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It is to expect that computational approach to the generation of operand transformation 

variants built on a graph grammar based model of technical process synthesis can provide 

support to designers at the beginning of the conceptual design phase. 
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SUMMARY 

GRAMMATICAL EVOLUTION OF TECHNICAL PROCESSES  

Keywords: operand transformation variants, formal model of technical process, formal 

model of technical process synthesis, computational design synthesis, graph-grammar, and 

grammatical evolution. 

The aim of this thesis is to provide a support to the beginning of the conceptual development 

phase by offering designers the possibility to computationally synthesise technical processes 

in order to obtain operand transformation variants in the respect to known technological 

principles. To accomplish the aim the following objectives had to be met: a theoretical 

objective which considered the development of a method for generation of operand 

transformation variants; and an empirical objective as the implementation of the method as a 

computational tool built to a stage that allows verification of the research results. First, it was 

necessary to understand the phenomenon of problem solving and cognitive aspects of 

synthesis as a part of the problem solving activity. Then, the state-of-the-art review on the 

Computational Design Synthesis (CDS) [2] was conducted the purpose of which was the 

determination of theoretical and methodological background of the current research projects 

and the comparison and the systematization of those in order to focus this research. The 

efforts where turned to the exploration of the existent mathematical concepts which could be 

used for the modelling of technical processes and related synthesis method. Based on the 

findings from the field of CDS it was concluded to conceive the method as a knowledge-

based with the solution emerging as a result of successive application of production rules in 

which the knowledge about technical processes and working principles is formalised. The 

theoretical objective concluded with the main scientific contribution of this thesis: (1) the 

creation of multigraph based formal model of technical process, (2) the definition of graph-

grammar based formal model of technical process synthesis, (3) addition of stochastic search 

to technical process synthesis by applying grammatical evolution [3]. Within the empirical 

objective a computational tool was realised on the foundations of the developed method. 

During the research it was found that knowledge about technical processes still does not 

exists in the accessible open taxonomies or ontologies as per se, which required to propose 

(4) knowledge formalisation suggestions when defining the graph grammar of technical 

processes. 



SAŽETAK 

XIX 

SAŽETAK 

GRAMATIČKA EVOLUCIJA TEHNIČKIH PROCESA 

Ključne riječi: varijante transformacije operanada, formalni model tehničkoga procesa, 

formalni model sinteze tehničkoga procesa, računalom podržana sinteza proizvoda, graf 

gramatike, gramatička evolucija. 

Teorija tehničkih sustava objašnjava tehničku evoluciju, konstruiranje i razvoj proizvoda kao 

odgovor na potrebe društva koje se mogu ostvariti tehničkim procesima. Takvo teleološko 

shvaćanje nalaže kao početni korak u razvoju koncepta novog proizvoda utvrđivanje 

tehničkog procesa kao procesa unutar kojega se sudjelovanjem tehničkoga proizvoda 

ostvaruju efekti potrebni za svrhovitu transformaciju operanada sukladno radnim principima 

na kojima se tehnički proces temelji. Cilj istraživanja u okviru izrade doktorskog rada jest 

kreiranje računalne podrške upravo za taj početni korak konceptualne faze razvoja proizvoda. 

Generiranje varijanti transformacije operanada računalnom mogu stvoriti osnovu koja će 

poslužiti za temeljitije razmatranje mogućnosti za realizaciju tehničkoga proizvoda. Sukladno 

znanstveno-istraživačkoj metodologiji prisutnoj unutar područja znanosti o konstruiranju, 

istraživanje u okviru ovoga rada provedeno je unutar dvije faze: teoretska faza koja obuhvaća 

definiranje metode za generiranje varijanti transformacije operanda temeljem poznatih radnih 

principa, i praktična faza koja obuhvaća razvitak računalnog alata na osnovu definirane 

metode do razine koja će omogućiti potvrđivanje rezultata istraživanja. Teoretska faza 

istraživanja zaključena je sa glavnim znanstvenim doprinosima ove disertacije: (1) definiran 

je formalni model tehničkog procesa, (2) definiran je formalni model sinteze tehničkih 

procesa temeljen na graf-gramatikama, (3) uvedena je mogućnost pretraživanja varijanti 

transformacije koristeći se algoritmom gramatičke evolucije [3]. Praktična faza ovoga 

istraživanja rezultirala je računalnom implementacijom definirane metode za generiranje 

varijanti transformacije operanada u okruženju za tu svrhu osmišljenog i razvijenoga 

računalnoga alata. Tijekom istraživanja utvrđeno je da generalizirano i sistematizirano znanje 

o tehničkim procesima i radnim principima unutar područja još uvijek nije dostupno u obliku 

dovoljno detaljne taksonomije ili ontologije za razinu koju zahtijeva definirana metoda. Iz tog 

razloga predložene su smjernice za graf-gramatičku formalizaciju znanja o tehničkim 

procesima i radnim principima (4).  
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XX 

PROŠIRENI SAŽETAK 

GRAMATIČKA EVOLUCIJA TEHNIČKIH PROCESA 

Uvod i motivacija za istraživanje 

Motivacija za razvoj računalne podrške namijenjena procesu konstruiranju temeljena je na 

pretpostavci da bi takva podrška omogućila efikasniji razvoj proizvoda. Pri tome se algoritmi 

za kreiranje računalne podrške često temelje na slučajnosti, heuristici i usmjeravanju 

pretraživanja vrednovanjem generiranih rješenja, te izmjeni konačnog broja gradivnih 

elementa koji uređeni na novi način rezultiraju novim i potencijalno kreativnim rješenjem 

problema. Katkada se u okviru računalnih sustava za podršku ranim fazama konstruiranja 

oponašaju i kognitivni procesi prisutni u čovjeka.  

Generiranje, vrednovanje i odabir varijante koncepta temeljeni su na konstruktorovu znanju, 

iskustvu, te informacijama prikupljenim iz dostupnih izvora koje su potrebne za rješavanje 

danog konstrukcijskog zadatka. Računalni sustav koji bi bio u stanju procesirati informacije 

na način da kvalitetno generira koncepcijska rješenja značajno bi utjecao na proces 

konstruiranja i na tehnički proizvod koji se konstruira. Generiranje varijanti nastalih kao 

rezultat pretraživanja prostora koncepcijskih rješenja računalom, trebalo bi omogućiti 

stvaranje racionalne osnove kojom se konstruktori mogu voditi prilikom donošenja odluka u 

ranim fazama razvoja proizvoda. Razumno je očekivati da bi računalni sustavi za podršku 

konstruiranju trebali moći generirati rješenja brzo i da bi producirana rješenja trebala biti 

korisna.  

Na početku konceptualne faze, konstrukcijski zadatak se definira sukladno prepoznatim 

potrebama u društvu i stanju na tržištu. Razmatranje sudjelovanja tehničkog proizvoda unutar 

tehničkoga procesa putem kojega se bi se udovoljio potrebama društva i tržišta, polazište su 

za razvoj koncepta novog proizvoda. Razvoj računalne podrške upravo za tu polaznu točku u 

razvoju proizvoda odabrana je kao predmet i tema ovog istraživanja. Ovisno o odabranim 

radnim principima na kojima se će se temeljiti tehnički proces, definira se funkcija, te 

zahtjevi i ograničenja kojima mora udovoljiti tehnički proizvod kako bi tehnički proces bio 

provediv. Kako odluke donošene unutar konceptualne faze uvelike predodređuju faze procesa 

razvoja proizvoda koje slijede, još se više naglašava potreba za razvitak i uvođenje računalne 

podrške konceptualnoj fazi razvoja proizvoda. 
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Teoretsko polazište i ciljevi istraživanja 

U ovom radu istraživanje se temelji na teoriji tehničkih sustava (eng. Theory of technical 

systems, TTS). Sukladno teoriji tehničkih sustava tehnički procesi se modeliraju kao sustavi 

transformacija kojima se postiže potrebno stanje operanada: materije, signala i energije. 

Tehnički proizvodi se tretiraju kao tehnički sustavi neophodni da bi se procesi transformacije 

proveli. Takvo teleološko shvaćanje nalaže kao početni korak u razvoju koncepta novog 

proizvoda utvrđivanje tehničkog procesa temeljenog na poznatim radnim principima, 

potrebama i zahtjevima tržišta, te ograničenjima. Pojam radnog principa obuhvaća postupak 

transformacije definiran nizom operacija kako bi se postiglo odgovarajuće konačno stanje 

operanda. Svaki radni princip određuje i potrebne efekte proizašle kao rezultat aktivnosti 

čovjeka i/ili tehničkog sustava koji sudjeluju u tehničkom procesu osiguravajući pri tome 

potrebnu energiju, materijal, regulaciju i kontrolu. Bez odgovarajućih efekata proces 

transformacije operanda ne bi bio moguć. Sukladno teoriji tehničkih sustava sinteza 

tehničkog procesa, odnosno utvrđivanje procesa transformacije operanada, kreće od potrebe 

opisane skupom operanada sa poznatim ulaznim i izlaznim stanjima, a dekompozicijom 

završava konačnim skupom varijanti razrađenog procesa transformacije. 

Cilj predloženog istraživanja jest kreiranje računalne podrške za sintezu tehničkog procesa 

sukladno teoriji tehničkih sustava. kako bi se konstruktorima omogućilo da razmotre različite 

mogućnosti za realizaciju proizvoda obzirom na poznate radne principe, potrebe i zahtjeve 

tržišta, te ograničenja. Iako je iz literature poznato da se analiza tehničkog procesa obično 

provodi tijekom konstruiranja potpuno novih proizvoda razrađeni tehnički proces će 

konstruktoru ipak zorno predočiti kako i u kojoj mjeri čovjek i tehnički sustav sudjeluju u 

procesu transformacije, te se na taj način određuje funkcija proizvoda. Drugim riječima, ako 

se sposobnost isporuke odgovarajućih efekata u tehničkom procesu shvati kao funkcija 

proizvoda, tada proizlazi  da varijacije transformacije na razini tehničkog procesa uzrokuje 

varijaciju funkcijske strukture proizvoda. U okviru ovoga istraživanja biti će pokazano da sve 

postojeće metode unutar područja računalom podržane sinteze proizvoda (eng. 

Computational Design Synthesis, CDS) u pravilu ne razmatraju razinu tehničkoga procesa. 

Uzimajući u obzir tehnički proces i sudjelovanje tehničkog sustava u transformaciji 

rezultiralo bi proširenjem područja pretrage definirajući funkciju tehničkoga sustava kao 

varijablu pretraživanja, za razliku od postojećih CDS metoda gdje se funkcija proizvoda 

razmatra kao ulazni parametar. 
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Kako bi se ostvario zadani cilj istraživanja potrebno je ostvariti sljedeće: 

1) definirati metodu za generiranje varijanti transformacije operanada temeljem poznatih 

radnih principa, i  

2) razviti računalni alat do razine koja će omogućiti verifikaciju rezultata. 

Definiranje metode za generiranje varijanti transformacije operanada temeljem poznatih 

radnih principa je cilj ovoga istraživanja što je u skladu sa znanstveno-istraživačkom 

metodologijom unutar područja znanosti o konstruiranju. Implementacija definirane metode 

unutar računalnog alata kako bi se provjerila njena valjanost i na taj način se potvrdili 

rezultati istraživanja, može se shvatiti kao praktični cilj ove disertacije.  

Očekivani dugoročni ciljevi istraživanja usmjereni su ka daljnjem unapređenju metode i 

računalnog alata za generiranje optimalnih varijanti transformacije operanada temeljem 

poznatih radnih principa. Nadalje, jedan od dugoročnih ciljeva jest i moguća integracija 

metode za generiranje varijanti transformacije operanda, koja je razvijena u okviru ovoga 

rada, sa nekom od postojećih metoda u području računalom podržane sinteze proizvoda. 

Cjelokupno računalno okruženje za podršku konceptualnoj fazi kreiralo bi osnovu na kojoj bi 

se mogli realno testirati razvijena metoda i računalni alat. Međutim, da bi integracija bila 

ostvariva trebale bi se prevladati razlike nastale kao posljedica drugačijih teoretskih osnova 

na kojima se temelje formalni modeli tehničkog sustava i procesa konstruiranja kod drugih 

CDS metoda i alata. 

Hipoteza rada i istraživačka pitanja 

Sukladno definiranim teoretskim polazištima i ciljevima formulirana je hipoteza istraživanja: 

Skupom produkcijskih pravila formalizirano inženjersko znanje o tehničkim procesima, 

radnim principima i potrebnim efektima mogu se generirati varijante transformacije 

operanada koje omogućavaju razvoj koncepta tehničkog proizvoda. 

Hipoteza ovoga rada zahtijeva realizaciju teoretskih ciljeva: definiranje formalnog modela 

tehničkoga procesa i formalnog modela sinteze tehničkoga procesa. Sukladno postavljenoj 

hipotezi, teoretski ciljevi imaju stoga najveće težište unutar cjelokupnoga rada. Za predvidjeti 

je da će se praktični dio istraživanja moći provesti korektno samo unutar okvira stvarne 

inženjerske prakse. Međutim, da bi ispitivanje u praksi bilo ostvarivo, prethodno se trebaju 

realizirati dugoročni ciljevi ovoga istraživanja. 
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U skladu sa definiranom hipotezom formulirana su sljedeća istraživačka pitanja : 

 Kako interpretirati tehnički proces na računalu razumljiv način? Cjelokupna 

upotrebljivost metode za generiranje varijanti transformacije operanda ovisiti će o 

načinu na koji će se formalno modelirati tehnički proces. Istraživanjima unutar 

područja računalom podržane sinteze proizvoda pokazano je da kvaliteta rezultata, 

odnosno mogućnosti i ograničenja računalne podrške, ovise o načinu na koji je 

problem formaliziran.  

 Kako generirati varijante transformacije operanada unutar tehničkog procesa?  

 Koji matematički koncept upotrijebiti za definiranje formalnog modela sinteze 

tehničkoga procesa? Da li će definirani model težiti više ka emuliranju kognitivnih 

procesa u čovjeka ili će više težiti ka algoritmima temeljenim na heuristici?  

 Da li je moguće uvesti optimizacijske metode na razinu tehničkog procesa? Ako da, 

po kojim kriterijima je moguće provesti optimizaciju tehničkoga procesa? 

 Kako je predloženo da se metoda temelji na formalizaciji znanja o tehničkim 

procesima i poznatim radnim principima koristeći produkcijska pravila, koje su tada 

osnove potrebne za formalizaciju takvog znanja? 

Metodologija istraživanja 

Metodologija predloženog istraživanja slijedi deskriptivnu DRM metodologiju (eng. Design 

Research Methodology). Plan rada predloženog istraživanja sukladno DRM metodologiji 

može se sljedećim koracima: 

1) Analiza koja obuhvaća pregled postojeća dostignuća u području kako bi se opravdali i 

razjasnili ciljevi i svrha istraživanja. Prikupljenim činjenicama se utvrđuje postojeće 

stanje računalne podrške za rane faze procesa razvoja proizvoda, tj. područja koje se 

predloženim istraživanjem želi unaprijediti. Cilj predloženog istraživanja može se 

razložiti na dva dijela: definiranje formalnih modela tehničkoga procesa i sinteze 

tehničkoga procesa, te na razvoj računalnog alata temeljem definiranih modela. 

2) Određivanje teoretskih osnova koje prethode razvoju računalne metode pomoću koje 

će se generirati varijante transformacije operanada u tehničkom procesu. Posebno će 

se razmatrati fenomenološki modeli procesa konstruiranja i razvoja proizvoda 

sukladno teoriji tehničkih sustava kako bi se proučila odgovarajuća teoretska podloga 
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potrebna za razvoj formalnih modela i računalne podrške. Istraživanja koja za cilj 

imaju razvoj računalne podrške procesu konstruiranja zbog svoga opsega gotovo 

uvijek nalažu uključivanje multidisciplinarnog pristupa u istraživanje, pa je iz tih 

razloga nužno proširiti razumijevanje problema koji se stiče uvidom stručne i 

znanstvene literature u strogom području istraživanja. Analizirati će se rezultati 

istraživanja iz raznih znanstvenih disciplina čije bi spoznaje mogle pridonijeti ovome 

istraživanju. Neke od znanstvenih disciplina koje će se razmotriti jesu: evolucijsko 

računarstvo, više-ciljna optimizacija, formalni jezici, teorija sustava. 

3) Sinteza koja uključuje izradu formalnih modela za razinu utvrđivanja tehničkog 

procesa temeljem teoretskih osnova utvrđenih u prošlom koraku. Prvo će se izraditi 

formalni modeli tehničkoga procesa i sinteze tehničkoga procesa, a zatim će se 

definirati arhitektura računalnog alata.  

4) Verifikacijom rezultata istraživanja trebalo bi se pokazati u kojoj razvijeni alat utječe 

na povećanje efikasnosti i kvalitete proizvoda. Pristupiti će se izradi računalnog 

modela alata u nekom od postojećih programskih jezika ili razvojnih okruženja. Biti 

će dan i osvrt na primjenjivost metode i alata za sintezu tehničkog procesa obzirom na 

vrstu inženjerskog zadataka, odnosno tehničkog sustava koji se razvija. To je posebno 

važno obzirom da se generiranje varijanti tehničkog procesa preporučuje kod razvoja 

potpuno novih ili kod razvoja vrlo složenih tehničkih sustava, jer kod njih zbog 

velikog broja elemenata i relacija među njima broj mogućih alternativa na samome 

početku konceptualne faze razvoja proizvoda može biti vrlo velik. 

Očekivani znanstveni doprinos 

Sukladno navedenim ciljevima i istraživačkim pitanjima očekivani znanstveni doprinos 

istraživanja se može sažeti na sljedeći način: 

 Razvijenim formalnim modelom tehničkoga procesa dan je doprinos unutar područja 

računalom podržane sinteze proizvoda koja do sada razmatra samo funkcijsku razinu 

kao najvišu razinu apstrakcije. 

 Formalni model procesa sinteze tehničkoga procesa. Rezultat sinteze bi trebale biti 

varijante transformacije operanada temeljene na poznatim radnim principima i 

potrebnim efektima.  



PROŠIRENI SAŽETAK 

XXV 

 Implementacijom metode unutar računalnoga alata omogućeno je generiranje varijanti 

transformacije operanda koji mogu poslužiti kao osnova za dalji razvoj koncepta 

proizvoda. 

Sinteza u konstruiranju 

Unutar drugoga poglavlja doktorskog rada analizirao se proces konstruiranja kao proces 

rješavanja problema, s naglaskom na sintezu kao jednu od aktivnosti procesa konstruiranja. 

Rezultatima provedene analize utvrdili su se principi potrebni za razvoj računalne podrške za 

sintezu tehničkih procesa. Sa stanovišta konstruiranja i razvoja proizvoda utvrđeno je da je 

proces konstruiranja proces rješavanja problema abdukcijom. Takvo promišljanje tijekom 

procesa konstruiranja rezultira generiranjem tehničkoga opisa proizvoda kao objašnjenja 

postojećih društvenih potreba i potraživanja na tržištu. Konstrukcijsko rješenje nastaje kao 

rezultat koevolutivnog iterativnog procesa između predloženog rješenja problema, te razine 

znanja i razumijevanja o problemu koji je zadan. Drugim riječima, definicija problema i 

rješenje problema se u procesu konstruiranja sustavno vrednuju i redefiniraju jedno u odnosu 

na drugo. Zbog takve međupovezanosti ne može se jednoznačno ustvrditi da li je generirano 

rješenje konstrukcijskog problema i konačno, tj. te da li ono stvarno najbolje rješenje koje 

udovoljava stvarnim potrebama u društvu i na tržištu. 

Rane faze razvoja proizvoda gdje je sinteza najprisutnija aktivnost, razmatrane su općenito 

kao proces generiranja varijanti transformacije operanada sukladno teoriji domena (eng. 

Domain Theory) i teoriji tehničkih sustava. Analizom teorije domena utvrđeno je da opće 

odlike tehničkoga procesa (eng. universal virtues) ukoliko su mjerljive, mogu poslužiti kao 

funkcije cilja prilikom optimizacije tehničkoga procesa. Konačno, teoretski model tehničkoga 

procesa kao i pristup promišljanju i definiciji konstruiranja i sinteze u konstruiranju 

prihvaćeni su kao teorijska osnova istraživanja sukladno Teoriji tehničkih sustava (TTS) koja 

daje objašnjenje sinteze tehničkih procesa.  

Računalom podržana sinteza proizvoda 

Analizirane su postojeće metode i alati u području računalom podržane sinteze proizvoda 

(CDS) kako bi se utvrdile teoretske osnove i principi koje se koriste u svrhu podrške 

pojedinim fazama razvoja proizvoda. Zaključci koji su proizašli iz te analize poslužili su za 

određivanje doprinosa području CDS-a, te principa na kojima će se definirati metoda za 

generiranje varijanti operanada u tehničkome procesu. Računalom podržana sinteza 
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proizvoda implicira sistematski pristup definiranju računalnih algoritama i metodološkog 

modeliranja tehničkoga sustava i procesa konstruiranja sa ciljem kreiranja konstrukcijskih 

rješenja upotrebom računala. CDS jest složeno multidisciplinarno istraživačko područje koje 

obuhvaća napredne računalne tehnike i algoritme pretrage, te znanje o procesu konstruiranja i 

tehničkim sustavima. Namjena postojećih CDS metoda i alata može se formulirati kao 

pružanje podrške konstruktoru u situacijama kada pronalaženje potrebnog rješenja problema 

iziskuje generiranje prevelikoga broja varijanata da bi se ono moglo riješiti u potrebnom 

vremenu. Pregled područja računalom podržane sinteze proizvoda dan je u nastavku. 

Osnovni pristupi. Dobar primjer uporabe evolucijskog računarstva za ostvarivanje računalne 

podrške u konceptualnoj fazi razvoja proizvoda jest korištenje genetičkog algoritma za 

generiranja konceptualnih varijanti temeljem morfološke matrice koja sadrži različita 

tehnička rješenja parcijalnih problema. Vrednovanje konceptualnih varijanti rješenja provodi 

se provjeravanjem kompatibilnosti tokova energije, dok se optimalno rješenje traži temeljem 

definirane funkcije cilja. U istraživanju je korišten računalni generator koncepta (eng. 

Concept Generator) kod kojega se koristila matrična algebra za određivanje komponenti 

kojima je moguće realizirati odgovarajuće funkcije iz zadane funkcijske strukture. Drugačiji 

pristup računalnoj podršci namijenjenoj konceptualnoj fazi razvoja proizvoda donosi metoda 

A-Design. Okosnica podrške jest skup softverskih agenata – računalnih programa kojima 

ugrađeno znanje omogućava i propisuje izvršavanje točno određenih zadaća potrebnih za 

kombiniranje komponenti u smisleno tehničko rješenje. Kompatibilnost međusobnog spajanja 

komponenti provjerava se na ulazno/izlaznim sučeljima. 

Graf-gramatičke metode temeljene na formalnim jezicima. Pristup inspiriran pionirskim 

radovima Chomskog i Minskog na polju formalnih jezika, koristi formalne gramatike kako bi 

se na lingvistički način opisala pojedina konstrukcijska rješenja, te tako definirao jezik 

konstruiranja. Korištenjem gramatika se znanje o konstruiranju, koje postoji u specifičnom 

području primjene, formalizira skupom pravila. Izvršavanjem svih dopuštenih kombinacija 

pravila stvara se velik, ali ipak konačan broj varijanti rješenja čime su definirane granice 

prostora pretraživanja, odnosno jezik područja. Iz literature su poznate gramatike oblika (eng. 

shape grammars) koje se zajedno sa stohastičko-optimizacijskim algoritmom simuliranog 

poboljšavanja (eng. simulated annealing) primjenjuju za potrebe strukturne i topološke 

optimizacije. Na se sličnim principima temelji razvoj računalne podrške za konceptualnu fazu 

razvoja proizvoda gdje se za formalizaciju znanja u području najčešće primjenjuju graf 

gramatike (eng. graph grammars). Pribjegavanje graf gramatikama može se opravdati 
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činjenicom da gotovo sve teorije koje se bave proučavanjem procesa konstruiranja u 

konceptualnoj fazi modeliraju proizvod kao transformacijski sustav koji se formalno i 

vizualno opisuje grafom. Graf gramatike pri tome opisuju skup pravila kojima se može 

transformirati graf, te uvjeta koji određuju kada se započinje i završava izvršavanje pravila. 

Pregled istraživanja u području pokazao je da su postojeće metode koje koriste graf 

gramatike orijentirane na dekompoziciju na razinama funkcija i komponenti proizvoda. 

Optimizacija se najčešće provodi samo razini komponenti. 

Dobar primjer kako se računalom može simulirati proces generiranja koncepata proizvoda 

prikazan je unutar koevolutivnog okruženja za podršku konstruiranju (HiCED). Pristup se 

temelji na ko-evolutivnom razvoju proizvoda na različitim razinama apstrakcije. Postupak 

započinje generiranjem populacije funkcijskih dekompozicija zadanog proizvoda koristeći 

formalizirano znanje u obliku pravila. Nakon toga se pomoću genetičkog programiranja i 

genetičkoga algoritma istodobno evoluiraju funkcijska struktura i komponente koje su u 

stanju realizirati pojedine funkcije. Funkcija cilja formulirana je uz korištenje težinskih 

faktora. Ideja ko-evolucije na različitim razinama apstrakcije proizvoda objašnjena je u 

okviru opće teorije konstruiranja (eng. General Design Theory) i FBS (eng. Function-

Behaviour-State) pristupa modeliranju proizvoda (tehničkih sustava). Novije istraživanje 

temeljeno na FBS modelu pokušava iskoristiti i objediniti dostupne računalne alate kako bi se 

kreiralo cjelokupno okruženje za računalom podržanu sintezu mehatroničkih proizvoda. Za 

provedbu graf-gramatičkih transformacija koristi se GrGen, vizualizacija grafova riješena je 

unutar okruženja TULIP, a za modeliranje tehničkoga proizvoda pokušava se iskoristiti jezik 

za modeliranje sustava SysML. Računalno okruženje omogućava korisniku da se pravila 

definiraju unutar vizualnog sučelja pomoću skriptnog programskog jezika koji je integralni 

dio GrGen-a. Generiranje varijanti konceptualnog rješenja provodi se unutar posebnog 

modula. Za sada okruženje ne podržava optimizacijske metode. 

Ostali pristupi. Nešto drugačiji pristup kreiranju računalne podrške konceptualnoj fazi 

razvoja proizvoda dostupan je unutar CAM računalnog okruženja (eng. Cambridge Advanced 

Modeller) razvijenog na temelju P3-Signposting alata. Računalna podrška namijenjena je 

sintezi arhitekture proizvoda koja se unutar CAM-a opisuje pomoću mreže komponenata. 

Korisnik kroz vizualno sučelje koristeći grafički jezik za modeliranje definira ulaznu shemu 

koja može sadržavati komponente različitog tipa, više tipova relacija te ograničenja temeljena 

na predikatnoj logici prvoga reda. Varijante arhitekture generiraju se računalno analizom 

zadane sheme. 
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Utvrđeno je da se za kreiranje podrške ranim fazama konstruiranja većina metoda unutar 

računalom podržane sinteze proizvoda oslanja na generiranja rješenja koristeći formalizirano 

znanje unutar skupa produkcijskih pravila. Sukladno istraženome odlučeno je da će se 

razvitak predložene metode temelji na formalizaciji znanja o tehničkim procesima i radnim 

principima u obliku produkcijskih pravila čijom će se sukcesivnom provedbom moći 

generirati varijante transformacije operanada. U svrhu modeliranja tehničkih procesa biti će 

definiran usmjereni multigraf sa operacijama operandima i efektima, generiranje varijanti 

transformacije operanada provesti će se upotrebom graf-gramatika, dok će se pretraživanje 

implementirati kroz algoritam gramatičke evolucije.  

Formalne gramatike 

Četvrto poglavlje doktorskoga rada objašnjava formalne gramatike i formalne jezike kao 

teoretske osnove graf-gramatičkih metoda unutar područja računalom podržane sinteze 

proizvoda. Iz toga razloga su formalne gramatike i formalni jezici objašnjeni u obliku: (1) 

općeg pristupa formalizaciji znanja u području umjetne inteligencije gdje se razjašnjavaju 

mehanizmi metoda temeljenih na formalizaciji znanja pravilima, i (2) kao formalizam koji se 

može iskoristiti za formalizaciju znanja o tehničkim procesima kako je to prikazano u okviru 

doktorskoga rada. Objašnjen je razvitak područja formalnih jezika obuhvaćajući Postov 

sustav produkcijskih pravila, hijerarhije gramatika kako ih je definirao Chomsky, te opis 

kontekstno-nezavisne gramatike u obliku Backus-Naurove forme (BNF) koja će se koristiti 

za potrebe definiranje metode za generiranje varijanti transformacije operanada. Objašnjene 

su formalne definicije generativnih gramatika i formalnih jezika. Prikazan je i objašnjen 

primjer kojim se naglašavaju implikacije sekvencijalnog izvođenja gramatika kako ih je 

definrao Chomsky i to prvo po dubini stabla, odnosno po širini stabla u odnosu na graf-

gramatike na kojima će se temeljiti metoda za generiranje varijanti transformacije operanada. 

Gramatička evolucija 

Peto poglavlje disertacije daje osvrt na algoritam gramatičke evolucije. Sinteza u 

konstruiranju uspoređena je sa spoznajama u području evolucijskoga računarstava obzirom na 

paradigmu evolucijskog konstruiranja kako bi se naglasile razlike između procesa 

pretraživanja sa ciljem vođenim abduktivnim promišljanjem i generiranja rješenja koristeći se 

evolucijskim algoritmom. Opći model genetičkoga algoritma temeljen na evolucijskim 

operatorima je opisan u radu jednako kao osnova za opis procesa kojim algoritam gramatičke 
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evolucije generira rješenje. Prikazana je veza između genetičkoga algoritma i algoritma 

gramatičke evolucije, a definirane su i dodatne funkcije preslikavanja kako bi se u obzir uzele 

posebitosti modeliranja tehničkih procesa i dovelo se u vezu algoritam gramatičke evolucije i 

graf-gramatike. U zaključku poglavlja obrazloženo je zašto je algoritam gramatičke evolucije 

pogodan kao osnova za pretraživanje ili optimiranje u domeni tehničkih procesa, te ranih faza 

razvoja proizvoda općenito: (1) obzirom da je gramatička evolucija temeljena na genetičkom 

algoritmu slijedi da se standardni evolucijski operatori mogu koristiti bez dodatnog 

prilagođavanja, (2) princip rada algoritma gramatičke evolucije temelji se na generiranju 

rješenja izvođenjem niza pravila što je u skladu sa odabranim načinom formalizacije znanja o 

tehničkim procesima, (3) stablo izvođenja slijedi proces dekompozicije prilikom sinteze 

tehničkih procesa, (4) zbog principa generiranja rješenja pravilima gramatička evolucija brže 

konvergira nego srodni algoritmi kao što je primjerice genetičko programiranje, (5) moguće 

je uspostaviti vezu između gramatika kako ih je definirao Chomsky i graf-gramatika, (6) 

gramatička evolucija omogućava i pretraživanje na razini pravila koristeći postojeće gradivne 

elemente za generiranje novih pravila. 

Graf‐gramatika tehničkih procesa 

Metoda za generiranje varijanti transformacije operanada koja je predložena u okviru 

doktorskoga rada opisana je u šestome poglavlju. Znanje o radnim principima na kojima se 

transformacija zasniva formalizirano je skupom produkcijskih pravila u BNF notaciji. 

Predložena metoda za generiranje varijanata transformacije operanada definirana je kao 

formalni sustav koji se temelji na graf-gramatikama kojima se omogućava sinteza tehničkog 

procesa nizom derivacija, odnosno koraka izvođenja. Kako bi se opisala transformacija 

operanda unutar tehničkoga procesa definiran je usmjereni multigraf sa operacijama, 

operandima i efektima. Za potrebe opisivanja formalnog modela sinteze tehničkoga procesa 

definiran je i objašnjen graf-gramatički transformacijski algoritam usmjerenog multigrafa sa 

operacijama, operandima i efektima koji se temelji na produkcijskim pravilima. Definiran je i 

skup pravila spajanja kojima se način integracije dekomponirane operacije unutar strukture 

tehničkoga procesa. 

Smjernice za formalizaciju znanja i primjeri 

Sedmo poglavlje doktorskoga rada obuhvaća formalizaciju znanja i primjere sinteze 

tehničkoga procesa u kojemu sudjeluju tehnički sustavi različite razine složenosti provedeni 
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upotrebom metode za generiranje varijanti transformacije operanada. Prilagodba standardne 

taksonomije namijenjena opisivanju funkcija proizvoda koristi se sa ciljem definiranja 

produkcijskih pravila kako bi se koliko je god to moguće pravila održana konzistentnima. S 

time u svezi predloženi su napuci za formalizaciju znanja o tehničkim procesima.  

Arhitektura računalnoga alata 

U osmome poglavlju doktorskoga rada razmatrane su mogućnosti računalne implementacije. 

Prikazan je model trorazinske arhitekture računalnoga sustava realiziranog objektno-

orijentiranim pristupom. Razina pohrane i dohvata formaliziranoga znanja sadrži relacijsku 

bazu podataka unutar kojoj je znanje pohranjeno, logička razina obuhvaća dva modula od 

kojih se jedan koristi za vizualno definiranje produkcijskih pravila, dok se drugi koristi za 

formulaciju cilja pretraživanja i prikaz rezultata. Razina prezentacije obuhvaća sučelja obaju 

modula putem kojih se omogućava interakcija s korisnikom. Prikazani su i osnovni dijagrami 

klasa vezani uz provedbu graf-gramatičkih transformacija, formalne jezike kao dijela većeg 

računalnog okruženja namijenjeno više-ciljnoj optimizaciji unutar kojeg je podržan i 

algoritam gramatičke evolucije. Računalni alat koji je razvijen temeljem formalnog modela 

tehničkog procesa i metode za generiranje varijanti tehničkog procesa razvijen je do razine 

prototipa koji omogućava testiranje i daljnji razvitak. 

Rezultati istraživanja 

Sukladno motivaciji koja je potaknula na ovo istraživanje, te definiranim teoretskim 

polazištima, ciljevima istraživanja i istraživačkim pitanjima postignuto je sljedeće: 

 Temeljem istraženoga osmišljena je i definirana graf-gramatička metoda za 

generiranje varijanata transformacije operanda. Područje primjene i kvaliteta 

generiranih rješenja tako postaju i funkcija formaliziranoga znanja, a ne samo 

algoritma provedbe pretrage u užem smislu. Pokazano je da se upotrebom graf-

gramatike koristeći formalizirano znanje o tehničkim procesima i radnim principima u 

obliku produkcijskih pravila može provesti dekompozicija tehničkih procesa do 

sinteze varijanti transformacije operanda. Pri tome su korištene transformacije 

operanda implementirane na razini čvorova grafa odnosno na razini pojedinačne 

operacije tehničkoga procesa. Za svaku transformaciju definirana su pravila umetanja 

i spajanja novih pod-struktura u postojeću strukturu grafa, odnosno dekompozicije 

pojedinog pod-procesa u niz operacija, te njihova integracija u postojeću strukturu 
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tehničkoga procesa. Algoritam dekompozicije tehničkog procesa, kao i pravila 

umetanja i spajanja definirana su u šestom poglavlju ove disertacije.  

 Za potrebe kreiranja formalnog modela tehničkog procesa razvijen je usmjereni 

multigraf sa operacijama, operandima i efektima (šesto poglavlje disertacije). Nužno 

je bilo uvesti takav model tehničkoga procesa kako bi bilo moguće opisati sve tokove 

operanada koji mogu postojati između dvije operacije unutar tehničkog procesa. 

Jednako tako, definirani formalni model tehničkoga procesa u stanju je opisati tokove 

koji ulaze i izlaze iz transformacijskoga sustava, te efekte. Sukladno objektnom-

pristupu operacije, operandi i efekti definirani su kao entiteti tehničkoga procesa, 

pridruženi su čvorovima i lukovima grafa nosioca čime nastala struktura opisuje 

tehnički proces. Usmjereni multigraf invarijantan je obzirom na složenost entiteta 

tehničkoga procesa i njihove međusobne relacije koje se mogu uspostaviti izvan 

okvira tehničkoga procesa, te tako ostavljajući prostor za daljnje unapređenje metode 

na razini entiteta tehničkoga procesa. Slično je definirana metoda dekompozicije na 

način da ovisi samo o tipu grafa nad kojim je definirana. Entiteti tehničkoga procesa 

zajedno čine vokabular tehničkih procesa.  

 Varijante transformacije operanda mogu se kreirati na način da se zadani aksiom, 

odnosno odabranu operaciju sa operandima i njihovim stanjima specificiranim prije i 

poslije transformacije, generiraju sve moguće varijante upotrebom skupa 

produkcijskih pravila. Na taj način se prikazuje jezik tehničkih procesa za tu operaciju 

u okvirima znanja koje je formalizirano. Kako bi se samo generirale varijante obzirom 

na zadani kriterij i ograničenja koristi se algoritam gramatičke evolucije (peto 

poglavlje disertacije). Gramatička evolucija jest robustan stohastički optimizator koji 

je moguće primijeniti za računalnu podršku na svim razinama rane faza razvoja 

proizvoda pod uvjetom da formalni modeli uključuju modeliranje graf-gramatikama, 

odnosno zapis znanja pravilima. Kako se na trenutnoj razini istraživanja entiteti 

tehničkog procesa još uvijek ne dopuštaju postojanje atributa koji bi ih pobliže i 

detaljnije opisali, te obzirom da se za definiranje istih prvo zahtijeva generalizacija i 

sistematizacija znanja o tehničkim procesima, trenutno nije moguće uspostaviti 

složene i realne kriterije vrednovanja tehničkih procesa koji bi poslužili za 

formulaciju funkcija cilja i optimiranje. Iako je u okviru računalnog alata prikazanog 

unutar ove disertacije razvijena i podrška za više-ciljnu inženjersku optimizaciju 

koristeći algoritam gramatičke evolucije, trenutno osim za trivijalne slučajeve nije 
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moguće provesti složeniju pretragu od one koja uzima u obzir jedan cilj sa 

ograničenjima. 

 Kako bi se koliko je god to moguće produkcijska pravila održana konzistentnima, 

utvrđeno je kako je potrebno definirati taksonomije operacija, operanda i efekata sa 

ciljem boljeg razumijevanja dekompozicije tehničkog procesa koja se pokušava 

provesti produkcijskim pravilima. S time u svezi predložene su smjernice za 

formalizaciju znanja o tehničkim procesima i poznatim radnim principima. Potrebno 

je naglasiti da disertacija nije imala za cilj definiranje generalizacije i sistematizacije 

znanja o tehničkim procesima, već je namjera bila da se kreiraju mehanizmi koji će 

omogućiti formalizaciju znanja i njegovu upotrebu za generiranje varijanti rješenja 

koristeći skup produkcijskih pravila. Tijekom istraživanja utvrđeno je da 

generalizirano i sistematizirano znanje o tehničkim procesima i radnim principima još 

uvijek nije dostupno u obliku dovoljno detaljne taksonomije ili ontologije za razinu 

koju zahtijeva definirana metoda kako bi se bilo u stanju detaljnije opisati tehnički 

proces. Iz tog razloga predložene su smjernice potrebne za graf-gramatičku 

formalizaciju znanja o tehničkim procesima i radnim principima (sedmo poglavlje 

disertacije). Predložene smjernice uključuju formalizaciju na temelju dostupnih 

jezičnih leksikona (WordNet), inženjerskih ontologija (SUMO) i drugih istraživanja u 

području kako bi se znanje o tehničkim procesima definiralo koliko je god to moguće 

konzistentno. Na kraju, kao potvrda valjanosti definirane metode pokazani su primjeri 

generiranja varijanti transformacije operanda u tehničkom procesu 

Ovo istraživanje temelji se na uspješnosti definiranja metode za generiranje transformacije 

operanda tehničkoga procesa uključivši formalni model tehničkoga procesa i formalni model 

dekompozicije tehničkoga procesa, te njihovu implementaciju u okviru računalnog alata. 

Formalni modeli koji uključuju usmjereni multigraf sa operacijama, operandima i efektima, 

te njegovu graf-gramatičku dekompoziciju kako su definirani unutar ove disertacije mogu se 

smatrati doprinosim znanstveno-istraživačkom području računalom podržane sinteze 

proizvoda. Doista je teško usporediti metodu razvijenu unutar ove disertacije sa ostalim 

metodama i alatima unutar područja računalom podržane sinteze proizvoda obzirom da su 

proizašle iz potpuno različitih teoretskih osnova. Ipak, gotovo sve teorije konstruiranja, pa i 

teorija tehničkih sustava za modeliranje ranih faza temelje model tehničkog proizvoda 

sukladno općoj teoriji sustava. Iz toga razloga bilo je prirodno odabrati osnove za modeliranje 

tehničkoga procesa i njegove dekompozicije sukladno teoretskim polazištima. Za 
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pretpostaviti je da će pravo vrednovanje ovoga pa i srodnih alata i metoda biti moguće kada 

se one implementiraju u stvarnoj inženjerskoj praksi kao dijelovi cjelovitih okruženja za 

računalom podržanu sintezu proizvoda. Konačno, temeljem postignutih rezultata istraživanja 

sukladno postavljenim ciljevima i istraživačkim pitanjima može se zaključiti da je hipoteza 

ovoga rada potvrđena. 
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1. INTRODUCTION 

Understanding activities and mental processes that are performed in design process creates a 

rational basis on which these activities could be logically structured and researched in order to 

improve the outcome of the design process. Development of various design methods and tools 

for supporting a design process resulted with better overview and understanding of the task at 

hand, which in the end may increase the possibilities of designing more efficient and 

performance-optimised products. Introduction of a systematic method to the product 

development [1], [4], [5], [6], [7] is therefore motivated by causal relationship between a 

product and the design process through which that product was conceived and created. 

Stimulating innovativeness and creativity, being able to objectively evaluate in order not to 

jump to the first available solution to a given problem and implementation of different search 

strategies are some aspects of the support provided to designers through systematic methods 

[1]. Moreover, the transformation of a design process into a prescribed problem solving 

procedure enables activities such as planning, standardization of task solving process and 

utilization of past solutions while providing the possibility to learn on account of prior 

experience. 

As in many other disciplines, computers have also found their place within the product 

development process. The advent of computers has made possible the development of 

engineering design support tools which have been intended for tasks that required a large 

number of repetitive operations performed accurately. These tasks are hard and tedious for 

designers to be solved manually and although they could perform sufficiently well in respect 

to being accurate, requirements such as shortening of product time-to-market in combination 

with the increasing complexity of products that has to be managed imposed serious time 

constraints. To be able to manage increasing number of tasks and assignments, a translation of 

problem solving procedures to computational algorithms and tools is a reasonable step to be 

taken. One of the most common examples are various types of computational analysis and 

simulation tools where a given problem is described by a finite set of equations that need to 

be solved numerically in order to obtain solution. Likewise, computational support is desired 

in order to be able to perform fast and efficient engineering optimization tasks. The problem 

of finding an optimum may well include various search strategies being applied to a 

multidimensional space comprised of a large enough number of possible solution variants. 
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Application of heuristic search is a probable best fit for exploration of such large design 

solution spaces which emerged as a result of involving multiple-criteria and n-dimensional 

vectors as arguments and the results obtained most often outperform designers not only by 

calculation time but also by its quality. 

Depending on the purpose, the translation of complex engineering problems and problem 

solving procedures to develop computational design support tools sometimes requires 

formalisation that moves beyond just proper problem representation and solver algorithm 

development. In addition an adequate knowledge encoding must be devised which will have 

to suit both the problem statement and the mechanism of the search algorithm. The 

engineering knowledge about the problem so far has always been and will continue to be an 

integral part of these support tools at least as a part of the evaluation step where behaviour is 

determined by calculating the properties of a technical system considered. However the 

distinction is in the approach by which the formalisation has been accomplished and for 

which purpose. Rather than being solely for the evaluation of the solution, formalised 

engineering knowledge can also be a part of the solution proposition process where it is used 

to generate the structure of a design which will be later evaluated. That is a distinction in 

respect to search strategies that rely only on random numbers and heuristics when proposing 

solution alternatives. Therefore, to be able to efficiently solve a given problem the 

engineering knowledge about the problem considered must be involved on both ends, on the 

proposition and on the evolution side of the search process. Such approaches to knowledge 

formalisation bring computational design support tools a step closer to the process of 

engineering design synthesis. The explanation of engineering design synthesis as interplay 

between structure proposal to define design characteristics and then evaluating properties to 

determine behaviour is given within the Domain Theory [8] and will be used throughout this 

thesis as a reference model of engineering design synthesis process. Although proven reliable, 

computational support to product development is left domain limited and oriented to solving 

of the specific types of engineering problems. Very often the scope of support is realized as a 

limited mapping of existing method to computational environment thus not offering support 

to the individual phases of engineering design or to the engineering design process in-whole. 

Usually it is found that the later stages of product development which are more or less 

bounded to the specific calculation type or details fine-tuning became more extensively 

computationally supported. Such computational support is realized by various expert and 

analysis systems, feature-based solid-modelling packages. The latter is aimed at components 
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parameterization, preparation of technical documentation and similar type of activities in 

order to assist designers [1], [9].  

Work that is presented within this thesis aims at development of method and computational 

tool intended for the very beginning of the computational design phase where according to the 

Theory of Technical Systems (TTS) [1] a technical process needs to be established. Thus, this 

work is coherent with the efforts made within the Computational Design Synthesis research 

community (CDS) with its aims set as to provide better search and solution generation 

possibilities to designers by developing computational support for the early design stages [2]. 

Introduction of new aids to design process, as in this case a computational tool, should make 

the process of designing more efficient and in that way increase the possibilities for design of 

a better product [10]. Development of method will seek out a way to formalise technical 

process in computationally acceptable manner, as well as trying to define decomposition of 

technical process using available computational modelling methods and techniques. The result 

of methods application within computational environment should be generation of variants 

showing how technical process could be accomplished. These variants will serve as a 

foundation for further concept development. 

1.1 Motivation 

Conceptual design is an early product development phase that is most intensive in respect to 

the implementation of heuristic search strategies and knowledge-based techniques. Designers 

have a task to generate several unambiguous solution variants or concepts that is based on the 

initial state of the recognized market and societal needs. Since a concept is defined in terms of 

working principles on which a designed product will operate, all of the design stages that will 

follow will be greatly affected after a decision which concept to choose was made. As design 

progresses, some improvements to the designed product could still be made, but changing of 

the core principle on which the product operates could not be done without major set-backs in 

the product development process.  

Introduction of computational support to the conceptual phase of engineering design was 

predominantly motivated by the fact that it could possibly provide designers with novel or 

even creative concept alternatives as a result of an efficient solution space search. Generation, 

evaluation and selection of a concept variant are processes based on designers knowledge, 

experience in the field and information retrieved from the external sources [7]. A 
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computational system that is able to process information and generate solution alternatives 

becomes a vital part of conceptual design therefore affecting both the technical system being 

designed and the process of designing [1]. Solution alternatives provided as a result of 

efficient search across the design space should create a foundation on which designers could 

make well established decisions. Reasonable expectation is that such system that would be 

initially aimed at the specific areas of application is capable of performing efficient search 

both in respect to being fast and to usefulness and the number of solutions being created. The 

possibility to store feasible and useful concept alternatives should be incorporated as well. 

Generated concept alternatives should serve as valuable starting points to solution 

development or as a complete conceptual solution to a given design problem statement. A 

good example of how computers can be used to generate creative solutions is often advocated 

by the evolutionary computation community [11], [12]. As argued many times before, search 

done by computers is performed in an objective manner which is not burdened by 

conventional or prescribed solutions to a given problem. Navigation through the search space 

partially relies on randomness, and partially it is a learning process exhibited by the exchange 

of solution building-blocks (although building-block hypothesis was never proved [11] it is 

widely accepted in the evolutionary computation community). If the information content of 

building-blocks is of no matter and if only their contributive occurrence in the formation of 

the solutions is accounted for, than for it could be said that the exchange of building-blocks is 

a non-biased process. Such search is capable of creating novel concept alternatives that would 

normally require human reasoning that surpasses common engineering practice. Systematic 

approaches to design intent to keep the search space as broad as possible to enable 

consideration of unconventional solution principles and the reuse of previous solution 

building-blocks in order to generate creative concepts. 

According to the Theory of Technical Systems [1] which will serve as a theoretical 

foundation to this research, technical evolution, design and product development are 

explained as a response to those needs and requirements within human society for which, to 

be satisfied, an assistance of technical means was necessary. Such teleological view implies as 

a starting point to a development of a new product concept the definition of technical process 

as a process of technical system usage in which necessary effects must be delivered by 

technical product and human beings in order to enable purposeful transformation of operands. 

Built in the systemic reasoning, TTS models technical processes as transformation systems 

composed of series of operations interrelated with operand flows and supported by necessary 
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effects. Thus, the capability of delivering the necessary effects as the result of an internal 

transformation within technical system is considered as the function of technical system. 

Changing of state of operands in the desired manner can be accomplished in different ways in 

respect to various the existent technological principles which prescribe and establish a 

sequence of necessary operations that must be performed in transformation processes. 

According to TTS, technology is understood as a collection of knowledge describing how and 

with what to perform a transformation in order to achieve a desired state of operands [1]. 

However, to choose which technological (working) principle to select and how to compose 

the whole transformation process is an assessment made by designers [7]. Based on designer’s 

in-filed experience, the knowledge of existing technologies (working principles) and on the 

understanding of the task, a decomposition of technical process is performed in order to gain 

insights and to reveal details about the transformation process. The result of decomposition 

performed is conception of information necessary for design of technical system [7]. 

Designers must consider different duties that human operator and technical system have to 

fulfil in order to enable transformation by reasoning about transformation variants within 

technical processes (Figure 1.1, [1]).  

 
Figure 1.1 General model of transformation system according to TTS [1] 

The interplay between human operator and technical system, i.e. the product being designed, 

is necessary to provide effects. Depending on the complexity of the given tasks, the process 

might be supported by several technical systems and human operators. Design theory states 

[1], [7], [13] that technical processes are established as sequences of operations based on 

different technological (working) principles. Designers than to extent of their knowledge 

compose technical processes and try to select the most suitable one that satisfies given 

requirements and constraints. The assumption on which the research presented in this thesis is 

Technical process
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Technical 
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Human Environment
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Effects Effects
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based on is that if engineering knowledge about technical processes, technological principles 

and the necessary effects is formalized and embedded within computational tool that when 

such tool is provided would enable designers to consider optimal product realization 

possibilities more efficiently. 

Possibilities of product realisation are therefore understood in respect to the extents of 

technical system’s participation in the transformation. Determination of these duties as an 

ability to deliver necessary effects thus defines a technical system’s function as an entry point 

by which the organ structure of a technical system will be established. Implications and 

importance of the consideration of technical processes in respect to whole of the conceptual 

design was thus one of the prime motivators why to research computational means that could 

aid designers at that particular stage of design process. Taking into an account how a technical 

system would participate within technical process is clearly at least equally important to the 

other design phases and since it is the first stage it may contribute the overall success of 

design process by the most.  

1.2 Aim and objectives of the research 

The Design Science considers two main research areas: formulation and verification of 

models and theories related to designing and process of design; and development of support 

founded on design models and theories to aid designers in product development process [10], 

[14]. Research presented within this thesis is an attempt that fits into Computational Design 

Synthesis, with purpose of development of computational support for establishment of 

technical processes. For computational implementation it is necessary to consider 

Computational Design Synthesis both syntactically and pragmatically. Syntactical aspects 

should include adopting one of the existent design process and product models offered by the 

existent design theories. Prescribed and well-structured design phases with appropriate 

product models provide foundation and a starting point for development of computational 

tool. Within this research the focus is set at model of technical processes as defined by TTS 

[1]. Pragmatic aspects are aimed at devising a method that should be well suited match both 

for design theory modelling and for the computational implementation. Most often, 

development of a method considers application and embedding of the existing computational 

algorithms and techniques. In case of this research pragmatics related to method definition 

goes well into how to define formal model of technical processes and process of 

decomposition of these in a way that is acceptable for computational implementation. The 
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outcome of how well the method will perform, whether results will be purposeful and method 

could be extended further, depends directly on the applicability of developed formal model. 

The aim of this thesis is formulated as to provide a support to the beginning of the conceptual 

development stage by offering designers the possibility to computationally explore operand 

transformation variants in technical processes. To accomplish the postulated aim it is 

proposed that following objectives have to be reached: 

1. To devise a method for generation of operand transformation variants based on 

different technological (working) principles, and 

2. To implement the method for generation of operand transformation variants based on 

different technological principles as a computational tool. 

According to research methodology in applied sciences to which Design Science is a part of, 

the mathematical definition of the proposed method can be understood as a theoretical 

objective of this thesis. Within this research a tool will be built to a completion stage that 

allows verification of the research results. Most often in the research projects that include a 

development of computational support to design, the practical objective is a prime motivation 

behind the existence and realisation of theoretical research objectives [10]. Thus, the 

development of computational tool on the basis of the method for generation of operand 

transformation variants based on different technological principles can be regarded as a 

practical objective. 

The expected long-term objectives would be aimed at further development and improvement 

of computational tool for generation of operand transformation variants in development of 

technical processes and possible integration of the developed method in the existent 

frameworks for Computational Design Synthesis and application in industry. It is reasonable 

to expect problems regarding the integration, since most of the present research are function-

behaviour-structure (F-B-S) oriented [2]. For complete design synthesis framework by 

considering technical system’s function as the highest abstraction level serious search space 

constraints are imposed. Thus, one of the goals is to emphasize the importance of 

consideration of technical processes which enables to keep the search space as broad as 

possible by taking into account technological principles and man-machine interaction 

Research conducted in the praxis have clearly shown [14] that engineers seldom use or 

deviate from as they feel fit methodological approaches as prescribed by design theories. A 
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hypothesis formulated by Jensen [10] probably as a reflection on Herbert Simon’s claim [15] 

that “The Design Science’s models and theories had become widely accepted only when there 

was a need for the introduction of computers as a helping tools for design”, states that 

engineers can be involved in practicing methodological approaches if these are embedded 

within available computational tools. Likewise, if/when the tool developed within this thesis 

is accepted within community, designers could then pursue technical process synthesis as 

modelled by the TTS as a part of computational design support. However, attracting an 

engineer working inside his or her everyday environment to use a problem solver or design 

support software package requires more than devising a proper and clever method. The user 

interface with visual tools to ease the work or cross platform operability is necessary for the 

acceptance of tool; however, all of these features although being a must, do not add weight to 

method’s scientific worth.  

1.3 Hypothesis 

An output to the scientific endeavour should be the generation of hypothesis in order to find 

the explanation of some given phenomena [16]. To achieve that, the research process must 

evolve both the content of hypothesis and the body of facts for which the hypothesis is 

supposed to hold. The goal is that the explanation of the matter provided should be more 

complete and better than the already existing ones.  

Hypothesis as a generalization is used to explain the facts established by the observation and 

measurement or else, the hypothesis is formulated to define non-observable phenomena by 

which observable phenomena could be explained. Those phenomena are presumed to exist in 

the world around us, meaning they are of natural origin, and are as such considered as 

observable entities [17]. However, the Design Science to which this research belongs to, for a 

research focal point has set phenomena which are not of natural origins [10]. The design 

process and output of it, technical system designed as is, thus both belong to the body of 

knowledge that is in literature referred to as The Sciences of the Artificial [15]. As a 

consequence the task of The Design Science is not only to describe or to explain, but also to 

prescribe the procedures through which design should be carried out. Put succinctly, design is 

concerned with how things ought to be, with devising artefacts to attain goals [15]. The same 

line of reasoning must hold with the understanding of the aim and objectives of this thesis, 

where the introduction of computational tool in order to improve the product being designed 

alters the process of designing. One of the focal points of this research is to propose formal 
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models of both technical processes and their decomposition. How to verify these models in a 

strict sense, like for instance if assuming viewpoint to the philosophy of science as defined by 

the logical-positivism [18], than the model verification is a daunting task which more or less 

depends on the acceptance of the computational tool itself. 

Thoughts and considerations expressed in the previous sections as well as the research aims 

and objectives lead to formulation of the following hypothesis: 

1. A set of production rules formalising engineering knowledge about technical 

processes, technological principles and required effects might be developed for a 

particular engineering problem domain.  

2. Using a set of defined production rules a number of variants of operand 

transformations for a particular design problem may be generated.  

3. Generated variants may be used as a foundation for further concept development. 

The hypothesis of this work is related to the theoretical aspects of the research. It is directed 

to the development of the method based on the production rules formalism. A set of 

condition-action production rules is a mean for achieving knowledge formalisation. In this 

case the knowledge about technical processes, technological principles and required effects is 

the knowledge to be formalised. Rules when applied within a production system generate set 

of valid operand transformations variants achieved through a successive rule application 

sequence. A set of production rules is therefore understood as a grammar of a language of 

technical processes consisting of all possible operand transformations variants. 

The empirical part of the research is related to computational tool development. Real 

verification of the purposefulness can only be obtained if the tool is accepted by designers. 

For that to occur, the long term goals of this research should be accomplished. The method 

should be integrated into one of the existent Computational Design Synthesis frameworks 

(like shown in Chapter 3. of this thesis) where its usefulness could be fully verified. 

The research questions of this thesis are summarized as follows: 

 How to represent technical processes in a computationally acceptable manner? The 

applicability and usability of the whole method depend on the way how the problem 

will be represented, thus it is necessary to devise an appropriate technical process 

formalisation. 
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 How to generate variants of operand transformation within technical processes? What 

mathematical concept to use in order to formalise and model decomposition of 

technical processes, thus rendering it computationally performable? Will this 

formalised model tend to emulate and resemble by the most the human problem 

solving activity or it will be drawn to computational problem solving methods like 

heuristic and stochastic search?  

 If possible, how to introduce optimisation methods within decomposition process as 

optimisation is a must within engineering problem solving? 

 What are the fundaments for engineering knowledge formalisation about technical 

processes, technological principles and necessary effects? 

1.4 Research methodology 

This thesis follows descriptive Design Research Methodology or DRM as proposed by 

Blessing and Chakrabarti [14]. According to DRM, a research work plan is organized within 

the following four steps: 

1. Analysis consisting of the literature review to establish the state-of-the-art on 

development of computational tools for conceptual design support and Computational 

Design Synthesis in general. As a result of the review aims, the objectives and purpose 

of the research will be set and clarified. The literature review will also serve as to 

determine the scope of the research, i.e. the stage of the design process for which the 

tool should be implemented and thus possibly enhanced. The aim of the research will 

be defined as dual since development of computational support tools unequivocally 

asserts prior development of computational method.  

2. Determination of theoretical foundations necessary for the definition of the method 

for generation of operand transformation variants. In order to identify and to select 

appropriate model, the focus would be set on a consideration of phenomenological 

models of the design process as offered by the design theories. Research that for an 

aim has a development of the computational design support demands a multi-

disciplinary approach. Within this research effort the following disciplines will be 

considered: formal languages, multi-objective optimisation and systems theory. 

3. Synthesis involving development of the actual method for supporting technical 

process stage of conceptual design. Based on the established facts as a result of 
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previous research steps, the formal and information models of the method will be 

defined. This step will conclude with the definition of the architecture of 

computational tool. 

4. Verification consists of the results analysis to which extent the proposed method may 

influence the increase in efficiency and quality of technical systems designed. To 

accomplish that a computational tool will be developed within the available 

programming languages and frameworks. An outlook of the applicability of the 

developed method and computational tool in respect to type of technical system 

designed will be given. The latter is most important since the determination of 

technical processes is proposed when developing completely new and/or complex 

technical systems. Complex technical systems involving multitude of technological 

(working) principles on which the transformation is based, may prove to be an ideal 

application framework for this method. 

1.5 Expected contribution and results 

The state-of-the-art review in research area of the design synthesis as provided within Chapter 

2 of this thesis will show that there is no formal model of decomposition of technical 

processes as provided and described by the Theory of Technical Systems. Formal models are 

prerequisites for computational implementation. The formal model presented within this 

thesis will have to describe decomposition of technical processes. The outcome of 

decomposition should be operand transformation variants that have to clearly depict the 

necessary effects that are required to sustain transformation. Moreover, since this method is 

knowledge driven method, then at least guidelines for the formalisation of knowledge about 

technical processes, technological principles and necessary effect will have to be formulated. 

The state-of-the-art Computational Design Synthesis (CDS) [2] overview that is presented in 

Chapter 3 of this thesis on provided with the findings that none of the existent methods and 

tools consider synthesis of technical processes, thus most of these stay limited to supporting 

of the early design stages ranging from the establishment of product’s functional structure to 

the determination of components which can realize these functions. While it may be that the 

approaches to the CDS emerged out of different theoretical backgrounds, the claim that the 

process level should be included in the reasoning according to the TTS is strongly supported 

within this thesis. If the function of a technical product is understood as its ability to deliver 

the effects necessary for supporting of operand transformation, than it is clear that non 
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consideration of technical processes will impose limitations to the design search space, thus 

inducing the loss of potential solutions. Further methods such as the morphological chart 

method can add new effects to the established functional structure. The only other way to 

accomplish this is to affect the technical process inside, where the main operand 

transformation is realized. In order to provide solid foundations on which designers can make 

well established decisions as a result of efficient search across the design space a technical 

process must be included. Although the search for innovative technologies for operand 

transformation is usually considered only for the design of completely new products and not 

for redesign tasks, the intention is to provide the basis on which the functional structure of the 

product can be determined computationally.  

The expected contributions and results of this thesis are given as follows: 

 Formal model of technical process. With the introduction of a technical process level a 

contribution will be achieved to the research area of Computational Design Synthesis 

which was until now only focused on function-to-component method and tool 

development. 

 Formal model describing decomposition of technical processes. The outcome of 

decomposition should be synthesised operand transformation variants describing the 

necessary effects that are required to sustain transformation. 

 By implementation of defined method within computational tool it is possible to 

generate variants of operand transformations, thus presenting a foundation which may 

further excel the concept development within a product development process. 

1.6 Thesis outline 

The Chapter on Engineering design synthesis will provide a viewpoint to design as a 

problem solving process in order to determine principles which can be utilized to develop a 

computational support to design process. Many of activities performed at everyday problem 

solving are already being prescribed by the design methodology and it is necessary to identify 

these and determine whether it is possible to transfer them to computational environments. 

The early design stages where the synthesis is most intensive will be considered in general 

with the generation of operand transformation variants put in focus as a subject of this thesis. 

Formal models of design synthesis will be examined as a prerequisite for the development of 

computational tool. Finally, theoretical model of technical processes as well as reasoning 
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about design synthesis and designing will be adopted according the Theory of Technical 

Systems (TTS) [1] providing understanding what a synthesis of technical processes is.  

The third Chapter of this thesis will present the state-of-the art of the research efforts in the 

Computational Design Synthesis (CDS) [2]. Present computational methods and tools will 

be analyzed both in respect to their theoretical foundations, and mechanisms they apply to 

perform at different Computational Design Synthesis stages which are determined according 

to the generic CDS framework [2]. The findings provided will help to establish the principle 

mechanisms of the method for operand transformation variants and to compare its scope and 

theoretical foundations to the other existing methods and approaches. As a result, a 

contribution to the field of CDS can be determined. 

Formal grammars will be presented in the fourth Chapter both as a generic knowledge 

formalisation approach in the field of AI and as a mean to formalise engineering knowledge 

about technical processes as required by this thesis. Rather than just accepting those as a 

popular approach in the CDS today, it is presented how formal grammars came to be and how 

they were used in studies of cognitive processes to develop robust problem solving systems, 

thus consequently relating them to engineering problem solving. Formal definitions of 

generative grammars and formal languages will be given, as well as categorisation of 

grammars according to Chomsky’s hierarchy [20]. An example will be given which 

emphasizes the difference between sequential depth first and breadth first production rule 

application sequences of string grammars and implication of these when applied to graph 

grammars rewriting procedures. Graph grammars will be used throughout this thesis to model 

decomposition of technical processes. 

The fifth chapter will give an outlook of Grammatical evolution [3] which is a population 

based stochastic optimiser that will be used to provide optimal decomposition of technical 

processes. Engineering design synthesis will be compared to the findings of the evolutionary 

computation community in respect to the paradigm of evolutionary design to emphasize 

similarities between an explanatory search and creation of solution within evolutionary 

algorithm. The evolutionary operators based model of genetic algorithm will be presented, as 

well as a description by which grammatical evolution performs the search. Additional 

mapping functions will be defined that take into account the requirements for technical 

process modelling, thus extending the generic evaluation procedure of GA model to tackle 
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both the GE and graph grammars. To clarify, an example of breadth-first rewriting will be 

shown using the same grammar as in the Chapter about formal grammars. 

The method for generation of operand transformation variants will be presented in the 

sixth Chapter of this thesis. The needed knowledge about technological principles on which 

the transformations are based is formalized within set of production rules in Backus-Naur 

Form (BNF) [21]. Since the Theory of Technical Systems models technical processes as 

operand transformation processes, thus the proposed method for generation of operand 

transformation variants will be designed as a formal system based on graph grammar 

transformations that should perform synthesis of technical processes throughout a series of 

consecutive decomposition steps. It is proposed to base method on established concept of 

node rewriting. For modelling of operands transformation inside technical processes a 

directed multidigraph with operands effects and operations is designed. 

Knowledge formalisation and examples will contain examples of technical processes 

concerning the participation of technical systems which differ in their complexity. Since the 

aim of this thesis is not to develop ontology of technical processes and technological 

principles , an adaptation of standard taxonomy intended for product functions [22], [23] will 

be utilized in order to define production rules with the least possible ambiguity. Moreover, 

suggestions will be given how to formalise knowledge about technical processes. 

The eighth Chapter of this thesis will elaborate in brief the prospects of the computational 

implementation. The model of three-part architecture of computational tool, realised by 

object-oriented programming and interconnected by a relational database, with one designed 

to visually model rules and the other to process them will be presented. Also, diagrams of 

principal classes will be elaborated concerning graph transformations, formal languages and 

of larger multi-objective genetic algorithm optimisation framework that supports grammatical 

evolution as well.  

The conclusion, discussion and the prospects of the future work will close this thesis. 
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2. ENGINEERING DESIGN SYNTHESIS 

Nothing is more important than to see the sources of invention which are, in my opinion, more 

interesting than the inventions themselves (Gottfried Wilhelm Leibnitz, Art of Invention, in his 

unfinished work [24]). 

Design is a backbone of every product development process, implying that demand for 

innovative designs expressed as the need to excel technical development which “naturally” 

should occur evolutionary. From the literature it is known that almost 60% of total costs of 

product development are derived as a result of decisions made at the early stages of design 

[1]. Moreover, up to 80% of the entire product malfunction cases which occur over in 

exploitation time are related to the early design phases [4]. Removing possible errors from the 

early stages might also be achieved if design space is being thoroughly checked and evaluated 

against the requirements. Therefore, there is an ever growing demand for understanding of 

design as a problem solving process and of synthesis as a design’s processes key element. 

Exploration of the process of design, development of new methods and tools, altogether 

provide designers with means to efficiently search and generate the most feasible or even 

innovative concepts that may lead to a new product being put on the market. In respect to 

computational tools these findings about design process, engineering design synthesis and the 

principles of how do creative solutions emerge provide fundamentals on which computational 

support could be developed thus excelling the design process even further.  

This chapter will present an outlook on general problem solving methods and approaches 

frequently used in engineering, like for instance generating and testing, decomposition and 

heuristics. For all of the methods and approaches it will be found that they are carefully 

integrated into many of the existing design methodologies. Moreover, the models of 

engineering design synthesis according to the Domain Theory [8] and the Theory of Technical 

Systems [1] will be presented. Insights that will be provided will prove helpful for design of 

computational method and tool for generation of operand transformation variants in technical 

processes. The related questions that will be addressed is what parts of these problem solving 

approaches and design methodology regarding the synthesis of technical processes are 

suitable for computer implementation, can they be translated completely to computer 

environment, if not than to what extent and what are the means to accomplish that? 



ENGINEERING DESIGN SYNTHESIS 

16 

2.1 Design as a problem solving process 

The fundamental principle on which designing rests is generating and proposing alternatives 

until they fulfil a set of given requirements and constraints [15]. Taking a guess about the 

possible solution to a given problem and navigating through design space in order to find a 

sufficient solution is a common strategy when dealing with design problems. Depending on 

the complexity of a task, design search spaces will most often end up as being vast, 

constrained, multimodal and full of discontinuities, frequently requiring a heuristic based 

strategy to be efficiently explored. Consequently, by making assessments about the feasibility 

of the individual solutions alternatives at different levels of abstraction, the designer will in a 

stepwise manner progress from abstract to concrete. Each of these assessments is therefore a 

necessity and each one will inevitably reduce a portion of the available search area. Building 

on the latter the design process can be understood and modelled as a tree structured state-

space search process (Figure 2.1). Navigating through design search space and testing 

possible solutions follows the established line of reasoning about how to solve a problem.  

 
Figure 2.1 Causality in design’s degrees of freedom [8], [25] 

However, at one arbitrary point in design process the idea that looked promising at the 

beginning might prove to be exhausted as designer realizes that if going further following that 

path the product designed will never be able to successfully meet the given requirements and 

constraints. Then, designer has to turn back and to consider the other available options. 

Reasons for being that so can be argued since as design progresses the environment of design 

process changes as well as the understanding of the task and object being designed thus 

preventing envisioning of the course of the search. As once said for the artists that in creating 

the work of art, the artist “evolves” to a new stage of how to realize hers or his ideas [26], in 
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the same manner the designer evolves understanding and viewpoint of the task and the object 

being designed. Design stalls and stops, or even going a few phases back in design process are 

the issues that are also tried to be addressed by the introduction of computational design 

support tools (elaborated within Chapter 3.). 

Solving a design problem by using a random walk or a TABU search which excludes 

infeasible design search space areas could prove to be a reasonable strategy; however there is 

more involved, and it precedes the straightforward appliance of a heuristic search algorithm. 

When dealing with complex problems like design, a direct approach with immediate mapping 

from question to answer usually won’t work. If ever obtained, the results usually end up being 

of a poor quality. Research in the field of human problem solving and cognitive psychology 

have shown [27], [28] that every human being will more or less in a similar manner react 

when facing a problem situation. Usually, a complex top-down reasoning process involving 

the expectation of the outcome will govern the search. However, if there is a possibility to 

introduce a methodological approach prescribing how to deal with a certain class of problem 

which is of course an art and science for itself, then there is a chance that the results will turn 

up better as an outcome of more efficient problem solving process. The role of design theories 

[1], [4], [5], [6], [8] can here be reemphasized by explaining their task as to offer descriptions 

of intermediate steps with corresponding activities and to prescribe methods that might help 

guide designer to a successful design.  

A generic methodology for problem solving including design problems can be summarized in 

a few generic steps put within a loop: understanding of the problem that initiates the solution 

process, devising a search plan or problem analysis, applying solution strategy and reflecting 

back to see whether the results meet the requirements [29]. The ability to ask and formulate 

the right question that will be able to describe most of the problem aspects is as equal in its 

importance as the solution itself [29]. Problem definition is a statement of its meaning on 

other terms which are supposed to be well known to a person. Understanding of a design task 

is an internal representation of the problem including person’s initial beliefs and analysis of 

the given problem, its constituent elements and the representation of the goal. Search 

strategies which are employed and no matter how clever they might be depend on the initial 

input and the goal of the search. Problem analysis involves the application of various 

techniques in order to gain insights on the problem. Framing or relating problem to similar 

situations encountered helps restating problem to identify all of the aspects that need to be 

addressed. As once recognized by Herb Simon [15], decomposition of the problem to a 
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smaller chunks of a size that still maintains and tracks the relations to the system but permits 

independent consideration of each of the elements is the norm for the engineering design. The 

same reasoning was adopted by most of the methodological design approaches and design 

theories like TTS [1], Systematic Design [4] and Domain Theory [8]. Building on the 

foundations of the General Systems Theory [30], thus embracing a holistic reasoning, within 

most of design theories [1], [4], [8] and it was adopted to model a product as a transformation 

system the at the early design stages. Eloping to abstract enables designers to focus on the 

architecture of the system, rather than dealing with the details. However, there are degrees and 

alternatives to decomposition. As design process can take different paths, so can the 

decomposition process. Alternatives of decomposition are to be understood in the sense that 

there are different ways by which the designer can define the scope and assign duties among 

the system elements. The assignment of duties defines the system in respect to the elements 

which is in fact a bottom-up solution process. The latter is a synthetic activity under inductive 

inference thus clearly showing that decomposing is not always performed and understood in 

strict reductionist sense, but it may be quite the opposite. Since numerous alternatives can 

appear as a result of different viewpoints on what an element is and how it should perform, 

the introduction of computational support might prove valuable to designer. 

The study of human cognition aimed at finding out how creative ideas emerge shows a pattern 

in problem solving processes [27], [28]. Through analysis of artwork and engineering 

achievements, it was shown that creative ideas were conceived as a result of an ordinary and 

deliberate process. Intensive problem solving techniques based on the knowledge from a 

decade long collection of expertise in the field as well as other domains were applied. The 

same applies to the engineering design it is; solving involves both heuristic search with 

knowledge intensive methods like analogical transfer and in-the-field expertise. Heuristics in 

general tries to find a solution candidate that will at least achieve the given goal without 

considering the utility of the solution. When performing a design task, designers most often 

recombine chunks of past solutions into a novel solution. In fact, this is the norm [1]. Past 

solutions are often mental models and to patch them together requires an abstract search 

process. Inductive and deductive reasoning and the resulting expectations of the product’s 

behaviour based on a designer’s knowledge and experience are involved in such search [31]. 

Knowledge help constrain the search area; however, when heuristics progress stalls with no 

answer found, a work around by establishing analogies might prove fruitful. Analogous 

objects are these that match to a certain extent by the way in which their constitutive elements 
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relate [29]. On foundations of expertise and external sources like text books or reports, 

designers can transfer solution or at least a work principle that might solve the problem. 

Recognizing analogy, i.e. inference by analogy, to generate solutions is most often present 

inside a design process. The awareness of the new solution possibility extends the borders of 

design space thus enabling further heuristic search. Possibilities that arise by patching-up of 

new and old building-blocks in a novel way might lead to a problem solution. Only recently 

the advances in the field of computational cognitive linguistics presented a conceptual 

blending method which to an extent enables a knowledge-intensive reasoning by establishing 

analogies applied to general and common problems [32]. 

Abstract reasoning and specialization or detailing, are two more problems solving techniques 

that are most often present within a design process. Ability to use symbolic systems like 

natural languages and to establish hierarchical class structures are the key element of 

cognition that allows abstract reasoning [33]. Abstraction enables to focus on the important 

but general, to disregard all of the features that are at the moment irrelevant or too distant to 

be accounted for. A systemic reasoning about the world surrounding us is an archetype of 

abstract representation. The same approach was adopted by design theories to manage with 

the complexity of product development at the early design stages. In design moving from 

abstract to concrete is understood as process of the assignment of new attributes to the product 

under the consideration [8], [34]. If framing the same process to optimization problems then it 

can be understood as to put the design objectives in order by the degree of importance and 

acting accordingly when searching for a solution. Specification or detailing is understood as 

assignment of values to attributes [34]. From the perspective of design methodology, design 

stages and phases are ordered in a way that they maintain the introduction of design 

characteristics gradually at the points in evolution when design solutions are evolved enough 

to allow proper reasoning. Therefore, detailing requires concretization of an attribute first.  

Based on the design theory and methodology literature review Sim and Duffy [34] tried to 

identify a generic set of design activities. The outcome of their research efforts resulted with 

an overview of design activities per design process model as shown here in Table 2.1. As 

defined by [34] generic activities performed in design process are subdivided in three 

categories: design definition activities aimed predominantly at problem restructuring and 

managing problem solving complexity, design evaluation activities concerned with the testing 

of solutions and reduction of search space by identification of unfeasible candidates and 

design management activities with the purpose of coordinating the previous two set of 
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activities. In fact, the whole of design process can be modelled as a process of search done by 

a specific method and involving different reasoning principles and solution representations. 

To conclude; in respect to synthesis a similar viewpoint is adopted as presented by the GDT 

bringing it close with the explanatory search process of design. 

Table 2.1 Overview of design activities [34] 

 

Based on this section and on the presented analysis of general problem solving methods, the 

principle mechanisms that drive an engineering problem solving process can be summarized 

in:  

 Problem definition, analysis and variation,  

 Abstracting and specifying, 

 Heuristics and knowledge intensive search, 

 Decomposing to realize and define elements of product as a transformation system,  

 Generating and testing of solutions, and 

 Deciding upon a solution variant. 

Design activity Hubka (1982) Pahl & Beitz (1996) Pugh (1991) Suh (1990) Ullman (1992) Ulrich & Eppinger (1995)

Design definition activities (function to form/structure)

Abstracting    
Associating   
Composing  
Decomposing     
Defining    
Detailing  
Generating      
Standardising    
Structuring/integrating  
Synthesising      

Design evaluation activities (form/structure to behaviour/effects)

Analysing      
Decision making     
Evaluating      
Modelling    
Selecting    
Simulating  
Testing/experimenting    

Design management activities

Constraining 
Exploring 
Idnetifying    
Information gathering     
Planning 
Prioritising

Resolving

Searching    
Selecting     
Scheduling  
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2.2 Design as an explanatory search 

The study of a creative process and how creative ideas emerge requires an analysis directed 

both to the problem being solved and to the methods and techniques being applied for solving 

of that particular problem. Many research efforts in the past and present were directed towards 

the understanding what a creative process is and how to stimulate and simulate it. Our world 

is shaped by the activities of creative people [27] where design and designing is the mean 

through which that shaping was achieved. Therefore, with no doubt, a creative process is most 

often taken as the subject of analysis of how solutions to a problem emerge. Design can be 

understood as performed in a cycle that interlopes analysis, synthesis and evaluation. Each of 

these phases is equal in its importance for solution generation; however in respect to 

reasoning processes performed they differ a lot. By all means, the synthesis as a key creative 

step in which by combining and mixing of ideas new solutions emerge is a focal point of 

interest. The previous sections addressed the design as a problem solving process from the 

methodological point of view leaving the classification of problems and reasoning processes 

that are being applied to be addressed in the forthcoming text.  

Design practice shows that almost often design problems go beyond being ill-defined. The 

initial problem statement is incomplete, the goal is unknown thus recursively affecting the 

input. Because of the uncertainty on both ends, the literature categorizes design problems 

being as even more elusive than wicked problems [34] (wicked problems are these where the 

problem definition is dependant or influenced by the solution [35]). Complex problem solving 

processes as design is, exhibit activities that are of iterative and evolutionary nature guided by 

different logical principles. Finding out the logical reasoning process was a prerequisite in 

attempts that were made in order to create computational simulations of human reasoning 

processes as test beds for determination of creative solution emergence [27]. Development of 

the computational design tools aimed for design synthesis is no exception. The necessity to 

investigate logical principles of reasoning processes is driven by the assertion that all 

formalised processes can be rendered computational. If the formal models could be devised 

then there is a chance to simulate the engineering design synthesis by computational systems. 

In respect to reasoning performed the research has shown [24] that solely deductive models 

do not suffice. Deductive reasoning process is by definition as good as the initial premises 

are. If performed correctly, the outcome must hold, since the truth of inference is determined 

by the truth of the premises, assuming a valid inference process [16]. The goal of design is 

understood as the satisfaction of the existent market and societal means that can be achieved 
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using the technical system designed, then using deduction a direct mapping from the list of 

requirements and needs to design solution should be possible. However, due to 

incompleteness of premises and the evolutionary nature of the design process, the 

appropriateness for design synthesis to be modelled as deduction was refuted [31]. Deduction 

is a one-way process that cannot provide necessary means required for solving of design 

synthesis problems. 

Assigning deduction to analysis and evaluation seems as a reasonable step. Deductive 

inference applied to conclude some facts about design situation assumes a valid outcome as a 

result of true premises. However, the uncertainty that comes with the absence of absolute 

knowledge is present both in the formulation of the design requirements and the object 

designed. Therefore an extension to the reasoning model is necessary calling for addition of 

an inductive reasoning part. Induction can handle situations of incomplete knowledge 

including beliefs and expectations of the person thus mimicking top-down reasoning 

processes. Examples of such are classifier computational systems or concept-learners like PI 

[16]. The valid results of induction include occurrences where although the inference process 

itself was consistent, the outcome must be considered with a degree of uncertainty and not as 

an absolute truth.  

 
Figure 2.2 Design as an explanatory search according to GDT [31] 

The expansion of the deductive model of design synthesis to include both uncertainties of 

inference results and iterative nature of design process was accomplished with the formulation 

of The General Design Theory (GDT) [31]. GDT modelled designing as a process of 

knowledge manipulation based on the axiomatic set theory. Axiomatic foundation offered a 

possibility to derive theorems and to develop a formal model of synthesis process within 
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intention to run it computationally. Although, the initial assumption of the GDT that the 

design knowledge can be organized as a topological structure proved too idealistic [19], the 

contribution of mathematical modelling of design synthesis was valuable. GDT presented 

deductive-abductive model of a design process (Figure 2.2).  

In respect to the problem solving strategy that is applied for generating solutions to 

engineering design problems, it can be said that designing, and in particular the early design 

stages where the need for generation of novel solutions is most emphasized, are performed as 

an explanatory search. An abductive reasoning is a logical principle behind the explanatory 

search undertaken by designer which results in the creation of a technical description of the 

designed product as an explanation to the recognized market and societal needs. The solution 

to a design problem is achieved through an iterative process which assumes co-evolution of 

the object being designed and designer’s knowledge and understanding of the problem he or 

she is facing, i.e. the problem and solution are being redefined iteratively in relation to each 

other. Explanatory search and co-evolution result in a solution which can be systematically 

evaluated, but because of causal relationship that exists between a problem understanding and 

its solution it cannot be told whether the generated solution is a final and best answer to the 

existing requirements and needs. Moreover, the implication that with a designed product the 

existent market need will be fulfilled is a premise in abductive reasoning. Put differently, 

there may be many solutions to the given design tasks. Deductive part of model is of course 

linked to analysis and evaluation parts. More recent advances in understanding of design 

synthesis and its modelling offered an extension to abductive model replacing it with creative 

abduction or innoduction [24]. The Assertion is that abduction alone cannot produce creative 

solutions since a solution proposition is already included in the premise as a part of 

explanatory search. In respect to that, abduction can yield only a design the principles of 

which are already known. Therefore, it is proposed to include innoduction to synthesis 

modelling, and that inference search should result both in the explanation and the design 

specification. However, at the moment, design support tools do not go beyond deductive and 

inductive reasoning models. 

2.3 Engineering design synthesis according to the Domain Theory 

According to Hansen and Andreasen [8] the explanation of engineering design synthesis 

should at least address the following three points: understanding of synthesis activities, 

synthesis as cognitive activity performed by humans and object of synthesis, designed artefact 
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as is. Theoretical model of synthesis should try to unify these three points, what is in contrast 

to most of the design theories which offer only partial descriptions necessary to elaborate their 

viewpoints to engineering design. The Domain Theory (DT) [8] which served as a foundation 

for synthesis modelling [8] was proposed by Andreasen. Built on the Theory of Technical 

Systems (TTS) [1], The Domain Theory adopts viewpoints to the product being designed 

consisting of transformation, organ and part views (Figure 2.3).  

 
Figure 2.3 Domain Theory applied to design object [8] 

The core principle of designing as advocated by the DT is compliant to the fundamental 

principle on which design rests as to generate and propose solution alternatives until they 

fulfil a set of given requirements and constraints. Generation and test [15] of alternatives is a 

process where the DT recognizes two important aspects; what has been accomplished as a 

proposition of structural characteristics of the product being designed, and what is tried to be 

accomplished as behavioural properties exhibited as a result of the proposed characteristics. 

Such generation and test algorithm is performed at all three domains (see Figure 2.3). 

Applying the DT to the object being designed results in designer examining behaviour in 

respect to object’s structural realisation in each of domains. As a consequence, decisions 

made in one domain affect other domains.  
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The transformation domain considers the purpose of technical product as to support 

transformation of operands by delivering necessary effects, the organ domain considers 

structures and modes of actions which create and deliver necessary effects, and the part 

domain resolves how to distribute organs into machine parts. At this point, it is important to 

stress out that among all of the design theories only TTS [1], TRIZ [5], and DT [8] realize the 

importance of transformation performed within technical processes as being crucial for design 

of technical products. It is of an interest to note that product function as a domain per se, has 

been omitted from the consideration. Explanation for the latter can be drawn from the 

assertions made by The Systems Theory [30], where a function of an observed system is 

defined as a property of that particular system. Building further according to the DT [8], a 

product function is a class of behaviour realised as an output of the organ domain. Put 

succinctly, although DT omits the existence of functions as a domain per se, it still concurs 

with the TTS recognizing the function as an ability to deliver the necessary effects. 

According to the Theory of Domains [8] two approaches to modelling of engineering design 

synthesis are understood in a sense of function-means law [15] relating to two design 

situations: 

 Design-process-oriented synthesis referring to design of a completely new product. 

Generation and test algorithm performed over all three domains thus synthesising a 

new product design. This refers to products for which the working principles of 

process domain are not given within design task specification. 

 Artefact-oriented synthesis which is based on the reuse of the past design processes 

where the relationship between product characteristics and required properties is at 

least partly known. 

DT realises that a frequent activity inside process oriented synthesis is a decomposition 

carried out for two reasons; to be able to reduce the overall complexity of the design task by 

dividing it into more manageable chunks, and secondly to assign these chunks to designers 

allowing them to work in parallel. The authors argue that there is no definition what 

decomposition really is [8]. This thesis however, as explained before, understood 

decomposition from a systems’ theory viewpoint as a synthetic activity. Proposing of 

structural characteristics, testing and navigating between the three domains is the explanation 

of the synthesis under DT. After the identification of the purpose of the technical product, 

following generic synthesis steps are proposed according to the function-means law: 
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 Detailing: select means to realise behaviour. 

 Concretisation: assign values to means. 

 Decision-making: select best means. 

 Composition: compose selected means. 

 Decomposition: identify support for selected means. 

The identification of support is performed according to Hubka’s Law which states that the 

means synthesised for solving of the required function are seldom self-sufficient thus most 

often accompanied by auxiliary functions realised by additional means. 

Artefact oriented synthesis allows the implementation of heuristic computational methods. It 

relies on re-usage of past design solutions in order to create new ones. Past solutions may be 

stored inside design catalogues or a specific design task methodology aimed at solving the 

given class of problem may be applied. As DT claims, utilization of the past design is a 

powerful method offering high optimization potentials and generating promising design 

synthesis solutions. However, the way in which reuse of past solution has been framed is 

somewhat in contrast to the explanation of how creative solutions emerge. Combination of 

heuristics, top-down reasoning as a result of past experiences combined with the knowledge 

intensive methods relies on the past solutions. Reuse of building-blocks is an invariant 

approach applicable to any-kind of problem solving, thus being difficult to accept its 

presence, being emphasized only inside artefact-oriented synthesis.  

2.4 Synthesis of technical processes 

Following sections will provide an approach to engineering design synthesis as defined 

according the Theory of Technical Systems. The teleological viewpoint which is undertaken 

within TTS that sets synthesis of technical processes as an initial stage of conceptual design is 

theoretically fundamental to this thesis, thus it is necessary to elaborate it. Two types of 

synthesis which are recognized by the TTS will be presented as well as the models of 

technical processes and technical process decomposition. All of these are required to 

emphasize the importance of technical process synthesis, the relation between technical 

processes and the function of a technical system that needs to be designed and to provide the 

insights needed for design of the method for creation of operand transformation variants. 
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2.4.1 The Theory of Technical Systems 

The Theory of Technical Systems (TTS) is concerned with studying technical systems as 

artefacts that are of technical or engineering content [1]. Based on the legacy from the 

systems theory and cybernetics, the TTS argues that it is necessary to understand both the 

behaviour of technical system and the methods and processes which conceived and created 

that technical system. The TTS builds its reasoning by bringing together how technical 

systems came to be in the first place what is necessary to understand when designer needs to 

establish duties of the technical system under development. Such reasoning is deeper and in 

contrast to the most of the other design theories which tend to accept technical products as a 

fact per se, it offers the possibility to recognize more of the important aspects necessary to 

design successfully. Technological progress achieved throughout centuries of innovation, 

creation and continuous improvement was pushed by societal needs that demanded assistance 

of technical systems in order to make possible and to alleviate attaining of the existent 

purposeful goals. Understanding the motivation for development of technical systems as tools 

being required by the human society is observed throughout the history and in a way it 

equates the evolution of mankind with technical evolution. The history of engineering, 

presents the evolution of artefacts driven by teleological principles, and is therefore an 

inherent component of the civilization and human society. To study and understand the 

history of mankind, one must study and understand the history of design [15]. 

Like any other problem solving, the fulfilment of the existent societal needs and requirements 

can be framed as a transformation process inside which the initial unsatisfactory state is 

transformed through a series of operations into a presumably desired state. In different 

domains involving designing in a broad sense, a transformation through series of operations is 

managed differently but understood as the same. For instance, a straightforward 

computational sciences example of a programming function that ought to be designed in order 

to transform the input variables into the desired output. In the literature one’s own thoughts 

and impressions are transformed into a written text using grammar of a language to make it 

understandable and interpretable for the reader. The examples are numerous and are all look 

alike. Therefore, in mechanical engineering and design a transformation is always perceived 

as being performed inside an artificial process in which an object is transformed intentionally 

and with the purpose. The object that is undergoing the transformation is regarded as an 

operand; a passive member of the whole process that exists in the world around us and which 

exhibits both structural and behavioural changes. How to achieve a desired sate of operands 
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that may fit the existent societal and market needs is put as a central question and it is most 

often answered in terms of which technology to apply. Technology is a collection of 

knowledge describing how and with what to perform a transformation in order to achieve a 

desired state of operands. Technologies differ in principles by which the change of operand’s 

state has been performed, i.e. technological principles based on physical laws by which the 

transformation sequences with their requirements are being derived from. In terms of the 

Theory of Technical Systems, applying a technology is always considered together with the 

assistance of supporting technical systems. Human operator and technical system compose an 

execution part of the transformation system which by interaction with the environment 

provides all the means necessary for transformation to be possible. According to TTS, these 

means are denoted as effects which include actions exerted onto operands by technical 

system, human operator and environment, auxiliary operand’s flow with regulation and 

control [13]. A general model of the transformation process [1] is presented in Figure 2.4 as 

an extension of Figure 1.1 in Chapter 1. 

 
Figure 2.4 General model of transformation process [1] 

Following Figure 2.4 a technical process is defined as an artificial process in which the state 

of an operand is transformed intentionally under the influence of effects delivered from a 

technical system, a human operator and the environment which are collectively referred to as 

transformation system’s operators. In the context of the existent societal needs and 

requirements, it can be said that the fulfilment of these may be achieved within a technical 

process as a transformation processes in which technical systems are in extensive use [1].  
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According to the TTS, determination of the operand transformation process as a sequence of 

operations and operand flows in respect to different technological principles and 

corresponding necessary effects to drive the transformation is referred to as the establishment 

of technical processes and is in a fact the first step which is proposed to occur when moving 

into development of a new product. Technical systems are objects of design and since 

technical processes may be based on different technological principles, then the duties and 

roles of technical systems in the transformation will vary accordingly. These duties and roles 

must be assigned optimally alongside technical process distributing them among all of the 

parties inside transformation system [13]. This is an important aspect since designer must 

establish the expected behaviour, i.e. a function framed as the collection of effects, of a 

technical system that is about to be designed. Interplay between human operator, technical 

system and the environment must be envisaged in a way that all of the parties inside a 

transformation system are capable of producing effects necessary for supporting the 

transformation of operands. Such systemic approach imposes early design stage 

considerations of how the technical system is going to be used once in service. The most 

suitable technologies for operations which are intended to be driven by effects from the 

technical system must be in compliance with the existent market and societal needs. As a 

consequence, various product realization possibilities can emerge as a result of considering 

technical processes variants. Search for optimal or at least suitable near-optimal technical 

process is precisely that what is advocated by the TTS and TRIZ for instance [5], as being 

necessary step, if one aims at designing of truly new and innovative products. 

2.4.2 Decomposition of technical processes 

Following the systems theory approach, systems can be modelled as the collection of 

elements put into a connection inside system’s boundary. Connections or connecting 

elements, most often arrows rather than solely edges are used to introduce the order into the 

structure thus making it interpretable in different ways by which system elements can be 

related one to another. In the same manner, the TTS approaches the modelling of technical 

processes (Figure 2.5). 

Elements of technical processes are operations put into a mutual relationship by operand 

flows which connect between the outputs of one operation to the inputs of subsequent 

operations. Such structure clearly depicts the operand state transition exhibited by operands 

during the transformation process. Building on the latter implies that operations can be in a 
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sequence or parallel. The effects delivered from the execution part of the transformation 

system and the environment, are modelled as arrows directing from operators to operations. 

Flows emerging from an output can be multiple as well as the inputs. On the bases of the 

selected technological principles the task of designer is to structure to structure technical 

process in such a way that it would yield in transformation of operands that has to correspond 

to the existing needs and requirements. If more than one alternative is created the most 

suitable one is to be selected.  

 
Figure 2.5 Structure of technical process according to TTS [1] 

According to TTS in decomposition of technical process a methodological approach is 

proposed. Designer starts from a single operation creating a black-box type of problem 
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representing the existing needs as transformation and then gradually decomposing it (Figure 

2.6). As decomposition progresses towards the problem tearing down to its constitutive parts, 

it becomes easier for designer to grasp all of the aspects and to better understand the nature of 

the problem at hand. High-level decomposable operation is denoted as the process, which can 

be decomposed in a transformation sub-system composed of sub-processes and operations 

interconnected with operand flows. 

 
Figure 2.6 Decomposition of technical process 
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Decomposition process is repeated again and again resulting in the growing number of 

simpler elements interconnected with flows inside fixed systems boundaries. The whole 

process lasts until designer gains sufficient insights about the duties of technical product that 

is ought to be designed and the secondary operands flows that emerge as a consequence of 

technology being applied. Since the definition of technical processes structure involves 

selection of operations, relating them with operand flows and adding the corresponding 

effects and since it occurs at every level of decomposition process thus creating iteration in 

which designer fine tunes at all of the decomposition levels, it is more reasonable to address it 

as synthesis rather than just establishment of technical processes. The analytic part of 

decomposition is concerned with the insights that are gained, but to attain these, a 

transformation process synthesis is required at each and every step of decomposition. As 

argued in the previous sections of this Chapter a decomposition involving the definition of 

system boundaries, elements and prescribing interrelationships between them is not an 

analytic activity, but on the contrary it is a synthetic activity. Therefore, it should be more 

appropriate to use the term synthesis of technical processes. 

2.4.3 Synthesis of technical process as a prerequisite for novel product design 

In respect to engineering design synthesis two design situations are envisaged by the TTS; 

design of a completely novel product and a redesign task [13]. Designing is a mixture of 

systematic and intuitive processes and the TTS defines its task to stimulate efficient search of 

solution alternatives on all the levels of abstraction [1]. The focus is set to tackle the problems 

arising with the novel design, but the theory might be successfully applied also for the 

redesign tasks. According to the TTS, during design process a technical system can be 

considered on different levels of abstraction including technical system’s internal 

transformation process, organs and components used to realize functions and organs at any 

level of completeness. Depending on the intended aims and resources assigned, most often a 

product redesign starts with the identification of the existing organs structure or functions 

these organs fulfil [13]. Starting at higher abstraction level will enable broader search, thus 

generating more solution variants, where if the aim is to preserve product development 

resources than design process will be limited adopting the most of the existing product’s 

structure and behaviour considered at different abstraction levels. After the initial analysis 

step the rest of design process can evolve on the basis of the prescribed methodology given by 

the TTS exhibited in the very well known analysis-synthesis-evaluation cycle. 
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As any problem solving, design starts with a task clarification process which for an outcome 

has to point out at least vaguely what is to be achieved, i.e. what is the required behaviour of a 

future product in order to help it satisfy the existent market and societal needs. Apart from 

design specification as an initial and fixed starting point which is a result of awareness of 

current needs resulting from a market analysis and surveys, problem definition also takes part 

later on inside the design process itself. The latter can be understood if bearing in mind the 

nature of design process which is performed as an explanatory search with constantly 

evolving mutually dependant problem statement and solution. Of course, the explanatory 

search, or creative innoduction, occurs at the point of design process where synthesis is the 

most intensive, therefore mostly constraining the problem redefinition to conceptual design 

phase. Building on the same foundations, the TTS states the principle differences between 

design of a novel product and a redesign on the grounds of the type of initial design activities 

performed in order to determine and clarify what is and how is to be accomplished. With 

redesign task a problem definition emerges as a result of an analysis of the existent product’s 

structure at desirable level of abstraction whereas a design of a completely new product 

considers technical processes synthesis as a part of design problem definition. For instance, 

the function of technical system is a capability to deliver necessary effects is derived on the 

basis of technical process synthesis, what is in contrast with redesign which would start with 

an analysis of an the existent product in order to obtain the function structure.  

Natural question which has to be stated at this point is what are the central points that need to 

be addressed when designing a novel product? According to the TTS, the main areas of 

concern are synthesis of the optimal or at least of the appropriate technical process which is 

referred to as synthesis of horizontal causality chain and establishment a structure of the 

internal technical system’s transformation denoted as vertical action chain [1], [8] (see Figure 

2.7).  

Each technical system exhibits different structures and relationships of its elements depending 

on the abstraction level considered, e.g. function, organs and components [1]. According to 

the TTS a process (not a technical process, see Figure 2.7) within a technical system TS is 

equivalent to functions of TS. After the technical process and the necessary effects have been 

clarified, design of technical system can be equated to establishing the vertical action chain 

and making it realizable by physical components. Depending on the task, the exploration of 

systems structures at various abstraction levels may or may not be used by designer to help 

design a technical system, however, the outcome must be in physical components structure. 
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The vertical action chain is performed through a set of actions which occur within technical 

system’s internal transformation. The latter is modelled as an analogy to technical processes 

and it may be considered as the upmost abstraction level considering technical systems as 

proposed by the TTS. Since this thesis is concerned with the development of computational 

support for generation of operand transformation alternatives it is necessary to address the 

distinction between the two transformation processes and clarify the relation between internal 

transformation and functions of technical system. Internal transformation process represents a 

technical system in its working state. 

 
Figure 2.7 Horizontal and vertical action chain [1], [8] 
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principles of transformation are prescribed inside the mode of actions which are derived from 

physical laws. Output locations on which the effects are delivered to the corresponding 

operations to drive technical process are denoted as action locations. Principle difference 

between technical process and internal transformation process, lays in the fact that technical 

system’s transformation is performed internally by technical system itself [1]. What is of 

interest is that the TTS when considering function structure models technical systems as being 

in the state capable of working, and the effects which are in fact products of the internal 

transformation as a technical system’s capability of performing necessary tasks what is most 

commonly referred to as product’s function. Even further, the TTS proposes to equate internal 

transformation and functions in one to one correspondence [13] thus rendering one level of 

consideration as unnecessary.  

2.5 Implications to this work 

This thesis will not undertake such ambitious task that aims to simulate the whole process of 

engineering design synthesis; rather it will just try to automate one stage, i.e. technical process 

synthesis as given by the TTS that is, of methodological design approach inside its own-build 

logical framework where some of the problem solving methods and techniques can be 

computationally utilized. Computationally supporting the existent methodological design 

approaches additionally benefits with the ease of in-practice acceptance, since designers are 

supposed to be familiarized with various approaches to design during their studies at 

universities or as a part of their professional everyday routine. Moreover, since the 

methodological approaches serve as templates which are to help designers to more efficiently 

solve the given task within a meaningful sequence of steps and although these steps involve 

different cognitive processes which cannot be so easily put into an algorithm, yet it is still a 

firm foundation for the creation of computational design support tools. The extent of mapping 

from systematic approaches to computational environment usually cannot be achieved in one-

to-one manner. Either appropriate encoding of preferred design methods must be devised in a 

manner acceptable in order to suit the existing computational techniques or new 

computational methods must be developed altogether. 

The aim of this thesis is set at generation of method and operand tool for operand 

transformation variants in order to support design process. As shown, the transformation is of 

special interest to the TTS as it recognizes both, the horizontal or technical process and the 

vertical as the internal transformation process. Designer in relation to different technological 
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principles composes the structure of technical processes in order to achieve desired operand 

states corresponding to the existent market and societal needs. Technical processes synthesis 

is a part of design task clarification. It contains both the operand in its end state which should 

be in compliance with the existing market and societal needs and the behavioural properties of 

the transformation process itself. According to the Theory of Domains (TD) the latter is 

referred to as universal virtues of technical process encompassing cost, quality, risks, 

environmental aspects etc. If metric could be established over universal virtues than they 

could be used as objectives which alongside operand’s end state as a goal could serve to 

optimize technical processes. Both the TTS and the TD realize the importance of technical 

process synthesis as the requirement for successful design of a novel technical system. 
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3. COMPUTATIONAL DESIGN SYNTHESIS 

It takes two to invent anything. The one makes up combinations; the other chooses, recognizes 

what he wishes and what is important to him in the mass of the things which former has 

imparted to him (P. Valéry; taken from D. E. Goldberg’s, The Design of Innovation [11]).  

A fairly young research field of Computational Design Synthesis (CDS) to whose body of 

knowledge would the findings of this thesis be incorporated, has in the recent two decades 

emerged as a constitutive part of the Design Science. The advent of computers has excelled 

solving of engineering design problems which initially were more or less performable as 

calculation based tasks. However, with the ever present Moore’s law the increase in the 

available computational power, the ongoing development of programming frameworks, and 

advances in the field of discrete search and optimisation techniques, the extension in the 

applicability to tackle problems involving complete designs generated by computer 

applications have become possible. About a decade after the appearance of expert systems in 

the eighties of the last century, the first significant successes were produced inside the 

evolutionary design frameworks aimed predominantly at the engineering optimisation tasks 

[11], [36], [37]. Most often the results of topological optimisation surpassed the initial 

intention of just optimising yielding in complex designs which have emerged as a 

consequence of evolutionary learning processes encompassing trial and test search method 

which altogether very much resembled the process of engineering design synthesis [38]. 

Currently the CDS supposes an algorithmic creation of designs implemented on computers 

involving an organized approach and methodological modelling [2]. It is a complex 

multidisciplinary research area that brings together advanced computational techniques and 

search algorithms with the knowledge about the object of design and design processes [2]. 

Rather than just aiming at the optimisation, by building on the principles on which human 

designers arrive at a design solution the goal of the CDS can be formulated as to provide an 

assistance in situations where solving of a problem would require generation of a too large to 

cope number of variants. Chapter 2 presented findings about the problem solving in general. 

The models of engineering design synthesis and the synthesis of technical processes as the 

focal point of this thesis where adopted according to the TTS. These postulated the theoretical 

foundations of this research taken from a Design Science’s viewpoint. This Chapter, on the 

other hand, will give the state-of-the-art overview on the Computational Design Synthesis 
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methods and tools in order to add the computational perspective of this thesis. Theoretical 

origins, product modelling approaches and mechanisms by which the existent CDS methods 

and tools generate designs will be explored in order to determine the general principles that 

will be used for development of computational method and tool for evolution of operand 

transformation variants. Since grammar based approach will be used in this thesis a more 

thorough overview of similar methods will be presented. The necessity to considerate 

technical processes inside computational synthesis tools will be re-emphasised. 

3.1 Generic model of CDS 

To consolidate various approaches, methods and tools that emerged over the years, efforts 

were made to establish a generic model of a design synthesis process. Two correlated models 

appeared in the literature: a generic framework [2] that proposed representation, generation, 

evaluation and guidance as four basic steps (Figure 3.1) which must be addressed inside a 

computationally driven design synthesis process; and a performance-based framework 

emerged for topological synthesis proposing investigation, generation, evaluation and 

mediation as steps of a parametric based computational synthesis [39] (Figure 3.2).  

 
 

Figure 3.1 A generic model of CDS [2] Figure 3.2 Parametric synthesis model [39] 

Although the two approaches differ slightly by the nomenclature, the content of the proposed 

steps is almost the same. To reflect on the CDS steps, this research will adopt a model 

nomenclature according to a generic model of CDS [2] (Figure 3.1). Both of the models 

consider the Computational Design Synthesis in the context of a very well known synthesis-
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analysis-evaluation cycle which is so often present in the everyday problem solving. 

However, since CDS assumes a design synthesis performed on the computer and by the 

computer, than the content of the proposed steps is tailored so to meet the requirements of 

such execution. Of course, the immediate and obvious is the necessity to represent the 

problem of interest in a way which is understandable to computational environment. 

Formalizing a problem using a language is a kind of problem representation for itself which 

rests on a well defined formal system, but what is more elusive is how to cope with different 

mental models that designer constructs when dealing with design problems. In the opposite to 

static bounds of programming code, the human mind when confronted with a task acts as a 

pre-processor using various representations as felt fit in order to patch up a complete solution 

inside a generate-and-test processing loop. Creation of analogies, understanding of semantics 

and utilization of abstract reasoning which occur so easily inside one’s mind during problem 

solving are difficult to be performed computationally, and in order to even get near the 

simulation of these cognitive processes, an establishment of in-domain knowledge 

understandable to computers is necessary. As shown many times before by the evolutionary 

computation community [11], [36], [37], the outcome of a search process is directly 

dependant on the feasibility of the encoding that was applied. For instance, an example 

exhibiting dependency between encoding and search is a map from binary encoded string to 

real numbers resulting in discretisation of the real number search space, thus possibly 

concealing the real optimum.  

An effort was made to emulate designers “out-of-the-box” kind of reasoning [27] framing it 

by using dynamic fitness functions which were evolvable themselves thus adapting to the 

course of evolution [40]. However although promising, such considerations always retain the 

same founding model thus being not sufficient to achieve the desired effect. At the moment, 

the CDS understands problem representation as a static part of synthesis framework which 

ought to be designed in a fashion that captures the most of the form and attributes of the 

design search space [2]. Moreover, the problem representation should be founded on the 

established design theory models as these are familiar to designers and are constructs of years 

of research and expertise in design processes study. Depending on the purpose of design 

synthesis, the complexity of the task and considered viewpoints on technical system’s 

structure applied at different stages of design process, the solution representation may be 

realised as a geometrical expression of object’s form as distribution of material in space, a 

real valued vector, matrices, graph structures according to different design process models etc.  
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In contrast to representation, the generation is of course a dynamic part of the model, as well 

as the evaluation and guidance. As shown in Figure 3.1, the mechanism of solution generation 

is closely linked to the type of representation which can be selected or devised anew. It should 

be the best possible fit to the encoding requirements in order to get as much as possible from 

the search across the design space. Moreover, since solution generation very often includes 

systemic integration of building-blocks, a generation method must also obey the approach by 

which the synthesis method utilises engineering knowledge necessary to perform that 

integration. Therefore, it can be said that the principles by which solutions are synthesised are 

founded according to human problem solving methods and techniques ranging from the 

straightforward random generation to more complex knowledge intensive methods. Typical 

generation principles may be heuristics, matrix transformation, grammars, and state space 

search over a tree based model. Solution can be generated as a result of collaboration of 

various types of semi or fully autonomous programs, i.e. software agents, which act as driven 

by the perception of their environment [2]. Very often genetic algorithms are utilised for 

design synthesis, and these require additional decoding function which accepts genotype at 

which evolutionary operators perform and transforms it into a phenotype to obtain the 

structure and behaviour of the system in order to be able to evaluate, rank and select the most 

feasible solutions [11]. For the creation of computational support aimed at conceptual design, 

graph structures are of special interest since most of the design theories use these to model 

technical system in the early design stages. Graph grammars are then used as a means to 

construct and explore different solution variants. 

Evaluation considers ranking as a result of solution analysis showing how well the solution 

candidates perform against the preset requirements. Assignment of a rank to a solution over 

multiple objectives in the present engineering optimisation tools is most commonly performed 

using the well known the Pareto principle. The same is encountered in the CDS. Rather than 

guessing weights and summing them up, the weak Pareto principle for example provides at 

least an objective ranking approach which for a consequence results with a collection of 

feasible solutions bearing the same rank. Ranking demands the establishment of some kind of 

metrics according to which evaluation can be performed. It was shown that performance 

based synthesis [2], [39] usually opts for integration of a commercial simulation and analysis 

software systems. Most of these systems rely on numerical solving of systems of equations 

composed in respect to mathematical model applied and boundary conditions input. 

Integration of such systems which are often originating from different developers results in 
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tedious but unavoidable programming and scripting involving several programming 

languages to be able to patch up a semi automated and to an extent controllable framework. 

The other option is to develop analysis systems from the scratch which most often surpasses 

the intended resources and stems out of research focus leading to a trade of situation between 

the two options. Guidance completes the whole CDS loop. Based on the results of the analysis 

and assignment of rank to individual solutions the feedback is provided to the synthesis 

system enabling it to guide search further in the direction of improvement of the results [2]. 

To select the most feasible solution different strategies can be applied ranging from random 

walk, or in contrast, it can be guided as a result of an emergent property of the algorithm, like 

for instance in the case of genetic algorithms. Sometimes the assistance and supervision of 

designer is called for in order to interpret the results of search accordingly. Some of the very 

well known selection principles include TABU based selection, greedy search which stems at 

selecting the first found best fit solution within each search iteration step, or the evolutionary 

elitist principle which keeps the best found solution as a good gene pool for directing the 

further search. 

In the following sections of this Chapter a related work will be analysed in respect to four 

steps according to the Computational Design Synthesis model [2], [39]. The findings will be 

used to in order to specify scope and impact of this thesis. 

3.2 State‐of‐the‐art on CDS 

The first few approaches examined consider various non-grammar based techniques which 

stem at synthesizing of product concept as a configuration of components. The search for 

solution alternatives is always conducted only at the component level. Most often 

configuration of components emerged as a result of stochastically controlled mapping from 

predefined product functions to components. All of the three following methods have adopted 

theoretical foundations according to Systematic Design [4]. 

A good example on how to apply the existent search method for the conceptual design stage is 

a genetic algorithm (GA) based search inside a morphological chart [41]. The problem of 

generating optimal concepts was reduced to a combinatorial search with GA searching for an 

optimal set of technical solutions that can realize product sub-functions. The components 

were divided into the domain dependable families and had to be pre-selected by the user in 

order to obtain meaningful concept solutions. The approach only dealt with problems having a 
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number of functions for which it was meaningful to represent their relationship inside a 

simple chain. If considering more complex structures, the user had to compose function 

structure in such manner that the overall structure is reducible into series of function chains. 

For the creation of functional models it was proposed to use standard taxonomy as defined by 

NIST [22], [23]. The validation of the solution principles is performed by the energy flow 

compatibility check. To tackle the problem of multiple objectives, a canonical GA was used 

with fitness function defined as algebraic sum of objectives multiplied by a corresponding 

weighting factor.  

Similar approach was undertaken with the Concept generator which is a computational tool 

developed by Bryant et. al. [42], [43] intended to create design solutions by establishing 

mapping from a predefined function structure to the lists of components using matrix algebra. 

Solutions are generated on basis of a web sited repository of function-to-component matrices 

(FCM). The FCM’s show which technical solutions can realize a given function and a design 

structure matrices (DSM) in which component to component compatibility in respect to 

energy flows is defined. Ranking is achieved by comparing the frequency of occurrence of 

components inside the generated solutions to the data gathered from over 70 consumer 

products and put inside the repository. Since the Concept generator can only accept chains of 

functions as an input to the search, then the initial functional decomposition of a product 

considered has to be partitioned in the same manner. Based on the sub-function chain input 

and corresponding technical solutions derived from FCM using matrix algebra, the outcome is 

a full set of all possible component configurations. DSM is then applied to filter incompatible 

components. Apart from chaining that occurs both in the input and the generated solutions, 

the main drawback was not considering the possibility that multiple components can realize 

one product function.  

A different approach was presented with A-Design [44] which included a collection of 

software agents with embedded knowledge, enabling them to perform specific duties in order 

to create meaningful solution concepts using a catalogue retrieved components. A-Design is 

founded on an assumption which relates design to optimization processes with a solution 

generated and improved through iteration until meeting the set of predefined objectives. 

Different agent types where developed; configuration agents which performed an interface 

based connection of components managed by an input-output type compatibility check, 

instantiation agents the duty of which is to retrieve new component from the catalogue and 

fragmentation agents that segmented solutions and preserved them to be improved in iteration 
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steps to come. The selection of agents based on their merit of past performance was controlled 

by a manager agent, however to avoid local optima the cooperation had to be randomized to 

an extent. Learning was achieved in a process similar to TABU search algorithm; designs 

were identified as the Pareto optimal, and as good or bad, and were stored as such. Than at the 

end of each iteration step the manager agent was employed to start a dialogue with the user 

prompting for his or hers action to additionally interpret the stored designs. The user had a 

chance to affect evolution the course adapting it to its own preference so that the created 

designs successfully meet the preset criteria in a desired way.  

3.2.1 Shape and spatial grammars 

Using formal grammars for architecture and visual arts applications was first achieved by 

Stiny and Gips [45] who developed shape grammars as a production system that specifies a 

set of design solutions called a language, by the transformations required to generate that set 

[46]. Thus, to create a formal grammar it is necessary to define elements as well as a set of 

production or inference rules on account of which these elements are transformed inside a 

formal system. To specify transformations, two sets of elements have to be defined; a set of 

symbols denoted as variables onto which transformations can be applied, and a set of terminal 

symbols or alphabet from which onwards no more transformations are possible. In respect to 

developing computational support for product development and design, applying a sequence 

of rules from such formal system as formal grammar is, implies carrying through a series of 

transformations necessary for the creation of design solution. Thus, a successive derivation of 

all possible combinations of rules creates a design search space regarded as a formal language 

of specific engineering domain for which the rules were defined for. The resulting design 

solution can be understood in a linguistical sense as a syntactically correct expression or a 

sentence composed of alphabet of a formal language. In order to produce optimal solutions an 

extension to the method was made with an addition of various stochastic search algorithms. 

For instance, a shape annealing become by matting shape grammars with a simulated 

annealing algorithm [46], [47] and these were successfully applied for solving topological 

optimisation problems of truss structures involving both in-plane and in-space problems. 

Design of product’s form or shape assumes aesthetics and appearance that can attract potential 

customers. A grammatical approach to structural design offered that by including aesthetic 

principles or specific style in a set of rules by which a form of an object will be created 

(Figure 3.3-Figure 3.5), [46]. 



COMPUTATIONAL DESIGN SYNTHESIS  

44 

A series of industrial design papers attempted to identify brand style features and then to 

generate solutions using these specific styles embedded within grammar rules. Research was 

predominantly motivated by vehicle applications [48], [49]. Although shape grammars are 

invented to create and investigate solution alternatives for architectural or industrial design 

where function is a direct consequence of object’s form or shape, the basic principle of 

grammatical formalism seemed extensible and applicable for supporting of other engineering 

domains concerned with different types of artefacts.  

  

 

Figure 3.3 Planar truss grammar (f-free line, black dot - 

fixed, white dot - free) [46] 

Figure 3.4 Example of rule applications [46] 

 

Figure 3.5 Cantilever truss designs for minimum mass using shape annealing [46] 

In view of mechanical design and product development, shape grammars based methods and 

tools are most commonly aimed at supporting design phase which includes late conceptual 

and embodiment design stages. Often, the structure of a product or the optimal configuration 

of product components to achieve for instance close packing but to retain desired functionality 

is the aim of support. As a consequence, the grammatical systems which are used are referred 

to as spatial grammars. Most of the existent methods and tools developed and used today are 

domain and product specific and are therefore lacking a common model [50]. 
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A parallel grammar for mechanical design synthesis was developed by Starling and Shea [51]. 

The aim of the research was also to investigate the feasibility of creating simulation-driven 

search in order to produce better quality designs. To achieve that, a cross-domain modelling 

language Modelica inside Dymola was used to obtain simulation results. However, full 

automation was never reached, so instead, precompiled simulation executables were used that 

required only parameter value update inside input files to deal with new designs. Parallel 

grammar was founded on FBS product representation [52], [53]. It consisted of two types of 

rules: function grammars which generate function structure using predefined building-blocks 

and structure grammars which then create parametric component structure as a simulation 

starting point. The Pareto optimal solution was found using hybrid pattern search algorithm. 

As an extension of the parallel grammar method and the research of Starling and Shea, a 

simulation-driven method for gearboxes synthesis was developed by Lin et. al. [9] (Figure 

3.6-Figure 3.8): 

 

Figure 3.6. Packing bounding box and shaft and gear [9] 

 

 

 

 

Figure 3.7 Component vs. graph representations [9] Figure 3.8 Rule examples [9] 

The method scope was limited to embodiment design. The component structure was 

represented using a virtual graph consisting of gear pairs and shafts which thus were depicting 

a power flow inside a gear-box. The system topology and geometry modification were 
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derived by following a set of spatial grammar rules inside a simulated annealing search 

process. Grammar rules were ranked according to the performance of designed they created. 

An interesting approach for computational support of simulation driven 

microelectromechanical system (MEMS) synthesis was presented by Bolognini et. al. [54]. 

CNS-Burst method was developed as a combination of Connected-Node System which is in 

fact a hypergraph based representation of MEMS systems, and a multi-objective generate-and 

test search algorithm denoted as BURST. Search principle is based on the procedure where 

the CNS modification operators are applied in short bursts to current system layout. 

Frequencies of modifications are user-defined. Special evaluation module was used to obtain 

performance metrics of the created system by which a non-dominated solution population was 

created.  

3.2.2 Graph grammars 

Capturing the engineering knowledge as a set of production rules and then obtaining solution 

alternatives by automating derivation process computationally provides a generic model of 

design support on the basis of which designers can establish their decisions when considering 

product realization possibilities. For the creation of computational support for the early stages 

of product development most common is the application of graph grammars [2], [51] and 

[55].  

Following the systemic reasoning, technical processes and technical products are most often 

modelled as transformation systems, both formally and visually represented as graphs. 

Depending on the abstraction level and context of respective early design stage, 

transformation system’s elements can differ but the basic graph representation will be 

retained. Graph grammars are like shape grammars defined as production systems consisting 

of vocabulary and a set of rules for implementing graph transformations. In most cases 

computational support is provided for product function structuring and component 

configuration. Optimisation is most often aimed at component level. 

A good example of how to tackle the problem of computational concept generation using 

grammars was presented by Jin and Li [56]. The idea of their hierarchical coevolutionary 

design approach (HiCED, Figure 3.9) is to iteratively co-evolve products on different 

abstraction levels in parallel. First, based on the knowledge stored inside a rule library, an 

initial population of functional decompositions is created. Then, a genetic programming and 
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genetic algorithm are triggered to co-evolve products’ functions and components as functional 

means. Functional and component structures are represented with simple flow graphs. The 

fitness function is formulated using multiple weighting factors. The idea of co-evolution on 

different abstraction levels was explained earlier in the General Design Theory (GDT) [31] 

and function-behaviour-state functional modelling (FBS) [52], [53]. 

 
Figure 3.9 Design process of HiCED [56] 

The existence of product functions is confirmed through the behaviour of components as a 

result of deductive and abductive reasoning. Therefore, there is a point for using co-evolution 

on different abstraction levels of the product abstraction. The only problem is how to 

formalize a co-evolution process for computational purposes in order to make it generic. 

Schmidt and Cagan developed GGREADA [57] which is an approach to graph grammar for 

support of mechanism synthesis. Built on the foundations of its predecessor, the FFREADA 

algorithm which is a function-to-form recursive annealing algorithm that used a string of 

symbols to generate hand drill designs, GGREADA uses graph grammars to generate 

concepts using components based on a Meccano® parts set. It is a mixture of configuration 

and catalogue selection design tasks. Function-to-form transformation is realized by top-down 

reasoning by which a component is selected to realize a product function. Also, a function-

sharing in respect to a component realizing several functions is supported. Instead of state-

space search algorithm, GGREADA tried to use a simulated annealing to recursively evolve a 
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product on two abstraction levels: function level and form (component) level. In that way it 

outperformed state-space search. The objective function was formulated as multi-objective 

with multiple weighting factors. 

Determination whether a solution is unique and the recognition of similarities in structure are 

most often present in the evaluation phases of engineering design. Design synthesis methods 

and frameworks which rely on graph representation of a product, resolve that issue by 

detection of isomorphism among solution variants. Most often this demands a special 

detection algorithm to be developed. Siddiqque and Rosen use graph grammars to develop a 

Product Family Reasoning System (PFRS) which would help designers in developing product 

platforms [58]. Two questions were addressed: how to establish common platforms for a set 

of different products, and the opposite, how to specify the product portfolio supported by the 

platform. Using sub-graph isomorphism, common functions can be identified. First, the 

production rules were applied to generate a variety of product function structures which were 

then mapped to components containing relationships among functions and components. 

Afterwards the identification modules were represented as hypergraphs. Answering how to 

specify the product portfolio supported by the platform, results in viewing the grammar not as 

a generative but as an acceptance grammar thus parsing the product architectures to see 

whether they fit in the language of the specific product family. Slightly different approach 

aimed only at structure synthesis was developed for the automated synthesis of mechanisms, 

for epicyclical gear trains in specific [59]. Graph grammars were used to add vertices and 

loops to the initial start graph. With the interpretation of the resulting structure by processing 

vertices and edge labels the desired gear transmission ratio was obtained. Additional graph 

grammar rules were added for identifying isomorphic graphs what enables designers focus 

just onto unique solution variants.  

Wu et. al. developed a systematic approach for automated support for design of mechatronic 

dynamic systems based on bond graph formalisms [60]. It is a simulation driven approach 

which requires as an input a conceptual definition of dynamic system to define a state space. 

For that purpose, a conceptual dynamics a CD graph is introduced, which represents 

information about the connections between components of a system. Generic models of 

components having various types of connection possibilities are stored within a repository. 

Dynamic model of a system represented with state space equations is automatically generated 

on account of a defined concept using bond graphs transformation and user defined goals. 

Optimization is performed using real-valued genetic algorithm with individual solution 
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genotype being derived based on hierarchical representation of component design rules, 

constraints and physical laws. 

BOOGGIE, which is a recent method developed according to FBS product model, tends to 

make use of the available graph grammar transformation tools and other available open-

source software packages and to integrate them into a framework for synthesis of mechatronic 

products [61]. GrGen [62] which is utilised for conducting the graph grammar 

transformations, and open-source TULIP provides a graph visualisation. Integration of 

SysML modelling language is also being considered. The framework enables user to visually 

define rules which are then interpreted to GrGen’s internal script language. Framework 

considers top-down approach of decomposing product’s structure on all three levels of FBS 

(Figure 3.10). Currently the framework only aims at variants generation without the 

optimisation support. 

Figure 3.10 Top-down graph grammar approach according to FBS [61] 

3.2.3 Other approaches to early design support 

Cambridge Advanced Modeller (CAM) developed by Wyatt et. al. [63] is a computational 

tool built on top of P3-Signposting which aims to support product architecture design. In 

order to help designer systematically consider conceptual variants of product configurations, 

the method generates a set of all possible alternative architectures for a given product. The 

basic principle of the approach claims that for any given initial architecture, any other 

architecture of that product is reachable through a state space search process by carrying out 
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sequence of transformations. Therefore, it is required that designer using a graphical 

modelling language for an input defines a schema which is a graph composed of a finite set of 

different relations, components and logical constraints. The schema logically frames an 

architecture state space. Using a depth first search, elementary transformations on initial 

product architecture are executed and then tested against the proposed schema. Two 

evaluation metrics are proposed: changeability representing immunity to change propagation, 

and designability which represents the relative design effort required for architecture. 

Another recent approach that is worthwhile mentioning, is a SOPHY developed by Rihtaršić 

et. al. [64]. It aims at supporting designers by generating a sketch of a concept clearly 

depicting the working principle on which that concept is based. Process of sketch generation 

is performed with the assistance of designer but using predefined building-blocks or schemes 

which are coupled into complete concept. These basic schemes are in fact a representation of 

wirk elements. Which schema will be used is resolved with automated part of the method and 

the tool which manages to create linear chains based on physical laws, which is based on the 

principle of causality. The tool substitutes one variable from the chain of equations, i.e. 

physical laws, until a derived output equates the one as specified by designer. More physical 

laws can help to resolve one product’s function, or more alternatives for the same function 

can be generated. At the moment, neither open systems nor expressions containing n-

dimensional vectors can be modelled. Similar approach based on the chaining of equations 

was utilised some years ago for development of mechatronic systems. 

3.2.4 Implications on this thesis 

The overview of methods and tools shown in Table 3.1 (see the following page) gives a 

summary of the state-of-the-art analysis on CDS presented within this Chapter. Recent 

methods and tools are put in comparison in order to justify the scope and principle of 

synthesis method as proposed in the introductory Chapter of this thesis. The overview is 

structured to show what means are used to perform synthesis steps according to the adopted 

generic CDS process model (Figure 3.1), and to show for which design phase was the 

computational support intended. If relevant, the underlining design theory and methodology 

according to which a method was founded is also identified. What is clearly visible from the 

presented data is that the bulk of methods and tools for the support of conceptual design and 

concept generation (see Table 3.1 rows 6-14) choose graph grammar or spatial grammar 

representation.  
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Table 3.1 Overview of CDS methods and tools 
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Argumentation for that can be drawn on account that almost all of design theories model 

product as a transformation system of some sort which is then in a formal and visual manner 

represented as graph. From mathematics and computational sciences it is known that graph 

transformations can be achieved using formal grammars [65] and with an addition of 

advanced stochastic search methods the possibility is created to evolve graph-like solutions in 

an elegant manner. What adds more points in favour to the selection of grammars is that 

engineering design knowledge formalization for specific area of application can be achieved 

using formal grammars. Moreover, the decomposition process as an activity that is so often 

performed by designers the early design stages is to an extent analogous to grammar 

derivation process. The latter will be addressed in the next Chapter in more detail. Formal 

grammars are means that were extensively used thought the history of AI to create formal 

systems that allow machine learning and machine induction [16], [66]. At the moment the 

systems of such capabilities (like [58]) are rarely implemented in the research area of product 

development, but in time, they will appear since grammars allow such possibilities. Moreover, 

rather than creating a number of methods based on different principles (see Table 3.1 rows 1-

5); formal grammars offer the possibility of creation of a unified formal language of product 

development.  

3.3 Implications on this thesis 

The creation of a unified formal graph grammar based language of product development is a 

distant and visionary idea, but as people as individuals may understand and speak several 

different languages, then why shouldn’t the language describing engineering knowledge in 

different domains be shared and understood by different computational systems. The research 

presented within this thesis will embark on route of developing computational support for 

operand transformation variants in technical processes. Given an overview showing current 

research efforts aimed at graph grammars utilization for the creation of early design support 

and in a view of justification presented it seems reasonable to selected graph grammars as a 

mean to synthesise technical process variants.  

As shown in Table 3.1, the highest point of abstraction from which current approaches start is 

the functional level not recognizing technical processes at all. Reasons for being that so are 

argued in some of the recent publications in the CDS [67], [68] where it is pointed out that the 

TTS and its philosophical views are not widespread often concealed by the well known 

Systematic Design. Focusing only on technical system excludes other parties participating 
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inside a transformation system (Figure 2.4) and thereby neglects processes of interaction with 

human operator and the outside environment. If the ability to deliver desired effects is 

considered a function of the product (behaviour), then the need for these effects must be 

recognized before the functional decomposition. Converting effects into initial conditions of 

search starting at technical system’s function level has for a consequence an unavoidable 

restriction in design search space. Further consideration of technical system at lower levels of 

abstraction cannot add new effects since they would redefine what a technical system should 

do within a transformation system, and the only other way to accomplish that change is to 

affect the technical process inside where the main operand transformation is realized. 

Therefore, a selection of the Theory of Technical Systems to provide a theoretical foundation 

to this research in field of the CDS can be summarized with the following claim: variations on 

the process level yield different function decompositions; as a result a design search space 

broadens. 

Fellow researchers in the field of design theory and methodology may point out that only 

TTS, TD and TRIZ in their special way recognize technical processes as such, and that 

different methodology such as Systematic Design or FBS product modelling excludes 

technical processes from consideration (Table 3.1), which is in fact true [53]. However this 

does not mean that technical processes do not have to be considered and that an addition of 

another layer, the technical process as a top layer, in a form of computational method and tool 

could be beneficial to the current research efforts made in CDS. From design theory point of 

view current approaches that aim at differencing functions as lower and upper, where the 

latter denotes fulfilment of societal needs, would hopefully embrace reasoning as presented by 

TTS or TD, since functions do not equate processes. 
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4. FORMAL GRAMMARS AND LANGUAGES 

The question, 'Can machines think?' I believe to be too meaningless to deserve discussion. 

Nevertheless I believe that at the end of the century the use of words and general, educated 

opinion will have altered so much that one will be able to speak of machines thinking without 

expecting to be contradicted. (Alan Turing, 1950 [69]) 

The introduction of information theory and the advent of computers made possible that any 

kind of mathematical objects like graphs, matrices, images or even sound waves can be 

interpreted transformed and conveyed as sequences of strings composed of symbols [70]. 

Development of programming languages to write computer programs that when compiled and 

executed pass sequences of instructions to processor, all of this, each in its own special way 

operates on the basis of some sort of formal system which involves transformation of string 

like, or, to use a more precise term tree like structures. Clarification of what transformations 

on strings of symbols have to do with a development of computational design support in 

general case and in specific with the generation of operand transformation variants is closely 

linked with the studies of linguistically based knowledge representations done in AI. The aim 

of the previous Chapter was to provide an overview of the Computational Design Synthesis 

methods and tools showing that recent research more or less, tend to develop computational 

support based on formal grammars and languages. Although it could be sufficient to accept 

them as a foundation of this research, it seemed necessary to somehow relate current CDS 

efforts and the method for generation of operand transformation variants produced within this 

research with its theoretical foundations by explaining how formal grammars and formal 

languages came to be. This Chapter will try to lay out a formal point of view on grammars 

and languages which is necessary for understanding of method’s definition in the Chapters to 

come. Moreover, the distinction between sequential depth-first and breadth-first grammars 

will be stressed out since this thesis assumes breadth-first derivation sequence. The Chapter 

will conclude with a small example of string formation in context-free language the grammars 

of which will be expressed in meta-language of Backus-Naur Form [21].  

4.1 Grammars, knowledge representation and engineering design 

How to tackle the knowledge formalisation problem in such manner that it can be effectively 

used and interacted or integrated is the key issue in the field of AI [71]. Rather than 



FROMAL GRAMMARS AND LANGUAGES 

56 

embarking on the approach which aims at achieving increase in the performance by 

developing new types of hardware or more optimized search algorithms, the epistemological 

approach considers development of new and efficient ways of knowledge formalisation 

techniques to excel computationally performed problem solving. Efforts in the AI community 

done from 1950s to the end of the 1980s resulted in development of computational models of 

human cognition where the increase of performance of the respective model is to be achieved 

by an increase in the amount of the knowledge acquired [71]. Modelling of human cognition 

as an information-processing system [15], [27] was created as an analogy to computational 

systems; it could be emulated by computer. In fact the aim is to understand cognition thus 

creating platform independent models [71], and since computers are designed to operate in 

symbolic languages like humans do, they proved to be ideal test beds for the theories about 

human cognition [27]. 

Maybe one of the earliest and according to some the most surprising examples is Shenker’s 

Theory of Tonality made for Western music in 1935, where a set of rules was used to expand 

initial motive into a complete musical composition [72]. The pioneering work, of course not 

related to knowledge formalization when it appeared in 1940s, was production systems as 

formal systems conceived by Emil Post [73], [74]. The Post production system in particular 

performed transformations on strings composed as sequences of symbols using a finite set of 

condition-action rules, or simply productions. Formal languages as a scientific discipline 

came to be as results of studies that Noam Chomsky performed in 1950s. In attempts to 

determine the basis and goals of linguistic theory he devised a formal model for the 

description of natural languages. Establishing of a formal basis was necessary to create a 

systematic approach to formation of scientific theory. Guided by the previous work of Post 

and others, Chomsky seeks out transformational model for language syntax as a mean for 

producing the sentences of the language under analysis [20]. In contrast to the semantics of a 

language that gives meaning to the sentences, grammar only determines the correctness of the 

form of sentences. Productions systems being nothing else but string based transformation 

systems provided principle for the creation of formal grammars. As a case study Chomsky 

defines a context-free grammar as at least adequate to capture formalisms of the English 

language grammar. In the early days of artificial intelligence and machine learning it was 

recognized that it was possible to tackle machine induction problems by means of formal 

grammar [20], [75], [76]. The basic principle was that after learning an initial set of rules, a 

machine using a formal language would be able to create grammatical statements with the 
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possibility to explain given phenomena beyond the set of given rules. According to 

Solomonoff, a machine could accept categories that have been useful in the past and than by 

means of a small set of transformations, derive new categories that have reasonable likelihood 

of being useful in the future [75]. In 1970s, Minsky, Newell and Simon and others developed 

computational models of human cognition and problem solving where formalisation of 

knowledge was achieved on the basis of production systems and formal grammars. Problem 

solving process is modelled as a formal system comprised of intermediate problem-to-

solution states which are transformed under effects of knowledge formalised within a set of 

condition-action rules. If the knowledge about domain can be encapsulated inside these set of 

rules, then a robust problem solving system could be created.  

Translation of engineering design methods into a computational environment has a 

prerequisite in creating formal models of the method under consideration; a GDT as a logical 

description of design process is an example of such attempts. Design is a problem solving 

activity which exhibits formation of space of possible solutions and exploration of it using 

different search strategies [15], [74]. Decomposing a problem in order to reduce it to its 

constitutive elements or generating and testing solution candidates against the requirements 

by heuristic recombination of solution building-blocks are some examples of solution 

strategies, but how a person will perform and navigate through search space depends on the 

knowledge and experience of the person in a particular domain. Rather than rely on random 

walk, the knowledge about a task may narrow the search space, thus minimizing the number 

of candidate solutions. Creating analogies require out-of-domain knowledge so that designer 

can frame problem in respect to different contexts in order to identify similarities in structure 

and to ultimately produce an analogy. If the aim is to computationally emulate some of the 

more complex problem solving processes so that their prospects could be utilized for 

engineering design purposes, then a knowledge formalisation presents a necessity. For 

example, complex processes like learning and then usage of the acquired knowledge to expect 

and foresee a solution of the problem situation to which a person is confronted demand 

knowledge formalization of some kind which has to be embedded into a more flexible 

programming architecture, rather than hard coding of all the possible instances that might 

occur [27], [77]. Formalisation using a set of rules enables easy extension of the body of 

knowledge that has already been implemented by adding the new rules from within or from 

the outside of application domain. Up to recently, optimisation methods were usually those 

that were transferred to computer environment; such methods are most often numerical in-
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core, not aiming in simulating human performed problem solving. Most often these methods 

are limited in their scope in respect to design process and operate within limits of very 

concrete attributes of the product under consideration.  

4.2 Production systems 

Production system is a formal system designed to perform transformation of certain input to 

particular output using a set of condition-action rules that can be applied whenever conditions 

to do so have been met [78]. The set of condition-action rules is denoted as a set of production 

rules or simply productions; whereas a sequence of rule application is referred to as a 

derivation sequence. In case of strings, the production rule application is often denoted as 

rewriting. Control of which rule will be triggered is performed dynamically at run-time in 

respect to the current state of transformed object. Since the inference procedure is embedded 

into a set of rules performing transformation governed by condition-action principle, it can be 

said literally that a system’s output has been produced rather than derived or inferred, what 

consequently resulted in naming the whole system as a production system. It is necessary to 

present this brief classification of production systems in general, since formal grammars are 

nothing more than a special type of production system. 

According to Stiny and Gips, every production system can be categorised in terms of objects 

for which they are intended to transform, the way by which productions are defined, 

mechanism by which rules are applied, and finally in respect to objects that they generate 

[74]:  

 Object types: initially Post’s system [73] transformed strings as sequences composed 

of symbols belonging to a specified fixed vocabulary. However, since production 

systems became of interest in other domains, like theory of computation, linguistics, 

automated text processing, image processing, biology and even within mechanical 

engineering and design, altogether resulted in a development of production systems 

that accept more complex types of objects including graphs, lists, trees and so forth.  

 Definition of productions: the generic form by which production rules are defined is 

expressed as ߙ →  stands for the left-hand side of the rule denoting a string ߙ where ,ߚ

of objects that will be replaced by the objects on the right side of the rule for whom ߚ 

stands for. Moreover, production systems must also contain an object ߱ onto which 

the transformation is being applied. Elements that are belonging to fixed vocabularies, 
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set of objects’ building-blocks are used to construct ߙ,  and ߱. In addition to fixed ߚ

objects, both ߙ  and ߚ  may contain variables. Like specified in Post’s production 

system [73], a production could be applied to string ߱  whenever strings could be 

assigned to variables so that ߙ is identical to ߱ [74] (for extensive explanation of Post 

production system see [79]). 

 Rule application mechanism. Procedure starts with an initial object ݓ which is then 

being transformed through consecutive steps using production rules of ߙ → ߚ . To 

apply a rule and perform the transformation, first the identification of any of ߙ inside 

߱ is performed. After all of the requirements have been met to identify ߙ inside ߱, the 

identified structure is subtracted from ߱, and then on its place object(s) inside ߚ are 

added and integrated. The production process stops after there is no more rules to 

apply to ߱ since none of its parts and ߱ as a whole do not match any of ߙ. Post’s 

production system which contains variables has an additional operation first of 

assigning values to variables and then if the match of object ߙ  to the whole ߱  is 

positive, the whole ߱ is being replaced with ߚ. Not all of production systems perform 

in such manner, most often only the sub structures are being replaced in order to 

transform ߱.  

4.3 Grammars as production systems 

As defined by Minsky [79] a formal language is a set of expressions formed from some given 

set of primitive symbols or expressions, by the repeated application of some given set of 

rules; formal language is than defined as primitive expressions plus the rules. Primitive 

expressions are the sentences of the language and can be infinite in numbers. Formal 

grammars are a type of production systems, aimed at describing linguistic structures of the 

language under consideration. Initially developed for modelling purposes within linguistic 

theory, they have found extensive use for defining syntax of programming languages which 

are artificial languages by which we communicate with computers. Syntax defines the formal 

relations between the constituents of a language, thereby providing a structural description of 

the various expressions that make up legal strings in the language without the consideration of 

their meaning [81]. This section will attempt to present some formal definitions of what 

formal grammars and languages are. The aim is to provide only what is necessary for this 

research, by skipping some of the intermediate steps. Moreover, various authors [70], [78], 

[80] and [81] tend to present same concepts in formal language and grammars theory as felt 
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convenient to fit the intended purpose; this thesis adopts consolidated approach 

predominantly founded as given in [70].  

The same set of letters of the Greek alphabet in lowercase which are already being used to 

explain principles behind general string based production systems, will be used again to 

define string based formal grammars; left-hand side of production rule will be denoted as ߙ 

and the right-hand side will be denoted as ߚ. String at arbitrary derivation step including 

initial step will be denoted as ߱. The definition of formal grammar ࣡ is given as follows [70]: 

DEFINITION 4.1 A grammar ࣡ is expressed as a quadruple ሺߑ, ࣰ, ࣭, ࣪ሻ where: ߑ is a 

finite nonempty set of terminal symbols or alphabet, ࣰ  is a finite 

nonempty set of non-terminal symbols or variables satisfying 

ߑ ∩ ࣰ ൌ ∅, ࣭ is a starting symbol or axiom with ࣭ ∈ ࣰ, and ࣪ is a 

finite nonempty set of production rules of the type ߙ → ߚ  where: 

ߙ ∈ ሺΣ ∪ ࣰሻ∗ࣰሺΣ ∪ ࣰሻ∗ and ߚ ∈ ሺΣ ∪ ࣰሻ∗. 

 
Clarification of the former definition [78], [80]: 

 Asterisk denotes all possible arrangements of elements within a string, a concatenation 

of objects within the string that is, contained within the set to which it is being applied 

including the element of zero length denoted with ߝ| ,ߝ| ൌ 0.  

 Terminal symbols or simply alphabet are these which constitute all of the expressions 

within language.  

 Variables are sometimes referred to as syntactic categories are symbols which are to 

be substituted during the derivation as specified by production rules.  

 The set of all possible rules to which ܲ belongs can be expressed using Cartesian 

product if considering each production as an ordered pair of ߙ and ߚ, thus:  

    ࣪ ⊂ ሺΣ ∪ ࣰሻ∗ܸሺΣ ∪ ࣰሻ∗ ൈ ሺΣ ∪ ࣰሻ∗. 

 Left-hand side of production ߙ, or simply head, is a string that always contains at least 

one variable. Right-hand side of production ߚ, or simply body, may contain any of the 

symbols.  

Production to form a string in language is applied successively to all symbols of the string ߱ 

by substituting or simply rewriting variables and leaving terminal symbols as they were. 
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Derivation process ࣭ ⟹࣡
∗  ߱  is conducted as series of productions under grammar ࣡  until 

initial symbol ࣭ is transformed into string ߱ consisting only of terminal symbols from Σ. 

DEFINITION 4.2 A formal language ࣦ ൌ ࣦሺ࣡ሻ generated by grammar ࣡ ൌ ሺߑ, ࣰ, ࣭, ࣪ሻ 

is defined as: 

ࣦሺ࣡ሻ ൌ ሼ߱|߱ ∈ ,∗ߑ ࣭ ⟹࣡
∗ ߱ሽ 

4.4 Classification of grammars and Chomsky's hierarchy 

Grammars as formal systems can be categorised in respect to principles by which they 

operate, what kind of inputs they accept and what kind of outputs they produce. If input to a 

formal system is an initial symbol, a single start symbol, and the produced output is a 

sentence in the language defined by its respective grammar, then such grammar is referred to 

as generative grammar. Generative grammar will be thus used throughout this thesis for 

formalisation of operand transformation variants. Almost all of CDS methods intended for 

early product development support are generative grammar based (see overview in Table 3.1). 

On the other hand, accepting systems belongs to the automata theory and are in opposite to 

generative grammar; they accept a sentence of formal language as an input and, at the output, 

it usually end with a stop symbol [78]. The Turing machine is a very well known example. 

Grammatical inference accepts a set of sentences written in the language under consideration 

and tries to determine the grammar of that language [82]. Generative grammar can be 

distinguished in various ways; as deterministic or stochastic in respect to how to select among 

the productions, rewriting can be conducted sequential or in parallel, grammars can be 

parametric or non-parametric, pass attributes and so forth. However, the hierarchy devised by 

Chomsky which categorises grammars by stepwise introduction of restrictions to productions, 

shows in a practical way the capabilities of individual grammar for representing formal 

languages. Assumption is that the grammars are of course generative and that rewriting is 

performed sequentially. The grammar types according to Chomsky are given in the Table 4.1: 

Table 4.1 Chomsky's hierarchy of grammars [20] 

Type Grammar 

type଴ unrestricted grammars 

typeଵ context-sensitive grammars 

typeଶ context-free grammars 

typeଷ regular grammars 
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Definition of grammars according to Chomsky's hierarchy is given as follows: 

DEFINITION 4.3 Let ࣡ ൌ ሺߑ, ࣰ, ࣭, ࣪ሻbe a formal grammar of language ࣦ ൌ ࣦሺ࣡ሻ [70], 
then: 
 

1. ࣡ is called unrestricted grammar or type଴ grammar if no restrictions are applied to 

productions. 

2. ࣡ is called context-sensitive grammar (CSG) or typeଵ grammar if each production in 

࣪  satisfies that |ߙ| ൑ |ߚ|  resulting that no production can decrease the length of 

string. The productions of type ࣭ →  are allowed if no occurrences of head symbol ߝ

exist on the right-hand side of any other production. 

3. ࣡ is called context-free grammar (CFG) or typeଶ grammar if each production in ࣪ in 

addition satisfies that |ߙ| ൌ 1 resulting that productions are of form ܣ →  is ܣ where ,ߚ

single variable. 

4. ࣡  is called right-linear or regular grammar or typeଷ  grammar if each of the 

productions in ܲ  comply to any of three following forms: ܣ → ܤܿ ܣ , → ܿ ܣ , → ߝ , 

where ܣ and ܤ are single variables and c is single terminal (ܣ ൌ  .(is allowed ܤ

Regular grammars may also be left-linear, which intuitively results with quite the opposite 

formation of body of productions given as ܣ →  It was necessary to present distinctions .ܿܤ

between grammar types since context-free grammars will be used for formalisation of 

operand transformation variants (see Chapter 6). 

Relationship between different types of grammars is given with the following expression [20], 

[70]: 

ଷ݁݌ݕݐ  ⊂ ଶ݁݌ݕݐ ⊂ ଵ݁݌ݕݐ ⊂  ଴ (4.1)݁݌ݕݐ

 
For example, any language defined with ݁݌ݕݐଶ grammar is a subset of language defined with 

 ଴ grammar can be݁݌ݕݐ ,ଵ grammar and so forth according to expression (4.1). Of course݁݌ݕݐ

used to describe any language according to proposed classification. However, that doesn’t 

mean that language described with ݁݌ݕݐଶ  cannot be described by ݁݌ݕݐଷ  grammar if 

productions and restrictions allow that transition. In the field of theoretical computation there 

are means to perform such transitions by eliminating occurrences of recursions in rules. Most 

common example is translation of CFG to regular expressions.  
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4.5 Backus‐Naur Form 

Backus-Naur Form or simply BNF was initially developed for describing the syntax of Algol 

60 programming language [21]. BNF is another way to express the grammar of a language; in 

fact the BNF is a language for itself thus considered as a meta-language for representation of 

other languages. BNF formalizes and simplifies syntactic expressions and since it is mostly 

unambiguous it allows construction of language parsers, or compiler-compilers, for a given 

BNF language grammar. A brief definition of BNF is given hereby, since the underlying 

search mechanism of method for generation of operand transformation variants will be based 

on grammatical evolution algorithm which is a genetic algorithm that operates within the 

bounds of BNF. An example of small context-free grammar in the BNF is given as follows 

(4.2). In the BNF notation the non-terminals are represented as tokens or phrases with <non-

terminal> and the terminals are bracketless. The left-hand-side of the production rule is 

separated from the right-hand-side by the production sign : : ൌ. If the right hand side of a rule 

has multiple alternatives then they are separated using the or sign. 

ߑ  ൌ   ሼݐଵ, ,ଶݐ  ଷሽݐ

(4.2)

 ࣰ ൌ  ሼݐݎܽݐݏ, ݊ଵ, ݊ଶሽ 

 ࣭ ൌ ൏ ݐݎܽݐݏ ൐ 

 Production rule set ࣪: 

 ൏ ݐݎܽݐݏ ൐ ∶≔ ൏ ݊ଵ ൐ 

                         | ൏ ݊ଶ ൐ 

                         |  ൏ ݐݎܽݐݏ ൐൏ ݊ଶ ൐൏ ݊ଵ ൐ 

 ൏ ݊ଵ ൐ ∶≔    ଵݐ

ଶݐ  |                     ൏ ݊ଶ ൐   

 ൏ ݊ଶ ൐ ∶≔     ଷݐ

ଷݐ  |                     ൏ ݊ଶ ൐   

 
The rewriting process starts from a predefined single symbol or axiom, defined by ൏ ݐݎܽݐݏ ൐ 

in (4.2). The initial symbol is rewritten in the first decomposition step, and then the process is 

repeated until the rewriting string is comprised only of terminal symbols. The examples of 

one possible derivation sequence assuming sequential depth-first left side rewriting (4.3) and 

then breadth-first rewriting (4.4) are given as follows: 
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൏ ݐݎܽݐݏ ൐ ⟹ 

⟹ 

⟹ 

⟹ 

⟹

൏ ݐݎܽݐݏ ൐ 

   ൏ ݊ଵ ൐   

     ଵݐ        

     ଵݐ        

     ଵݐ        

൏ ݊ଶ ൐ 

൏ ݊ଶ ൐ 

൏ ݊ଶ ൐ 

 ଷݐ     

 ଷݐ

൏ ݊ଵ ൐ 

൏ ݊ଵ ൐ 

൏ ݊ଵ ൐ 

൏ ݊ଵ ൐ 

 ଵݐ

(1) 

(2) 

(3) 

(4) 

(5) 

(4.3) 

 
൏ ݐݎܽݐݏ ൐ ⟹ 

⟹ 

⟹ 

⟹ 

⟹

൏ ݐݎܽݐݏ ൐ 

   ൏ ݊ଵ ൐ 

   ൏ ݊ଵ ൐  

   ൏ ݊ଵ ൐  

     ଵݐ        

൏ ݊ଶ ൐ 

൏ ݊ଶ ൐ 

  ଷݐ     

 ଷݐ     

 ଷݐ

൏ ݊ଵ ൐ 

൏ ݊ଵ ൐ 

൏ ݊ଵ ൐ 

 ଵݐ     

 ଵݐ

(1) 

(2) 

(3) 

(4) 

(5) 

(4.4) 

 
What can be easily noticed by comparing (4.3) and (4.4) to each other is that although the 

final sentence in the derivation step (5) is identical in both examples, the derivation process is 

not. The difference is noticeable in steps (3) and (4). 

4.6 Implication to this work 

Development of computational tools for engineering design support should include methods 

modelled according to human reasoning and problem solving and formalisation up to a limit 

that is convenient for computer application. Formal grammars can accomplish both of the 

requirements. Manipulating symbolic expressions composed as strings to convey meaning 

and to communicate is an inherited feature of human cognition. The computers were 

conceived in the same manner. Production systems and finite automata all initially operated 

with the sequences of strings, creating foundations for computation which held in-core of any 

computer’s architecture. Advances in the theory of formal languages and grammars and the 

theory of categories have shown that all kind of objects can be transformed and manipulated 

as sequences of symbols, which qualified grammars as a powerful method for knowledge 

formalisation being close and understandable to both humans and computers.  

When speaking of grammars in the context of design and product development, it can be said 

that solving of a design problem can be achieved through means of grammars. By prescribing 

finite sets of primitive knowledge building blocks used to form rules, the knowledge of 

specific application domain can be formalised. The generation of good or feasible solutions is 

therefore analogous to the generation of grammatically valid statements using a formal 
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language. This presents a pragmatic approach in contrast to computational simulation of 

cognitive processes and techniques that occur when person is designing by hard-coding such 

models inside the programming code. If the grammatical rules are logically sound, they can 

be continuously improved and expanded further either wholly computationally or with the 

assistance of the designer thus creating a robust problem solving mechanism. As Herb Simon 

[15] wrote down and expressed the most practical advantage of rule-based formal systems that 

rather than adding new lines of fixed programming code, it is much more convenient to just 

add a new rule. In that respect, the rule database maintenance, which can pose an issue, is still 

much more acceptable than frequent programming code interventions. 

Each decomposition step of technical process into a set of interrelated operations and sub-

processes must transform operands from the initial to the desired state obeying given 

constraints set for the transformation. Thus, the definition of the decomposition step in respect 

to engineering and technical process would be a single step that may consist of multiple 

derivation steps in which the whole transformation of operands from the input to the desired 

states should be performed. To use generative grammar to technical processes decomposition 

which is based on the BNF expression following the aspects must be met: 

 A mapping from strings to graphs must be defined accompanied with additional 

connecting rules according to which nodes and sub-graphs will be integrated in the 

existing graph structures [65]. 

 At each decomposition step, a breadth-first rewriting starting from the leftmost 

operation will be performed until all of operations are rewritten or copied and 

transformation process is established.  

o For example, these which can be considered decomposition steps are 

derivations (1), (4), (5) in (4.4). In fact steps (2) and (3) in (4.4) are passing 

steps, where (1), (4), (5) in (4.4) are full bread-first derivation steps in the 

decomposition of technical process. It is to assume that insights will be 

provided to engineer not only by the final all-terminals step as a sentence in the 

language of technical processes, but that also decomposition steps composed 

of variables and terminals mapped as graphs will provide information about 

transformation process. Of course, terminals that cannot be rewritten are 

simply added to new decomposition step. 
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 According to the TTS [1], a rewriting of a graph node should always refer exactly to a 

preceding decomposition step and not to an arbitrary number of steps back to 

determine exact surroundings of a node or a sub-graph, thus requiring a breadth-first 

rewriting.  

o If considering a graph rewritings thus assuming existence of mappings from 

strings to graphs, then in the first column of (4.3) derivation (3) the 

determination of surroundings for node ݐଵ  is done in respect to ݊ଶ  and ݊ଵ , 

while in (4.3) derivation step (5) the surroundings of the “same” node is 

performed in respect to ݐଷ  and ݐଵ . When transforming graph by parallel 

rewriting, at each derivation step graph structure is produced dynamically both 

in respect to initial graph structure as a whole and to new emerging structure. 

Presented examples are simple; however in a larger custom-made grammar 

defined by a user, which is not necessarily more complex grammar, 

unexpected results may appear. Formal grammar usually is or should be 

defined non-ambiguously so that no matter what rewriting principles are 

applied the result should be in the same language produced by the same 

derivation process.  

Questions left open at the moment are what type of grammar to use to formalise engineering 

knowledge about technical processes, and can such grammar be recursive. For the latter, if the 

knowledge is represented with the condition action rules, can the body of a rule contain the 

head of a rule? Grammar in (4.2) is a recursive grammar, and it is to assume that recursion 

will not be necessary to model engineering knowledge regarding decomposition of technical 

processes. The type of grammar used for string rewriting doesn’t have to be in CFG but 

instead regular grammars can be applied relating more to engineering purposes. However, 

graph rewriting on the other hand is a context-sensitive process thus opting for a CSG.  
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5. GRAMMATICAL EVOLUTION 

…and point out in addition the isomorphism between the genetic logic system, the logic 

systems of communication systems, the logic systems of computers, and the logic system in 

mathematics by which theorems are proved from a list of axioms. These systems may be 

regarded as being the same abstract system. (D. S. Ornstein; taken from H. Yockey’s, 

Information Theory, Evolution and the Origin of Life [83]) 

Evolutionary algorithms (EA) are population based stochastic optimisers that are built on 

mimicking the notions from the natural evolution. Charles Darwin wrote that evolution begins 

with the inheritance of good gene variations and that basically defines what the evolutionary 

algorithms are all about [84]. Enforcing the survival of the fittest principle is managed by 

allowing higher ranked solutions to influence the course of a search process by the most. By 

stochastically mixing together building-blocks which constituted two parent solutions an 

offspring is produced. If building blocks originate from higher fit individuals than there is a 

chance that newly generated individual might get a bit closer to a feasible solution of a 

problem. With the whole process repeated a population of offspring is produced from parent 

population. In fact the emergence of solution occurs as a consequence of a learning process 

that is exhibited by the algorithm since it tries to construct the optimal solution by 

arrangement of most fit building blocks [11], [37].  

The famous class of evolutionary algorithms, genetic algorithms (GA) resembles core 

principles of natural evolution by the most. Information exchange between solutions is 

performed by exchanging binary strings, or chromosomes, by stochastically invoking a 

recombination operator. To avoid pitfall of local optima low probability mutation operators 

for bit flip operators are introduced. Inside a genetic algorithm two levels of representation 

exist. At the genotype level, the solution representation is a binary string, at which the 

mechanisms of evolution operate with recombination and mutation. At the phenotype level 

the results of evolution manifest. Phenotype is realisation of genotype into problem specific 

form which is obtained by decoding the information stored inside a genotype. It is necessary 

to evaluate solution performance inside the given problem environment in order to enable 

fitness comparison between the individuals on the grounds of which the selection operates. As 

genotype, a solution is only a bit string of structured data that needs to be interpreted As 
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phenotype the solution is “full-grown” possessing different attributes thus representing 

behavioural level of an individual. Chromosome is structured as the collection of genes 

situated at their respective places or locus. If chromosome is a binary string, then gene is a 

binary substring which is recognized by decoding function according to its place on the 

chromosome. The applicability of algorithm to tackle discrete problems is devised from its 

recombination operators, which when generating new solutions, are reusing and mixing 

together pieces of the past solutions making it very useful when dealing with non continuous 

problems. Being robust and natively not calculus based, genetic algorithms are used as a good 

all-purpose optimization algorithm. The range of applications included scheduling, TSP class 

problems, tiling, close-packing, single or multi-objective optimization and so forth. 

This thesis considers also a grammatical evolution (GE) based method for the search and 

optimization of the needed operand transformation for a selected technical process. GE is a 

population based heuristic search algorithm built up on GA which obtains a solution to a 

given problem by evolutionary means through recombination of the rule-based rewriting 

sequence [3]. The formalized knowledge regarding technical processes, technological 

principles and needed effects to support the main transformation of operands inside technical 

processes are stored in a set of production rules in Backus-Naur Form (BNF) [21]. GE 

searches for the rule sequence that can perform the decomposition of the technical process 

black-box level to a structured system consisting of sub-processes, operations and operand 

flows according to TTS [1]. The following sections will try to explain similarities between 

design and evolutionary computation, which emerged as a paradigm of evolutionary design 

[11], [37], [85] and [86], where, design is to be understood in a broad sense including both the 

artefacts and the objects of natural origin. Generic EA model will be presented as a 

foundation to explain principles on which algorithm of grammatical evolution operates. An 

example of string derivation process in GE on CFG represented in BNF will be presented.  

5.1 Recombination and Evolutionary design 

The exploration of alternatives by combining chunks of past solutions can yield creative 

solutions; although the principle can be simple and not creative, the results could be quite the 

opposite. Goldberg’s attempt of proving convergence of genetic algorithms published in his 

famous Building Block Hypothesis [37] was all about how iterative recombination of building 

blocks composed as strings of binary digits stems towards an optimum in a search process. If 

taken from a formal standpoint, to prove a heuristic process might be regarded as somewhat 
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dubious, however the scientific evidence confirm that transformation systems the principles of 

which are based on simple information chunk exchange involving a degree of randomness can 

generate creative and complex results. The study of cognition has shown that human 

achievements ranging from art forms like painting and music to scientific work involve some 

kind of building block recombination [27]. Besides Shenker’s Theory of Tonality made for 

Western music in 1935 [72], in other domains like in engineering, one could create a data 

base of chunks of successful past solutions and by mixing those in a synergetic and holistic 

way, produce new innovative solutions can be produced; the example is Roth’s catalogues. 

Even the processes that deal with artificial, but are of natural origins confirm the latter; 

information exchange during forming of amino acids is linear string like and digital involving 

finite number of building blocks which resemble the principles on which computers are being 

founded on [83]. Moreover, the recent advances in molecular biology confirmed that it is 

possible for broken sections of chromosomes to recombine and to change genomes to spawn 

new spices [87]. 

The second Chapter of this thesis has shown that engineering design is difficult to be 

described inside an algorithm, since it is an explanatory search process. However, let us 

assume that acceptable correlation can be established between design process and an iterative 

problem solving procedure with a finite number of steps. One could define such a procedure 

as a search algorithm where the search space itself is built on lists of requirements or design 

variables and constraints. The feasible solution is being created by proposing solutions 

iteratively using suitable encodings acceptable both to the computational environment and to 

the problem of interest. From computational point of view an ideal algorithm candidate that 

would be able to carry such search process would be one belonging to the class of 

evolutionary algorithms. Evolutionary computation community expressed such claims 

frequently [11] and [37], since there really are some resemblances to design process with 

obvious one of being both evolutionary in respect to solution emergence. The design process 

modelled using EA’s can be viewed as a shortcut to a satisfying technical product using 

knowledge and experience of designing in order to accelerate the technical development 

which naturally should occur evolutionary [88]. In fact because of the similar nature, the 

evolutionary methods may provide enhancement of design process or findings about process 

itself. Inside an EA, at each evolutionary turn solutions are being generated and tested by 

using selection, recombination and mutation operators and evolved as a result of exchange of 

good building-blocks. Similar reasoning activities occur not only at designing but at any kind 



GRAMMATICAL EVOLUTION  

70 

of problem solving situation. In respect to the properties of search spaces that depend on 

complexity of the design task being constrained, multimodal and full of discontinuities, they 

still can be handled since EA’s rely on randomness inside mutation operators for their search. 

5.2 Generic model of EA 

Based on the same process of that they are mimicking, all classes of evolutionary algorithms 

are similar both in the structure and the behaviour exhibited during the search process. Back 

et. al. [36] have established following similarities between EA’s:  

 Evolutionary algorithms exhibit collective learning process. 

 Each of the potential solutions to a problem is an encoded point in a search space 

which may hold additional information that can be used to enhance further search. 

 Offspring population is created from parent population by random recombination 

which represents information interchange. 

 Simulating error in information transcription may occur randomly thus introducing 

mutation. 

 To converge towards a solution it is necessary to evaluate individuals therefore 

introducing a fitness function which assigns a real value to each population individual 

corresponding to how well it solves a given problem. 

As a consequence of their findings Back et. al. [36] defined a finite set of classes of input 

parameters and evolutionary operators which perform transformations over populations, they 

formalised a fitness function which altogether resulted in the creation of a generic model of 

EA which is presented within a pseudo-code (5.13). Existence and influence of individual 

evolutionary operator, and relation between sizes of parent and offspring populations are used 

to unambiguously define a search process as being driven by genetic algorithm, genetic 

programming or evolutionary strategy. However, model as presented by Back et. al. didn’t 

include classes of EA’s where evolutionary operators, sizes of populations or evolution 

stopping conditions are functions of iteration step, generation, or some other specific 

parameter. Stochastic change of parameters which is measured over populations during the 

search process can be utilized to influence both the evolutionary operators and the fitness 

function tailoring them to best fit thus successfully guide the evolution process. Put 

succinctly, in their model Back et. al. did not acquire with dynamical behaviour by 
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generalizing it completely providing only basic outlook on EA’s. Similarly, the generalisation 

at the level of selection strategies could be more complete since it only accounts for complete 

replacement of parents with their offspring. If that would be the case then the elitist selection 

strategy that favours a single best solution throughout generations until outranked would not 

be possible. Merkle and Lamont [89], [90] proposed a complete generalisation to overcome 

deficiencies of Back’s model by introducing a random function based framework for 

evolutionary algorithms. Such framework enables to formalise occurrences where the 

operators are chosen stochastically, like in cases of genetic programming assuming both 

evolvable code and solution. To be strict, Merkle and Lamont have introduced evaluation as a 

part of selection operator, which differs with the common EA understanding. What is to be 

adopted from their model is a fitness function representation as a composition of functions 

containing objective function, decoding function and scaling function enabling to explain 

each of its parts in detail. A generic model of EA will be accepted as proposed by Back et. al. 

[36], but it will be supplemented by findings of Merkle and Lamont [89], [90] as required by 

the scope of this thesis.  

5.2.1 Population 

In general a population ࣪ is understood as a finite or infinite set of objects which can be 

enumerated. Building on the latter, let ܫ ,ܫ ് ሼ∅ሽ be a non-empty set of all possible solutions 

such that for every population member  ܽ it holds that ௝ܽ ∈ ݆ with ,ܫ ∈ Ժା.  

 is referred to as ܫ Most often in EA community .ߤ ሻ of sizeݐఓ is a set of all populations ܲሺܫ

the individual space of an algorithm, and ܽ is simply denoted as an individual. Depending on 

the type of individual and the purpose of the algorithm a population accepts any kind of 

objects. According to [89], [90], to allow dynamical alteration of population sizes it is 

possible to express them as functions of iteration step ݐ as ߤ ൌ ߣ ሻ andݐሺߤ  ൌ  .ሻݐሺߣ

Population ܲ  of size ߤ ∈  Ժା  at generation ݐ ∈  Գ  can be defined with the following 

expression [36]: 

 ܲሺݐሻ ൌ ൣܽଵሺݐሻ, ܽଶሺݐሻ, ܽଷሺݐሻ, … , ܽఓሺݐሻ൧ ∈ ܫ
ఓ  (5.1) 
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5.2.2 Fitness function 

Fitness function expresses how an individual   ௝ܽ ∈  satsifies the given problem. By structure ܫ

fitness function equates objective function of standard optimisation, however due to 

specificities of EA’s and different strategies that may be applied when evaluating the 

individual there exist additional mapping between the two. However, what remains in spite of 

differences is that ordering of population done over fitness of individuals is retained by 

objective function. Providing guidance to the evolution course, individuals with higher fitness 

tend to exchange their building blocks more often thus creating a collective learning process 

as a result of generating and testing. In general the objective function may be defined as: 

 ݂ ∶ Թ௡ →  Թ (5.2) 

 
Expression (5.2) is given assuming n-dimensional search space. The set of all possible 

solutions ܫ doesn't prescribe the type of individual, so for instance, genetic algorithms operate 

with bit strings while other may use real numbers or parse tree structures. In order to be able 

to map to real numbers it is necessary to apply additional mapping by using a decoding 

function. Introduction of another level of individual representation might add some weight to 

the complexity of the overall algorithm, but what is accomplished is the creation of a robust 

framework to tackle different kinds of tasks. What becomes problem specific is determination 

of individual encodings and decoding functions, where the former need to be designed as a 

best fit to describe the nature of a problem and to be adequate for direct application of 

evolutionary operators leaving them problem invariant. Assuming an n-dimensional search 

space, the decoding function ܦ is defined as: 

ܦ  ∶ ܫ →  Թ௡ (5.3) 

 
Let there be objective function ߔ which maps a positive real number, or evaluation mark, to 

every individual ܽ௜ ∈  :[36] ܫ

ߔ  ∶ ܫ →  Թା (5.4) 

 
Different strategies can be applied to enhance the performance of EA's. To prevent influence 

of a high fitness solutions which can sway the course of evolution especially, different 

mathematical functions ௦ܶ  have been introduced to scale fitness in order to reduce the 

differences between solutions. In that way individual solutions that are less fit, get a chance to 

exchange their building-blocks. At the early stages, or early generations, it is difficult to 
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determine which building-blocks will compose the optimum since collective learning process 

has barely started, therefore scaling is necessary. Common example is ranking of solution for 

which functions of type ݇ ln ሺ݊ሻ can be used, where ݇ ∈ Թ and ݊ ∈ Ժା is ordinal number of 

individual inside population sorted over ݂. Scaling fitness function ௦ܶ is defined as follows: 

 ௦ܶ ∶ Թ → Թ (5.5) 

 
Finally, the fitness function ߔ ∶ ܫ →  Թା  may be expressed as composition of functions 

following (5.2)-(5.5), [89]: 

ߔ  ൌ  ௦ܶ   ∘ ݂  ∘  (5.6) ܦ

 
The result of calculating fitness of each individual inside the population ܲሺݐሻ ∈  ఓ at iterationܫ

step ݐ ∈  Գ will be denoted as evaluation or simply as ܨሺݐሻ: 

ሻݐሺܨ  ൌ  ሻሻ (5.7)ݐሺܲሺߔ

5.3 Evolutionary operators 

According to [89] and [90] evolutionary operators (EVOP) are defined as population 

transformations or mappings from populations to populations. A population transformation ܶ 

is defined as given here by the following expression: 

 ܶ ∶ ఓܫ →  ఓᇱ  (5.8)ܫ

 
If ܶሺܲሻ ൌ ܲ′ than the expression (5.8) shows creation of offspring population ܲᇱሺݐሻ of size 

ᇱߤ ൌ ሻݐᇱሺߤ  ∈ Ժା  from the parent population ܲሺݐሻ of size ߤ ൌ ሻݐሺߤ  ∈ Ժା  at generation ݐ ∈

 Գ. If the following holds ܫఓ ൌ ߤ ఓᇱ, than no transformation occurs resulting withܫ ൌ  ᇱ as theߤ

size of population.  

Following (5.8) evolutionary operators; selection (5.9), mutation (5.10) and recombination 

(5.11) are defined over individual space as the following transformations:  

ݏ  ∶ ఒܫ →  ఓ  (5.9)ܫ

 ݉ ∶ ఑ܫ →  ఒ (5.10)ܫ

ݎ  ∶ ఓܫ →  ఑ (5.11)ܫ

Different types of EA's can be applied by comparing domains and ranges of each 

transformation as given in (5.9)-(5.11), three possibilities are such as (5.12):  
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ఒܫ  ് ఑ܫ ്   ,ߤ ఓ Genetic algorithms, evolutionary strategies withܫ ߣ ൐ 1.  

఑ܫ  ൌ    ఒܫ No mutation. (5.12) 

 
఑ܫ ൌ    ఓܫ No recombination, evolutionary programming, initial 

evolutionary strategies with ߤ ൌ ߣ ൌ 1. 
 

For each of evolutionary operators there exists a set of parameters on which EVOPs depend 

on. Let Sets of parameters are ߆௦, ,௠߆  ௥ with subscript denoting their respective operator. Set߆

 is ߡ ఐ contains additional real valued parameters necessary for execution of the algorithm, and߆

a logical test or stopping condition which terminates the search loop. Finally, pseudo-code of 

evolutionary algorithm according to [36] and assuming ܫఒ ് ఑ܫ ്    :ఓ is given as followsܫ

Input: ߤ, ,ߣ ,௦߆ ,௠߆    ௥߆

Output: ܽ௢௣௧, ܲ௢௣௧   

    

ݐ 1 ← 0;   

2 ܲሺݐሻ  ← ;ሻߤሺ݊݋݅ݐܽݏ݈݅ܽ݅ݐ݅݊݅  

ሻݐሺܨ 3  ← ,ሻݐሺܲሺ݊݋݅ݐܽݑ݈ܽݒ݁ ;ሻߤ  

4 while (ߡሺܲሺݐሻ, Θங ് ሻ݁ݑݎݐ do (5.13) 

5 ܲᇱሺݐሻ ← ,ሻݐሺܲሺ݊݋݅ݐܾܽ݊݅݉݋ܿ݁ݎ ;௥ሻ߆  

6 ܲ′ᇱሺݐሻ ← ,ሻݐሺܲ′ሺ݊݋݅ݐܽݐݑ݉ ;௠ሻ߆  

ሻݐሺܨ 7  ← ,ሻݐሺܲ′′ሺ݊݋݅ݐܽݑ݈ܽݒ݁ ;ሻߣ  

8 ܲሺݐ ൅ 1ሻ  ← ,ሻݐሺܲᇱᇱሺ݊݋݅ݐ݈ܿ݁݁ݏ ,ሻݐሺܨ ,ߤ ;௦ሻ߆  

ݐ 9 ← ݐ ൅ 1;   

 ࢊ࢕   

 
Beginning with the initialization which is in fact a random sampling of ߤ individuals from ܫ, 

an initial population ܲሺ0ሻ is being formed, (2). Following the first evaluation (3) algorithm 

enters a do-while loop executing it until satisfying the termination condition defined as 

,ሻݐሺܲሺߡ Θங ് ሻ݁ݑݎݐ  (4). Offspring population ܲᇱሺݐሻ  and the mutated offspring population 

ܲᇱᇱሺݐሻ  are determined under the recombination (5) and mutation (6) operators. After the 

evaluation of the ܲᇱᇱሺݐሻ, (7), ߤ individuals are selected to create population that will continue 

the search (8). Asterisk marked individual ܽ௢௣௧  or population ܲ௢௣௧  refer to best solutions 

found during the search. Within this thesis a full GA will be necessary extended as GE to 

operate with BNF as a mean to formalise graph grammar transformations. 
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5.4 Grammatical Evolution 

Grammatical evolution was initially developed to write computer programs in any language 

[3], [91], or it is even used as a general optimiser [92]. Depending on the explicit purpose, 

both the programs and the rewriting rules can be evolved accordingly [93]. The grammar of a 

particular formal language is expressed as a collection of rewriting rules in Backus-Naur 

Form (BNF). For the search of an optimal rule-based rewriting sequence, GE relies on an 

embedded genetic algorithm (GA). In that way, GE inherits the robustness of GAs. The 

mechanism for creating grammatically valid statements is achieved through mapping from a 

binary encoded chromosome to the sequence of rewriting rules, thus introducing another layer 

into a decoding function. Phenotype emerges after the sentence in a language ࣦ ൌ ࣦሺ࣡ሻ has 

been created and evaluated. However, as in the case of this thesis, additional mappings both 

from variables and terminals into graphs is necessary, as BNF tokens serve only as a graph 

rewriting symbols. The search uses the concept of survival of the fittest, where a solution or a 

set of solutions to a given problem evolve in time using the fitness function as an evolutionary 

guide. The same grammar ࣡ ൌ ሺߑ , ࣰ, ࣭, ࣪ሻ given in BNF as in (4.2) will be used to explain 

how GE operates. Since it is necessary to introduce enumeration of rule alternatives per rule 

required by GE search mechanism, an extension of (4.2) is given below: 

ߑ  ൌ   ሼݐଵ, ,ଶݐ  ଷሽ Ruleݐ

alternative 

per rule 

 

(5.14) 

 ࣰ ൌ  ሼݐݎܽݐݏ, ݊ଵ, ݊ଶሽ  

 ࣭ ൌ ൏ ݐݎܽݐݏ ൐  

 Production rule set ࣪:  

 ൏ ݐݎܽݐݏ ൐ ∶≔ ൏ ݊ଵ ൐ 

                         | ൏ ݊ଶ ൐ 

                         |  ൏ ݐݎܽݐݏ ൐൏ ݊ଶ ൐൏ ݊ଵ ൐ 

 ൏ ݊ଵ ൐ ∶≔    ଵݐ

ଶݐ  |                     ൏ ݊ଶ ൐   

 ൏ ݊ଶ ൐ ∶≔     ଷݐ

ଷݐ  |                     ൏ ݊ଶ ൐   

(0)  

(1)  

(2)  

(0)  

(1)  

(0) 

(1) 

 

Let an individual ௝ܽ ∈ ݊ be represented as l-bit string composed of concatenation of ܫ ∈ Ժା 

substrings ߜ௜ of unique lengths ݈௜ ∈ Ժ
ା. [86]: 

 ௝ܽ ൌ ෍ߜ௜

௡

௜ୀଵ

 (5.15) 
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Each gene carries information necessary for decoding function to create solution phenotype. 

Depending on their length each of the substrings occupies a space ߜ௜ ∈ ९
௟೔ ൌ ሼ0, 1ሽ௟೔ . The 

mapping to a real value ݔ௜ ∈ ሾݑ௜, ௜ሿݒ , with ݔ௜, ,௜ݑ ௜ݒ ∈ Թ  for each substring ߜ௜  at position 

݅ ∈ Ժା is performed by standard binary decoding function ܦ஻௜ [86]: 

:஻௜ܦ  ९
௟೔  → ሾݑ௜,  ௜ሿ (5.16)ݒ

 
The decoding function ߛ௜ is a simple mapping of a binary coded string into ݔ௜ ∈ Թ that is then 

normalized by desired mapping range ሾݑ௜, ௜ሿݒ ∈ Թ. Decoding function ߛ௜ is given as follows 

[86]: 

௜ݔ  ൌ ௜ݑ ൅
௜ݒ െ ௜ݑ
2௟೔ െ 1

ቌ෍ߜ௜ሺ௟೔ି௝ሻ2
௝

௟೔ିଵ

௝ୀ଴

ቍ (5.17) 

 
Concerning GE, the usual desired range is a closed interval of nonnegative integers set within 

ሾ0, 255ሿ thus yielding ݔ௜ ∈ Գ. Complete decoding that produces a vector ࢞ of integer values 

by repeating the (5.16) and (5.17) to whole chromosome composed of ݅ ∈ Ժା genes [86] is 

given here by: 

஻ܦ  ൌ ஻ଵܦ  ൈ ஻ଶܦ ൈ …ൈ  ஻௜ (5.18)ܦ

 
To achieve exact one to one mapping in the desired interval ሾ0, 255ሿ each binary string is 8 

bits in length. If multiple alternatives for rewriting a non-terminal symbol in ߙ exists, then the 

selection of body of the ߙ → ߚ  productions has to be determined. Such grammar is a 

stochastic generative grammar since application of rules depends on randomness embedded 

into genetic algorithms. The application of rule ݎ௜ for rewriting is calculated as a function of 

the decoded integer ݔ௜ ∈ ሾ0, 255ሿ  of the gene ݅  and the number of the available rule 

alternatives ݊௜ ∈ Ժ
ା [3]: 

௜ݎ  ൌ  ௜ (5.19)݊ ݀݋݉ ௜ݔ

 
To clarify by means of an example using CFG as given by (5.14) and assuming decoded 

integer values of a binary encoded chromosome as shown in Table 5.1: regarding the initial 

൏ ݐݎܽݐݏ ൐ symbol the total number of rewriting alternatives for equals ݊ଵ ൌ 3 and the first 

decoded value equals ݎଵ ൌ 8. As a consequence, the equation (5.19) yields 2 for solution, 

thereby triggering the last rule alternative ൏ ݐݎܽݐݏ ൐൏ ݊ଶ ൐൏ ݊ଵ ൐. 
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Table 5.1 Decoded chromosome and rule sequence selection 

݅ 1 2 3 4 5 6 7 8 

௜ 8 120ݔ 33 42 32 39 124 48 

 / / / ௜ 2 0 0 0 0ݎ

 
For the sake of simplicity, the binary genotype has been left out of Table 5.1 and only the 

decoded integer values ݔ௜ are shown. It is assumed that the chromosome is composed of 8 

genes. The selection of the rule alternative ݎ௜ is calculated with the expression (5.19) based on 

the grammar shown in (5.14). 

Using CFG as given by (5.14) and assuming decoded integer values as shown in Table 5.1 an 

example of breadth-first derivation sequence done by GE equating the example (4.4) is given 

bellow in (5.20). Integer values are selected sequentially as they appear within the 

chromosome. 

൏ ݐݎܽݐݏ ൐ ଼ ୫୭ୢ ଷୀଶ     
ሳልልልልልልልልሰ ൏ ݐݎܽݐݏ ൐ ൏ ݊ଶ ൐ ൏ ݊ଵ ൐  

(5.20)

  ଵଶ଴ ୫୭ୢ ଶୀ଴ 
ሳልልልልልልልልሰ   ൏ ݊ଵ ൐ ൏ ݊ଶ ൐ ൏ ݊ଵ ൐  

  ଷଷ ୫୭ୢ ଷୀ଴   
ሳልልልልልልልልሰ   ൏ ݊ଵ ൐ ݐଷ ൏ ݊ଵ ൐  

  ସଶ ୫୭ୢ ଶୀ଴   
ሳልልልልልልልልሰ   ൏ ݊ଵ ൐ ݐଷ ݐଵ  

  ଷଶ ୫୭ୢ ଶୀ଴   
ሳልልልልልልልልሰ   ଵݐ         ଵݐ ଷݐ 

Note that the genes ranging from 1 to 5 are the only ones used and the rest of the chromosome 

is left unused because an all-terminal state has been reached and no more rewritings are 

possible. This is in contrast to usual evolutionary approaches, where the entire chromosome is 

almost always used. With GE there is a possibility of creating redundant information. In the 

opposite case, if the entire genetic material is used for triggering the BNF rules, the gene 

reading process starts over again from the first gene. This process of reusing information to 

achieve a state consisting only of terminal symbols with complete mapping is known within 

the GE community as wrapping [94]. The number of allowable reading runs for mapping to 

BNF rules is a set using a wrapping operator. Both the existence of the redundant genetic 

information and the re-use of the genetic information occur in living organisms [83].  

In general, with, GE on the phenotype level, each solution should be represented with a string 

consisting of a set of terminals. However, like with the cellular automata [95], a set of rules 

can produce a rewriting process that is indefinite or very large but with a finite number of 
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decompositions that must be performed before achieving the all-terminals state. Example of 

CFG in (5.14) can produce indefinite rewriting sequence. For practical purposes, indefinite or 

too large sentences yielding in a very well known spaghetti effect render the solution in an 

unacceptable manner. Such occurrences are the direct consequence of the size and quality of 

the utilized grammar. To prevent these occurrences, a special kind of stopping rule needs to 

be introduced in the form of a maximal derivation step constraint. After reaching the specified 

number of steps the rewriting process will stop, declaring the finding of a solution unfeasible.  

5.5 Extension of fitness function 

The specifications of GE in conjunction with the method for operand transformation variants 

require an extension of fitness function as given in (5.7). The first one is restriction of the 

individual space of algorithm as in respect to ݅ ∈ Ժା  substrings of unique lengths ݈௜ ∈ Ժ
ା 

composed of binary alphabet ሼ0, 1ሽ, thus accepting expression for ܦ஻ given in (5.18): 

ܫ  ≡ ௉்ܫ ൌ ९௟భ ൈ ९௟మ ൈ …ൈ ९௟೔ (5.21) 

 
Let there exists ࣦܦሺ࣡ሻ that maps from ݔ௜ ∈ ሾ0, 255ሿ, ݔ௜ ∈ Գ to sentences in formal language 

ࣦ ൌ ࣦሺ࣡ሻ  defined with context-free formal grammar ࣡  as in (4.3). Mapping within an 

ordinary GE is thus described as: 

ሺ࣡ሻࣦܦ  ∶ ሾ0, 255ሿ  →  ்ࣦ௉ሺܩܨܥሻ (5.22) 

 
Let us assume that there is a mapping ࣦܦ೅ುሺ࣡࣡ሻ  that maps from Chomsky’s strings to a 

language of technical processes ்ࣦ௉ ൌ ்ࣦ௉ሺ࣡࣡ሻ defined with graph grammar ࣡࣡: 

೅ುሺ࣡࣡ሻࣦܦ  ∶ ்ࣦ௉ሺܩܨܥሻ → ்ࣦ௉ሺܩܩሻ (5.23) 

 
Due to (5.18), (5.22), (5.23) the objective function exhibited domain change resulting with 

following ்݂ ௉ with ݊ ∈ Ժା objectives: 

 ்݂ ௉ ∶ ்ࣦ௉ሺ࣡࣡ሻ → Թ௡ (5.24) 

 
Finally, the fitness function for individual   ௝ܽ ∈  ௉ representing a technical processes is an்ܫ

extension of (5.6), resulting with the following expression for ்ߔ௉: ௉்ܫ → Թା: 

௉்ߔ  ൌ   ௦ܶ   ∘ ்݂ ௉   ∘ ೅ುሺ࣡࣡ሻࣦܦ ∘ ሺ࣡ሻࣦܦ ∘  ஻ (5.25)ܦ
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Extending the fitness function to describe a method through mappings is much more 

convenient than definition of completely new evolutionary operators. To tailor it both to GE 

and search of operand transformations, the effective change in pseudo-code (5.13) is just 

applying population evaluation using ܨሺݐሻ ൌ  ሻሻ according to (5.25). In that way, aݐ௉ሺܲሺ்ߔ

GE layer and graph grammar transformations in the language of technical processes are 

simply added to GA. The condition ܫఒ ് ఑ܫ ്    .ఓ from (5.12) is applied to account for GAܫ

5.6 Implications to this thesis 

One of the key issues [2] is how to approach the problem representation as an input to the 

search. The problem representation has to concur to the algorithm’s requirements, thus most 

often remaining as a fixed part of the search process. Since the mechanism within the 

algorithm usually accepts only one encoding, creating dynamical fitness functions may help 

deal with the problem of design task re-formulation. The evolutionary computation 

community [40] often pointed out that in order to go beyond current successes in 

optimisation, that it is necessary not only to evolve the problem statement parametrically as 

assignment of values to means, but that it should be reformulated if possible. Design process 

considers evolution of both the design task and the problem. Therefore, the fixed encoding 

which is a direct consequence of the algorithm should be expanded at least in a direction for 

which it can be predicted that will prove significant for the formation of solutions. In that way 

navigating to more detailed design solutions by expanding the set of means to realize 

behaviour can be achieved. However, the up-to-date efforts [40] are limited only to 

optimization directed parameterization to enhance fitness functions dynamically and few 

attempts of encoding alterations. 

The reasons why grammatical evolution in particular can be used as a foundation for 

development of computational support for early product development phases are argued as 

follows: 

1. As it is built on an embedded genetic algorithm (GA), grammatical evolution inherited 

GA behaviour and robustness rendering it applicable for a wide range of problems. 

Moreover, since GE is GA on the genotype level having a chromosome representation 

as binary strings, straightforward application of the entire standard GA selection, 

crossover and mutation operators and various multi-objective genetic algorithms are 

possible.  
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2. Since grammatical evolution is a stochastic optimizer, then it can search for the 

sequence of BNF rules through which the optimal decomposition can be generated 

rather than just generating all of the possible solution variants. Initially GE was 

developed to write computer programs in any language. Depending on the explicit 

purpose, both the programs and the rewriting rules can be evolved accordingly. The 

grammar of a particular formal language is expressed as a collection of rewriting rules 

in Backus-Naur Form (BNF) defined over a finite set of symbols or tokens. The same 

BNF system will be applied to formalise engineering knowledge about technical 

processes first using string CFG and than extending it o graph grammars. 

3. Derivation process through which grammatically valid sentences are generated inside 

GE is analogous to the activity of decomposition performed by designers at the early 

stages of the conceptual design phase. Both processes, the decomposition and 

grammar derivation using BNF type rules, can be represented as a tree structured on a 

parent-child relationship. Applying of BNF production rules creates a parent-child 

relationship between rewritten symbols in successive derivation steps. According to 

TTS market demands and societal needs inside technical process are modelled using a 

black-box concept with operands in their states and desired states before and after the 

transformation. Then the decomposition of the black-box is performed step-wise into 

the systems of interrelated sub-processes and operations in respect to knowledge about 

processes and technological principles on which these processes are based on. 

Breaking of a complex problem into a system of smaller interrelated problems, thus 

synthesising a transformation system is necessary for designers to establish and 

consider different product realization possibilities in respect of various effects that 

need to be delivered in order to sustain a technical process. In the same manner GE 

performs step-wise derivation starting from an initial symbol and rewriting it to 

sequence composed of symbols from vocabulary following set of production rules in 

BNF. Decomposition performed by designers stops after black-box has been 

decomposed into a system of operations after which further decomposition would be 

meaningless, what corresponds to GE stopping rules where rewriting of a symbol 

cannot be accomplished if that symbol is a terminal one. 

4. A closure problem is avoided since the BNF production rules are applied always as in 

response to the symbol that is to be rewritten with evolutionary operators being aimed 

at selecting a variant of a rule that is able to perform a rewriting. That is in contrast to 
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genetic programming where recombination and mutation can result in incompatible 

building-blocks which when mixed together yield in unfeasible solutions. 

5. By following a holistic paradigm the TTS relies on a systemic modelling approach 

used for representing technical processes as transformation systems and products as 

technical systems. It has been shown [65] that equivalence exists between the 

Chomsky’s grammars which are in fact used by GE and graph grammars enabling to 

utilize BNF type rules and context-free grammar to define graph transformations rules. 

As a result, a robust token based rewriting system is created which is easier for 

computer implementation. Technical process as an operand transformation system is 

then modelled as a token composed sentence which has to be interpreted as graph 

accordingly. The whole decomposition process of technical processes into a system of 

sub-processes and operations interrelated with operand flows is in fact a successive 

graph transformation process which is for the purpose of the presented computational 

method performed by a symbol rewriting system. 

6. An important property of GE is that if elevated to a meta-level GE, it can infer new 

rules. Meta-level GE is referred to as grammatical evolution by grammatical evolution 

or GE2 [93]. By recombination of the existing rules new rules are generated. The 

extension of the presented method to include the possibilities of GE2 will be explored 

in future work and may provide the true advantage of using GE. If considering the 

Computational Design Synthesis it can be concluded that computational support of 

design activities such as decomposition and search can be achieved using GE and GA. 

However, since synthesis also involves design activities such as associating, 

composing and combining most likely is that the machine inductive reasoning would 

be necessary in an abductive iterative process in which solution is affecting problem 

statement. For that purposes GE2 could be used. 

Therefore, GE is a population based algorithm, the search is build around a concept of 

survival of the fittest, where a solution or a set of solutions to a given problem evolve in time 

using the fitness function as an evolutionary guide. At the genotype level, the chromosome 

representation is a binary string, thus enabling easy application of the entire standard GA 

selection, crossover and mutation operators. 

It is to assume that powerful stochastic search like GE will not be fully utilized unless the 

complex technical systems are considered. Combinatorial explosion may occur only if 
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technical process involves technical system like industrial plant, ship or similar. However, the 

intention is to lay foundations for development of complete graph grammar based framework 

for support of early design phases. GE as a robust problem solver based on GA which can be 

applicable as a search method for any of the phases in the early design assuming that 

engineering knowledge is formalized using graph grammars. Almost all of design theories are 

following systemic reasoning thus resulting with early design modelling tends towards 

transformation systems. When developing computational support it would be natural to merge 

graph grammars with grammar based stochastic search algorithm. Moreover, the method that 

will be presented in the next chapter is invariant to the level of abstraction considered the 

early design stages. Although the search for innovative technologies for operand 

transformation is considered only for the design of completely new products, the intention is 

to provide the basis on which the functional structure of the product can be determined. 
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6. GRAMMAR OF TECHNICAL PROCESSES 

...I will consider a language to be a set (finite or infinite) of sentences, each finite in length 

and constructed out of a finite set of elements...the set of 'sentences' of some formalized 

system of mathematics can be considered a language.(Noam Chomsky [20]) 

Both formally and visually, graphs are widespread as means to express and model various 

types of systems in order to represent their structure and behaviour. The application range 

includes entity relations diagrams, UML diagrams, Petri nets, flow diagrams, identification of 

software product structures, modelling graphical interfaces [96] and last but not the least, 

graph representations are utilized at least implicitly by different design theories [1], [4] to 

model technical products at early stages of product development process. In the computing 

graph based formal systems, like for instance parse trees and term rewriting systems are 

unavoidable as means for accepting and inferring syntax and semantics of sentences written in 

programming languages. Further uses are found among more dynamical graph transformation 

systems developed with the purpose of expressing behaviour of an evolvable system that is 

under consideration, and as such the most applications include search for optimal resource 

allocation possibilities both in economics and computation [96], [97]. Thus, decomposition of 

technical processes performed to synthesise optimal variant of operand transformation 

modelled according to TTS could be considered as a graph transformation system.  

Graph grammars are means to perform a rule-based transformation of graphs. The application 

of rule first identifies a target structure, a sub-graph that is, inside a host graph, which has to 

be replaced by a new sub-graph. As the result of deletion of the old and integration of the new 

sub-structure with the remainder of original graph a transformed graph structure emerges. 

Thus, bearing in mind advances from AI showing that knowledge from the domain of interest 

can be formalised within grammars, than decision to design the method for generation of 

operand transformation variants based on graph grammar transformations becomes well 

justified. Development of graph transformation systems emerged from three different 

application areas: from Chomsky’s strings grammars which initiated the theory of natural 

languages by providing it with formal foundations, from term rewriting systems and the 

theory of computing and programming languages, and to account for enhancement of 

modelling processes by providing visual interfaces rather than textual ones [96]. This thesis is 
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drawn by the former, thus using Chomsky’s context-free string grammar expressed within 

BNF. A mapping will be established by linking BNF tokens to graph structures thus creating a 

graph grammar based formal system over which a heuristic stochastic search of grammatical 

evolution will be imposed. Such system, providing an adequate and consistent knowledge 

formalisation, should be able to generate operand transformation variants within technical 

processes. 

This Chapter will deal with the formal definition of graph grammar of technical processes. It 

will not present new method for conducting general graph transformation, instead it will offer 

an adaptation of graph grammar node based transformation to suit the purposes of technical 

process modelling. Moreover, it will add heuristic search to graph grammars in order create a 

framework suitable for multi-objective optimisation. The single node graph grammar 

transformation algorithm will be presented, and the implications of the connecting rules to the 

knowledge formalisation possibilities will be elaborated. 

6.1 Method overview 

Decomposition and synthesis of technical processes until operand transformation variants are 

produced will be defined as a formal system by means of graph grammar containing rule 

represented engineering knowledge of technical processes, technological principles and 

necessary effects. Production rules within graph grammar will prescribe the mechanism and 

conditions that must be satisfied in order to conduct decomposition and synthesis process. For 

the method to be operational, and to be able to conduct graph grammar transformations, an 

adequate mathematical modelling of technical process must be provided.  

 
Figure 6.1 IDEF0 model of generation of operand transformation variants within TP 
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Thus, a technical process will be defined as a labelled directed multigraph, or multidigraph 

with operands effects and operations. The method for generation of operand transformation 

variants within technical processes, as presented using IDEF0 process model is shown in 

Figure 6.1. 

The proposed method relies on the grammatical evolution for controlling and directing the 

search which requires establishment of a link between Chomsky’s string grammars and graph 

grammar. The result of merger is applying a breadth-first node based rewriting system. The 

term rewriting is applied hereby, since if the map between symbols within strings and graphs 

nodes is achieved then it can be said that rewriting takes place, of course, providing necessary 

embedding mechanisms. Thus, to perform decomposition a breadth-first node based rewriting 

will be performed with embedding mechanisms as determined by applying a set of connecting 

rules. That set of connecting rules will help to account for the integration of secondary flows 

into graph’s structure. Because GE uses genetic algorithm three encodings will be performed 

as defined in (5.21)-(5.25): (1) genotype level as binary strings, (2) GE intermediate level as 

BNF token strings, and at upmost level to allow grammatical evolution to conduct the goal 

search for transformation alternatives graph structures will emerge (3). 

The same principles used for generation of operand transformation variants can be extended 

to include other stages and phases of product development providing of course the existence 

of design language. Product functions are also both visually and formally represented with 

graphs however function unlike processes, they cannot be considered as sequences of 

operations since functions represent technical system in a state in which it is ready to operate 

or be operated. There is no time flow like with processes. The entry point to functional 

decomposition is the output of TP level, and the result is a technical system being in the state 

capable to produce the necessary effects. Organism as a technical system is a composition of 

its interrelated subsystems or organs, where each of them exhibits its own unique graph like 

structure in which the necessary wirk elements appear to fulfil one or more products 

functions. The establishment of technical system’s organs concludes conceptual design stage 

by providing a sketch, a concept of product that is. In general, a generative grammar driven 

approach, like the one presented within this thesis, is a process that is conducted in a one way 

top-down manner. Solution, alternatives can be produced, but after the rewritings have been 

exhausted the search process inevitably ends. However, since synthesis of technical process 

and technical system at different abstraction levels should establish relations that extend 

between these and in fact interconnect elements belonging to different levels thus providing 
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additional semantic meaning to explain and provide behaviour of product as a complex 

system, then an iteration should be created resulting in top-down and bottom-up refinement 

scheme. Complex behaviour cannot be represented simply within a set of rules governing the 

search at only one level of system’s representation, but must extend to relate the system 

elements between the levels. Creation of these inter-level relationships, which originally occur 

within designers mind, might be considered as the bottom-up part of the loop. And finally 

considering other stages of product development, embodiment and detailing namely, 

assemblies and subassemblies of technical systems are also both structurally and 

behaviourally describable using graphs. Assemblies are represented as trees of components 

and parts as trees of features and from them derived drawings, what is indubitably seen within 

a today’s feature based design CAD packages. Although this thesis is limited by its scope to 

technical processes, the findings provided can be utilized further to create a complete 

framework driven by unified design language. 

6.2 Modelling of operand transformation system 

Multigraphs are considered as non-simple graphs in which multiple edges between vertices, 

i.e. nodes, are allowed but no loops are permitted [98], [99]. In general, a multigraph ܩ can be 

defined as an ordered pair ሺܸ, ܸ ሻ, whereܧ  is set a of nodes and ܧ  a bag of edges. If a 

direction is required to represent binary relation between the vertices, than edges are replaced 

by directed edges or put succinctly by arcs. To model technical process formally it is 

necessary to introduce related technical process entities; operands, effects and operations 

namely, into a graph’s structure. Hence, operations will be mapped to graph’s nodes, where 

operands and effects are mapped to arcs.  

The definition of set of TP entities ீߑ is given as follows: 

DEFINITION 6.1 Let there exists a set of TP entities defined as ீߑ ൌ ைௗߑ ∪ ா௙௙ߑ ∪

ை௣ߑ , where ߑைௗ  denotes a finite non-empty set of operands ܱ݀ ∈

݂݂ܧ ா௙௙ is a finite non-empty set of effectsߑ ,ைௗߑ ∈  ை௣ߑ ா௙௙ andߑ

as a finite non-empty set of operations ܱ݌ ∈  .ை௣ߑ

In general, depending of the purpose graphs can be defined over different sets of objects, 

strings, types and instances of these thus relating starting graph structures to other graphs. The 

set of TP entities ீߑ ൌ ைௗߑ ∪ ா௙௙ߑ ∪ ை௣ߑ  denotes entities that participate within technical 

process. Thus in order to achieve robust mathematical modelling, multidigraph as presented 
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within this Chapter is not restricted to accepting TP entities as objects. The same holds for the 

graph-grammar transformation algorithm that is also presented within this Chapter. Moreover, 

as it will be later shown in Chapter 8 where the architecture of computational tool is 

presented, data model of TP entities will be performed object-oriented, thus defining entities 

as class instances. However, although both mathematical and data modelling are robust, 

Chapter 7 lay out only foundations for formalisation of the knowledge about technical 

processes. The goal of this thesis wasn’t by any means to qualitatively define technical 

process taxonomies or ontologies which could have served well for generalisation of 

production rules and transformation system. The latter is the reason why the multidigraph is 

referred as labelled and not as typed multidigraph denoting that only labels of TP entities, 

alphanumeric strings that is, are considered although TP entities are types.  

TP entities will be defined by the user when formalizing knowledge about technical 

processes, technological principles and necessary effects. Let operand ܱ݀ be an element from 

a finite set of all possible operands ߑைௗ, ܱ݀ ∈  ,ைௗ. Operand as a type has ID, name, stateߑ

states and label as attributes. In the same manner effect ݂݂ܧ is an element of a finite set of all 

possible effects ߑா௙௙, ݂݂ܧ ∈  ா௙௙ having ID, name and label for attributes. Hence, in Chapterߑ

8 data model of both operands and effects is Flow class, and edge of multidigraph is an object 

container which can accept both operands and effects. The same reasoning is applied with the 

graph vertices where each vertex is a container accepting operation ܱ݌, where ܱ݌ ∈  ை௣ andߑ

 is an object with ID, name, label and three ݌ܱ .ை௣ is a finite set off all possible operationsߑ

collections of input operands, output operands and effects as attributes. Most common, 

symbol ߑ denotes set of terminal of symbols, a language alphabet that is. Decomposition 

which synthesises technical processes lasts until all appropriate rewritings have been utilised 

which is only dependent on the amount of knowledge that has been formalised. Thus, there is 

no sense to give the usual meaning to ߑைௗ, ߑா௙௙, ߑை௣ as being variables or terminals, since 

they are used as building blocks to define graph grammar production rules. In respect to ீߑ a 

multidigraph ܩwith operands effects and operations may be defined in Definition 6.2. 

Figure 6.2 shows an arbitrary structure of technical process modelled as labelled 

multidigraph. Operands ܱ݀ଵ,… , ܱ݀଻  can be understood as operands of different types 

(classes), as operands of the same type but in varying states or both all of them represented as 

labels. Some of these operands (Figure 6.2) may be the operands the transformation of which 

directly satisfies the existent users’ needs, and some may emerge secondary as required or 
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generated by transformation system. Operations are represented with graph nodes labelled as 

,ଵ݌ܱ … ,  Effects are represented by labelling of nodes ܵݎܶ and ݐݑ݌ݐݑܱ ܵݎܶ ,ݐݑ݌݊ܫ ܵݎܶ .ଷ݌ܱ

with in, out and eff respectively. 

 
Figure 6.2 An example of TP modelled by ܩ with TP entities  

DEFINITION 6.2 A labelled multidigraph ܩ  with operands, effects and operations 

with no loops allowed is defined over alphabet ீߑ as ordered tuple 

ܩ ൌ ሺܸ, ,ܧ ,ݏ ,ݐ ݈ா, ݈௏ሻ:  

 ܸ finite non-empty set of nodes,  

 ܧ ⊆ ሼሺݑ, ,ݑ|ሻݒ ݒ ∈ ܸ  ∧ ݑ  ്  ሽ finite non-empty bag of arcsݒ
݁, with restrictions to loops, 

 mapping ݏ: ܧ → ܸ assigning for each arc ݁ a source node ݑ, 

 mapping ݐ: ܧ → ܸ for each arc ݁ assigns a target node ݒ, 

 mapping ݈ா: ܧ → ைௗߑ ∪ ா௙௙ߑ  which for each arc ݁  assigns 

operand ܱ݀ or effect ݂݂ܧ,  

 mapping ݈௏: ܸ →  ை௣ which for each arc ݁ assigns operationߑ

 .݌ܱ

These are added to graph’s structure to represented flows crossing the systems borders and the 

source of the effects within the transformation system. Sources of effects are operators: 

human, technical system an environment, however to simplify the modelling all of them are 

represented with only one node. Operations ܱ݌ଶ  and ܱ݌ଷ  are performed in parallel, thus 

creating a sequence when coupled together with ܱ݌ଵ.An effect delivered by transformation 
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system’s operators is required to enable ܱ݌ଶ is shown as ݂ܧ ଵ݂. Returning operand flows, i.e. 

arc ݁ from ܱ݀ଶ to ܱ݀ଵ, are supported by the model but are not permitted by TTS since they 

would violate the time flow inside transformation process. Returning flows are thus implicitly 

omitted through productions rule definition process. Relations of type ݏሺ݁ሻ ൌ  ሺ݁ሻ are notݐ

permitted. Thus, additional rules that have to account for modelling of technical processes are 

given here by: 

DEFINITION 6.3 A labelled multidigraph ܩ ൌ ሺܸ, ,ܧ ,ݏ ,ݐ ݈ா, ݈௏ሻ as defined in 6.2 is a 

model of technical process iff at least the following is satisfied:  

1) |ܸ| ൒ 4, 

o ∃ଵ ݒ ∈  ܸ| ݈௏ሺܸሻ ൌ ݅݊ ∧ 
o ∃ଵ ݒ ∈  ܸ| ݈௏ሺܸሻ ൌ ݐݑ݋ ∧ 
o ∃ଵ ݒ ∈  ܸ| ݈௏ሺܸሻ ൌ ݂݂݁. 

2) restrictions to relations E: 

o ∄ ݁ ∈ ሺ݁ሻ൯ݐ௏൫݈ |ܧ  ൌ ݅݊ ∧ 

o ∄ ݁ ∈ ሺ݁ሻ൯ݏ௏൫݈ |ܧ  ൌ ݐݑ݋ ∧ 

o ∄ ݁ ∈ ሺ݁ሻ൯ݐ௏൫݈ |ܧ  ൌ ݂݂݁ 

3) graph ܩ  has to be well connected in respect to the 

transformation of ܱ݌. 

To clarify the definition 6.3; 1) requires existence of minimally one operation node, alongside 

in, out and eff labelled nodes, 2) imposes restrictions to relations stating that in doesn’t accept 

any inputs as well as eff, and that out doesn’t emits any output flows, 3) states that operations 

must be well connected by operand flows, accepting isolation of the eff labelled node. Thus 

ሺ∄ ݁ ∈ ሺ݁ሻ൯ݏ௏൫݈ |ܧ  ൌ ݂݂݁ሻ ⟹ ܶ may happen, and is allowed, which assumes that designer 

doesn’t know in advance all of the necessary effects required to sustain transformation within 

technical process. In fact this is one of the overall search goals. Interpretation is as follows: if 

an effect already exists than it must be obeyed, which is checked at the production rule 

definition, otherwise eff can be left isolated. 

Incidence matrix ݎ௠௡ (Table 6.1.) of labelled multidigraph ܩ is constructed object-based using 

a collection type as a prime building block to allow easy insertion of new rows and columns 

and any other matrix transformation required by phenotype construction within GE. 

Collection is a type of list accepting and enumerating any object. Thus, to account for 

dynamic requirements ݎ௠௡ is composed as a collection of matrix rows, where each of rows is 

a collection of dependencies, with every dependency accepting a collection of arcs and every 
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relation accepting a collection of relations. Such layered structure can tackle any imaginable 

transformation inside TP providing construction of appropriate methods to achieve them. 

Table 6.1 Matrix representation of operand transformation process 

 

Taking into account that dependency is a collection of arcs which are labeled with effects or 

operands, and operations as source or target, then arc ݁௠௡೔  may be written as ݁௠௡೔ ⊆

ሼሺݑ௠, ,௠ݑ|௡ሻݒ ௡ݒ  ∈ ܸ ∧ ௠ݑ ് ௡ሽ, with ሾ݉ሿݒ ൌ ሼ1,… , ݆ ൅ 3ሽ and ሾ݊ሿ ൌ ሼ1,… , ݆ ൅ 3ሽ where ݆ 

denotes the number of operations. The complete structure of the transformation process is 

obtained by assigning a set of TP operations as source or target to relations inside incidence 

matrix ݎ௠௡ as shown in Table 6.1. Put succinctly, by mapping operations to nodes and then 

relating them by arcs which are stacked inside the ݎ௠௡, dependencies are denoted. 

 
Figure 6.3 Multidigraph with operations, operands and effects and its incidence matrix 

Of course as a consequence of Definition 6.2 it follows that ∀ ݁ଵ௡ ∈ ଵ௡ݎ ⇒ ݈௏ሺݏሺ݁ଵ௡ሻሻ ൌ ݅݊, 

∀ ݁ሺ௣ିଵሻ௡ ∈ ሺ௣ିଵሻ௡ݎ ⇒ ݈௏ሺݐ൫݁ሺ௣ିଵሻ௡൯ሻ ൌ ݐݑ݋  and ∀ ݁௣௡ ∈ ௣௡ݎ ⇒ ݈௏ሺݏ൫݁௣௡൯ሻ ൌ ݂݂݁  with 

fixed index ݌ ൌ ݉. Loops are not permitted in any of ݎ௠௡ of incidence matrix fields. Fields of 

௞௤ with ሾ݇ሿݎ ,௞ሺ௤ିଵሻݎ ,௞ሺ௤ିଶሻݎ ൌ ሼ1,… ,݉ሽ and ݍ ൌ ݊ have no meaning in respect to modelling 

of technical processes and as such are not being used. Incidence matrix ݎ௠௡ with technical 

Nodes ࢖ࡻ ࢔࢏૚ … ࢌࢌࢋ ࢚࢛࢕ ࢐࢖ࡻ 

1݊ݎ … … … … 11ݎ ࢔࢏  

 …     … ૚࢖ࡻ

… …     … 

 …     … ࢐࢖ࡻ

 …     … ࢚࢛࢕

ݎ݉ ࢌࢌࢋ ݎ݉ … … … … 1 ݊  



GRAMMAR OF TECHNICAL PROCESSES 

91 

process partitioned in layers depicting different operand flows that may occur between the 

same two operations is shown in Figure 6.3. 

6.3 Graph grammar of technical processes 

Rule based transformation of graphs can be understood as performing a local change to 

graph’s structure under the instructions given by the production rule ݌. These instructions 

should address the following points [65], [96], [97], [100]: 

 exactly which part of graph’s structure will be replaced – definition of matching 

procedure since ܮ from ݌: ܮ → ܴ must be somehow identified in ܩ, 

 the sub-graph that will be inserted at desired place inside the graph ܩ – definition of 

right side of the rule ܴ, 

 and finally, what is the mechanism for inserting ܴ – specification of how to embed ܴ 

into the structure of ܩ. 

Unlike string grammars (Definition 4.3) where rewriting is a straightforward procedure of 

sub-string or word replacement with the new sequence of symbols inside a sentence as 

defined by given grammar, graph grammars involve more complex procedures. Graphs are 

not just plain linear sequences of symbols; instead they have a structure defined through a set 

of nodes mutually related by a set of edges. In case of ܩ, structure is even more complex, ܩ is 

non-simple graph, with TP entities belonging to ீߑ  being mapped to nodes and directed 

edges. Thus, when replacing a node of graph or sub-graph of graph, it is necessary to consider 

the surroundings of the structure that is to be replaced. Most often, these surroundings are 

referred to as a context of the replaced structure. Embedding mechanism prescribes a 

procedure by which the new inserted structure will be interconnected with the rest of host 

graph. Embedding assumes respecting the identity of graph’s elements including both 

݈ா: ܧ → ைௗߑ ∪ ா௙௙ߑ  and ݈௏: ܸ → ை௣ߑ  through which operands, effects and nodes have been 

assigned to arcs and nodes. How to redirect edges to avoid occurrences of them having source 

or target pointing to nil, or how to reconnect edges properly to serve the purpose of graph 

transformation system, all of these implications must be accounted for by embedding 

mechanism or connecting procedure.  

Thus, in order to be able to define a graph grammar that consists of production rules ݌: ܮ → ܴ, 

first a mechanism for identification of ܮ inside the host graph must be defined. Then the 
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embedding procedure has to be specified. A definition of sub-graph is a prerequisite and it is 

given hereby [65], [96]: 

DEFINITION 6.4 Let ࣡ஊ be a finite set of all possible graphs that can be constructed 

over the alphabet of technical processes ீߑ, then a graph ܥ ∈ ࣡ஊ is 

called a sub-graph of ܪ ∈ ࣡ஊ, if and only if the following conditions 

are to be satisfied:  

஼ܸ ⊆ ுܸ ஼ܧ , ⊆ ுܧ ஼ሺ݁ሻݏ , ൌ ுሺ݁ሻݏ ஼ሺ݁ሻݐ , ൌ ுሺ݁ሻݐ ,  ݈ா಴ሺ݁ሻ ൌ

݈ாಹሺ݁ሻ, ݈௏಴ሺݑሻ ൌ ݈௏ಹሺݑሻ ∀ ݁ ∈ ஼ܧ ∧ ݑ ∈ ஼ܸ. 

Definition 6.4 simply states that if a graph is also a sub-graph of another graph that the former 

must match both by its structure, nodes and arcs, and by its labelling to the graph of which it 

is a sub-graph. When considering the Definition 6.4 in a view of ܩ, then a sub-process of 

technical process is a composition of the finite number of operations interrelated with 

operands flows and supported by necessary effects. To be able to apply graph production 

:݌ ܮ → ܴ rule a match ܮ in host graph must be identified [65], [96]:  

DEFINITION 6.5 For graphs ܥ, ܪ ∈ ࣡ஊ a TP graph morphism ݉:ܥ →  is a pair of ܪ

structure preserving mappings ݉௏: ஼ܸ → ுܸ  and ݉ா:ܧ஼ → ுܧ  such 

that the following holds:  

1) ∀ ݁ ∈ ஼ܧ െ ቀ݁ห݈ா಴൫ݏ஼ሺ݁ሻ൯ ∈ ሼ݅݊, ݂݂݁ሽ ∧   ݈ா಴൫ݐ஼ሺ݁ሻ൯ ൌ ൯ቁݐݑ݋ ∧ 

ݑ ∈ ஼ܸ െ ሻݑ௏಴ሺ݈|ݑ ∈ ሼ݅݊, ,ݐݑ݋ ݂݂݁ሽ: 

o ݉௏൫ݏ஼ሺ݁ሻ൯ ൌ   ,ு൫݉ாሺ݁ሻ൯ݏ

o ݉௏൫ݐ஼ሺ݁ሻ൯ ൌ   ,ு൫݉ாሺ݁ሻ൯ݐ

o ݈ாಹ൫݉ாሺ݁ሻ൯ ൌ ݈ா಴ሺeሻ,  

o ݈௏ಹ൫݉௏ሺݑሻ൯ ൌ ݈௏ಹሺݑሻ,  

2) ∀ e ∈ ஼ሺ݁ሻ൯ݏ஼|݈ா಴൫ܧ ൌ ݅݊: 

o ݉௏൫ݐ஼ሺ݁ሻ൯ ൌ  ,ு൫݉ாሺ݁ሻ൯ݐ

o ݈ாಹ൫݉ாሺ݁ሻ൯ ൌ ݈ா಴ሺeሻ, 

3) ∀ e ∈ ஼ሺ݁ሻ൯ݐ஼|݈ா಴൫ܧ ൌ  :ݐݑ݋

o ݉௏൫ݏ஼ሺ݁ሻ൯ ൌ  ,ு൫݉ாሺ݁ሻ൯ݏ

o ݈ாಹ൫݉ாሺ݁ሻ൯ ൌ ݈ா಴ሺeሻ, 

4) iff ∃ e ∈ ஼ሺ݁ሻ൯ݏ஼|݈ா಴൫ܧ ൌ ݂݂݁: 

o ݉௏൫ݏ஼ሺ݁ሻ൯ ൌ  ,ு൫݉ாሺ݁ሻ൯ݏ

o ݈ாಹ൫݉ாሺ݁ሻ൯ ൌ ݈ா಴ሺeሻ. 
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First of all, the Definition 6.5 of morphism is a general one in respect to technical processes 

allowing that graph ܥ consists of more than one operation ܱ݌, thus 1) defining morphism of 

interrelated operations with disregard to in, out and eff labelled nodes treating them as a 

special cases. Relations that have a source in in are explained with 2) by retaining only their 

target and label. How to connect the source is dependent on the set of connecting rules, hence 

if ܮ  has e ∈ ஼ሺ݁ሻ൯ݏ஼|݈ா಴൫ܧ ൌ ݅݊  then the same edge can change the source when being 

interconnected with the source graph’s structure. The same principle but inversed as given by 

3) applies for edges of type e ∈ ஼ሺ݁ሻ൯ݐ஼|݈ா಴൫ܧ ൌ  where the source and label are being ,ݐݑ݋

retained and where the target changes depending on the connection rules. Finally, for the 

effects 4) if they exist inside the rule than he source and label are conserved, while the target 

depends only on the contents of the right hand side of production rule. Again, for the effects 

the same assumptions are used as in Definition 6.3.  

Match of ܮ in ܩ can be defined using morphism as given in Definition 6.5 [65], [96]: 

DEFINITION 6.6 A match of ܮ in host graph ܩ is found by existence of morphism 

݉: ܮ → ሻܮwith ݉ሺ ,ܩ ⊆  .thus satisfying contact conditions ,ܩ

Match of ܮ in host ܩ supports arbitrary number of operations, however it is important to stress 

out that match applied within this thesis will always correspond to only one operation node 

that will be indentified in ܩ as given in definitions 6.4 and 6.5. Hence, since CFG is applied at 

GE level then a mapping will be established from single ܱ݌ to single BNF token. The right 

hand side of the rule ܴ, can have more than one ܱ݌.  

 
Figure 6.4 Example of rule p left hand side L 
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Graphical interpretation of morphism ݉ from Definition 6.5 and match ݉ሺܮሻ from Definition 

6.6 that is applied to the individual operation ܱ݌ଶ and its neighbourhood in the host graph is 

given by the following two pictures (Figure 6.4 and Figure 6.5):  

 
Figure 6.5 Identification of match of L as given in the Figure 6.4 using morphism ݉ሺܮሻ from 

Definition 6.5 

Figure 6.5 depicts, marked in shaded area, an identification of match of L within a host graph. 

The extents of the morphism as given by Definitions 6.2 and 6.3 and example of ܮ in the 

Figure 6.2 are clearly shown by excluding sources and targets of operand flows crossing the 

system’s border, as well as the source of effects within transformation system. Hence, graphs 

of type ܮ from ݌: ܮ → ܴ that are to be replaced by ܴ are identified by ݉ሺܮሻ thus not paying 

attention to the connecting structure of host graph ܩ . How to embed ܴ  within ܩ  will be 

regulated by connecting rule set ߩ.  

Applying ݌: ܮ → ܴ  to graph ܩ  first identifies, then removes ݉ሺܮሻ  from ܩ  and afterwards 

inserts ܴ in its place, thus completing one step in the derivation process. Insertion of ܴ into ܩ 

assumes the application of embedding mechanisms regulated by connecting rule set ݁௥. The 

derivation step is driven by the set of production rules ݌, morphism ݉ and a set of connecting 

rules ߩ is defined as follows [65], [100]: 
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DEFINITION 6.7 Using alphabet ߂ ⊆ ீߑ  since graph is labelled over ீߑ  and taking 

finite non-empty set of production rules ݌: ܮ → ܴ, then for every 

existing match ݉: ܮ →  a direct derivation can be found stated as ܩ

ܩ
௣,௠,ఘ
ሳልልሰ  .ܪ

 
Following the Definition 6.7, generative graph grammar of technical processes is defined as:  

DEFINITION 6.8 A graph grammar of technical processes ࣡࣡ is defined as ordered 

triplet ࣡࣡ ൌ ሺ࣭, ீ࣪, ࣭ ሻ, with߂ ∈ ࣡ஊ as starting symbol, ீ࣪ as finite 

non-empty set of productions ݌ ∈ ீ࣪ of type ݌: ܮ → ܴ and alphabet 

߂ ⊆  .over which graph is labelled ீߑ

 
Since grammar for describing technical processes is user-defined, it may be assumed that it 

will be difficult to tell which elements will be variables and which will be terminals in 

advance. However, what can be stated is that terminal graph structure will contain terminal 

TP entities ߂ ⊂ ீߑ  since graph is labelled over ீߑ . Hence, terminal entities are operations 

from ߑை௣. All graphs composed of terminals is defined as  ࣡୼ ⊂ ࣡ஊ. A definition of language 

of technical processes ்ࣦ௉ generated by ࣡࣡ is stated directly from Definition 6.7: 

DEFINITION 6.9 A language of technical processes ்ࣦ௉ generated by graph grammar 

࣡࣡ is a set of graphs ܩ ∈ ࣡୼ , which can be derived according to 

࣡࣡ ൌ ሺ࣭, ,݌  :ሻ as߂

்ࣦ௉ሺ࣡࣡ሻ ൌ ൛ܩ|ܩ ∈ ,୼ܩ ࣭ ⟹࣡࣡
∗  ൟܩ

6.4 Map between Chomsky’s grammars and graph grammars 

Generative grammars according to Chomsky and his proposed hierarchy are defined for linear 

strings of symbols. Linear strings in genotype and phenotype representation are also used 

within grammatical evolution to produce sentences in some formal language whose syntax 

has been defined within BNF. Since derivation of a sentence is nothing more than tree 

structured process, an attempt to generalise string structures to represent decomposition and 

synthesis of technical processes becomes reasonable and well justified. According to the 

literature [65], Chomsky grammars can be translated into string graph grammars. Thus if a 

string is composed as a sequence of symbols ߙଵߙଶߙଷ ௡ߙ… , ݊ ∈ Ժ, |ߙ| ൌ 1  with symbols 

being elements of some given alphabet ߙ௡ ∈  then it is possible to construct a string graph ,ߑ



GRAMMAR OF TECHNICAL PROCESSES  

96 

consisting of ݊ ൅ 1 nodes and ݊ arcs or edges. Of course each of the edges that connect two 

consecutive nodes is labelled as prescribed by the ߙ௡ ∈  .[65] ߑ

Method presented within this thesis is node rewriting with underlying grammatical evolution 

working with BNF grammar, thus creating linear sentences. What is tried to be argued here is 

that each derivation step under BNF generative grammar has to correspond to one 

decomposition step of technical processes in graph-grammar. In fact this is a necessity in 

order to create technical process decomposition step which is composed of a number of 

successive rewritings. As an example, Figure 6.6 shows BNF derivation process and its 

corresponding map to graph grammar derivation:  

 

 
Figure 6.6 Example of the BNF derivation process and its corresponding map to graph grammar 

derivation 

Definition of graph grammar productions of type ݌: ܮ → ܴ requires first a definition of rule 

building blocks by the user; ߑை௣ ∪ ைௗߑ ∪  ா௙௙ that is. Than according to Definition 6.3 eachߑ

side of the rule is defined by designer as multidigraph labelled over ீߑ . In that way the 

relation  ࣦܦ೅ುሺ࣡࣡ሻ ∶ ்ࣦ௉ሺ்ܩܨܥ௉ሻ → ்ࣦ௉ሺ࣡࣡ሻ as given in (5.23) is only partially established 

since it is bounded only to the knowledge describing how individual operation can be 

decomposed without addressing of how each of these decompositions can be integrated with 

one and another. Context-free grammar of technical processes ்ܩܨܥ௉  and its language of 

்ࣦ௉ ൌ ்ࣦ௉ሺ்ܩܨܥ௉ሻ are defined as follows (definitions 6.10 and 6.11): 
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DEFINITION 6.10 A context-free grammar of technical processes ்ܩܨܥ௉ expressed in 

BNF is as a quadruple ሺߑ௦, ௦ࣰ, ࣭௦, ௦࣪ሻ where: ߑ௦ ⊂ ை௣ߑ  is a finite 

non-empty set of terminals belonging to operations, ௦ࣰ ⊂  ை௣ is aߑ

finite nonempty set of non-terminal symbols or variables satisfying 

௦ߑ ∩ ௦ࣰ ൌ ∅, ௌ࣭ is a starting symbol or axiom with ࣭௦ ∈ ௦ࣰ, and ௦࣪ 

is a finite nonempty set of production rules of the type ܽ →  ߚ

where: ܽ ∈ ௦ࣰ and ߚ ∈ ሺߑ௦ ∪ ௦ࣰሻ
∗. 

 
DEFINITION 6.11 A formal language ்ࣦ௉ ൌ ்ࣦ௉ሺ்ܩܨܥ௉ሻ generated by grammar 

௉்ܩܨܥ ൌ ሺߑ௦, ௦ࣰ, ࣭௦, ௦࣪ሻ is defined as: 

்ࣦ௉ሺ்ܩܨܥ௉ሻ ൌ ሼ߱|߱ ∈ ௦ߑ
∗, ࣭௦ ⟹஼ிீ೅ು

∗ ߱ሽ 

 
Hence, two steps are required to fully establish relation (5.23), one performed by designer 

when creating productions, and one automated by the computational systems when these 

productions are applied and need to be interconnected. Linear sentences generated with 

 ௉ provide layout which should be followed by the computational system when patching்ܩܨܥ

up technical process provided by the right hand side of productions. On the left hand side of 

Figure 6.6 a derivation tree in ்ܩܨܥ௉ is presented. Rewritings of ܾܵܶݑ ଵܲ into ܱ݌ଶ and ܱ݌ଷ, 

and ܶܲ into ܱ݌ଵ are predefined by designer, however connecting together ܱ݌ଶ and ܱ݌ଷ with 

ଵ݌ܱ  is determined by predefined connecting procedure ߩ  embedded within computational 

system. Although a single node is always being rewritten it is still necessary to establish 

morphism ݉ሺܮሻ  to determine node’s neighbourhood within the host graph ܩ . Hence, the 

information about edges and how to reconnect them after the node has been rewritten can only 

be provided by the graph grammar ࣡࣡ ൌ ሺ࣭, ீ࣪,  As an .ߩ ሻ and its connection procedure߂

example, on the right hand side of Figure 6.6 it can be clearly seen how operand ܱ݀ଶ′ enters 

the transformation from outside the system in second derivation step. Finally, at the last 

derivation step it was determined by the connection mechanism that ܱ݀ଶ′ flow could be 

provided by ܱ݌ଷ instead, thus eliminating one unnecessary flow. Finally, it is important to 

stress out that graph-grammar inherits the orderings of operations ܱ݌ as presented within 

 ௉ generated string. Since operations within processes can be performed in parallel taking்ܩܨܥ

into account the influence of knowledge formalisation map (5.23) and predefined connection 

procedure, then resulting structure obtained from linear string ߙଵߙଶߙ௜  ௡ can take structureߙ…

of the multigraph from ࣡ஊ (as in Figure 6.7). However, the connecting procedure ߩ which 

patches the flows has to follow operation’s orderings, thus not being completely invariant.  
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Figure 6.7 Example of resulting TP structures after map from BNF to graph grammar language 

Providing the existence of (5.23) the orderings of the nodes inside incidence matrix ݎ௠௡ also 

inherit orderings from linear BNF strings. Each derivation step is complete after all ݊ 

rewritings of original ߙଵߙଶߙ௜ ௡ߙ… , ሾ݅ሿ ∈ ሼ1,… , ݊ሽ strings in BNF have been accomplished 

breadth-first. Identification of the insertion place ݇௜ in ݎ௠௡ thus ݎ௠ୀ௞,௡ୀ௞ for i-th rewriting by 

production ܽ௜ → |௜ߙ| ௜ is given as follows recursively (size of individual tokenߚ ൌ 1): 

 ݇௜ ൌ ݇௜ିଵ ൅ ௜| , with ݇଴ߚ| ൌ 2. (6.1) 

 
The orderings of arcs ݁௠௡ೕ stored in dependencies, a cell of ݎ௠௡ that is (see Table 6.1), are 

also respected when applying embedding procedures.  

With addition of connecting procedure ߩ the mapping as given in (5.23) is accomplished thus 

defining graph-grammar language of technical process ்ࣦ௉ሺ࣡࣡ሻ by that rendering synthesis of 

technical processes to be run computationally. In the upcoming section multidigraph’s 

transformation algorithm as well as connecting procedure ߩ will be defined formally. 

6.5 Transformation algorithm and connection procedure ࣋ 

Two types of embedding principles can be considered: connecting and gluing [100]. In case of 

connecting production rules of type ݌: ܮ → ܴ  contain embedding rules ߩ  which are to be 

applied to integrate ܴ into structure that emerged after ݉ሺܮሻ was subtracted from ܩ, or put 

succinctly after ܩ െ݉ሺܮሻ . The principle difference between two approaches is that 

connecting performs creation of edges that have to be added to connect ܴ with ܩ െ݉ሺܮሻ, 

whereas in gluing searches to identify which elements are present both in ܮ and ܴ to reuse 

them as much as possible when integrating ܴ into ܩ െ݉ሺܮሻ. In fact only the elements that 
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are unique in ܴ are added anew, while elements both present in ܮ and ܴ are preserved. This 

thesis will use connecting approach thus defining connection procedure ߩ.  

Algorithm for transformation of graph ܩ ൌ ሺܸ, ,ܧ ,ݏ ,ݐ ݈ா, ݈௏ሻ under the set of production rules 

of type ݌: ܮ → ܴ with | ௅ܸ| ൌ 4 according to Definitions 6.3 and 6.4 specifying the graph of 

TP is given as follows: 

1) First a match ݉: ܮ →  must be established in the ܮ left hand side ݌ of the rule ܩ

host graph ܩ according to Definition 6.6. The rewriting is performed always by 

replacing only a single ܱ݌ labelled node of the host graph ܩ with structure in ܴ 

consisting of an arbitrary number of operations satisfying | ோܸ| ൒ 4. 

2) After the match ݉ሺܮሻ has been established and the place of insertion specified, 

 the ܱ݌ labelled node ݑை௣  such that ܮ ∋ ை௣ݑ ∈ ை௣ሻݑை௣|݈௏ሺݑ ,ܩ ∈  ை௣ present bothߑ

in the left hand side ܮ  of production rule ݌  and in the host graph ܩ  has to be 

subtracted from the host graph ܩ  thus creating an intermediate structure as 

ିܩ ൌ ܩ െ ை௣ݑ . The ିܩ  is left without ݑை௣  node thus resulting in number of 

dangling edges, either one of these edges is deprived of only one source or target 

but not of both at the same time. For sake of being pragmatic it will be assumed 

that these sources and targets which are left empty simply point to nil thus yielding 

with the following set of interfaces ܧ
೔ீ
ష ൌ ሼሺݑ, ݈݊݅ሻ  ∧ ሺ݈݊݅, ݑ|ሻݑ ∈ ܸீ షሽ . Than 

using ݂݂ܧ݈݁ܦሺିܩ, ܧ
೔ீ
షሻ  delete all the edges ݁ீಶ೑೑

ష ∈ ܧ
೔ீ
ష  satisfying 

݈௏ீ ൬s ቀ݁ீಶ೑೑
ష ቁ൰ ൌ ݂݂݁ from ିܩ and ܧ

೔ீ
ష. 

3) Graph on the right hand side ܴ of the production rule ݌ first has to be deprived of 

nodes labelled as in and out. The subtraction ܴି ൌ ܴ െ ்ܸ ௥ௌ, with set of nodes 

defined as ்ܸ ௥ௌ ൌ ሼ ݑோ ∈ ܴ|݈௏ோሺݑோሻ ∈ ሼ݅݊,  ሽሽ, creates a set of edges deprivedݐݑ݋

of only one source or target but not of both at the same time. Again, interface 

edges of ܴି are defined as ܧோ೔ష ൌ ሼሺݑ, ݈݊݅ሻ  ∧ ሺ݈݊݅, ݑ|ሻݑ ∈ ோܸషሽ. 

4) Within ܧோ೐೑೑ష ൌ ሼሺሺݑோష|݈௏ோషሺݑோషሻ ൌ ݂݂݁ሻ, ,ோషݑ|ோషሻݒ ோషݒ ∈ ோܸషሽ the effects edges 

are collected. 

5) To complete the transformation, ܴିmust be added to the ିܩ and reconnected to 

the remaining structure according to connection procedure ߩ, thus ்ܩ
ఘ
← ିܩ ൅ ܴି. 

Matching of ܴି edges with the edges that have emerged as a result of creation of 
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 ିܩ and with respect to order of edges within dependencies of the host graph’s ିܩ

incidence matrix ݎ௠௡ୋష
 proper interfaces will be created. Interface matching 

function ݎ݁ݐ݊ܫሺ݁
೔ீ
ష, ݁ோ೔

షሻ is defined as follows: 

 

൫݁ݎ݁ݐ݊ܫ
೔ீ
ష, ݁ோ೔

ష൯ ൌ  :iff ݁ݑݎݐ

݈ா൫݁ ೔ீ
ష൯ ൌ ݈ா൫݁ோ೔

ష൯ ∧ ൫݁ݏ
೔ீ
ష൯ ൌ ݑ ∈ ܸீ ష ∧ ൫݁ோ೔ݏ

ష൯ ൌ ݈݊݅, 

∨ 

݈ா൫݁ ೔ீ
ష൯ ൌ ݈ா൫݁ோ೔

ష൯ ∧ ൫݁ݐ
೔ீ
ష൯ ൌ ݑ ∈ ܸீ ష ∧ ൫݁ோ೔ݐ

ష൯ ൌ ݈݊݅. 

(6.2) 

 
If ݎ݁ݐ݊ܫ൫݁

೔ீ
ష, ݁ோ೔

ష൯  yields truth, then ݁
೔ீ
ష  will take for source/target the node ݒ 

from ܴି for which it holds the following  ݒ ൌ ሺݒ ∈ ൫݁ோ೔ݏ |ିܴ
ష൯ ൌ  ݒ ∨ ൫݁ோ೔ݐ 

ష൯ ൌ

൫݁݊݊݋ܴܿ݁ ൯. Interface edge connection procedure ݒ
೔ீ
ష, ݁ோ೔

ష൯ is defined as follows: 

൫݁݊݊݋ܴܿ݁ 
೔ீ
ష, ݁ோ೔

ష൯ ൌ ቊ
݂݂݅ ൫݁ோ೔ݏ

ష൯ ൌ ݈݊݅, ൫݁ݐ
೔ீ
ష൯ ← ൫݁ோ೔ݐ

ష൯

݂݂݅ ൫݁ோ೔ݐ
ష൯ ൌ ݈݊݅, ൫݁ݏ

೔ீ
ష൯ ← ൫݁ோ೔ݏ

ష൯ 
  ሺ6.3ሻ

 

The effect edges within ܧோ೐೑೑ష  are simply copied to ିܩ using ݕ݌݋ܥሺܧோ೐೑೑ష ,  ሻ thusିܩ

reconnecting the effect node from ିܩ with proper node ݒ from ܴି that satisfies 

൫݁ோ೔ݐ
ష൯ ൌ ோ೔షܧ Finally, the reminder of edges in .ݒ  are either secondary input or 

output flows which are reconnected to ିܩ as follows: 

൫݁ோ೔ܵݎܶ 
ష൯ ൌ ቊ

൫݁ோ೔ݏ ݂݂݅
ష൯ ൌ ݈݊݅, ݑ ∈ ሻݑെ|݈ܸሺܩ ൌ ݅݊ ← ൫݁ோ೔ݏ

ష൯

൫݁ோ೔ݐ ݂݂݅
ష൯ ൌ ݈݊݅, ݑ ∈ ሻݑെ|݈ܸሺܩ ൌ ݐݑ݋ ← ൫݁ோ೔ݏ

ష൯ 
  ሺ6.4ሻ

Transformation algorithm required for ்ܩ
ఘ
← ିܩ ൅ ܴି  for k-th rewriting of 

derivation step providing ܩ :௦݌ , ߙ → ,ߚ :݌  ܮ → ܴ  is given with the following 

pseudo-code (connection procedure ߩ is defined in lines 8-12): 

 Input: ݌ ,ܩ௦: ߙ → :݌ ,ߚ ܮ → ܴ 

(6.5)

 Output: ்ܩ 

1 For ௝ܽ calculate insertion in ݎ௠௡ୋ
 providing ݌௦: ߙ →   ߚ

ை௣ݑ 2 ← ݉ሺܮሻ; 

ିܩ 3 ← ܩ െ   ;ை௣ݑ

ܧ 4
೔ீ
ష

௜
←   ;ିܩ
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,ିܩሺ݂݂ܧ݈݁ܦ 5 ܧ
೔ீ
షሻ; 

6 ܴି ← ܴ െ ்ܸ ௥ௌ; 

ோ೔ܧ 7
ష

௜
ோ೐೑೑షܧ ;ିܴ← ← ܴି; ܴି ← ܴ െ ாܸ௙௙ 

்ܩ 8 ← ିܩ ൅ ܴି; 

9 Compare each ݁
೔ீ
ష with each ݁ோ೔ష using ݎ݁ݐ݊ܫ൫݁

೔ீ
ష, ݁ோ೔

ష൯ do 

10 If ݎ݁ݐ݊ܫ൫݁
೔ீ
ష, ݁ோ೔

ష൯ do  

൫݁݊݊݋ܴܿ݁ 11
೔ீ
ష, ݁ோ೔

ష൯, Delete , ݁ோ೔ష from ோ೔ܧ
ష od 

12 od 

ோ೐೑೑ܧሺݕ݌݋ܥ 13
ష ,  ;ሻିܩ

14 Foreach ݁ோ೔ష reconnect secondary flows using ܶܵݎሺ݁ோ೔షሻ; 

15 od 

 
Example of the transformation process performed according to (6.5) is depicted in the 

following figure: 

 
Figure 6.8 Transformation steps ܩ → ିܩ →  ்ܩ
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6.6 Implications to the knowledge formalisation 

The summary of the most important implications to technical process synthesis modelling is 

given as follows: 

1) Technical processes are defined as a labelled multigraph with operands, operations 

and effects ܩ ൌ ሺܸ, ,ܧ ,ݏ ,ݐ ݈ா, ݈௏ሻ according to Definitions 6.1 and 6.3, with |ܸ| ൒ 4. 

2) For operation ܱ݌ ∈ ܱ݀ ை௣ it is said that it transforms operandߑ  ∈  ைௗ only if thereߑ 

exist input and output flows from such operation. 

3) Derived from 2), for nodes labelled as in, out, and eff it is said that they only 

participate in transformation, since nodes in, and out provide only the source and 

target crossing the transformation systems border, and eff provides necessary effects 

for support of transformation. 

4) Principle operands ܱ݀ and the transformation of these are represented by initial graph 

࣭ (principle transformation marked with asterisk in Figure 6.9) 

5) Left hand side of the rule ݌: ܮ → ܴ with | ௅ܸ| ൌ 4 is defined according to Definitions 

6.3 and 6.4. 

6) Right hand side of the rule ݌: ܮ → ܴ  with | ோܸ| ൒ 4  should contain at least two 

operations from which at least one operation should transform operands as given in 3); 

according to TTS, secondary flows and effects can appear as shown in Figure 6.9 

(principle operands marked are marked with asterisk, in, out and eff nodes omitted for 

the sake of simplicity). Special cases where | ோܸ| ൌ 4 are allowed only if change of 

operation labels posses significant semantic meaning, or an effect has been added. 

 
Figure 6.9 Emergence of secondary flows (principle transformation marked with asterisk) in right 

hand side of rule ݌: ܮ → ܴ 

7) Unless specified otherwise, the decomposition of technical process stops when all 

possible rewritings for the corresponding derivation tree have been exhausted. 
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The selection of formalism applied came to choosing a labelled multidigraph. Multigraph 

is on the line with engineering intuitive rule of a thumb reasoning resulting in the 

immediate mapping of operations to nodes and operands to arcs. However, a slightly more 

advanced concept of hypergraph came into consideration. In distinction to multigraphs, 

hypergraphs [101] are generalisation within graph theory, thus every graph is a 

hypergraph. Moreover, hypergraphs allow relations that are able to connect by definition, 

any number of graph’s node. That set based approach for definition of relations, although 

at first glance somewhat awkward and distant to engineering applications and modelling, 

offers an easy way of implementing double and single push-out approaches to graph 

transformation, what is in contrast to hereby applied node rewriting principles. Utilisation 

of concept of hypergraphs will be left for the further research efforts.  
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7. KNOWLEDGE FORMALISATION AND EXAMPLES 

In the beginning is the relation. (Martin Buber, philosopher, from I And Thou [102]) 

7.1 Formalization of the knowledge about technical process 

Making knowledge both understandable and consistent is of great importance for design of 

knowledge-driven computational reasoning systems. The system’s overall performance will 

be determined by the boundaries of knowledge formalisation that has been applied; either it 

will be hindered by it or the system would be robust and efficient. Thus, creation of the 

computational system that applies automated reasoning consists of two equally important 

parts; a strictly formal part dealing with the logic behind method’s definition involving 

definition of means to make knowledge computationally understandable and of a subjective 

part when knowledge from the selected application domain was formalised as required by the 

method [103]. 

The method was elaborated in the previous Chapter presenting a formal part in the creation of 

a computational reasoning system - a graph-grammar rule based transformation system that is 

being applied to perform the decomposition of technical processes. The outcome of 

decomposition should be synthesised operand transformation variants. These have to clearly 

depict the necessary effects emerged under technological principles and resulted as a 

consequence of the process of product’s usage, thus consequently imposing requirements to 

the function of technical system that is ought to be designed. Knowledge representation 

involves definition of objects and relations between these objects in order to provide 

semantics thus facilitating inference processes. Production systems manage to achieve 

semantics by using set of rules, thus bringing in relation different concepts. Inference is then 

conducted by rule application according to type of grammar applied. The subjective part 

refers to an actual event when designer must describe some of his or hers knowledge within 

the application domain using means provided by the computational tool. To clarify, the same 

concepts can be interpreted and related in many different ways and contexts depending on the 

viewpoint taken. Design know-how used to achieve required result within conceptual design 

phase depends on designers knowledge and experience in the field, thus varying from person 

to person both in viewpoints and in depth. Although such diversity in solution finding is 

precisely what is tried to be captured, computational reasoning systems must maintain a 
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degree of consistency of formalized knowledge in order to produce meaningful results. It can 

be assumed to an extent that among designers working and collaborating together there exist a 

shared understanding about concepts they deal with as a part of a daily routine. However if 

taking into account designers within domain that do not collaborate or even among different 

engineering domains, than the shared understanding would be reduced for sure. For large-

scale knowledge systems the experience tells that before actual formalization, the content of 

knowledge requires careful systematisation to facilitate a maximum out of systems 

capabilities [104]. 

This Chapter will provide findings that are required to define foundations for knowledge 

formalisation about technical process. Although the generalisation of technical process 

entities is not yet supported within the boundaries of developed method for generation of 

operand transformation variants, it is still necessary to at least suggest guidelines for 

knowledge formalisation which should be followed when defining production rules. For that 

purpose online lexicon of the English language WordNet [105], the Suggested Upper Merged 

Ontology (SUMO) as the largest open ontology [106], and recommendations for 

reconciliation of product function related terms accepted by the NIST (National Institute for 

Standards and Technology of US) [23] where examined. The Chapter will conclude with two 

examples of synthesis of technical processes using method as developed within this thesis. 

7.2 Taxonomy and ontology 

The knowledge driven computational method for the generation of operand transformation 

presented in Chapter 6 considers creating and expanding production rules database by 

designer. Unlike productions that are operated only by the computer, suggestions how to 

formalise the knowledge are intended for designers in order to produce structured knowledge 

organized in such manner that is “best-fit” for the developed method. In fact these suggestions 

should at least include a taxonomy which can be utilized further also by the computational 

system to help maintain consistency and reduce the overall number of rules thus creating solid 

foundations for method’s application. Taxonomies denote subclass relations among the 

objects of the domain of interest, or more broadly entities that include concepts, attributes and 

relations and are the first step in rendering of the body of knowledge to computational 

environment [103], [107]. Understanding of taxonomic relations among concepts emerge as a 

result of the observations, although the surrounding world might appear random and 

unordered, there is a way how to assign concepts that share same properties to their respective 
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class. As a result the generalisation is created focusing just at the relevant entities attributes 

and relations. To put the latter the other way around, it is mandatory to add terms that could 

be sufficiently well told distinct, otherwise a bias that occur in respect to the meaning of 

individual terms may hinder the inference capabilities of the whole system.  

A step further is the introduction of ontology which allows a multitude of various types of n-

ary relations among the domain objects to facilitate a more extensive computational inference 

process. In a broad sense, definition of ontology states that it is the study of the categories of 

things that exist or may exist in some domain [34]. Put more specific, the ontology can be 

described as an explicit specification of a shared conceptualization, which can be 

taxonomically or axiomatically based [108]. In general, to define ontology three parts must be 

specified: concept definitions attribute definitions, and further inference definitions like 

backward chaining rules, path grammars, and so forth [107]. If taking the intended purpose 

viewpoint, then ontology can be recognized as two general types: the problem solving 

ontology and domain ontology [103]. The first involves the activity of identifying, 

formulating and obtaining a solution to the problem, and the latter corresponds to the domain 

as distinct from the problem or tasks in that domain [34]. However, recent and ongoing 

research efforts in the field of knowledge engineering including both general-purpose and 

low-level engineering specific applications do not present straight as it is the definition in 

respect to the basic technical process taxonomy [104], [105] and [106]. At the moment only 

the Design Ontology [18], [107], [109] provides product knowledge vocabulary as given 

within the Theory of Technical Systems. Vocabulary contents are classified into six main 

subcategories divided between physical and abstract world with the categorization of the 

relations based upon logical properties of symmetry, reflexivity, and transitivity. True, the 

Design Ontology offers the definition of high level concepts in respect to TTS and technical 

process, however for computational applications lower more concrete process related 

concepts should be also provided. 

In fact, there is a strong division between ontology based problem solving approach and the 

Computational Design Synthesis directed mainly to the application of formal grammars. 

Reasons for being that so lay in the complexity and interdisciplinarity of both approaches 

requiring immense effort in order to create a unified and even more robust framework to 

support early product development. For example, production rules require generalisation and 

broader scope thus introducing complex mathematical structures involving both type graphs 

and typed graphs which are nothing more than taxonomies and specific mid-level ontology.  
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In order to model technical process formally it was necessary to introduce related technical 

process entities such as operands, effects and operations namely, into multidigraph’s 

structure. TP entities are considered as labels of nodes and arcs, with operations mapped to 

graph’s nodes, and operands and effects mapped to arcs. All of these TP entities are members 

of vocabulary set ீߑ (Defintion 6.1). However, what have not been addressed are relations 

between these objects which can be established as consequence of technical processes 

understanding. This thesis will not embark the course to extend the rewriting system to 

include attributes, types and inheritance or to define operations as a part of algebraic system 

over operands. Instead it will only try do define the principles as recommendations that 

should be obeyed when defining production rules of technical processes. Full generalisation 

of production rules by creating TP entity taxonomies thus providing inheritance over instances 

of classes, both at computational and knowledge engineering levels will be left for the further 

research. 

7.3 Foundations for the knowledge formalisation 

On epistemological level of modelling for a particular domain of interest, the knowledge 

formalisation is performed first by identifying basic and generic terms and possible relations 

that could be raised between these terms [18]. Of course, one might than define a body of 

knowledge that has been formalized as a set of terms/objects that are connected with different 

type of relations thus altogether providing higher semantic meaning. The usual outcome of 

knowledge formalisation is the creation of an abstract high level model that captures basic and 

wide spread common sense knowledge. However, most often the engineering or scientific 

application opts for a more detail and specific definitions demanding the loss of bias that is 

present with the general knowledge. Thus, on the account of the underlying formalisation two 

cases can occur [45]: knowledge is formalised completely without bias and it is domain 

specific - a formal language that is, or bias in semantics can occur since the knowledge being 

formalised tends to be close to a natural language. Selection depends how close the 

computational system will have to come close to emulating human reasoning. The truth is, a 

strictly formal engineering formalisation can produce coherent results, but because of the one-

to-one mappings the system will be deprived of possibilities to use more knowledge intensive 

reasoning techniques like establishing of analogies. In that way creating out-of-box reasoning 

which is sometimes cited as the source of creativity within cognitive linguistics remains 

unreachable [27]. This section will in its continuance provide examination of some existing 
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high and mid level taxonomy and ontology and work that has been done in order to formalise 

functions of technical system in order to suggest recommendations for the definition of 

production rules considering decomposition of technical processes. Lexicon of the English 

language WordNet [105] will be compared to the largest publicly available engineering 

ontology or SUMO [106], [110], in order to propose additions to product function’s taxonomy 

to be reused as guiding lines for production rule definition [23]. 

7.3.1 WordNet 

The WordNet [105] is the Internet based lexical database of the English language developed at 

the Princeton University. It is a lexicon where nouns, verbs, adjectives and adverbs are 

grouped into sets of cognitive synonyms or synsets. In order to capture expressiveness of a 

natural language synsets are interrelated by means of conceptual-semantic and lexical 

relations. The result is creation of a conceptual network which can be navigated following 

conceptual-semantic and lexical relations by using the Internet browser. Although 

predominantly oriented to natural language processing WordNet offering more than one to 

one mappings between terms, it can still be utilized for the purposes of formalisation of 

engineering knowledge about technical processes. Figure 7.1 presents a portion of the 

WordNet lexicon that can be utilized when designer is about to define production rules for 

decomposition of technical processes. The structure shown is in almost taxonomic 

relationship; above of a chosen term is denoted as term’s inherited hypernym. Consequently 

all the terms bellow are a troponym of the chosen term. Pure inheritance structure is not exact, 

thus semantic, since troponym only partially fulfil type-of relationship. In general, troponym 

of a verb bears a lot of semantics since it is applied to expresses a more specific meaning of a 

verb that it is to replace. In Figure 7.1 (if further decomposition exists a three-doted element is 

related to the term, thicker line denotes no more decomposition possible). 

Two distinct trees which can be observed in Figure 7.1 which are of special interest to TP’s; 

the one with (shaded) root specifying change as to undergo or experience a change and the 

other with its root denoting a change as a cause. The change as undergo a change is a 

viewpoint taken when considering operands with their respective change of state and change 

as a cause to change denotes viewpoint that has to be taken when considering operations, a 

process that is. Change of operand attributes thus include change of form or shape, change of 

state, change of internal physical properties as change of integrity, conversion, change of 

magnitude including addition and finally a division of objects in parts (Figure 7.2). 
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Figure 7.1 Semantic links between terms related to TP’s according to WordNet [105] 
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Figure 7.2 Semantic links in the context of operand transformation as in WordNet [105] 

Each of these terms can be divided further (omitted in Figure 7.1 because of simplicity). 

Process viewpoint assumes a cause of change, involving regulation and adjustment, affecting 

with processing, mixing, converting and so on. It is necessary to emphasize that processing or 

cause of change as a root is understood in much broader sense making it less usable to 

engineering applications. Roots involving moving of objects, connecting them or treating of 
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living beings are presented separated of root that involves causing of a change. For a natural 

language processing this holds, however it is necessary to include at least some of these as 

processes which makes perfect sense in engineering application domains, thus opting for 

considering more engineering oriented taxonomies. 

7.3.2 SUMO 

Like the WordNet, The Suggested Upper Merged Ontology (SUMO) is open for public and 

being available for browsing over the Internet [106]. SUMO is the largest formal public 

ontology in existence today [106]. It is written in SUO-KIF language and it achieved a 

complete mapping over the WordNet lexicon of the English language, thus bringing together 

formal and natural content in an acceptable way. SUMO ontology is axiomatic in its core 

which allows an automated inference process, both offering both taxonomy and ontology over 

related terms. Since all of the terms are formally defined their meanings are independent of 

inference procedures applied and in that way create a robust inference system [106]. 

Most upper levels of the SUMO ontology are defined starting with the term entity thus 

denoting both physical and abstract that exists in our surroundings (Figure 7.3). Such 

approach is coherent with the application in the field of artificial intelligence, for example 

with the general ontology as proposed by Russell and Norvig [103]. At this point of research 

only the branch that is composed of physical entities is of interest. The latter encompass both 

objects and processes. According to SUMO, an object is defined as a tangible and visible 

entity. Some of its derived subclasses, i.e. agent, are closely related to the inference processes 

built in SUMO. Although these objects might prove handy for the generation of operand 

transformation operands they exceed the scope of the method presented within this thesis. 

Thus, the self-connected object with its instances is of interest, however as it will be shown 

later in this section, the taxonomy of operands will be adopted as given within engineering 

product function reconciliation, adopted as a part of NIST [23]. Moreover, SUMO specifies 

objects as of biological origins, as material, content bearing objects as information container 

and collections [18], [106]. Such specification is somewhat coherent with the one given by 

TTS where operands are categorised as being of biological organ, material, information and 

energy. Process in SUMO is defined as a sustained phenomenon or one marked by gradual 

changes through a series of states. Such definition of process is coherent with engineering 

understanding of process and technical processes as given by the TTS, thus more closely 

related to the scope of this thesis than the definition provided by WordNet stating that process 
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denotes subject to a process or treatment, with the aim of readying for some purpose, 

improving, or remedying a condition. 

 
Figure 7.3 Upper ontology as proposed by SUMO [106] 
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Definition of technical processes is given by [18] as a process of technical product usage in 

which necessary effects are need for purposeful transformation of operands; hence, technical 

product is also an operator within technical process. Only the root node cause of a change in 

Figure 7.1 as provided by the WordNet specifies process like definition as cause to change, 

make different and cause a transformation provided in much broader sense than required by 

the engineering applications. 

Process branch of SUMO (see shaded terms in Figure 7.3) with its derived instances bringing 

together motion, transfer, internal change, internal process as making or creation and dual-

process defined as any process that requires two, non-identical patients (in the scope of this 

thesis patient equals operand), creates a rational basis for engineering applications. In Figure 

7.3 only the initial taxonomy of SUMO with some extensions in respect to processes is 

shown. 

7.3.3 Functional basis for engineering design 

It was shown [22], [23] that is necessary to reach common and shared understanding of 

product’s functions in order to enable unbiased communication between product development 

process participants. Functional decomposition that is performed by designer, like 

decomposition of TP’s, requires at least a taxonomy, or standardisation of terms being used 

that is, to enable understanding between participators of the product development process. 

The need for standardization is even more emphasized especially if considering computational 

reasoning systems. Unlike the WordNet which was constructed based on the epistemology of 

the general terms as natural language, or as in the case of the SUMO which extended the 

WordNet further towards more specific engineering domains, defining functional basis was 

driven only by the present design methodologies and research papers in the field of 

engineering design [23]. Differences and similarities identified within considered 

methodologies like Systematic Design [4] and TRIZ [5], and research papers manage to result 

with product function taxonomy. The expected impact of creating functional basis was 

intended towards lessening of the ambiguities which occur at the function modelling level as a 

result of similarities between terms applied for description of the same function. By 

specifying vocabulary the efficiency of the function modelling could be increased in respect 

to the effort necessary to process, interpret and facilitate the exchange of information about 

technical product. If bearing in mind artificial reasoning systems utilized for any form of 

automation of design than synonyms which are regular and understandable within a context of 
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a natural language could as such present an impeccable barrier to inference system of a 

computer. Thus, at least with a tendency to follow principle of parsimony choosing a 

minimalist approach to define vocabulary of function modelling in spite of issues which may 

emerge since not all of the concepts could be described in the way only as prescribed. 

Embracing a standard vocabulary a long term repositories of technical products’ function 

models could be established. Consequently the whole project was accepted by the NIST as a 

standard. 

Table 7.1 shows taxonomy of operands, or as more commonly referred to as taxonomy of 

operand flows, which are as such being proposed by functional basis [22], [23]. Operand 

taxonomy is composed as a result of extensive in-domain scientific literature review including 

reconciliation of functional modelling terms adopted from known design methodologies like 

Systematic design from Pahl and Beitz [4] and Altshuller’s TRIZ [5]. The truth is that the 

taxonomy presented in Table 7.1 is not directly derived from TTS, however the TTS itself 

follows Systematic approach as its natural precursor [4] but only addressing operand 

taxonomy in its basics specifying operands as materials, energy or signal without further more 

detail specification. Further extension of taxonomy presented in Table 7.1 is possible if for 

each of the operands additional attributes would be considered and then defined following the 

SUMO and the WordNet respectively. These would be able to accept their change of states 

according to predefined type graph structure. This thesis, however, will adopt state change 

and internal change as proposed by SUMO (Figure 7.3) in conjunction with taxonomy of 

operands as in Table 7.1 only in a form of suggestion required when defining production 

rules. The classification of operands remains the same whether they are transformed within 

technical process as a requirement to satisfy existing market needs or within technical product 

itself as required by technical process to deliver the necessary effects. Label formation is 

adopted as proposed by [22] and [23], where term applied must contain level of interest 

combined with its class root, e.g. optical energy where the former is a tertiary and the latter is 

a class/primary term. Moreover, a power conjugate is provided for bond-graph system 

modelling driven by propagation of energy flows, thus offering more precise description of 

energy type.  

Table 7.2 shows taxonomy of technical products’ functions. Similarly to operand flows, the 

taxonomy of functions emerged from the reconciliation of different taxonomies as proposed 

by Pahl and Beitz, Hundal and Altshuller [23]. Approach involved an analysis of each of the 

terms in respect to already constructed structure. 
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Table 7.1 A taxonomy of operands (operand flows) as accepted by NIST [23] 

 

 
If a term overlaps and if a term is not a synonym of an existing term and it is a subset of that 

term, than it would be placed lower in the taxonomy; the other way around occurs when a 

new term presents a superset, thus placing the term above in the hierarchy the corresponding 

structure. Synonyms adjoined rather than added as new terms in the hierarchy. According to 

TTS [1], the functions of technical process are equated in one-to-one mapping to processes.  

Processes that are performed as vertical transformation, or vertical action chain that is (see 

Figure 2.7), are those which are performed within and only by technical product itself. It is 

possible only to speculate why have the authors of the TTS chosen to put focus on product 

functions instead of technical system bound processes although they are equivalent and 

following Pahl and Beitz legacy might be one plausible explanation. However, the latter does 

not diminish issues which appear when technical processes are not being considered, it is 

Material Human  Hand, foot, head

Gas  Homogeneous

Liquid Incompressible, compressible, homogeneous

Solid Object Rigid‐body, elastic‐body, widget

Particulate

Composite

Plasma

Mixture Gas‐gas

Liquid‐liquid

Solid‐solid

Solid‐Liquid Aggregate

Liquid‐Gas

Solid‐Gas

Solid‐Liquid‐Gas

Colloidal  Aerosol

Signal Status Auditory  Tone, word

Olfactory

Tactile  Temperature, pressure, roughness

Taste

Visual Position, displacement

Control Analog  Oscillatory

Discrete Binary

Energy Human

Acoustic

Biological

Chemical

Electrical

Electromagnetic  Optical

Solar

Hydraulic

Magnetic

Mechanical  Rotational

Translational

Pneumatic

Radioactive/Nuclear

Thermal

Class 

(Primary)
Secondary Tertiary Correspondents
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quite the contrary since being unaware of underlying reasoning can hinder the search even 

more. 

Table 7.2 Taxonomy of technical products’ functions as accepted by NIST [23] 

 

According to the TTS [1] technical processes are broader in scope since they involve more 

types of operators with operations based on various technological principles, what is in 

contrast to the transformation within a technical system. Still the classification of basic or 

common operations can be taken as the same no matter which action chain is considered. This 

Branch Separate Isolate, sever, disjoin

Divide Detach, isolate, release, sort, split, disconnect, subtract

Extract  Refine, filter, purify, percolate, strain, clear

Remove  Cut, drill, lathe, polish, sand

Distribute Diffuse, dispel, disperse, dissipate, diverge, scatter

Channel Import  Form entrance, allow, input, capture

Export Dispose, eject, emit, empty, remove, destroy, eliminate

Transfer Carry, deliver

Transport  Advance, lift, move

Transmit  Conduct, convey

Guide Direct, shift, steer, straighten, switch

Translate  Move, relocate

Rotate Spin, turn

Allow DOF  Constrain, unfasten, unlock

Connect Couple Associate, connect

Join Assemble, fasten

Link Attach

Mix Add, blend, coalesce, combine, pack

Control Magnitude Actuate Enable, initiate, start, turn‐on

Regulate Control, equalize, limit, maintain

Increase Allow, open

Decrease Close, delay, interrupt

Change Adjust, modulate, clear, demodulate, invert, normalize, 

rectify, reset, scale, vary, modify

Increment  Amplify, enhance, magnify, multiply

Decrement  Attenuate, dampen, reduce

Shape  Compact, compress, crush, pierce, deform, form

Condition  Prepare, adapt, treat

Stop End, halt, pause, interrupt, restrain

Prevent  Disable, turn‐off

Inhibit Shield, insulate, protect, resist

Convert Convert Condense, create, decode, differentiate, digitize, encode,

evaporate, generate, integrate, liquefy, process, solidify,

transform

Provision Store Accumulate

Contain Capture, enclose

Collect Absorb, consume, fill, reserve

Supply Provide, replenish, retrieve

Signal Sense Feel, determine

Detect Discern, perceive, recognize

Measure Identify, locate

Indicate Announce, show, denote, record, register

Track Mark, time

Display Emit, expose, select

Process Compare, calculate, check

Support Stabilize Steady

Secure Constrain, hold, place, fix

Position Align, locate, orient

Class 

(Primary)
Secondary Tertiary Correspondents
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is an explanation of why to reuse work done to create basis for technical product’s function 

modelling and then to broaden it with technical process specific operations (as in Figure 7.1 

and Figure 7.3) in the form of suggestion or guidelines for production rules definition. 

7.4 Examples of methods application 

The knowledge formalisation about technical processes, technological principles and 

necessary effects shown within these examples is conducted using functional basis expanded 

with process related terms as suggested by the WordNet and SUMO. Examples of different 

levels of technical systems complexity will be considered. The two examples that are 

presented here are intended to serve as a proof of concepts showing all of the possibilities and 

drawbacks of developed method for generation of operand transformation variants. These 

findings will provide foundations for the future research. 

7.4.1 Tea‐brewing process 

The decomposition of the technical process of tea-brewing is adopted from the literature [7] 

and will serve as a first example of the method’s application. The formulated task is the 

design of an tea-brewing machine [7]. The task assumes that the energy needed for the 

heating of water is provided by the technical system that is ought to be designed. The black-

box process formulated according to requirements is shown in the following figure: 

 
Figure 7.4 Tea-brewing black-box process formulation 

The possible technologies for tea preparation are numerous some of which are very well 

known. Thus the search performed by the method developed within this thesis probably will 

not yield an innovative solution, but still the results provided will gave insights to designers 

what effects are required to sustain operand transformation process. In Figure 7.4 the input to 

the search is specified in the process’ black-box representation. Operands in their required 

input states are water and tea leaves, and the desired output states are tea (hot) and tea leaves 

(waste). Provision of energy for heating by the machine is also checked during the 

decomposition. The search objective function is formulated as the minimization of the number 

of operations needed to accomplish the required transformation. Knowledge about technical 

processes, technological (working) principles and necessary effects is formalized as proposed 
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by the knowledge formalization foundations provided within this Chapter (Section 7.3). 

Formalization guidelines included the Functional Basis (Table 7.1, Table 7.2), the WordNet 

(Figure 7.1) and the SUMO (Figure 7.3). 

What designer has to do first is to formalise knowledge about tea-brewing process thus 

creating tea-brewing graph-grammar. First the method requires definition of TP entities ீߑ. 

Then, designer has to map these to labelled multidigraph for representation of technical 

processes (Definition 6.3) of size |ܸ| ൌ 4, thus creating set of rule building blocks. For an 

example the black-box process formulation as shown in Figure 7.4 can be used (in, out and eff 

nodes omitted from picture). These building blocks can be used to specify left hand sides of 

graph-grammar productions ݌: ܮ → ܴ of size | ௅ܸ| ൌ 4, or in combination with other building 

blocks to form right hand sides with | ோܸ| ൒ 4. Table 7.3 shows context-free grammar ்ܩܨܥ௉ 

of tea brewing processes expressed in BNF with its alphabet ߑை௣ (Definition 6.10). Grammar 

was enumerated in accordance with Section 5.4 and expressions in (5.14) to be able to apply 

grammatical evolution. Table 7.5 shows graph-grammar ࣡࣡ ൌ ሺ࣭, ீ࣪, ሻ߂  of tea-brewing 

which is defined in accordance to Definition 6.8. Operands ܱ݀ ∈ ݁ ைௗ mapped to arcߑ ∈  ܧ

are depicted ontop of black head arrows, where effects ݂݂ܧ ∈  ா௙௙ (Human force, regulationߑ

and energy) are shown over default arrows. For simplicity reasons left hand side of the 

productions ݌: ܮ → ܴ are represented only as tokens as represented in Table 7.3, where the 

right hand sides of productions are shown in full as multigraphs, thus operation of brewing 

defined with token ൏ ݀݁ݓ݁ݎܾ ൐, in multifigraph representation equals black-box formulation 

as given in Table 7.4. That holds for each of the tokens. The graph transformation algorithm 

for decomposition of technical processes performs as defined in Chapter 6 and within pseudo-

code given in (6.5):  

 rewriting procedure for each of decomposition steps is followed as prescribed by 

token sequence (Table 7.3), 

 each of the ݌: ܮ → ܴ is applied by first indetifying soroundigns of L by determining 

match ݉ሺܮሻ in host graph (current derivation step) as defined in Defintion 6.6, 

  L is replaced with R, 

 connecting procedure ߩ is applied to connect ܴ to host graph’s structure (Section 6.5) 

Technical process synthesis is depicted as derivation tree in Figure 7.5. Production application 

sequences of all possible theoretical variants that can be created providing grammars as 
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defined in Table 7.3 and Table 7.5 yields in only 6 variants. The variant with minimal number 

of operations is shaded. 

Table 7.3 Context-free grammar of tea-brewing process in BNF 

௦ߑ ൌ  

ە
۔

ۓ
,݀݁ݏݑ݂݊݅_ ,′݀݁ݏݑ݂݊݅_ ,݀݁ݎ݋ݐݏ_ ,′݀݁ݎ݋ݐݏ_

,݄݀݁݃݊ܽܿݔ݁_ ,′݄݀݁݃݊ܽܿݔ݁_ ,݀݁ݔ݅݉_

,݀݁ݎ݋ݐݏ_ ,݀݁ݐܽݎܽ݌݁ݏ_ ,′݀݁ݐܽݎܽ݌݁ݏ_

,′′݀݁ݐܽݎܽ݌݁ݏ_ ′′′݀݁ݐܽݎܽ݌݁ݏ_ ۙ
ۘ

ۗ
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௦ࣰ ൌ   ൜
,݀݁ݓ݁ݎܾ ,݀݁ݐ݄ܽ݁ ,݀݁ݔ݅݉,݀݁ݏݑ݂݊݅

,݀݁ݐܽݎܽ݌݁ݏ ݀݁ݎ݋ݐݏ
ൠ 

ௌ࣭ ൌ ൏ ݀݁ݓ݁ݎܾ ൐ 

Production rule set ௌ࣪: 

൏ ݀݁ݓ݁ݎܾ ൐ ∷ൌ൏ ݀݁ݐ݄ܽ݁ ൐൏ ݀݁ݔ݅݉ ൐൏ ݀݁ݏݑ݂݊݅ ൐൏ ݀݁ݐܽݎܽ݌݁ݏ ൐ (0) 

 | ൏ ݀݁ݔ݅݉ ൐൏ ݀݁ݏݑ݂݊݅ ൐൏ ݀݁ݐܽݎܽ݌݁ݏ ൐ (1) 

൏ ݀݁ݐ݄ܽ݁ ൐ ∷ൌ  (0) ݄݀݁݃݊ܽܿݔ݁_ ݀݁ݎ݋ݐݏ_

 (1) ′݄݀݁݃݊ܽܿݔ݁_ ݀݁ݎ݋ݐݏ_  |  

൏ ݀݁ݔ݅݉ ൐ ∷ൌ  (0) ݀݁ݔ݅݉_

 (1) ′݀݁ݎ݋ݐݏ_ ݀݁ݔ݅݉_  |

൏ ݀݁ݐܽݎܽ݌݁ݏ ൐ ∷ൌ ݀݁ݐܽݎܽ݌݁ݏ_  (0) ′݀݁ݐܽݎܽ݌݁ݏ_

 (1) ′′′݀݁ݐܽݎܽ݌݁ݏ_′′݀݁ݐܽݎܽ݌݁ݏ_  | 

൏ ݀݁ݏݑ݂݊݅ ൐ ∷ൌ  (0) ݀݁ݏݑ݂݊݅_

 (1) ′݀݁ݏݑ݂݊݅_ | 

 
Table 7.4 Correspondence between ்ܩܨܥ௉ and TTS 

 TTS Remark ࡼࢀࡳࡲ࡯

 ௦ Operations No more decompositions possibleߑ

௦ࣰ  Sub-processes Can be decomposed further 

ௌ࣭  Technical process Starting point 

ௌ࣪ 
Formalized knowledge about TP -showing only 

operation sequences 
Set of productions ܽ →  ߚ
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Table 7.5 Graph-grammar of tea-brewing 

൏ ݀݁ݓ݁ݎܾ ൐    ሺ0ሻ 

 

൏ ݀݁ݓ݁ݎܾ ൐    ሺ1ሻ 

 

൏ ݀݁ݐ݄ܽ݁ ൐  (0) ൏ ݀݁ݐ݄ܽ݁ ൐  (1) 

  

൏ ݀݁ݐܽݎܽ݌݁ݏ ൐ (0) ൏ ݀݁ݏݑ݂݊݅ ൐ (0) 

  

൏ ݀݁ݐܽݎܽ݌݁ݏ ൐ (1) ൏ ݀݁ݏݑ݂݊݅ ൐ (1) 

  

൏ ݀݁ݔ݅݉ ൐ ሺ0ሻ ൏ ݀݁ݔ݅݉ ൐  (1) 

  

 
To explain the derivation process in Figure 7.5, triggered rules are labelled by their left-hand-

side with the applied rule alternative following in brackets. Rewriting rules ൏ ݀݁ݓ݁ݎܾ ൐ ሺ0ሻ 

and ൏ ݀݁ݓ݁ݎܾ ൐ ሺ1ሻ  denote two different processes, the first carries out automated heating 

of the water and the second assumes the water is already heated when it enters the process. 

For this reason, given that water (hot) is not an input to the starting black box model (Figure 

7.5), the sequence on the right hand side in Figure 7.5 is infeasible, thus purely theoretical. 



KNOWLEDGE FORMALISATION AND EXAMPLES  

122 

Branch ൏ ݀݁ݐ݄ܽ݁ ൐ ሺ1ሻ is determined to be unfeasible as well, since it requires heat from an 

external object and not from the product itself. 

 
Figure 7.5 Production application sequence of tea-brewing process (only left hand sides of applied 

production is shown, unfeasible branch expressed as dashed) 

Assumption is that the heat is provided as an effect from the product. Finally, since both of 

the branches under the ൏ ݀݁ݐ݄ܽ݁ ൐ ሺ0ሻ  sub-process are feasible under the given 

requirements, the ൏ ݀݁ݔ݅݉ ൐ ሺ0ሻ symbol has one transformation less, therefore designating 

the fit rewriting sequence as shown in Figure 7.5. Rewritings that may include sequences 

containing, for an example ൏ ݀݁ݔ݅݉ ൐ ሺ1ሻ and ൏ ݀݁ݏݑ݂݊݅ ൐ ሺ0ሻ, are omitted since they 

violate the requirement that at least one operation should participate in the transformation of 

at least one input operand (as defined in Chapter 6). Best-fit working principles under given 

criteria and based on black-box in Figure 7.4 would consist of the following set of operations: 

  .′݀݁ݐܽݎܽ݌݁ݏ_ ,݀݁ݐܽݎܽ݌݁ݏ_ ,݀݁ݏݑ݂݊݅_ ,݀݁ݔ݅݉_  ,݄݀݁݃݊ܽܿݔ݁_ ,݀݁ݎ݋ݐݏ_

7.4.2 Design of stiffened panel assembly line 

The purpose of this example is to show how the variation on technical process level can yield 

in different function structure of technical system that has to be designed. The scope of this 

thesis is set to technical process level with no further search on the function level. However, 

effects necessary for the transformation of operands are taken into account and are a part of 

the technical process synthesis, and based on those effects the dependency between technical 

process and technical system can be shown. It can be only hypothesized what kind of 
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grammar is required, and what level of concreteness in respect to operands’ attributes is 

necessary to achieve design automation on both technical process and technical system levels. 

Thus, the example will try to exemplify at least one difference between technical systems’ 

function structures that could have emerged only as the result of the variation on technical 

process level.  

The formulated task is the design of an automated assembly line that is able to deliver 

stiffened panels. What designer needs to gain are insights about working principles on which 

the transformation of operands is performed, as well as the necessary effects that need to be 

provided to sustain the transformation. Within this example’s grammar, the process of 

stiffened panel assembly is divided within three logical steps: step one is the positioning of 

steel plates and their assembly into a steel panel, step two comprises of cutting of panel to 

desired dimensions and then, possible surface cleaning and setting of the markings for 

placement of stiffeners. The final step comprises of stiffener transport and its positioning. 

Step three is concluded with further distribution of the welded panel. In order to exemplify 

differences on a technical system level emerging as the result of technical process search, 

welding and riveting are considering as two alternatives for the creation of stiffened panel. It 

is assumed that steel plates and stiffeners enter transformation in the state appropriate for 

appliance of those two technologies including welding joints or holes required for riveting. 

Example is taken from the naval architecture praxis referring to an assembly line for merchant 

ship production, and in that way implicitly determining much of the attributes of operands 

involved in the transformation as well as of the working principles. Since plates and stiffeners 

could be welded or riveted four possible combinations may exists in respect of working 

principles applied for joining structural parts together: a fully welded panel, a fully riveted 

panel, and two combinations involving welded panel and riveted stiffeners or vice versa. If 

the example’s grammar (Table 7.6-Table 7.11) would be even broader thus referring to 

stiffened panel assembly like in the aviation industries, than welding and riveting alternatives 

would increase in numbers even more. A completely general grammar may as well include 

soldering, gluing and screwing as working principles of joining two structural parts together. 

Depending on the required effects, the design of an assembly line is a complex process 

involving solutions which may contain multitude of different technical systems. A black-box 

formulation of such process as it might be specified by designer, with operands in their initial 

and a desired state is given in Figure 7.6. Operands in their required input states are both 
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plates and a stiffener, and the desired output is a stiffened panel. Effects are rendered as 

unknowns. 

 
Figure 7.6 Stiffened panel assembly black-box process formulation 

The search objective function is formulated as the minimization of the number of operations 

needed to accomplish the required transformation; goal is set to find automated procedure 

involving only welding as primary working principle and pneumatic based securing of the 

panel structural elements. Table 7.6 and Table 7.7 show context-free grammar ்ܩܨܥ௉  of 

stiffened panel assembly process expressed in BNF with its alphabet ߑை௣ (Definition 6.10). 

Grammar was enumerated in accordance with Section 5.4 and expressions in (5.14) to be able 

to apply grammatical evolution. A correspondence between ்ܩܨܥ௉ and TTS is given in Table 

7.6 and Table 7.7. It is assumed that the knowledge was formalised prior a designer actually 

applies a tool. Additional stooping rule is introduced if iteration exceeded large enough 

number of derivations. It was necessary to apply such condition since recursive rule have been 

applied (see Table 7.6 at ൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ሺ1ሻ, which represents two sides welding procedure 

involving intermediate stage of turning the steel plate. High level operations of the stiffened 

panel assembly involve joining plates into a panel, treating and preparing of panel’s surface 

and finally a panel stiffening involving attaching of a stiffener to the panel. Two types of plate 

welding technologies are considered: a manual arc welding (see Table 7.6 at 

൏ ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ (0)) and a submerged fully automated arc welding under a granulate flux 

(sand) (see Table 7.6 at ൏ ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ (1)). Riveting of plates into a panel considers three 

different variants in respect to the automation level imposed (see Table 7.6 at 

൏ ′ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐) which results with the participation of different hand tools (or widgets 

according to Table 7.1) used by the human operator. The same reasoning applies for panel 

stiffening involving a welding (see Table 7.7 at ൏ ݈ܹ݂݀݁ݐݏ ൐ ) and riveting based 

technological principles (see Table 7.7 at ൏ ݐ݁ݒܴ݂݅ݐݏ ൐). The knowledge about technical 

processes, technological (working) principles and necessary effects is formalized as proposed 

by the knowledge formalization foundations provided within this Chapter (Section 7.3). 

Formalization guidelines included Functional basis (Table 7.1, Table 7.2), WordNet (Figure 

7.1) and SUMO (Figure 7.3). A graph-grammar of the stiffened panel assembly process is 

shown in Table 7.8-Table 7.11.  
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Table 7.6 Context-free grammar of stiffened panel assembly process in BNF (Part I) 

௦ߑ ൌ  

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

,ݏ݋ܲ݁ݐ݈ܽ݌_ ,݁ݏ݈ܴ݈ܽ݁݁݁݊ܽ݌_ ,݊ݎݑ݈ܶ݁݊ܽ݌_ ,′ܿ݁ܵ݁ݐ݈ܽ݌_

,′′ܿ݁ܵ݁ݐ݈ܽ݌_ ,′݈ܹ݀݁݁ݐ݈ܽ݌_ ,′′݈ܹ݀݁݁ݐ݈ܽ݌_ ,ݓܽ݉_ ݓܽݏ_

,′ݒܴ݅ݐܿܽ݌݉݅_ ′ܿ݁ܵݐ݁ݒ݅ݎ_ ′ݏ݋ܲݐ݁ݒ݅ݎ_

′′ݒܴ݅ݐܿܽ݌݉݅_ ′′ܿ݁ܵݐ݁ݒ݅ݎ_ ′′ݏ݋ܲݐ݁ݒ݅ݎ_

,݀݁ݒ݋ܴ݉݁݊ܽݎ݃_ ,′ܿ݁ܵ݁ݐ݈ܽ݌_ ,′′′ܿ݁ܵ݁ݐ݈ܽ݌_ ′′′ܿ݁ܵ݁ݐ݈ܽ݌_

,ݐݑܥ݈݁݊ܽ݌_ ,ݏ݋݂ܲݐݏ_ ,݄ݏݑݎܾ_ ,ݐݏ݈ܾܽ_ ′݀݁ݐܽݎܽ݌݁ܵݎܾܽ_

,ݏ݋݈ܲ݁݊ܽ݌_ ,′݂ܿ݁ܵݐݏ_ ,′′݂ܿ݁ܵݐݏ_ ,ݓ݂ܽܵݐݏ_  ′′݀݁ݐܽݎܽ݌݁ܵݎܾܽ_

′′′ܿ݁ܵݐ݁ݒ݅ݎ_ ′′′ݏ݋ܲݐ݁ݒ݅ݎ_ ,′′′ݒܴ݅ݐܿܽ݌݉݅_

′′′′ܿ݁ܵݐ݁ݒ݅ݎ_ ′′′′ݏ݋ܲݐ݁ݒ݅ݎ_ ′′′′ݒܴ݅ݐܿܽ݌݉݅_ ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

 

R
ul

e 
al

te
rn

at
iv

es
 

௦ࣰ ൌ   ൜
,ܽ݌ݏ ,݈ܾ݀݁݉݁ݏݏܽ ,݀݁ݐܽ݁ݎݐ ,݂݂݀݁݊݁݅ݐݏ ,݈ܹ݀݁݁ݐ݈ܽ݌ ,ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ,ᇱݐ݁ݒܴ݅݁ݐ݈ܽ݌

,ܿ݁ܵ݁ݐ݈ܽ݌  ,ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ,݀݁ݐܽ݁ݎݐ ,݀݁ݒ݋ܴ݉݁ݐݎ݅݀ ,݈ܹ݂݀݁ݐݏ ,ݐ݁ݒܴ݂݅ݐݏ ݂ܿ݁ܵݐݏ
ൠ 

ௌ࣭ ൌ ൏ ܽ݌ݏ ൐ 

Production rule set ௌ࣪: 

൏ ܽ݌ݏ ൐ ∷ൌ൏ ݈ܾ݀݁݉݁ݏݏܽ ൐൏ ݀݁ݐܽ݁ݎݐ ൐൏ ݂݂݀݁݊݁݅ݐݏ ൐ (0) 

൏ ݈ܾ݀݁݉݁ݏݏܽ ൐ ∷ൌ ݏ݋ܲ݁ݐ݈ܽ݌_ ൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ (0) 

_ݏ݋ܲ݁ݐ݈ܽ݌_  |  ൏ ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ (1) 

൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ∷ൌ൏ ܿ݁ܵ݁ݐ݈ܽ݌ ൐൏ ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ൐  (0) ݁ݏ݈ܴܽ݁݁݁ݐ݈ܽ݌_

 |   ൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ݊ݎݑ݈ܶ݁݊ܽ݌_ ൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ (1) 

൏ ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ ∷ൌ൏ ܿ݁ܵ݁ݐ݈ܽ݌ ൐൏ ′ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐  (0) ݁ݏ݈ܴܽ݁݁݁ݐ݈ܽ݌_

൏ ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ∷ൌ  (0) ݓܽ݉_

 (1) ݀݁ݒ݋ܴ݉݁݊ܽݎ݃_ݓܽݏ_  | 

൏ ′ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ ∷ൌ ′ݏ݋ܲݐ݁ݒ݅ݎ_ ′ܿ݁ܵݐ݁ݒ݅ݎ_  (0) ′ݒܴ݅ݐܿܽ݌݉݅_

′ݏ݋ܲݐ݁ݒ݅ݎ_ |  ′′ܿ݁ܵݐ݁ݒ݅ݎ_  (1) ′′ݒܴ݅ݐܿܽ݌݉݅_

′′ݏ݋ܲݐ݁ݒ݅ݎ_ |  ′′ܿ݁ܵݐ݁ݒ݅ݎ_  (2) ′′ݒܴ݅ݐܿܽ݌݉݅_

൏ ܿ݁ܵ݁ݐ݈ܽ݌ ൐ ∷ൌ  (0) ′ܿ݁ܵ݁ݐ݈ܽ݌_

 (1) ′′ܿ݁ܵ݁ݐ݈ܽ݌_ | 

 ′′′ܿ݁ܵ݁ݐ݈ܽ݌_ |  (2) 

൏ ݀݁ݐܽ݁ݎݐ ൐ ∷ൌ ݐݑܥ݈݁݊ܽ݌_ ൏ ݀݁ݒ݋ܴ݉݁ݐݎ݅݀ ൐  ݏ݋݂ܲݐݏ_ (0) 
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Table 7.7 Context-free grammar of stiffened panel assembly process in BNF (Part II) 

൏ ݀݁ݒ݋ܴ݉݁ݐݎ݅݀ ൐ ∷ൌ  ′݀݁ݐܽݎܽ݌݁ܵݎܾܽ_ݐݏ݈ܾܽ_ (0) 

 ݄ݏݑݎܾ_ |  (1) 

൏ ݂݂݀݁݊݁݅ݐݏ ൐ ∷ൌ > ݏ݋݈ܲ݁݊ܽ݌_ ݈ܹ݂݀݁ݐݏ ൐  (0) 

ݏ݋݈ܲ݁݊ܽ݌_ |  < ݐ݁ݒܴ݂݅ݐݏ ൐ (1) 

൏ ݈ܹ݂݀݁ݐݏ ൐ ∷ൌ< ݂ܿ݁ܵݐݏ ൐ ′′݀݁ݐܽݎܽ݌݁ܵݎܾܽ_ݓ݂ܽܵݐݏ_ (0) 

< ݐ݁ݒܴ݂݅ݐݏ  ൐ ∷ൌ< ݂ܿ݁ܵݐݏ ൐ ′′′ݏ݋ܲݐ݁ݒ݅ݎ_ ′′′ܿ݁ܵݐ݁ݒ݅ݎ_  (0) ′′′ݒܴ݅ݐܿܽ݌݉݅_

 | < ݂ܿ݁ܵݐݏ  ൐ ′′′ݏ݋ܲݐ݁ݒ݅ݎ_ ′′′′ܿ݁ܵݐ݁ݒ݅ݎ_  (1) ′′′′ݒܴ݅ݐܿܽ݌݉݅_

 | < ݂ܿ݁ܵݐݏ  ൐ ′′′′ݏ݋ܲݐ݁ݒ݅ݎ_ ′′′′ܿ݁ܵݐ݁ݒ݅ݎ_  (2) ′′′′ݒܴ݅ݐܿܽ݌݉݅_

݂ܿ݁ܵݐݏ > ൐ ∷ൌ  ′݂ܿ݁ܵݐݏ_ (0) 

 ′′݂ܿ݁ܵݐݏ |  (1) 

 

Table 7.8 Graph-grammar of stiffened panel assembly (Part I) 

൏ ܽ݌ݏ ൐    ሺ0ሻ 

 

൏ ݈ܾ݀݁݉݁ݏݏܽ ൐    ሺ0ሻ 

 

൏ ݈ܾ݀݁݉݁ݏݏܽ ൐    ሺ1ሻ 

 

൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐  (0) 

 

 

  

Panel Panel
treated

Panel 
stiffened

Panel 
assembled

Plate

Plate
Stiffened

panel

Panel
(treated)

Stiffener
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Table 7.9 Graph-grammar of stiffened panel assembly (Part II) 

൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐  (1) 

 

൏ ݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ ሺ0ሻ 

 

൏ ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ሺ0ሻ ൏ ᇱ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ሺ1ሻ 

 

൏ ᇱݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ ሺ0ሻ 

 

൏ ᇱݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ ሺ1ሻ 

 

൏ ᇱݐ݁ݒܴ݅݁ݐ݈ܽ݌ ൐ ሺ2ሻ 
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Table 7.10 Graph-grammar of stiffened panel assembly (Part III) 

൏ ܿ݁ܵ݁ݐ݈ܽ݌ ൐ ሺ0ሻ ൏ ܿ݁ܵ݁ݐ݈ܽ݌ ൐ ሺ1ሻ ൏ ܿ݁ܵ݁ݐ݈ܽ݌ ൐ ሺ2ሻ 

 

൏ ݀݁ݐܽ݁ݎݐ ൐  (0) 

 

൏ ݀݁ݒ݋ܴ݉݁ݐݎ݅݀ ൐ ሺ0ሻ ൏ ݀݁ݒ݋ܴ݉݁ݐݎ݅݀ ൐  (1) 

  

൏ ݂݂݀݁݊݁݅ݐݏ ൐ ሺ0ሻ 

 

൏ ݂݂݀݁݊݁݅ݐݏ ൐ ሺ1ሻ 

 

൏ ݈ܹ݂݀݁ݐݏ ൐ 

 

< ݐ݁ݒܴ݂݅ݐݏ  ൐ ሺ0ሻ 
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Table 7.11 Graph-grammar of stiffened panel assembly (Part IV) 

< ݐ݁ݒܴ݂݅ݐݏ  ൐ ሺ1ሻ 

< ݐ݁ݒܴ݂݅ݐݏ  ൐ ሺ2ሻ 

൏ ݂ܿ݁ܵݐݏ ൐ ሺ0ሻ ൏ ݂ܿ݁ܵݐݏ ൐ ሺ1ሻ 

  

 
Technical process synthesis is depicted as a tree in Figure 7.7 and Figure 7.8 showing all 

theoretically possible production application sequences involving only welding or only 

riveting. All possible theoretical variants that can be created providing grammars as defined in 

Table 7.8-Table 7.11 also consider plate welding and stiffener riveting in combination and 

vice versa. These derivations are not shown as per se, but are only denoted as welding and 

riveting branches in Figure 7.7 and Figure 7.8. Goal search variant with minimal number of 

operations under the given criteria of one-side welding and pneumatic based securing is 

presented as gray-shaded in Figure 7.7. Number of technical process variants that can be 

created using grammar of this example equals 600 not taking into an account 4 additional 

branches involving ൏ ݈ܹ݀݁݁ݐ݈ܽ݌ ൐ ሺ1ሻ (see Table 7.6) for which introduction of stopping 

rule was necessary. If only welding alone is considered, than 168 variants exists, only riveting 

yields in 108 variants. Combination of technological principles as welding of plates with 

riveting of stiffeners produces 288 variants, and finally riveting of plates and welding of 

stiffeners results in 36 operand transformation variants. It is important to stress out that the 

mechanisms on which GE is based, a combination of genetic algorithm and formal grammar, 

enable the creation only of the meaningful alternatives. If genetic programming would be 

considered as the search mechanism of the method for generation of operand transformation 

variants, than the number of variants generated would be immense and in the vast majority 

not feasible (for GP a random selection of each operation as a building-block is assumed). 
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Figure 7.7 Welding branch productions sequences of stiffened panel assembly (left hand sides of 

productions shown, recursive branches expressed as dashed, goal gray-shaded) 



KNOWLEDGE FORMALISATION AND EXAMPLES 

131 

 

Figure 7.8 Riveting branch productions sequences of stiffened panel assembly (left hand sides of 

productions shown) 

Based on grammar as defined in Table 7.6, Table 7.7 and Table 7.8-Table 7.11 an example of 

how a variation on technical processes level may yield in different technical systems is shown 

in Figure 7.9). Because of complexity, only excerpts two technical processes variants are 

being depicted; one with fully automated panel riveting and the other with technical process 

variant involving fully automated panel welding (as gray-shaded in Figure 7.7). Based on the 

required effects one or more technical systems could be designed in order to sustain technical 

process. This is the reason why the riveting based process is depicted with two technical 

systems instead of one. Technical system for riveting must be capable of provisioning of 

impact force, thus specifying one of the system’s functions. Consequently, the technical 

system for welding must be capable of providing an electrical arc to be able to perform 

unification of two plates into a panel. These two functions are direct consequences of different 

technological (working) principles on which the operand transformation variants were 

founded. There is no other way in which these two technical system’s functions could have 

emerged. The same reasoning holds for securing of rivets and removal of granulate. 

Moreover, the necessary output flows of technical systems, like rivets or welding wire for 

instance, are also the result of different technical process that needs to be supported (it is 

assumed that inputs and secondary outputs of technical systems are not the same). ∎ 
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Figure 7.9 Example of how a variation on technical process level may yield in different technical systems 



KNOWLEDGE FORMALISATION AND EXAMPLES 

133 

7.5 Implications to this thesis 

The method for generation of operand transformation variants presented within this thesis is 

focused on the in-domain knowledge thus creating an extensible and robust problem solver. 

The same knowledge can often be used in several ways; extending and intertwine at the 

knowledge level is often simpler than doing the same to the programming code. Thus, the 

focus can be put just at formalisation, what is truly necessary for and relevant to the domain 

of interest. Knowledge driven systems are easily adaptable for the domains exhibiting similar 

solution modelling principles, and since the early design stages opt towards graph 

representation it is intended to as a part of the further research efforts to cover the whole of 

the conceptual design phase. To maintain an amount of the consistency among the production 

rules at least a shared understanding in respect to technical process related terms must exist.  

In order to define production rules the definitions about terms used must be clear to users in 

order to be able for the computational system to produce coherent results in the end. Thus, a 

prerequisite for knowledge generalization is at least having taxonomy of related terms thus 

creating possibilities to organize knowledge more efficiently and if necessary to apply 

predicate calculus of order as felt fit. Generalisation enables to put forward only what is 

necessary to describe each of the objects, thus eliminating the irrelevant details and 

maintaining the production rule redundancy. Moreover, the proposed method offers 

possibilities for induction of new grammar if desired. Both the extension of the proposed 

model to other stages of product development and utilisation of grammar induction to create 

and add bottom-up navigation possibilities thus creating an iterative search process are set as 

aims of the future research. The examples shown within this Chapter are label bounded 

having no knowledge generalisation possibilities. As defined in Chapter 6 operands, effects 

and operations attached to multidigraph’s edges are technical process labels and not objects of 

their respective classes. The extension to include attributes, types and inheritance and to even 

define operations as a part of algebraic system over operands and effects would require 

definition of type graph and typed graph, thus creating a robust system. It is suggested to 

define type graph of technical processes based on the SUMO ontology (Figure 7.3) and 

extended with the operand taxonomy as proposed by reconciled functional basis as adopted by 

the NIST (Table 7.1). The definition of type graphs will enable to utilize the full power of 

stochastic search of grammatical evolution, since rules would not have to be defined so strict 

and label bound, but would be instead tied to types of objects.  
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8. COMPUTATIONAL TOOL’S ARCHITECTURE 

In the computer field, the moment of truth is a running program; all else is prophecy (Herb 

Simon, taken from The Shape of Automation: For Men and Management [111]). 

The aim of this thesis is to provide a support to technical process synthesis which is according 

to the TTS a step within conceptual development stage. Devising a graph-grammar based 

method for technical process synthesis provides theoretical fundaments for its implementation 

as a tool expressed within a computational environment. When completed such tool would 

offer designers the possibility to computationally explore solution space of technical 

processes in order to select the most feasible one in respect to existing market and societal 

needs. To be fast and efficient is a necessity in today’s product development process, and 

computational tools can help provide these features to the overall design process. In the 

research projects conducted within the Design Science, realisation of a computational tool is 

considered as a practical part of the research effort, since it allows creation of results as it was 

once envisaged at the beginning of a project. Most often, the practical objective is a prime 

motivation behind the existence and realisation of theoretical research objectives. However, 

development of a computational tool up to a stage in which it is completed to an application-

ready state is a daunting task for itself. Thus, the computational tool in this thesis that was 

completed up to a prototype stage driven by an intention to be somehow able to test and to 

produce results, however ending up to being much more than a sole computer implementation 

valuable notion about how to design the method itself have emerged. Hence, design 

methodology and experience from practice which show us how engineers design, or if 

referring even more generally than how do designers design, learns us that order of prescribed 

activities is most often not followed and that it depends both on the individual involved and 

the amass of external creation process related causes. What is tried to be argued here now is 

that the implementation of a method within a computational environment can and does teach 

us a lot about the method itself. Like design of artificial, thesis development is an endless 

aiming to perfection abductive process, where it’s developed and involved concepts having 

mutual impacts on each other. Thus, the usual strict division [10] to theoretical objectives 

which encompasses development of a method and to practical objectives as method’s 

implementation doesn’t hold since both of them carry parts of each other as a result of their 

emergence from a conceptually overlapping and iterative process. The latter expresses the 
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precise way in which the famous Herb Simon’s [111] statement put as an opening to this 

Chapter is viewed upon within this thesis. 

This Chapter will try to present in brief the architecture of the computational tool that has 

been developed based on devised method for generation of operand transformation variants. 

Class diagrams of labelled multidigraph and its corresponding data structures, as well as class 

diagrams of grammatical evolution which are a part of an extensive genetic algorithm 

framework are developed in-house by the author of this thesis. It was, and still is a part of an 

effort to create a general purpose engineering problem multi-objective optimiser. Developed 

optimisation framework together with labelled multi-digraph should provide solid foundations 

for achieving long term research objective (see Chapter 1) towards creating complete graph-

grammar based computational design framework for early design. Computational tool 

architecture will be represented in brief. The basic data structures will be represented as well. 

Finally, a graphical user interface screen shots will be shown. 

8.1 Architecture of computational tool 

The kernel of the computational system that will perform the synthesis on the technical 

process level is shown in Figure 8.1. The BNF library is defined by the assistance of a 

designer through a visual builder interface which comprises a Preparation module. From the 

author’s own experience it has been learned that designing production rule libraries by hand 

as text files becomes tedious and almost impossible to keep errorless especially when 

considering structures like labelled multidigraphs. As a result of a visual user interface for 

production rule builder has been designed. This has provided an enhancement to overall 

functionality. BNF rule library should contain a large enough set of rules through which 

meaningful and useful results can be obtained. In Chapter 7 it was suggested to define 

production rules by extending functional basis with process related terms according to the 

WordNet and the SUMO ontology. It is a necessity for user to follow these suggestions in 

order to create a consistent rule database; however no automated consistency check in respect 

to these suggestions has been implemented yet. Preparation module both stores and retrieves 

production rules from the BNF rule library as a part of an ongoing rule development process 

and refinement. 

Execution module as shown in Figure 8.1 contains grammatical evolution based search and 

optimiser that produces operand transformation variants. To create rule derivation sequences, 
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the solver must make a request to the BNF rule library to find an appropriate rewriting rule 

according to the expression from the previous section. Information flow between designer, 

library and solver is possible for the input of the problem formulation, addition of new rules 

and provision of assistance to the solver. 

 
Figure 8.1 Schematics of the kernel of system for generation of operand transformation variants 

Both the designer and the BNF rule library can communicate with external resources beyond 

the system boundary to pass or retrieve new rule definitions. External sources for the tool may 

well include other BNF rule libraries. By choosing the initial axiom symbol, which is a 

technical process, the designer partially formulates the input information from which the 

rewriting procedure begins. To fully define the necessary input data, the information about 

operands and their initial and desired states must be provided. The black box representation of 

the search formulation is defined by technical operands with input states which are 

transformed to output states through a general technical process. 

Findings about design process, and technical system that has to be designed are equally 

important for a successful product development [1], [4], [7], [8]. The Theory of Technical 

Systems uses same the modelling principles, transformation system paradigm, for technical 

processes and technical systems and design processes. Thus, design process is defined as a 

process of information transformation from design specifications based on the existing needs 

and requirements to complete technical specification of technical system [1]. Operators 

belonging to executive part of such transformation system are designer and various tools that 
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aid him or her during the course of design. The method embedded within the computational 

tool developed in this thesis participates in design process as shown in Figure 8.2: 

 
Figure 8.2. Three-tier architecture with tool's participation in design process 

Figure 8.2 clearly models how designer interacts with the computational tool developed in 

this thesis, and how such interaction affects design process in order to improve the technical 

system being designed (see Chapter 1). The effects delivered by designer and computational 

tools are all of these activities which are necessary to perform computational synthesis of 

technical processes. It is clearly shown that designer was not replaced by computational tool. 

Thus, the results provided just advice designer to facilitate better search across the solution 

space of operand transformation. Tier modelling is often used for representing physical 

distribution among components of an application [112] in contrast to application’s logical 
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groupings. Figure 8.2 shows three-tier modelling approach for design of computational tool 

within this thesis. Although at the current development stage computational tool and rule 

database are located completely at client side, future implementations consider relocating 

BNF Rule Lib. on server to allow multi-user access. At the moment rule database is 

developed in MS Access and computational tool is programmed in MS C# with the 

communication between the two done in SQL. The future implementation may consider 

graphical user interfaces and processing parts as separate applications within distributed 

client-server online system. 

8.1.1 Architectures of Preparation and Execution modules 

Processing level is composed of preparation and execution module containing a number of 

libraries and components. Figure 8.3 presents component diagrams of Database management 

(DMU) and Graphic management (GMU) units: 

 
Figure 8.3 Component diagrams of DMU and GMU with data/object flow 

Database management unit has a task to establish connection to the database and to retrieve 

and store production rules. All data that has been retrieved from the database is run through 

the Parser to obtain rule syntax and. Hence, based on data from DMU Parser creates 

appropriate graph-grammar representation using Multidigraph and BNF dynamic link 
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libraries. Afterwards, productions are to test the basic rule semantic in order to minimize 

possible errors which may end up stored inside the database. Errors might have appeared due 

to lost connection during write process or because of direct intervention within database. Data 

with errors is discarded as not valid. Data validator has an interface towards Engine which 

requires production rules in order to create operand transformation variants. 

 
Figure 8.4 Architecture of Preparation and Execution modules with principle components, dynamic 

link libraries and dataflow  

Unlike DMU which is completely procedural, Graphic management unit is partly event based 

since it interacts with the user. After the validation of the data retrieved from the DMU, the 

data is being sent to the Graphic objects generator. GMU has to prepare graphical 

representation whether they are production rules, technical processes or technical process 

decompositions thus creating proper instances and storing them in the memory. These are 

then read by the Graphic objects display component and sent via an interface to Graphical 

user interface (GUI) to be displayed. Hence, only Data writer in DMU and Graphic object 

parser in GMU are components only used by one module, Preparation module that is. The rest 

of DMU and GMU components are shared by both modules (Figure 8.4). Interaction with the 

user is monitored by Graphical object manager. All of the events within GUI are interpreted 
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and passed further to Dynamic validator which informs the user about his or hers actions 

through Graphic objects display for both modules. When the user decides to save the created 

rule (Preparation module only), the graphical rule representation is parsed into suitable form, 

accepted by DMU and written to the database. The architectures of Preparation and Execution 

modules are shown in Figure 8.4.  

Figure 8.4 shows how components and dynamic link libraries are reused among modules. 

Database interaction through DMU and graphical representation by GMU are developed 

robust and therefore could be used in both of the main modules. BNF DLL for production 

rules formulation and Multidigraph DLL as data model shared by both modules; where GE 

DLL as grammatical evolution library is utilized only by Execution module. BNF DLL and 

Multidigraph DLL are used by all of the components.  

Execution module consists of several interconnected components as shown in Figure 8.4. The 

central component of the whole system is simply referred to as the Engine. It has a task to 

generate operand transformation variants as specified by input black-box specification. All of 

the three available dynamic link libraries are used by this component. Up on execution 

module start graph-grammar is delivered to Engine by DMU. Simultaneously, GMU stores in 

memory and than delivers necessary graphical representations of TP Entities to GUI so that 

the user can specify black-box input to search. Based on the multidigraph node rewriting 

principle as specified in Chapter 6 and a set of given constraints and objective functions given 

universal virtues as specified within Chapter 3, variants are created. Node rewritings are 

accomplished through Engine component’s built-in methods with the assistance of 

Multidigraph’s own functionalities as specified in Figure 8.5. Operand transformation 

variants when obtained are passed to the GMU, and then delivered back to GUI. 

8.2 Class diagrams 

Class diagrams shown in Figure 8.5 are data models of technical process itself alongside all of 

the relevant technical process entities. The centre class is MultiGraph with its duty to 

represent and sustain transformation in a computational sense. In respect to its mathematical 

model already shown in Table 6.1, MultiGraph is a derived class out of topmost abstract class 

of BaseArray<T> and of DependenciesFlow respectively. BaseArray<T> is a dynamic 

matrix of size ݉ ൈ ݊  composed of ݊ lists of size ݉ accepting via a template T any kind of 

object as an input to its cells. Using a list of lists to structure matrix as a collection of its rows 
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is just another way of matrix representation differing slightly from the usual array data type. 

Every row within Rows is of type BaseRow<T> with its corresponding attributes as shown in 

Figure 8.5. Although more complex than array, BaseArray<T> as structured as it shown 

allows the application of fast built-in list type methods which are altogether chained through a 

set of BaseArray<T>’s own row and column manipulation methods.  

DependenciesFlow is an instance of BaseArray<FlowArrow> representing a matrix that has 

FlowRow for each row as an instance of BaseRow<FlowRow>, thus accepting the FlowArrow 

type within its cells (as defined within Table 6.1). FlowArrow is an instance of abstract 

BaseArrow<FlowArrow> representing a relation between nodes of graph when the 

MultiGraph is instantiated. DependenciesFlow was conceived within an intermediate 

development stage leading towards MultiGraph and although the question of programming 

pragmatics could be raised here, the structure of DependenciesFlow survived as a legacy part 

of an effort to design a MultiGraph class. FlowArrow represent a bag of arcs that can be set 

between two nodes of graph. Attributes of a FlowArrow class contain pointers to nodes within 

source and target for easier accessibility. FlowArrow is a collection of arcs between two 

nodes. Moreover, FlowArrow class accepts single or a collection of operands thus 

representing operand flows between consecutive operations. Since DependenciesFlow accepts 

collections of FlowArrows, thus it is possible to represent complex relations occurring within 

labelled multidigraph. Flow class is biased as it represents both operands and effects 

depending on the value of the string within type property. Although such class construction 

should be avoided it will remain until next source upgrade. As shown class flow contains state 

as given by Table 7.2 as a publicly accessible collection defined in order to be able to track 

history of state transition, in case type property is set as operand. Operations are derived 

classes starting from abstract class of BaseNode. Ultimately two types exist; an operation and 

a DummyNode required for the modelling of source and target of operands coming towards 

and out of the transformation system. Likewise, the former is also utilised for modelling the 

source of effects. The similar applies for the source of effects. Finally, these entire 

aforementioned classes tie up together in MultiGraph class which is designed in order to 

create objected-oriented model of a transformation that is occurring within technical 

processes. Unlike classes from which it has been derived, MultiGraph class is a graph thus 

accepting a list of operators for its nodes. Correspondence between TP data model and 

method as defined within Chapter 6 is shown in the following table: 
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Table 8.1 Correspondence between TP data model and the method as in Chapter 6. 

Class TTS/method correspondent Remark 

Operation 

Inherits OperationNode and 

BaseNode 

Operation, 

TP entity - Definition 6.1, 

Graph labelling ݈௏: ܸ →  ,ை௣ߑ

Definition 6.2. 

If operation can be 

decomposed than it is 

referred to as sub-process. 

Top most sub-process is a 

process. 

DummyNode 

Inherits OperationNode and 

BaseNode 

Source and target of operand flows, 

Source of effects, 

Graph labelling ݈௏: ܸ →  ,ை௣ߑ

Definition 6.2. 

Add just for technical 

process modelling 

purposes to avoid 

dangling arcs within 

multidigraph. 

Flow 

Operand or Effect, 

TP entity - Definition 6.1, 

Graph labelling ݈ா: ܧ → ைௗߑ ∪  ,ா௙௙ߑ

Definition 6.2. 

Operand or effect 

depending on the value 

of type property.  

FlowArrow 

Inherits BaseArrow 

Bag of arcs ݁, 

Incidence matrix ݎ௠௡ Table 6.1, 

Source and target mappings, ݏ: ܧ → ܸ, 

:ݐ ܧ → ܸ, 

Definition 6.2. 

Accepts Flow(s) 

(Operand or effect) 

FlowArrows 
Row of incidence matrix,  

Table 6.1. 
Accepts FlowArrow(s). 

FlowRows 

Inherits BaseRow 

Container of incidence matrix rows, 

Table 6.1 
Accepts FlowArrows(s). 

Multidigraph 

Inherits DependeciesFlow and 

BaseArray 

Technical process, 

Multidigraph ܩ ൌ ሺܸ, ,ܧ ,ݏ ,ݐ ݈ா, ݈௏ሻ, 

Definition 6.2, 

Left or right hand side of production 

rule ݌: ܮ → ܴ, 

Section 6.3. 

As described in Chapter 6, 

left and right hand side of 

productions are also 

multidigraphs. Accepts all 

of the classes. 
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Figure 8.5 Class diagram of TP Entities and multidigraph with operations, operands and effects 
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Figure 8.6 shows a class diagram of a grammatical evolution framework. Correspondence 

between GE search and optimisation classes and GE is shown in Table 8.2. Abstract class of 

individual solution to a problem at hand is a BaseChromo<T> again accepting any object 

through template T to become as a chromosomal gene. Attributes of BaseChromo<T> contain 

multiple lists, properties and methods that are used in this thesis or can be used when the 

results of further research will be implemented. String_ is a string of T denoting a collection 

of genes that constitute chromosome. Thus, BinaryChromo is a class derived as 

BaseChromo<byte> representing common binary genetic algorithm chromosome. Again, the 

applicability and robustness of grammatical evolution and genetic algorithms can be 

reemphasized here by. To begin with, an excerpt of a larger MOGA library is applied for a 

new purpose, to drive grammatical evolution that is, and vice versa the whole grammatical 

evolution is built on top of an underlying genetic algorithm. Algorithms that is used for 

MOGA is NSGA-II [113] with plans to add Omni-optimizer [114]. Optimisation related 

classes as shown in Figure 8.6 like single-objective ranking or sorting are directly reusable for 

both GA and GE. Finally, a GrammarChromo is derived from BinaryChromo with addition of 

special BNF language and related methods. It can be observed that the list phenotype of 

GrammarChromo is a new definition in respect to BinaryChromo since it contains a 

collection of MultiGraphs what was necessary to represent the course of technical processes 

synthesis which is conducted as a derivation procedure resulting in creation of single 

MultiGraph at each of the derivation steps (see example as given in Figure 6.6). TokenBNF is 

used to establish a connection between rules in BNF and graphs.  

Table 8.2 Correspondence between GE related classes and its definition as in Chapter 5. 

Class GE/method correspondent Remark 

GrammarChromo 

Inherits BinaryChromo and 

BaseChromo 

Population member ܽ as in (5.1) and Table 5.1/ 

satisfies relation (5.25) 

Accepts Multidigraph 
/ stores whole 
decomposition 
process 

GrammarRecombination 

Inherits BaseRecombination 

Binary recombination  

ܲᇱሺݐሻ ← ,ሻݐሺܲሺ݊݋݅ݐܾܽ݊݅݉݋ܿ݁ݎ  ௥ሻ, as in (5.13)߆
 

GrammarMutation 

Inherits BaseMutation 

Binary mutation 

ܲ′ᇱሺݐሻ ← ,ሻݐሺܲ′ሺ݊݋݅ݐܽݐݑ݉  ௠ሻ, as in (5.13)߆
 

GrammarPop 

Inherits BasePop 
ܲሺݐሻ as given within (5.1) 

Parameters 

,ߤ ,ߣ ,௦߆ ,௠߆  ௥߆

defined over 

population  
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Figure 8.6 Class diagram of grammatical evolution search and optimisation framework 
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BasePop<T> is an abstract class used for instancing of the population of individuals 

depending on template T linked to the types of chromosomes and their genes (Figure 8.6). 

The Chromosome list presents a collection of chromosomes. Various population and overall 

algorithm related parameters like population size ߣ , matting population size, or offspring 

population size ߤ are raised to the level of population. Alongside population manipulation and 

ranking methods, an enumerator class has been encapsulated into population as well as a 

collection of pointers to the functions required for more robust and reduction in size code 

programming. GrammarPop is directly derived from BasePop< GrammarChromo >, since 

the relation between BaseChromo and GrammarChromo already exists. Initialization of 

population is embedded into the respective population class.  

Genetic algorithm operators or EVOPs: recombination and mutation are also being shown in 

Figure 8.6. Abstract class BaseRecombination<T> consist of chunks or elements that were 

programmed as broad in scope, if possible, as permitted by abstract class, thus containing 

variants of crossover methods, random number generation and selection. 

GrammarRecombination class is instantiated from BaseRecombination<byte> as all of the 

operators take place at the level of an embedded genetic algorithm. Few special delegates 

used for programming function exchange within recombination methods where also defined. 

Recombination is a general purpose method for gene exchange, where as CrowdingMatting is 

required by the NSGA-II MOGA. Likewise, the BaseMutation<T> abstract class is used to 

derive GrammaticalMutation using byte type for T. Again, mutation as a randomized bit-flip 

occurs at the level of genetic algorithm. 

What is left to be described in Figure 8.6 are the Pareto optimisation classes, single objective 

elitism principle class and few helping structures including interface comparers required to 

apply build-in quicksort over ranked individuals. BinaryMOSGA and BinaryNSGAII, as well 

as BinaryElitism can be applied directly to GrammarPop that accepts byte type via template. 

The BNF DLL that is shown in Figure 8.4 is used for production rule definition. It accepts 

Multidigraph as it is necessary to define left and right hand sides of productions.  

8.3 GUI 

As presented within Figure 8.4 it can be seen that the Preparation and the Execution modules 

each have their own graphical user interfaces. Since GMU is built event based towards the 

user than the interaction provided assures less effort for the user in achieving desired 
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computational support. Such approach enables capturing of the users actions and triggering of 

the appropriate system’s response whenever a prescribed event has occurred. Paramount 

responsibility of the system is to assure correct and valid rule creation; otherwise the 

usefulness of the results produced might not be satisfactory. Since the error checking is being 

implemented at the GUI level by GMU event based Dynamic validatior, and within 

procedural DMU by Data validator during data retrieval, there is no need to perform error 

checking when the method is being implemented within Engine component in Execution 

module. Although not implemented yet, it is be most likely that different application utilities 

would be required not only to help manage rule syntax, but also to check out and verify the 

usefulness and impact to the consistency of the knowledge data-base if considered rule would 

be created.  

Two separate modules with their own GUI’s allow users to only actively participate in 

knowledge formalisation, just to conduct search, or both. In continuance two GUI screenshots 

are provided: in Figure 8.7 screenshot of interactive rule builder GUI in Preparation module 

through which productions are specified using TP Entities as building-blocks and in Figure 

8.8 a screenshot of synthesized tea-brewing process (example 7.4.1) as shown in Execution’s 

module GUI. In both figures presented objects are not just the static pictures, they are 

interactive thus responding to the user actions. Consistency of the graphical objects during 

users interaction is monitored by Graphical object manager which are then interpreted and 

passed to the Dynamic validatior (Figure 8.3).  

 
Figure 8.7 Screenshot of interactive rule builder GUI in Preparation module 



COMPUTATIONAL TOOL’S ARCHITECTURE 

149 

Finally, when the user defines goals and constraints the generation of optimal variants can 

start. If no stopping criteria have been set, the user can always stop the search process as felt 

fit.  

 
Figure 8.8 Screenshot of synthesized tea-brewing process (example 7.4.1) as shown in Execution’s 

module GUI 

8.4 Implications to this thesis 

Success of computational tools most often depends on their visual interfaces which allow 

users better interaction in order to get required support. At the current level of tool’s 

development with no application of advanced algorithms for graph visualizations, the result 

will be displayed in form as shown by example in Figure 8.8. Algorithms that are able to 

untangle and depict graph in a manner comprehensible to the user have not yet been 

implemented within the computational tool. Complexity management methods and tools like 

dependency structure matrix will also be considered for that purpose. Computational tool as 

presented in this Chapter is built to a prototype stages in order to be able to see and test 

whether the proposed modelling can deliver results. Object oriented architecture of presented 

computational tool permits reuse of its components and dynamic link libraries in order to 
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further develop computational support for other stages of conceptual design phase. Deciding 

to model three-tier architecture Figure 8.2 assures multi-user participation allowing access to 

the BNF rule library to construct rules further, and/or to conduct search based on these stored 

existing rules. 
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9. CONCLUSIONS AND FURTHER WORK 

The concluding Chapter will present a summary of findings that emerged as the result of this 

research. An outlook of the aims and objectives as defined within the introductory Chapter of 

this thesis will be provided in respect to what was actually achieved. For the closing, the 

future research directions will be laid out. 

9.1 Research summary 

The aim of this thesis as formulated within its introductory Chapter is to provide a support to 

the beginning of the conceptual development phase by offering designers the possibility to 

computationally synthesise technical processes in order to obtain operand transformation 

variants in the respect to known technological principles. In contrast to the conventional 

research conducted in the field of Design Science, within the Computational Design Synthesis 

development of a method for design support always assumes the complementary development 

of a computational tool. Thus, in order to accomplish the postulated aim it was proposed that 

following objectives have to be met: to devise a method for generation of operand 

transformation variants based on different technological (working) principles, and to 

implement that method within computational tool. The tool is built to a completion stage that 

allows method’s verification as a proof of concept. It is expected that future testing within the 

engineering practice will be conducted as a part of more extensive early design computational 

support framework. According to the accepted Design Research Methodology, development 

of this research project can be summarized in the following four steps: 

1. Analysis and state-of-the-art review. Analysis consisted of the multidisciplinary 

literature review in the field of engineering design synthesis focusing on the synthesis 

of technical processes and to the establishment of the state-of-the-art review on current 

research efforts in the field of Computational designs synthesis. The literature review 

on the engineering design synthesis provided with findings necessary to generally 

understand the phenomenon of problem solving and cognitive aspects of solution 

synthesis as a part of problem solving activity. It was tried to be established what kind 

of logical models of engineering design synthesis exits and especially what is the role 

of technical process synthesis within the design process. The state-of-the-art review on 

the Computational Design Synthesis served the purpose to determine theoretical and 
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methodological fundaments of the current CDS research efforts, to compare and 

systematize them in order to focus this research. Based on the findings it was 

concluded that contribution to the field of the CDS could be accomplished if a method 

for technical process synthesis could be devised. To accomplish that goal it was 

required to propose and develop the computational model of technical process as well 

as the method that could perform technical process synthesis on proposed method.  

2. Determination of theoretical and methodological foundations to this research. It 

was necessary to determine the means necessary for devising of the method for 

generation of operand transformation variants. Selection of theoretical fundaments 

was of course predefined, since only the Theory of Technical Systems and its related 

theories like Domain Theory acknowledge the existence of technical processes. 

Nevertheless, teleological approach that TTS advocates proved to be new for the CDS, 

thus even more firmly determining the selected course of the research. Efforts where 

then turned to the exploration of the existent mathematical concepts that could be used 

for modelling of technical processes and related synthesis methods. Based on the 

findings from the fields of computation, artificial intelligence and the CDS it was 

concluded to conceive the method as knowledge oriented rather than problem oriented. 

Knowledge oriented methods achieve knowledge formalisation on a set  of production 

rules which is used rather than encoding the knowledge fixed within the method itself, 

programming code that is. Based on the latter it was established that knowledge about 

technical processes, technological (working) principles and necessary effects can be 

formalised within a set of production rules. Since the roots of TTS are drawn from the 

Systems Theory which opts for graph based system modelling, than it was concluded 

to model technical process as graph and to base the method for technical processes as 

a production driven transformation system. Optimisation as a frequent engineering 

demand was also considered as a research question. Thus, to enable optimization of 

technical processes it was found out that the existing method of grammatical evolution 

combines productions and genetic algorithms to perform search, which proofs to be 

ideal selection for the considered rule based formalisation principle and the 

multidigraph based modelling. However, at the moment the optimization is limited to 

goal based constrained search, lacking the introduction of technical process attributes 

which would enable metrics and more useful consideration of the universal virtues [8] 

of technical processes required for the optimisation.  
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3. Contributing to the fields of the Design Science and the Computational Design 

Synthesis. Based on all of the findings in the previous two stages of this research, led 

to the development of a graph grammar based method for synthesis of technical 

process. For modelling of technical process itself a labelled directed multigraph with 

operations, operands and effect was created. Thus, the method was conceived as a 

breadth-first node rewriting based on the knowledge about technical process that is 

formalised within set of productions. Grammatical evolution was applied for the goal 

based search. In addition, to be able to perform technical process synthesis, a set of 

embedding mechanisms and connecting rules had to be defined in order to perform 

multidigraphs decomposition. 

4. Verification of the research results. Like with the fundamental sciences, it is 

necessary that by any means verify the research results or at least to provide the 

foundation on which the verification could be conducted. The focus of this research 

which also is one of the expected contributions to the research filed was the 

development of the method for decomposition of technical processes. It was 

hypothesised that if the method would be production rule based, than it is possible to 

formalise engineering knowledge within a set of production rules. Later it was shown 

that these productions will be graph grammar based. Thus, for the purposes of the 

research results verification a computational tool was conceived and realised.  

Foundations for the computational tool development were as defined within the 

method for generation of operand transformation variants. In the Chapter 7 examples 

were presented in which graph grammars of tea brewing and stiffened panel assembly 

were constructed. Using developed method it was shown that technical processes can 

be synthesized efficiently using formalised knowledge within set of productions. 

Knowledge about TP’s was formalised on the foundations of online lexicon of English 

language WordNet [105], the Suggested Upper Merged Ontology (SUMO) [106], and 

recommendations for reconciliation of product function related terms accepted by the 

NIST [23]. 

9.2 Discussion 

Problems, issues and prospects which motivated the author for his research and the creation of 

the computational support for synthesis of technical processes where postulated in the 
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introductory Chapter of this thesis (Section 1.3.). Hereby the findings on these questions are 

summarized as follows: 

 Based on the findings it was concluded to devise a graph grammar based method for 

generation of operand transformation variants (Figure 6.1). A multitude of methods in 

the CDS today follow the similar knowledge–driven approach to the development of 

methods and tools intended for design support. The increase in the performance and 

the range of problems that can be tackled depends on the extents of the knowledge that 

has been formalised, rather than in the change of algorithm itself. By applying graph 

grammar transformations using a set of predefined rules, and by following a breadth-

first node rewriting principle, it is possible to conduct the decomposition of technical 

process. The decomposition starts with black-box goal formulation and ends in 

synthesized operand transformation process. In order to achieve embedding of each of 

the rewritings into the host graph structure, special connection procedures had to be 

devised. The algorithm of technical process decomposition as well as accompanied 

connecting procedures is given in pseudo-code in (6.5). The knowledge based graph 

grammar methods do not emulate human cognitive processes and reasoning, but they 

do enable application of advanced high-level computational processes like machine 

induction or grammar inference, what can be considered as a part of the future 

research. 

 For the modelling of technical processes a multi-digraph with operations, operands 

and effects was created (Definitions 6.2 and 6.3). Multigraph permits an addition of 

more than one relation between the each of the nodes what was necessary for technical 

process modelling (see Table 6.1). Following the object-based approach resulted in 

operations, operands and effects being mapped (pointed) to the graph’s nodes and 

arcs. A graph as a carrier structure is invariant to complexity of the objects that have 

been assigned, thus creating possibilities for further development. Since the method 

for decomposition is defined over the same multigraph type, than it is also invariant to 

the type of objects being assigned to graph’s nodes and arcs. Operations, operands and 

effects are process related objects defined as TP entities (Definition 6.1) and they 

constitute graph’s vocabulary. At the current stage of development only their labels 

are used by the system. 
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 Operand transformation variants can be created as starting from the black-box 

representation and than creating all possible rewritings providing graph grammar and 

transformation algorithm as in (6.5). By applying all possible combinations of 

production rules the whole of the language of considered technical process is 

generated. However, to generate only the variant which can be described as a 

constrained goal, a grammatical evolution is applied within this thesis ((5.14), (5.21)-

(5.24)). Since at the current stage of development TP entities do not permit  more 

attributes since these would require technical process knowledge generalisation and 

systematization, it is not possible to construct useful metrics that could describe 

universal virtues of technical process as defined by the Domain Theory [8] (see 

Section 2.3), what is necessary to conduct engineering optimisation. Although multi-

objective support exists within GE LIB. (Figure 8.6), a constrained goal formulated 

search is the maximum what can be achieved.  

 Since the proposed method for the generation of operand transformation variants is 

knowledge-driven it was necessary to explore requirements what need to be met in 

order to formalise the knowledge about technical processes within a set of production 

rules. It is important to stress out that aims of this thesis did not include research about 

the content of knowledge about technical processes in respect to its systematization 

and generalisation. It was intended to provide means to formalise that knowledge 

within a set of production rules and to utilise these productions by the developed 

method to generate operand transformation variants. During the research it was found 

out that knowledge about technical processes still does not exists in accessible open 

taxonomies or ontologies as per se (Chapter 7). Thus it was necessary to at least 

suggest guidelines for knowledge formalisation which should be followed when 

defining production rules. This is an explanation of why to reuse the work done to 

create the basis for technical product’s function modelling and then to broaden it with 

process specific operations (as in Figure 7.1 and Figure 7.3).  

Success of the research that involves deployment of a new method and computational tool is 

most often measured by comparing it to the other related scientific work. However, theoretical 

foundations as well as the level of modelling using multidigraphs or applying the GE for 

optimisation still do not exist within the CDS. The TTS being rather unknown to the CDS 

community was for the first time introduced as theoretical foundation within this thesis, which 

altogether makes difficult to evaluate this work in comparison to the others. The intention of 
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this research was to lay foundations for the development of TTS/GE complete graph grammar 

based framework for support of early design phases. GE is a robust problem solver which can 

be applicable as for any of the phases in the early design, assuming that engineering 

knowledge is formalized using production rules. Almost all of design theories follow systemic 

reasoning, thus resulting with the early design modelling as graph based transformation 

systems. Therefore, when developing computational support as is the case within this thesis, it 

is natural to unify graph grammars with grammar based stochastic search algorithm. It is to be 

assumed that the full impact of these and similar tools to the design process and technical 

products being designed can be evaluated when more complete frameworks appear within the 

real life engineering environments. Based on the presented findings and on the achieved 

research aims and objectives, it can be concluded that that the research hypothesis, as 

postulated in the introduction of this thesis, is verified.  

9.3 Limitations 

Although the formal model of technical processes is defined generic in respect to types of TP 

entities that can be mapped to multidigraphs vertices and arcs as defined in Chapter 6, the 

method for technical process synthesis has limitations in respect to type of TP entities. At the 

current research stage method is a proof of a concept, thus being constrained to only accept as 

TP entities labels. Limiting of TP entities to labels poses a serious constrain because of which 

production rules cannot be designed generic, but instead the rules must account for every 

operand in its particular state even if the operation is applicable for all of these operands. One 

of the consequences is an unnecessary build-up of production rules which may diminish the 

constancy of the rules database. The other drawback of keeping the TP entities as labels is the 

lack of attributes, or the universal virtues [8] of technical process, which may be used as 

optimisation objectives. Thus although the support for multi-objective optimisation is already 

developed, at the moment GE is only utilized for a constrained goal based search limited to 

minimal number of operations and utilization of specific technological principles.  

9.4 Further work 

The expected continuation of this work would include a further development and 

improvement of computational tool for generation of operand transformation variants in 

technical processes. Another long-term objective might be the creation of an overall graph 

grammar and grammatical evolution based computational framework for the early design 
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support. What is aimed for is the integration of the method within one the existent 

frameworks in the CDS with the consideration of the possible application in the industry. The 

future work will also consider the introduction of taxonomies and ontologies as type graphs of 

technical process entities in order to maintain rules consistency, to make easier definition of 

production rules, enable multi-objective optimisation and finally to be able to facilitate higher 

semantic reasoning within the computational design support system. 
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