prerequisites of the turbulence wall functions), we can conclude that the coupled
solver manages to “fully” resolve the flow only at the finest mesh. The SIMPLE
algorithm however, requires a very large number of iterations to resolve the flow
in the wake, which was not achieved within the maximally allowed number (600)
of non–linear iterations. That is, the combination of the implicitly–coupled solver
and AMG linear solver, whose convergence (in terms of the number of iterations)
should be insensitive to changes in mesh density. In that case, the computational
effort scales linearly.

4. Case Studies 151

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250 300 350 400

R
e
s
id

u
a
l

Non-linear iteration

Ux

segregated (fine)

segregated (coarse)

coupled (coarse)

coupled (medium)

coupled (fine)

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250 300 350 400

R
es

id
u

al

Non-linear iteration

Uy

segregated (fine)

segregated (coarse)

coupled (coarse)

coupled (medium)

coupled (fine)

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250 300 350 400

R
e
s
id

u
a
l

Non-linear iteration

Uz

segregated (fine)

segregated (coarse)

coupled (coarse)

coupled (medium)

coupled (fine)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250 300 350 400

R
es

id
u

al

Non-linear iteration

p

segregated (fine)

segregated (coarse)

coupled (coarse)

coupled (medium)

coupled (fine)

Figure 4.8: BB2 submarine: convergence of field variables for three mesh densities, segregated
and coupled solver.

4. Case Studies 152

Francis turbine

The equations of basic, incompressible turbulent flow can be extended for
applications in e.g. turbomachinery by adding the appropriate terms which take
into account the effects of rotation. Since both rotating and stationary parts
of the domain can be present, a multiple reference frame (MRF) approach is
used [76], where the domain is divided into stationary and rotating zones. The
equations are steady–state, thus a single position of the rotating part of the
domain is simulated (“frozen rotor”). The equations in the stationary part of the
domain remain the same (Eqn. (2.1), Eqn. (2.2)), expressed in terms of absolute
(inertial) velocity. In the rotating part, equations are written via relative velocity.
Coriolis and centrifugal forces are added and the equations are then cast into the
inertial (absolute) coordinate system, which yields:

∇ · u = 0, (4.6)

∇ · (uRu)−∇ · (ν∇u) + ΩuT = −∇p, (4.7)

where uR is the relative velocity, Ω is the angular velocity in the direction of the
axis of rotation and u = uR + ΩrTd . rd is the distance from the axis of rotation
and it is orthogonal to the axis.

Most terms in equations corresponding to a relative reference frame, Eqn. (4.6)
and Eqn. (4.7) are discretised in the same way as presented in Chapter 2., Sec-
tion 2.4.. However, the volumetric flux in the convection term is expressed in
terms of relative velocity uR:

ΦR = Φ− (ΩrTd)T sf . (4.8)

Additional term in the momentum equation ΩuT can be expressed using the
Hodge dual W of angular velocity:∫

ΩuT dV →
∫

Wu dV = ViWu, (4.9)

4. Case Studies 153

W =


0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 . (4.10)

Thus, the term appears in the diagonal block–element Aii of the momentum
equation, it introduces the coupling between components of velocity in different
directions, and the contribution is skew–symmetric:

Aii =


auxi,uxi

auxi,uyi
auxi,uzi auxi,pi

auyi,uxi
auyi,uyi

auyi,uzi
auyi,pi

auzi,uxi
auzi,uyi

auzi,uzi auzi,pi

api,uxi
api,uyi

api,uzi api,pi

 .
It is possible to treat this term explicitly, i.e. calculate the outer product using
the velocity from previous iteration and put the contribution into the right hand
side:

bi =


buxi

buyi

buzi

bpi

 .
Flow inside a Francis turbine was simulated using a block–structured mesh

built from three separate blocks. The case is distinctive since the non–matching
blocks are connected using the Generalised Grid Interface (GGI) [76] compatible
with selection AMG, and the Multiple Reference Frame (MRF) approach is used
for the rotation zone near the rotor, with implicit tretment of the additional
equation terms.

The positions of the GGI interface are shown in Fig. 4.9. Mesh statistics and
boundary conditions are shown in Table A5, while the surface mesh of the rotor
is shown in Fig. A6. Experimental data [77] are available for the best efficiency
point, and we have used the corresponding inlet boundary conditions (mass flow
rate and direction): the value of the measured head is 11.91m, while the measured
power is equal to 21.6 kW. Convergence of these integral values for the coupled
and segregated solver is shown in Fig. 4.10.

4. Case Studies 154

Figure 4.9: Francis turbine: GGI interfaces between the stay vanes and rotor, and between
rotor and the draft tube.

The coupled solver exhibits a more stabile, faster convergence of both head
and power. It is also important to notice that SIMPLE overshoots the stationary
value achieved by the coupled solver. It is expected that the value will gradually
drop to the same value as the coupled solver’s, but a very large number of non–
linear iterations is needed due to the low underrelaxation factor (0.3) used for the
pressure field. A slice showing the velocity field arount stay vanes and impeller
and the velocity field at the diffuser outlet are shown in Fig. A7.

4. Case Studies 155

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70

H
e
a
d

,
m

Non-linear iteration

coupled

segregated

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

3e+04

4e+04

4e+04

 0 10 20 30 40 50 60 70

P
o

w
e
r,

 W

Non-linear iteration

coupled

segregated

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1000 2000 3000 4000 5000 6000 7000 8000

H
e
a
d

,
m

Execution time, s

coupled

segregated

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1000 2000 3000 4000 5000 6000 7000 8000

P
o

w
e
r,

 W

Execution time, s

coupled

segregated

Figure 4.10: Francis turbine: convergence of turbine head and power for the implicitly coupled
and SIMPLE algorithm.

4. Case Studies 156

Centrifugal pump

We were motivated to investigate another internal flow case using a more
challenging case in terms of the computational mesh. A hybrid mesh consisting
of 9 054 517 cells was created in Pointwise [78] for a centrifugal pump geometry.
Block–structured hexahedral mesh was used in the rotating zone around the
impeller, while a tetrahedral unstructured mesh was created in the spiral casing
and the pipeline, Fig. 4.12. A GGI interface was used to connect the two sections
of the mesh, Fig. 4.13. Mesh statistics and boundary conditions are given in Table
A2. Also, the implicit and explicit treatment of MRF terms was tested on this
case, as well as two linear solvers for the coupled system (block–selection AMG
and BiCGStab). The fields obtained from the simulation with block–selection
AMG are shown in Fig. A2.

Fig. 4.11 shows that the implicitly coupled solver converges in approx. 400
non–linear iterations while the segregated solver needs 1250 iterations. That is,
implicitly coupled solver is always significantly faster in terms of the number
of non–linear iterations. For this case, it is several times faster considering the
execution time as well.

Even though a single non–linear solution of the implicitly coupled system is
more expensive than a non–linear solution of the segregated system, minimal
underrelaxation can be used for the momentum equation in the coupled solver.
In this case, we used αu = 0.95 to improve the convergence of the block–linear
solver. In some cases, the linear solution of the block–system diverges if no
underrelaxation is used for the momentum equation. In this case, the linear
solver needs less iterations in a single non–linear iteration to reach the desired
tolerance, if the underrelaxation is lowered to αu = 0.85, see Table 4.3.

Table 4.3: Centrifugal pump: dependence of performance of linear and non–linear implicitly
coupled solver on underrelaxation factor.

Linear solver αu

Total number of

linear iterations until

non–linear iteration 1000

Execution time at

non–linear iteration

1000, s

Converged at

non–linear iteration

Execution time

until convergence, s

SAMG 0.85 3267 24 638.2 900 22 157.4

SAMG 0.95 6999 32 207.8 400 12 932.0

For example, in non–linear iteration 280 , there are 9 linear iterations if αu =

4. Case Studies 157

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 200 400 600 800 1000

H
e
a
d

,
m

Non-linear iteration

coupled

segregated

 30000

 31000

 32000

 33000

 34000

 35000

 36000

 37000

 38000

 0 500 1000 1500 2000

P
o

w
e
r,

 W
Non-linear iteration

coupled

segregated

 14.86

 14.87

 14.88

 14.89

 14.9

 14.91

 14.92

 14.93

 14.94

 14.95

 14.96

 14.97

 0 5000 10000 15000 20000 25000 30000 35000 40000

H
e
a
d

,
m

Execution time, s

coupled

segregated

 34900

 34925

 34950

 34975

 35000

 35025

 35050

 35075

 35100

 0 5000 10000 15000 20000 25000 30000 35000

P
o

w
e
r,

 W

Execution time, s

coupled

segregated

Figure 4.11: Centrifugal pump: convergence of pump head and power for the implicitly coupled
and SIMPLE algorithm.

0.95 is used, while there are 3 linear iterations for αu = 0.85. However, for the
centrifugal pump, the best result in terms of execution time was achieved with
minimal underrelaxation, even though the total number of linear iterations per
non–linear iteration is higher. Momentum equation in the SIMPLE algorithm
was underrelaxed with the usual αu = 0.7, while the values of pressure were
underrelaxed with αp = 0.3.
Regarding the performance of BiCGStab, Fig. 4.15 shows that the non–linear
solver does not converge when using BiCGStab preconditioned by ILUC0 as

4. Case Studies 158

Figure 4.12: Centrifugal pump: slice showing a detail of a hybrid computational mesh.

Figure 4.13: Centrifugal pump: GGI interface which connects the structured and unstructured
section of the mesh (left), and the position of the impeller (right).

the linear solver. In this case, it is possible to achieve non–linear convergence
by using a smaller underrelaxation factor, e.g. αu = 0.75, which deteriorates
non–linear convergence. Explicit treatment of MRF terms also gives bad conver-
gence, i.e. requires modification of the non–linear solver parameters which slows
down non–linear convergence. In conclusion, convergence of both the implicitly–
coupled solver and SAMG is insensitive to cell type.

4. Case Studies 159

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 100 200 300 400 500 600

R
e
s
id

u
a
l

Non-linear iteration

Ux

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 100 200 300 400 500 600

R
es

id
u

al

Non-linear iteration

Uy

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 100 200 300 400 500 600

R
e
s
id

u
a
l

Non-linear iteration

Uz

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

1e-04

1e-03

1e-02

1e-01

1e+00

 0 100 200 300 400 500 600

R
es

id
u

al

Non-linear iteration

p

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

Figure 4.14: Centrifugal pump: convergence of field variables for the segregated and coupled
solver against the number of non–linear iterations. Coupled solver was run with block–selection
AMG and BiCGStab linear solvers, as well as explicit MRF terms.

4. Case Studies 160

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5000 10000 15000 20000

R
e
si

d
u

a
l

Execution Time, s

Ux

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5000 10000 15000 20000

R
es

id
u

al

Execution Time, s

Uy

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5000 10000 15000 20000

R
e
si

d
u

a
l

Execution Time, s

Uz

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5000 10000 15000 20000

R
es

id
u

al

Execution Time, s

p

coupled BiCGStab

coupled SAMG (explicit MRF)

coupled SAMG (implicit MRF)

segregated

Figure 4.15: Centrifugal pump: convergence of field variables for the segregated and coupled
solver against execution time. Coupled solver was run with block–selection AMG and BiCGStab
linear solvers, as well as explicit MRF terms.

4. Case Studies 161

4.3. Performance of the Selection Algebraic Multi-

grid Algorithm

In this section we shall answer the questions regarding the setup of the block–
selection algebraic multigrid solver: choice of the cycle, block–element norm, size
of the strength factor for determining strong connections, the number of coarse
levels, order of smoothing etc., as well as provide a comparison to other linear
solvers.

It is important to emphasize the synergy of different components of linear
solution procedure which we employ, all united under the name SAMG:

• The fine level solution, prior to running the multigrid cycle, is calculated
using the biconjugate gradient stabilised solver (BiCGStab), preconditioned
by the incomplete lower upper factorisation based on Crout’s algorithm
(ILUC0).

• The pre– and post–smoothing sweeps are done using the ILUC0 algorithm.

• We do not use a direct solver for the solution on the coarsest level. Instead,
we define the dimension of the matrix on the coarsest level to be sufficiently
small to ensure that ILUC0 smoother behaves almost like a direct solver.

• After running the multigrid cycle, which efficiently calculates the pressure
field, fine level solution is again obtained using BiCGStab, which updates
the velocity field.

The cases were run on a single CPU core, except for the BB2 parallel scaling
test. The first case is the cooling of an engine jacket, for which we have compared
the performance of different linear solvers. The mesh is unstructured, dominantly
hexahedral with 156 739 cells, shown in Fig. A4. The statistics are shown in Table
A4. The flow is illustrated in Fig. A5.

The following setup was used for specific runs:

• SAMG: selection AMG, smoother ILUC0, V-cycle, pressure norm, mini-
mal number of coarse equations = 20, convergence tolerance = 10−5, max

4. Case Studies 162

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 0 10 20 30 40 50 60 70 80 90 100

R
e
s
id

u
a
l

Linear iteration

Ux

SAMG

rSAMG

AAMG

rAAMG

GMRES

BiCGStab

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 0 10 20 30 40 50 60 70 80 90 100
R

es
id

u
al

Linear iteration

Uy

SAMG

rSAMG

AAMG

rAAMG

GMRES

BiCGStab

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 0 10 20 30 40 50 60 70 80 90 100

R
e
s
id

u
a
l

Linear iteration

Uz

SAMG

rSAMG

AAMG

rAAMG

GMRES

BiCGStab

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 10 20 30 40 50 60 70 80 90 100

R
es

id
u

al

Linear iteration

p

SAMG

rSAMG

AAMG

rAAMG

GMRES

BiCGStab

Figure 4.16: Engine cooling: convergence of field variables for different linear solvers in the 15th

non–linear iteration of the implicitly coupled pressure–velocity solver.

number of iterations = 100. The equations in coarse matrices are sorted
according to the order of selection;

• rSAMG: setup is identical to SAMG, with a single difference: the order of
equations on coarse levels is consistent with the finest level;

• AAMG: additive correction AMG, smoother ILUC0, V-cycle, pressure norm,
cluster size = min 2 max 5, minimal number of coarse equations = 20, con-
vergence tolerance = 10−5, max number of iterations = 100. The equations

4. Case Studies 163

in coarse matrices are sorted according to the order of cluster formation;;

• rAAMG: setup is identical to AAMG, with a single difference: the order of
equations on coarse levels is consistent with the finest level;

• GMRES: preconditioner ILUC0, number of directions = 10, convergence
tolerance = 10−5, max number of iterations = 100.

• BiCGStab: preconditioner ILUC0, convergence tolerance = 10−5, max num-
ber of iterations = 100.

The conclusions drawn for this particular case were also noticed for numerous
other cases with complex three–dimensional flow. Convergence of linear solvers in
the 15th non–linear iteration of the engine cooling simulation is shown in Fig. 4.16.

The advantage of any version of SAMG is evident: the residual drops 5 orders
of magnitude in 5 or 6 iterations, i.e. SAMG achieves theoretical convergence of
order of magnitude residual reduction per W–cycle, see Appendix C by A. Brandt
in [27]. GMRES reduces the residual approximately 4 orders of magnitude but
then stalls (possibly because of the limited number of search directions), while
AAMG and BiCGStab reduce the residual 2-3 orders of magnitude. BiCGStab
exhibits a highly oscillatory convergence. Regarding the order of equations on
coarse levels, we examined whether keeping the same optimised ordering of equa-
tions on coarse levels is beneficial. Fine level matrix is banded and, even though
additional off–diagonal elements appear on the coarse levels, retaining the same
structure could prove to be valuable for the ILU smoother since there could
be fewer elements which are ignored compared to the full factorisation. The
alternative ordering of equations arises naturally from the coarsening process:
the equations are sequentially written in the coarse level matrix in the order
of appearance which is related to the order of selection, which equals the order
of strength. In this ordering, the strongest equations with highest influence to
other equations, are visited first. From Fig. 4.16 we can conclude that keep-
ing the ordering of equations consistent between levels results in slightly better
convergence, i.e. fewer iterations are necessary to achieve the desired tolerance.

To visualise the coarsening process using the computational mesh and com-
pare the possible SAMG settings, we have chosen a traditional two–dimensional

4. Case Studies 164

Table 4.4: Backward–facing step: comparison of different settings for the multigrid solver (non–
linear iteration 50).

ID Solver Norm
Order of equations

on coarse levels

Strength of

connection

(factor)

Underrelaxation

factor (U)
No. levels No. iterations

1 AAMG pressure renumbered 0.2 0.99 9 92

2 SAMG 2–norm renumbered 0.2 0.99 7 23

3 SAMG pressure order of appearance 0.2 0.95 7 4

4 SAMG pressure renumbered 0.1 0.98 6 3

5 SAMG pressure renumbered 0.25 0.98 7 4

6 SAMG pressure renumbered 0.3 0.99 7 7

7 SAMG pressure renumbered 0.2 0.99 7 4

Table 4.5: Backward–facing step: coarsening statistics for the 50th non–linear iteration.

No. equations on level
Average number of off–diagonal

elements per row on level

ID 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 4800 2332 1144 547 247 115 50 20 9 4.0 3.9 4.2 4.6 4.9 5.1 4.9 4.3 3.6

2 4800 2400 730 190 56 18 5 - - 4.0 7.3 9.2 9.9 9.2 5.7 2.8 - -

3 4800 2400 811 238 69 20 7 - - 4.0 7.3 9.5 11.8 10.4 6.6 3.7 - -

4 4800 2400 739 199 50 14 - - - 4.0 7.4 9.8 11.5 9.2 5.3 - - -

5 4800 2400 838 255 74 20 8 - - 4.0 7.2 9.5 11.9 10.3 5.7 3.5 - -

6 4800 2400 852 273 77 24 7 - - 4.0 7.2 9.3 11.6 10.1 6.8 3.4 - -

7 4800 2400 814 241 68 23 6 - - 4.0 7.3 10.0 12.3 10.1 7.3 3.0 - -

test case of the flow inside a duct with a backward–facing step. The computa-
tional mesh is shown in Fig. A1, while the statistics are given in Table A1. The
investigated settings are shown in Table 4.4. For all cases we have prescribed the
same minimal number of coarse level equations (4), convergence tolerance (10−6)
and maximum number of iterations (100). Group size for AAMG ranges from
2 to 4 cells per cluster. Different settings produce different number of coarse
levels, i.e. they change the coarsening pattern, which consequently affects the
interpolation weights and the structure of the coarse level matrices.

From Fig. 4.17, convergence of linear solver shows that option 4, i.e. identifying
strong equation couplings to be greater or equal to 10% of the strongest coupling
gives significant advantage. The reason could lie in the fact that the cells in
the mesh are anisotropic, i.e. they are elongated in direction of the flow. Since
the discretisation of the pressure Laplacian contains the surface normal face area

4. Case Studies 165

vector, the off–diagonal elements are proportional to the area of the face which
the corresponding cells share assuming constant diffusivity. Ideally, when looking
at this two–dimensional structured mesh the coarsening process should produce
an evenly distributed checkerboard pattern on the first coarse level, since the
Laplacian is elliptic. However, anisotropic cells effect the strength of off–diagonal
elements, and there appear equations which weakly depend on each other (small
off–diagonal element) and both are declared coarse. This phenomenon is ex-
pected for meshes with highly anisotropic cells (e.g. boundary layers, farfield of
structured meshes), and it can affect the number of coarse levels (increase in the
number of levels increases CPU time) as well as the performance of the smoother.
Thus, the best performance of SAMG would be achieved on uniform meshes, i.e. if
all the cells were as close as possible to perfect cubes, with minimal anisotropy.

An overview of the coarsening process is given in Figs. 4.18–4.22 and it can be
seen that each setup results in a different coarsening pattern. Defining a smaller
strength factor reduces the occurance of two coarse equations which depend on
each other, i.e. it enables more aggressive coarsening (fewer coarse levels) and
improves convergence of the linear solver. Fig. 4.22 reveals that the most uniform
distribution of coarse level equations throughout the domain is indeed achieved
with the lowest strength factor. However, the underrelaxation of the momentum
equation had to be lowered to 0.98 to prevent divergence of the linear solver
which happened at the exact iteration in which the recirculation behind the step
started to form (5th non–linear iteration). Lowering the underrelaxation factor
has a negative impact on the non–linear convergence, shown below in Fig. 4.17.
The best performance was achieved with strength factor equal to 0.2, ID 7 in
Table 4.4, which will be confirmed as the best value for a complex case as well.

Coarsening is conducted only once in each non–linear iteration and kept frozen
during the linear iterations (V–cycle is repeated using the same prolongation, re-
striction and coarse level matrices). An important observation is that the coars-
ening pattern changes in each non–linear iteration if there are large variations
in the solution (updates of the coefficient matrix). The large variations of the
solution also cause a larger number of linear iterations in a single non–linear it-
eration in comparison to a stabilised solution when only a minimal number of
linear iterations is conducted. Thus, a possible strategy suggested by Clees [30]

4. Case Studies 166

to reduce the cost of the setup phase by freezing and reusing the coarsening is
generally not favourable.

Coarsening statistics for the 50th non–linear iteration are given in Table 4.5.
Fine level matrix has 4800 rows, marked as level 1 in the table. AAMG coarsening
produced 8 coarse levels (average reduction factor 2.2), while SAMG coarsening
(with the majority of settings) produced 7 levels (average reduction factor for
case 7 is 3.11). Grey part of the table shows the average number of off–diagonal
elements per row on the individual level. If we were to depict a mesh which
corresponds to the connectivity of the coarse level matrices, AAMG would have
a hexahedral mesh on coarse levels as well. Unlike AAMG, SAMG would have
polyhedral coarse meshes, which imposes additional challenges on the smoother.
That is, the bands of the matrix have broaden and there are more positions where
an element would appear in the full factorisation.

Uniformity of the mesh, which is assocciated with the uniformity of the mag-
nitude of matrix elements, is important for the ILU factorisation as well. If there
are cells in a mesh with volumes of different order of magnitude, e.g. small cells
in the refined wake zone or around sharp features of the geometry, and very
large cells in distant regions of the farfield, the solution of the system might di-
verge. That is, during the ILU sequence, rows with very small elements might be
used to eliminate the lower triangle elements which are large. The corresponding
multiplier is very large and discarded factorisation elements might be of crucial
importance for the solution of the system. This can be remedied by sorting the
equations by the order of magnitude of diagonal elements (pivoting), which was
not implemented in the scope of this thesis.

Another problem which may occur in some cases is the loss of weak diagonal
dominance in coarse level matrices. For example, the Dirichlet boundary condi-
tion on the outlet section of the backward facing step case (poutlet = 0) ensures
that all equations which correspond to cells on the outlet patch, are diagonally
dominant. To retain the diagonal dominance on the coarse level, a diagonally
dominant equation should always be chosen as coarse, or the effect of diagonal
dominance has to be transferred to its coarse neighbours through interpolation.
This is not done by force, i.e. it is always achieved naturally through the coars-
ening process. A problem may occur if there is only a single diagonally dominant

4. Case Studies 167

equation on the fine level, i.e. if only von Neumann boundary conditions are used
for pressure with a reference value at a point somewhere in the flowfield. It is
very likely that diagonal dominance from a single equation will dissipate when
calculating the coarse level matrices.

The third case for which we have examined the behaviour of linear solvers
is the flow around a generic submarine with an unstructured mesh (1 939 796
cells), shown in Fig. A3. Mesh statistics and boundary conditions are shown
in Table A3. The settings and corresponding results of all the tests we have
conducted on this geometry are summarised in Tabs. 4.6 and 4.7, for non–linear
iterations 3 and 10 respectively.

Table 4.6: Generic submarine: coarsening statistics for the 3rd non–linear iteration.

ID Norm Cycle
Order of eqns

on coarse levels

Pre–

sweeps

Post–

sweeps
No. levels

No. coarse

eqns on the last level

Strength of

connection (factor)
No. iterations CPU time, s

1 pressure V–cycle renumbered 2 2 7 323 0.2 9 124.3

2 pressure V–cycle renumbered 1 1 7 323 0.2 10 101.5

3 pressure V–cycle renumbered 1 2 7 323 0.2 9 111.2

4 pressure V–cycle renumbered 1 3 7 323 0.2 7 111.2

5 pressure V–cycle renumbered 2 1 7 323 0.2 11 123.7

6 pressure V–cycle renumbered 0 4 7 323 0.2 10 129.1

7 pressure V–cycle renumbered 3 1 7 323 0.2 9 127.6

8 2–norm V–cycle renumbered 2 2 13 107 0.2 100 765.5

9 pressure V–cycle renumbered 2 2 7 117 0.1 10 112.2

10 pressure V–cycle renumbered 2 2 7 1220 0.25 10 111.6

11 pressure V–cycle renumbered 2 2 7 1561 0.3 10 108.1

12 pressure W–cycle renumbered 2 2 7 323 0.2 7 223.1

13 pressure V–cycle order of appearance 2 2 7 379 0.2 9 141.0

14 pressure V–cycle renumbered 2 2 6 3279 0.2 9 122.1

15 pressure V–cycle renumbered 2 2 8 39 0.2 9 125.0

Table 4.7: Generic submarine: coarsening statistics for the 10th non–linear iteration.

ID Norm Cycle
Order of eqns

on coarse levels

Pre–

sweeps

Post–

sweeps
No. levels

No. coarse

eqns on the last level

Strength of

connection (factor)
No. iterations CPU time, s

1 pressure V–cycle renumbered 2 2 7 570 0.2 4 111.0

2 pressure V–cycle renumbered 1 1 7 570 0.2 5 108.0

3 pressure V–cycle renumbered 1 2 7 570 0.2 5 109.2

4 pressure V–cycle renumbered 1 3 7 570 0.2 4 111.3

5 pressure V–cycle renumbered 2 1 7 570 0.2 5 111.6

6 pressure V–cycle renumbered 0 4 7 570 0.2 4 111.0

7 pressure V–cycle renumbered 3 1 7 570 0.2 5 118.94

8 2–norm V–cycle renumbered 2 2 13 122 0.2 100 785.4

9 pressure V–cycle renumbered 2 2 6 1022 0.1 5 104.6

10 pressure V–cycle renumbered 2 2 7 648 0.25 5 102.1

11 pressure V–cycle renumbered 2 2 7 1262 0.3 5 98.4

12 pressure W–cycle renumbered 2 2 7 570 0.2 4 188.1

13 pressure V–cycle order of appearance 2 2 7 295 0.2 5 131.4

14 pressure V–cycle renumbered 2 2 6 3827 0.2 5 116.5

15 pressure V–cycle renumbered 2 2 8 46 0.2 4 109.8

In addition to settings which were investigated for the two–dimensional backward–

4. Case Studies 168

facing step case, we have also examined the number of pre– and post–smoothing
sweeps (IDs 1, 2, 3, 4, 5, 6, 7), effect of the W multigrid cycle (ID 12) and maxi-
mum number of coarse level cells (IDs 14 and 15). The corresponding convergence
of residuals is shown in Figs. 4.23 and 4.24.

In both non–linear iterations, the fewest linear iterations until the prescribed
criterion was achieved with settings 12, 4 and 15, listed in Tables 4.6 and 4.7.
Case 12 was run with the W–cycle, i.e. the equations were solved multiple times
on coarser levels, which should result in better convergence. However, CPU time
per non–linear iteration is much greater than for the V–cycle. Case 4 was run
with 1 pre–smoothing sweep and 3 post–smoothing sweeps, which improved the
convergence rate in comparison to the usual 2–2 setting. Thus, increasing the
number of post–smoothing sweeps could improve convergence, but only up to a
certain point. Running only post–smoothing (ID 6) gives one of the worst conver-
gence rates. Another way to improve convergence is to have less coarse equations
on the last coarse level, but this possibility also increases CPU time. Coarsening
based on the 2–norm of block–elements (ID 8) gives bad convergence, mainly due
to nonoptimal interpolation weights. Using less than 2 post–smoothing sweeps
(IDs 2, 5) is one of the worst options. Setting the strength of connection strength
factor to 0.1 (ID 9) does not work as well as for the anisotropic mesh of the
backward–facing step case. On the contrary, it is one of the three worst rates of
convergence in the 10th non–linear iteration, Fig. 4.24.

The final question regarding the performance of block–selection AMG is whether
our strategy for parallelisation, in which interpolation across processor boundaries
is not allowed as well as serial smoothing with ILUC0, impairs linear and non–
linear convergence. Therefore we have run the finest mesh of the BB2 submarine
on our high performance computer to compare the performance with respect to
the number of CPU cores. The maximum number of cores at our disposal at the
time was 112 and we did a strong scaling test, using the same mesh density for all
simulations. The simulation was run on 1, 2, 4, 6, 8, 16, 32, 64, 96 and 112 cores.
Non–linear convergence was not reached when only 1 processor was used as the
simulation was force stopped due to extremely slow calculations. The number of
linear iterations per non–linear iteration at the beginning of each simulation is
shown in Fig. 4.25.

4. Case Studies 169

As mentioned before, at the beginning of the simulation, when the solution is
still oscillating, a higher number of linear iterations is needed to reach the linear
convergence criterion, which can again be noticed for this case. When comparing
the number of linear iterations, there is no significant difference between cases
run on either number of cores. Non–linear convergence is also unaffected by
the increasing number of cores, i.e. the same number of non–linear iterations was
needed to reach convergence criterion. Regarding the scalability of the simulation,
parallel efficiency is shown in Fig. 4.26, calculated as:

ηP =
t1

N · tN
· 100%,

where t1 is the amount of time for 1 processing unit to complete the work, N is
the number of processing units and tN the amount of time for N processing units
to complete the work. Since the calculations with 1 core were extremely slow, we
compared the total time necessary to complete 10 non–linear iterations, shown
in Table 4.8. The speedup from 1 to 4 processors is super–linear, i.e. parallel effi-
ciency is greater than 100%. The overall solution procedure is memory–intensive
(fine and coarse level block–matrices are kept in memory during the solution pro-
cedure) and multiple processors have more cache (fast) memory available, which
significantly reduces the computation time. Thus, we have also calculated parallel
efficiency and speedup compared to case with 4 cores, shown in Table 4.8.

Table 4.8: BB2 submarine: statistics of parallel simulation tests.

No. CPUs
Time (iter 10),

s

Parallel

efficiency, %

(compared to

1 CPU)

Speedup

(compared to

1 CPU)

Time (iter 200),

s

Parallel

efficiency, %

(compared to

4 CPUs)

Speedup

(compared to

4 CPUs)

1 13013.4 100 1 - - -

2 5049.8 128.9 2.6 64205.9 - -

4 2242.9 145.1 5.8 30402 100 1

6 1753.7 123.7 7.4 23240.1 87.2 1.3

8 1369.8 118.7 9.5 18984.6 80.1 1.6

16 755.7 107.6 17.2 10231.3 74.3 3.0

32 407.2 99.9 32.0 5551.1 68.5 5.5

64 216.9 93.7 60.0 3122.1 60.9 9.7

96 206.8 65.5 62.9 2348.1 53.9 12.9

112 195.6 59.4 66.5 2015.7 53.9 15.1

An important aspect for running a simulation in parallel is the domain decom-

4. Case Studies 170

position method. Decomposition algorithms try to minimise the number of cells
on processor interfaces without taking into consideration the underlying physics.
Some decompositions may cause divergence of linear solvers, especially if contin-
uous transfer of information is crucial for the solution. An obvious example is
decomposing the backward facing step vertically, i.e. perpendicular to the direc-
tion of the flow, which works very well; or decomposing it horizontally, parallel
to direction of the flow, which causes the simulation to diverge.

Since the coarsening process is not parallelised, i.e. it is done separately on
each processor, the reduction of global number of variables is slower compared
to the sequential algorithm. At some level, continuing parallel coarsening be-
comes inefficient. Thus, joining a number of processes onto one processing unit
is proposed, which could also prove to be beneficial for the convergence of ILUC0
algorithm. However, determining the number of coarse variables which would
act as a switching criterion for joining the processes is not clear. Load balancing
should be investigated for highly parallel SAMG, but was not considered in the
scope of this thesis.

4. Case Studies 171

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 5 10 15 20 25

R
e
s
id

u
a
l

Linear iteration

Ux

1

2

3

4

5

6

7

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 5 10 15 20 25

R
es

id
u

al

Linear iteration

Uy

1

2

3

4

5

6

7

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 5 10 15 20 25

R
es

id
u

al

Linear iteration

p

1

2

3

4

5

6

7

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250

R
e
s
id

u
a
l

Non-linear iteration

Ux

1

2

3

4

5

6

7

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250

R
es

id
u

al

Non-linear iteration

Uy

1

2

3

4

5

6

7

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 50 100 150 200 250

R
es

id
u

al

Non-linear iteration

p

1

2

3

4

5

6

7

Figure 4.17: Backward–facing step: convergence of field variables for different settings (IDs in
Table 4.4) of linear solver in the 50th non–linear iteration of the implicitly coupled pressure–
velocity solver and non–linear convergence for the same settings.

4. Case Studies 172

Figure 4.18: First coarse level for 7 cases in Table 4.4, top to bottom image corresponds to
ascending ID. Colours of the rainbow denote the order of selection or cluster formation, blue
first to magenta last, grey cells are eliminated as fine.

4. Case Studies 173

Figure 4.19: Second coarse level for 7 cases in Table 4.4, top to bottom image corresponds to
ascending ID. Colours of the rainbow denote the order of selection or cluster formation, blue
first to magenta last, grey cells are eliminated as fine.

4. Case Studies 174

Figure 4.20: Third coarse level for 7 cases in Table 4.4, top to bottom image corresponds to
ascending ID. Colours of the rainbow denote the order of selection or cluster formation, blue
first to magenta last, grey cells are eliminated as fine.

4. Case Studies 175

Figure 4.21: Fourth coarse level for 7 cases in Table 4.4, top to bottom image corresponds to
ascending ID. Colours of the rainbow denote the order of selection or cluster formation, blue
first to magenta last, grey cells are eliminated as fine.

4. Case Studies 176

Figure 4.22: Last coarse level for 7 cases in Table 4.4, top to bottom image corresponds to
ascending ID. Colours of the rainbow denote the order of selection or cluster formation, blue
first to magenta last, grey cells are eliminated as fine.

4. Case Studies 177

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

 1 2 3 4 5 6 7 8 9 10

R
e
s
id

u
a
l

Linear iteration

Ux

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 1 2 3 4 5 6 7 8 9 10

R
es

id
u

al

Linear iteration

Uy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 1 2 3 4 5 6 7 8 9 10

R
e
s
id

u
a
l

Linear iteration

Uz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 1 2 3 4 5 6 7 8 9 10

R
es

id
u

al

Linear iteration

p

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4.23: Generic submarine: convergence of linear solver residuals for cases with corre-
sponding settings presented in Table 4.6, non–linear iteration 3.

4. Case Studies 178

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

 1 2 3 4 5 6

R
e
s
id

u
a
l

Linear iteration

Ux

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 2 3 4 5 6

R
es

id
u

al

Linear iteration

Uy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 2 3 4 5 6

R
e
s
id

u
a
l

Linear iteration

Uz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 2 3 4 5 6

R
es

id
u

al

Linear iteration

p

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4.24: Generic submarine: convergence of linear solver residuals for cases with corre-
sponding settings presented in Table 4.7, non–linear iteration 10.

4. Case Studies 179

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
o

.
li

n
e
a
r

s
o

lv
e
r

it
e
ra

ti
o

n
s

Non-linear iteration

2

4

6

8

16

32

64

96

112

Figure 4.25: BB2 submarine: number of linear iterations per non–linear iteration depending on
the number of CPU cores.

4. Case Studies 180

50

60

70

80

90

100

110

120

130

140

150

 1 2 4 8 16 32 64 128

P
ar

al
le

l
ef

fi
ci

en
cy

,
%

Number of cores

65

68

66

72

68

70

69

62

62

73

Figure 4.26: BB2 submarine: parallel efficiency calculated for the 10th non–linear iteration of
the implicitly coupled pressure–velocity solver. The total number of linear iterations for 10
non–linear iterations is annotated for each number of processors.

4. Case Studies 181

4.4. Closure

In this chapter we presented the results of several test cases with steady–state,
single–phase, incompressible and turbulent flow: backward–facing step, cooling
of an engine jacket, BB2 submarine, centrifugal pump, Francis turbine, generic
submarine, front wing and bluff body. We selected each case to demonstrate
certain observations and conclusions about the behaviour and performance of the
implicitly coupled pressure–velocity solver and block–selective algebraic multigrid
algorithm. The most important pieces of information derived from the study are
listed in the following chapter.

5. Conclusions and Future Work

The focus of this thesis are the implicitly coupled pressure–velocity system for
steady–state, incompressible, single–phase, turbulent flow and the choice of the
corresponding algorithm for the solution of the linear system. Based on find-
ings from numerous simulations of complex flows using the implicitly coupled
pressure–velocity algorithm, we have decided to implement a parallel selective al-
gebraic multigrid algorithm to improve the convergence, stability and robustness
of the solution procedure.

Conclusions

Findings regarding the implicitly coupled pressure–velocity solver presented
in chapter 4. can be summarised as follows:

• Implicitly coupled pressure–velocity solver always converges in fewer non–
linear iterations than the segregated counterpart, due to implicit treatment
of cross–coupling terms (pressure gradient, velocity divergence) and con-
sequently no need for underrelaxation of the pressure field. However, the
benefit when comparing the overall CPU time depends on the complexity
of the case: coupled solver has a clear advantage for more complex flows.

• A disadvantage of implicit coupling of the pressure–velocity system is the
dimension of the coefficient matrix which imposes signficant memory re-
quirements in comparison to the segregated algorithm. This limits the
applicability of the solver, since the calculation slows down if there is not
enough fast (cache, or even RAM) memory available.

• The second disadvantage of implicit coupling is the choice of the optimal
linear solver. For segregated systems, it is possible to select specific linear
algorithms adapted for a certain type of problem (e.g. convection dom-
inated or diffusion dominated problems). For coupled system, a more
advanced (complex) approach is necessary, leading to a more expensive

5. Conclusions and Future Work 183

procedure regarding the number of operations. We have showed that the
optimal choice is using a block–selective multigrid algorithm with an ILU
smoother based on Crout’s algorithm, supported by a biconjugate gradient
stabilised algorithm as the fine level solver. The multigrid part accelerates
the convergence of (elliptic) pressure equation, while BiCGStab deals with
the (unsymmetric) momentum equation. All disadvantages contribute to a
longer execution time per non–linear iteration in comparison to segregated
solvers. Thus, the convergence of the implicitly coupled pressure–velocity
solver must be superior in terms of the number of non–linear iterations until
convergence, to be competitive.

• Convergence of the residual in the implicitly coupled solver is more stable
compared to the segregated solver, especially regarding the observed in-
tegral values for specific cases, which highly depend on the values of the
pressure field. Various intergal values (lift and drag coefficients, head and
efficiency in turbomachinery) tend to heavily oscillate with very large am-
plitudes at the beginning of simulations with the segregated solver. At some
point the amplitude of the oscillations reduces and achieves a constant fre-
quency. Integral values with coupled solver oscillate at the beginning, but
with much smaller amplitudes and frequencies and for true steady state
cases they settle at a constant value without any additional oscillation.

• The density (number of finite volume cells) of the computational mesh does
not, or only slightly affects the convergence of the implicitly coupled solver,
regarding the number of iterations until meeting the convergence criterion.
Convergence of the segregated solver is greatly influenced by the changes
in the mesh density.

• Flows which have additional physical effects, such as rotating or porous
zones, greatly benefit in terms of stability and convergence if those terms
are treated implicitly after discretisation, and their contribution is included
in the coefficient matrix.

Findings regarding the block–selection algebraic multigrid (SAMG) can be sum-
marised into the following statements and guidelines:

5. Conclusions and Future Work 184

• Applying SAMG for the solution of the implicitly coupled block system
provides superior convergence rates in comparison to additive correction
multigrid (AAMG) or preconditioned biconjugate gradient stabilised solver.
However, SAMG is more expensive in terms of CPU time per iteration
compared to BiCGStab.

• SAMG often achieves theoretical rate of convergence (reduction of residual
one order of magnitude per iteration). However, at the beginning of the
simulation, when the error is still large, there is always a greater number
of linear iterations per non–linear iteration than towards the end of the
simulation when the solution is already stabilised. Also, implicit under-
relaxation of the momentum equation aids (ensures) linear convergence.
For some cases, the momentum equation can be underrelaxed only for the
first couple of non–linear iterations. When the oscillation of the solution
reduces, the underrelaxation factor can be increased.

• Using the 2–norm of the block–coefficients to create a primary matrix for
coarsening does not give good convergence, mainly due to nonoptimal in-
terpolation weights. The best convergence is achieved using the pressure
part of the continutiy equation as a primary matrix.

• The number of coarse levels created during the setup phase of SAMG as
well as the multigrid cycle, affect not only the convergence rate but the
overall execution time as well. Prescribing a small number of coarsest level
equations implies a direct solution on the coarsest level, however it increases
the computational cost of a single linear iteration. W–cycle provides a
better convergence rate compared to V–cycle, but it does not have crucial
effect on overall convergence to justify the increase of CPU time.

• Since the conventional smoothers (Jacobi, Gauss–Seidel) did not converge
for any of our cases run with coupled solver, we opted for the incom-
plete lower–upper factorisation with no fill–in based on Crout’s algorithm
(ILUC0). The convergence of ILUC0 depends on the structure of fine and
coarse level coefficient matrices, i.e. it is important to preserve the band
(structure) of the matrix to avoid ignoring large factors which can be omit-

5. Conclusions and Future Work 185

ted due to the lowest level of fill–in. Some authors state that smoothing
the equations in decreasing order of strength (i.e. smoothing the equations
in order of selection) may improve convergence, which proved to be true
for some cases, but at a risk that the solver won’t converge at all due to
divergence of the ILU smoother.

• Regarding the number of smoothing sweeps: we found that using a total
of 4 sweeps per level provides the best convergence with respect to compu-
tational costs. Increasing the number of post–sweeps can improve conver-
gence, thus the recommended settings are 1 pre–sweep and 3 post–sweeps,
or 2 pre–sweeps and 2 post–sweeps.

• Computational mesh, i.e. the type of cells and cell aspect ratio affects the
convergence of SAMG. Since off–diagonal matrix coefficients are propor-
tional to the face surface area, the shape of the cells affects the strength
of connection in the coarsening process. Changing the strength of connec-
tion criterion may improve convergence for meshes which are dominantly
anisotropic in a certain direction, but this is not a trivial and straightfor-
ward procedure.

• Our parallelisation of SAMG where interpolation is not allowed across pro-
cessor boundaries does not diminish linear or overall convergence in any of
our test cases.

Future work

There are several directions for additional improvement and extension of the
implicitly coupled pressure–velocity system:

• further investigate the parallel performance of the entire solution procedure
on high performance computers with large number of cores,

• investigate alternative approximations of the convection–diffusion matrix
to be used as a diffusion coefficient in the pressure Poisson equation,

• implement implicit boundary conditions (e.g. total pressure boundary con-
dition),

5. Conclusions and Future Work 186

• extend the solver for compressible flows, for which the implicitness of phys-
ical boundary conditions is necessary,

• consider load balancing during parallel simulations with SAMG for the
solution of coarse levels,

• implement FLEX (F) multigrid cycle which could improve convergence of
linear solver similar to W–cycle, but with a reduced computational cost:
F–cycle is a self–controlling cycle, i.e. it switches between fine and coarse
levels according to some convergence criterion,

• implement ILU smoother with pivoting to counteract the different magni-
tudes of matrix coefficients and prevent divergence.

Appendices

187

A Mesh Statistics and Images, Boundary

Conditions, Flow Field Images

Table A1: Backwardfacing step: mesh statistics and boundary conditions.

BACKWARD FACING STEP

Mesh data Boundary conditions

No. cells 4800 Boundary u p k ε

Cell type hexahedral (structured) inlet
Dirichlet
(1 0 0)

von Neumann
(0)

Dirichlet
(0.00135)

Dirichlet
(0.0001)

Average
non–orthogonality

0 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

0
top wall,

bottom wall
Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

Maximal
skewness

0.0002

Figure A1: Backward facing step: two–dimensional finite volume mesh.

Table A2: Centrifugal pump: mesh statistics and boundary conditions.

CENTRIFUGAL PUMP

Mesh data Boundary conditions

No. cells 9 054 517 Boundary u p k ω

Cell type
unstructured:

59% hexahedral,
41% tetrahedral

inlet
Dirichlet
(-4.78 0 0)

von Neumann
(0)

Dirichlet
(0.026)

Dirichlet
(16.62)

Average
non–orthogonality

39.95 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

88.13 casing
Dirichlet
(0 0 -60)

von Neumann
(0)

wall function wall function

Maximal
skewness

1.61 rotor
Dirichlet

Ω = 136.14s−1

von Neumann
(0)

wall function wall function

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 189

Figure A2: Centrifugal pump: velocity and pressure field on a slice through the impeller.

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 190

Table A3: Generic submarine: mesh statistics and boundary conditions.

GENERIC SUBMARINE

Mesh data Boundary conditions

No. cells 1 939 796 Boundary u p k ω

Cell type
unstructured:

95% hexahedral,
5% polyhedral

inlet
Dirichlet
(35 0 0)

von Neumann
(0)

Dirichlet
(0.18)

Dirichlet
(180)

Average
non–orthogonality

5.66 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

61.51
top wall,

bottom wall,
side walls

von Neumann
(0)

von Neumann
(0)

von Neumann
(0)

von Neumann
(0)

Maximal
skewness

7.65
submarine

hull
Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

Figure A3: Generic submarine: a slice through the finite volume mesh.

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 191

Table A4: Engine cooling: mesh statistics and boundary conditions.

ENGINE COOLING

Mesh data Boundary conditions

No. cells 156 739 Boundary u p k ε

Cell type
unstructured:

99.9% hexahedral,
0.1% prisms

inlet
Dirichlet
(0 10 0)

von Neumann
(0)

Dirichlet
(0.0375)

Dirichlet
(14.86)

Average
non–orthogonality

22.28 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

82.19 casing
Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

Maximal
skewness

6.60

Figure A4: Engine cooling: finite volume mesh, inlet surface is purple, outlet is yellow.

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 192

Figure A5: Engine cooling: streamlines couloured by the values of velocity.

Table A5: Francis turbine: mesh statistics and boundary conditions.

FRANCIS TURBINE

Mesh data Boundary conditions

No. cells 6 242 679 Boundary u p k ω

Cell type
hexahedral
(structured)

inlet
Dirichlet

(-1.41 -2.12 0)
von Neumann

(0)
Dirichlet
(0.01)

Dirichlet
(25.54)

Average
non–orthogonality

25.59 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

67.95 casing
Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

Maximal
skewness

3.46 impeller
Dirichlet

ω = 34.82s−1

von Neumann
(0)

wall function wall function

stator
Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 193

Figure A6: Francis turbine: impeller surface mesh.

Table A6: Front wing: mesh statistics and boundary conditions.

FRONT WING

Mesh data Boundary conditions

No. cells 6 575 126 Boundary u p k ω

Cell type
unstructured:

97% hexahedral,
3% polyhedral

inlet
Dirichlet
(0 0 -60)

von Neumann
(0)

Dirichlet
(0.135)

Dirichlet
(100)

Average
non–orthogonality

3.58 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

68.74 ground
Dirichlet
(0 0 -60)

von Neumann
(0)

wall function wall function

Maximal
skewness

4.88
top wall,
side walls

Robin
(symmetry)

von Neumann
(0)

Robin
(symmetry)

Robin
(symmetry)

front wing
surface

Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 194

Figure A7: Francis turbine: slice showing the velocity field arount stay vanes and impeller
(top), velocity field at the diffuser outlet (bottom).

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 195

Figure A8: Front wing: crinkled slices through the finite volume mesh.

Figure A9: Front wing: pressure on the surface of the wing.

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 196

Figure A10: Front wing: vortices in the wake of the wing coloured by the values of velocity.

Table A7: Bluff body: mesh statistics and boundary conditions.

BLUFF BODY

Mesh data Boundary conditions

No. cells 9 269 072 Boundary u p k ω

Cell type
unstructured:

99% hexahedral,
1% polyhedral

inlet
Dirichlet
(20 0 0)

von Neumann
(0)

Dirichlet
(0.0024)

Dirichlet
(13.33)

Average
non–orthogonality

1.56 outlet
von Neumann

(0)
Dirichlet

(0)
von Neumann

(0)
von Neumann

(0)

Maximal
non–orthogonality

41.63 ground
Dirichlet
(20 0 0)

von Neumann
(0)

wall function wall function

Maximal
skewness

1.50
top wall,
front wall,
back wall

Robin
(symmetry)

von Neumann
(0)

von Neumann
(0)

von Neumann
(0)

bluff body
surface

Dirichlet
(0 0 0)

von Neumann
(0)

wall function wall function

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 197

Figure A11: Bluff body: slice through the finite volume mesh.

Figure A12: Bluff body: pressure on the surface of the body.

A Mesh Statistics and Images, Boundary Conditions, Flow Field Images 198

Figure A13: BB2 submarine: slices through the finite volume mesh showing three densities -
coarse to fine, from top to bottom.

Bibliography

[1] H. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computa-
tional continuum mechanics using object-oriented techniques, Computers in
Physics 12 (1998) 620–631.

[2] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2000.

[3] S. Patankar, D. Spalding, A calculation procedure for heat, mass and mo-
mentum transfer in three-dimensional parabolic flows, International journal
of heat and mass transfer 15 (1972) 1787–1806.

[4] S. V. Patankar, Numerical heat transfer and fluid flow, Taylor and Francis,
1980.

[5] J.P. van Doormaal and G.D. Raithby, Enhancements of the simple method
for predicting incompressible fluid flows, Numerical heat transfer 7 (1984)
147–163.

[6] R. Issa, Solution of the implicitly discretized fluid flow equations by operator-
splitting, Journal of Computational Physics 62 (1986) 40–65.

[7] Z. Mazhar, Fully implicit, coupled procedures in computational fluid dynam-
ics, Springer International Publishing, 2016.

[8] G. Raithby, G. Schneider, Numerical solution of problems in incompressible
fluid flow: treatment of the velocity-pressure coupling, Numerical heat trans-
fer 2:4 (1979) 417–440.

[9] Z. Mazhar, G. Raithby, A refined pumpin (pressure update by multiple path
integration) method for updating pressures in the numerical solution of the
incompressible fluid flow equations, in: Proceedings 2nd international confer-
ence on numerical methods in laminar and turbulent flow, Pineridge Press,
Swansea, 1981, pp. 255–266.

Bibliography 200

[10] C. Davies, P. Carpenter, A novel velocity-vorticity formulation of the navier-
stokes equations with applications to boundary layer disturbance evolution,
Journal of computational physics 172 (2001) 119–165.

[11] S. Krizmanić, Novi algoritam za povezivanje polja brzine i tlaka, PhD The-
sis, Faculty of Mechanical Engineering and Naval Architecture, University of
Zagreb, 2010.

[12] M. Zedan, G. Schneider, A strongly implicit simultaneous variable solution
procedure for velocity and pressure in fluid flow problems, in: AIAA 18th
Thermophysics Conference, Montreal, Canada, 1983.

[13] M. Zedan, G. Schneider, A coupled strongly implicit procedure for velocity
and pressure computation in fluid flow problems, Numerical heat transfer 8:5
(1985) 537–557.

[14] Z. Mazhar, A procedure for the treatment of the velocity-pressure coupling
problem in incompressible fluid flow, Numerical Heat Transfer 39 (2001) 91–
100.

[15] Z. Mazhar, An enhancement to the block implicit procedure for the treat-
ment of the velocity-pressure coupling problem in incompressible fluid flow,
Numerical Heat Transfer 41 (2002) 493–500.

[16] M. Darwish, I. Sraj, F. Moukalled, A coupled finite volume solver for the
solution of incompressible flows on unstructured grids, Journal of Computa-
tional Physics 228 (2009) 180–201.

[17] M. Darwish, I. Sraj, F. Moukalled, A coupled incompressible flow solver on
structured grids, Numerical heat transfer, Part B: Fundamentals 52 (2007)
353–371.

[18] L. Mangani, M. Buchmayr, M. Darwish, Development of a novel fully cou-
pled solver in OpenFOAM: steady state incompressible turbulent flows in
rotational reference frames, Numerical heat transfer, Part B: Fundamentals
66 (2014) 526–543.

Bibliography 201

[19] M. Darwish, F. Moukalled, A fully coupled Navier-Stokes solver for fluid flow
at all speeds, Numerical Heat Transfer Fundamentals 65 (2014) 410–444.

[20] L. Mangani, M. Buchmayr, M. Darwish, Development of a novel fully cou-
pled solver in OpenFOAM: stady–state incompressible turbulent flows, Nu-
merical Heat Transfer Fundamentals 66 (2014) 1–20.

[21] L. Mangani, M. Darwish, F. Moukalled, Development of a pressure-based
coupled CFD solver for turbulent and compressible flows in turbomachinery
applications, in: ASME TURBO EXPO 2014, Düsseldorf, Germany, 2014.

[22] M. Darwish, A. A. Aziz, F. Moukalled, A coupled pressure–based finite vol-
ume solver for incompressible two–phase flow, Numerical heat transfer, Part
B: Fundamentals 67 (2015) 47–74.

[23] T. Uroic, H. Jasak, H. Rusche, Implicitly coupled pressure–velocity solver,
in: H. J. J. M. Nobrega (Ed.), OpenFOAM: Selected papers of the 11th
Workshop, Springer, 2017.

[24] Z. Chen, A. Przekwas, A coupled pressure-based computational method
for incompressible/compressible flows, Journal of Computational Physics 229
(2010) 9150–9165.

[25] U. Falk, M. Schäfer, A fully coupled finite volume solver for the solution of
incompressible flows on locally refined non–matching block–structured grids,
in: VI International Conference on Adaptive Modeling and Simulation AD-
MOS, Lisbon, Portugal, 2013.

[26] C. Fernandes, V. Vukčević, T. Uroić, R. Simoes, O. Carneiro, H. Jasak,
J. Nobrega, A coupled finite volume solver flow solver for the solution of
incompressible viscoelastic flows, Journal of non–Newtonian fluid mechanics
265 (2019) 99–115.

[27] U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Elsevier, Academic
Press, 2001.

[28] J. W. Ruge, K. Stüben, Algebraic multigrid, SIAM - Frontiers in Applied
Mathematics: Multigrid methods.

Bibliography 202

[29] K. Stüben, A review of algebraic multigrid, Journal of Computational and
Applied Mathematics 128 (2001) 281–309.

[30] T. Clees, AMG strategies for PDE systems with applications in indus-
trial semiconductor simulation, PhD Thesis, University of Cologne, Germany,
2004.

[31] T. Füllenbach, K. Stüben, Algebraic Multigrid for Selected PDE Systems.

[32] P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid on unstructured
meshes, Tech. rep., Denver, CO, USA (1994).

[33] B. Hutchinson, G. Raithby, A multigrid method based on the additive cor-
rection strategy, Numerical heat transfer 9 (1986) 511–537.

[34] B. Hutchinson, P. Galpin, G. Raithby, Application of additive correction
multigrid to the coupled fluid flow equations, Numerical heat transfer 13
(1988) 133–147.

[35] M. Raw, A coupled algebraic multigrid method for the 3D Navier-Stokes
Equations, Fast solvers for flow problems 49 (1995) 204–215.

[36] M. Raw, Robustness of coupled algebraic multigrid for the Navier-Stokes
equations, in: AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno,
NV, USA, 1996.

[37] E. Chow, R. Falgout, J. Hu, R. Tuminaro, U. Yang, A survey of paralleliza-
tion techniques for multigrid solvers, in: H. S. M.A. Heroux, P. Raghavan
(Ed.), Parallel Processing for Scientific Computing, SIAM Series on Software,
Environments, and Tools, 2006.

[38] A. Baker, T. Gamblin, M. Schulz, U. Yang, Challenges of scaling algebraic
multigrid across modern multicore architectures, in: 25th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS, Anchorage, AK,
USA, 2011.

[39] J. Brannick, F. Cao, K. Kahl, R. Falgout, X. Hu, Optimal interpolation
and compatible relaxation in classical algebraic multigrid, SIAM Journal on
Scientific Computing 40 (2018) 1473–1493.

Bibliography 203

[40] U. Yang, On long-range interpolation operators for aggressive coarsening,
Numerical linear algebra with applications 17 (2010) 453–472.

[41] B. Launder, D. Spalding, The numerical computation of turbulent flows,
Computer Methods in Applied Mechanics and Engineering 3 (2) (1974) 269–
289.

[42] F. Menter, Zonal two equation k-ω turbulence models for aerodynamic flows,
in: Proceedings of 24th Fluid Dynamics Conference, Orlando, USA, 1993.

[43] H. Jasak, Error analysis and estimation for the finite volume method with
applications to fluid flows, Ph.D. thesis, Imperial College of Science, Technol-
ogy & Medicine, London (1996).

[44] C. Rhie, W. Chow, A numerical study of the turbulent flow past an isolated
airfoil with trailing edge separation, AIAA Journal 21 (1983) 1525–1532.

[45] J. Ferziger, M. PeriÄ‡ (Eds.), Computational methods for fluid dynamics,
Springer, 2002.

[46] Ž. TukoviÄ‡, M. PeriÄ‡, H. Jasak, Consistent second–order time–accurate
non–iterative PISO–algorithm, Computers and Fluids 166 (2018) 78–85.

[47] M. Benzi, G. Golub, J. Liesen, Numerical solution of saddle point problems,
Acta numerica 14 (2005) 1–137.

[48] H. C. Elman, D. J. Silvester, A. J. Wathen, Finite elements and fast iter-
ative solvers: with applications in incompressible fluid dynamics, Numerical
Mathematics and Scientific Computation, Oxford University Press, 2005.

[49] F. Zhang (Ed.), The Schur complement and its applications, Numerical
Methods and Algorithms, Springer, 2005.

[50] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices,
in: ACM ’69 Proceedings of the 1969 24th national conference, New York,
NY, USA, 1969.

Bibliography 204

[51] M. PeriÄ‡, A finite volume method for the prediction of three–dimensional
fluid flow in complex ducts, Ph.D. thesis, Imperial College, University of
London (1985).

[52] P. Sweby, High resolution schemes using flux limiters for hyperbolic conser-
vation laws, SIAM Journal of Numerical Analysis 21 (1984) 995–1011.

[53] P. Gaskell, A. Lau, Curvature–compensated convective transport: SMART,
a new boundedness–preserving transport algorithm, International Journal for
Numerical Methods in Fluids 8 (1988) 617–641.

[54] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Com-
putational Fluid Dynamics, Fluid Mechanics and Its Applications, Springer,
2016.

[55] P. Khosla, S. Rubin, A diagonally dominant second–order accurate implicit
scheme, ComputersFluids 2 (1974) 207–209.

[56] H. Jasak, H. Weller, Application of the finite volume method and unstruc-
tured meshes to linear elasticity, International journal for numerical methods
in engineering 48 (2000) 267–287.

[57] J. Shewchuk, An introduction to the Conjugate Gradient method without
the agonizing pain, School of Computer Science, Pittsburgh, 1994.

[58] V. E. Henson, U. M. Yang, BoomerAMG: A parallel algebraic multigrid
solver and preconditioner, Applied Numerical Mathematics 41–1 (2002) 155–
177.

[59] A. Krechel, K. Stüben, Parallel algebraic multigrid based on subdomain
blocking, Parallel Computing 27 (2001) 1009–1031.

[60] A. Bienz, R. Falgout, W. Gropp, L. Olson, J. Schroeder, Reducing parallel
communication in algebraic multigrid through sparsification, SIAM Journal
on Scientific Computing 38 (2016) 332–357.

[61] H. van der Vorst, Iterative Krylov methods for large linear systems, Cam-
bridge University Press, 2003.

Bibliography 205

[62] N. Li, Y. Saad, E. Chow, Crout versions of ILU for general sparse matrices,
SIAM Journal on Scientific Computing 25 (2003) 716–728.

[63] G. Wittum, Linear iterations as smoothers in multigrid methods: theory
with applications to incomplete decompositions, Impact of computing in sci-
ence and engineering 1 (1989) 180–215.

[64] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on Scientific and Statis-
tical Computing 7 (1986) 856–869.

[65] R. Fletcher, Conjugate gradient methods for indefinite systems, Numerical
analysis (1976) 73–89.

[66] G. Strang, Lecture in Mathematical Methods for Engineers II (Spring 2006).

[67] N. Bosner, Iterative methods for solving linear systems (in Croatian), De-
partment of Mathematics, University of Zagreb, 2001.

[68] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, H. V. der Vorst, Templates for the solution of
linear systems: building blocks for iterative methods, SIAM, 1994.

[69] P. Sonneveld, CGS, a fast Lanczos type solver for nonsymmetric linear sys-
tems, SIAM Journal on Scientific and Statistical Computing 10 (1989) 36–52.

[70] Y. Vinay, S. Mojdeh, L. Ash, Algebraic multigrid on unstructured meshes,
Tech. rep., Ontario, Canada (2016).

[71] H. van der Vorst, Bi-CGStab: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on
Scientific and Statistical Computing 13 (1992) 631–644.

[72] J. Fackrell, The aerodynamics of an isolated wheel rotating in contact with
the ground, Ph.D. thesis, Faculty of Engineering, University of London (1974).

[73] W. Toet, How do motorsport diffusers work? (2017).
URL https://www.motorsport.com/

https://www.motorsport.com/
https://www.motorsport.com/

Bibliography 206

[74] A. Senior, The aerodynamics of a diffuser equipped bluff body in ground ef-
fect, Ph.D. thesis, School of Engineering Sciences, University of Southampton,
Southampton (2002).

[75] R. Keser, Block-coupled solution algorithms for 2-equation turbulence mod-
els, Faculty of Mechanical Engineering and Naval Architecture, University of
Zagreb, 2016.

[76] H. Jasak, M. Beaudoin, OpenFOAM turbo tools: From general purpose CFD
to turbomachinery simulations, in: ASME-JSME-KSME 2011 Joint Fluids
Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D, ASME,
2011. doi:10.1115/ajk2011-05015.
URL https://doi.org/10.1115/ajk2011-05015

[77] N. H. Centre, Experimental study of Francis 99 turbine (2014).
URL https://www.ntnu.edu/nvks/f99-test-case1

[78] Pointwise, the choice for CFD meshing (2019).
URL https://www.pointwise.com/

https://doi.org/10.1115/ajk2011-05015
https://doi.org/10.1115/ajk2011-05015
http://dx.doi.org/10.1115/ajk2011-05015
https://doi.org/10.1115/ajk2011-05015
https://www.ntnu.edu/nvks/f99-test-case1
https://www.ntnu.edu/nvks/f99-test-case1
https://www.pointwise.com/
https://www.pointwise.com/

Bibliography 207

Curriculum Vitae

Tessa Uroić was born in Kutina on 2 October 1990 where she attended elementary
and secondary school. During the undergraduate and graduate studies in power
engineering at the Faculty of Mechanical Engineering and Naval Architecture,
University of Zagreb, she was awarded numerous prizes and acknowledgements
for the results accomplished during the studies. After finishing her undergraduate
and graduate studies with highest honours, she started working as a teaching
assistant at the Faculty of Mechanical Engineering and Naval Architecture, and
has since been teaching courses: Practical Finite Volume Method, Jet Engines
1 and 2, Windturbines and Hydraulic Turbomachinery. Her fields of interest
include high quality CFD meshing, applied numerical linear algebra and algebraic
multigrid. She has been dancing ballet in her hometown since the age of 9 and
still perseveres to improve her dancing skills as well as carry her passion over to
younger generations.

Declaration

Parts of the work presented in this thesis have been published in scientific jour-
nals.

	Introduction
	Previous and Related Studies
	Present Contributions
	Thesis Outline

	Pressure–velocity system
	Introduction
	Governing Equations
	Pressure–Velocity Coupling Algorithms
	SIMPLE Algorithm
	PISO Algorithm
	Implicitly Coupled Pressure–Velocity System

	Finite Volume Equation Discretisation
	Mesh and Matrix
	Preliminaries for Spatial Terms
	Convection Term
	Velocity Diffusion Term
	Pressure Gradient
	Velocity Divergence
	Pressure Laplacian
	Source Terms
	Boundary Conditions
	Overview of the Implicitly Coupled Pressure–Velocity System

	Closure

	Linear Solvers
	Introduction
	Algebraic Multigrid
	Basic iterative solvers
	Multigrid Cycle
	Algebraic Smoothness
	Additive Correction Algebraic Multigrid
	Selection Algebraic Multigrid
	AMG Solvers for Block–Matrices
	Parallelisation of AMG Solvers and Smoothers

	Conjugate Gradient Method
	Introduction to Conjugate Gradient Method
	Conjugate Gradient Method
	Preconditioning
	Krylov Subspace Methods for Nonsymmetric Matrices

	Closure

	Case Studies
	Introduction
	Segregated vs. Implicitly Coupled Pressure–Velocity Solver
	Performance of the Selection Algebraic Multigrid Algorithm
	Closure

	Conclusions and Future Work
	Appendices
	Mesh Statistics and Images, Boundary Conditions, Flow Field Images

