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FOREWORD

This work is funded by the Ministry of Science, Education and Sports of the Republic of
Croatia as a part of the research project 120-1201829-1828 "Model and Methods of
Knowledge Management in Product Development". Provided with a grant funded by the
MZOS RH a part of this research was conducted at the Technical University of Munich
where the author spent six months as a guest researcher during the academic year 2008/2009.
It is to expect that computational approach to the generation of operand transformation
variants built on a graph grammar based model of technical process synthesis can provide

support to designers at the beginning of the conceptual design phase.
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SUMMARY

GRAMMATICAL EVOLUTION OF TECHNICAL PROCESSES

Keywords: operand transformation variants, formal model of technical process, formal
model of technical process synthesis, computational design synthesis, graph-grammar, and

grammatical evolution.

The aim of this thesis is to provide a support to the beginning of the conceptual development
phase by offering designers the possibility to computationally synthesise technical processes
in order to obtain operand transformation variants in the respect to known technological
principles. To accomplish the aim the following objectives had to be met: a theoretical
objective which considered the development of a method for generation of operand
transformation variants; and an empirical objective as the implementation of the method as a
computational tool built to a stage that allows verification of the research results. First, it was
necessary to understand the phenomenon of problem solving and cognitive aspects of
synthesis as a part of the problem solving activity. Then, the state-of-the-art review on the
Computational Design Synthesis (CDS) [2] was conducted the purpose of which was the
determination of theoretical and methodological background of the current research projects
and the comparison and the systematization of those in order to focus this research. The
efforts where turned to the exploration of the existent mathematical concepts which could be
used for the modelling of technical processes and related synthesis method. Based on the
findings from the field of CDS it was concluded to conceive the method as a knowledge-
based with the solution emerging as a result of successive application of production rules in
which the knowledge about technical processes and working principles is formalised. The
theoretical objective concluded with the main scientific contribution of this thesis: (1) the
creation of multigraph based formal model of technical process, (2) the definition of graph-
grammar based formal model of technical process synthesis, (3) addition of stochastic search
to technical process synthesis by applying grammatical evolution [3]. Within the empirical
objective a computational tool was realised on the foundations of the developed method.
During the research it was found that knowledge about technical processes still does not
exists in the accessible open taxonomies or ontologies as per se, which required to propose
(4) knowledge formalisation suggestions when defining the graph grammar of technical

Processces.
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SAZETAK

GRAMATICKA EVOLUCIJA TEHNICKIH PROCESA

Kljucne rijeci: varijante transformacije operanada, formalni model tehnickoga procesa,
formalni model sinteze tehnickoga procesa, racunalom podriana sinteza proizvoda, graf

gramatike, gramaticka evolucija.

Teorija tehnickih sustava objasnjava tehnicku evoluciju, konstruiranje i razvoj proizvoda kao
odgovor na potrebe drustva koje se mogu ostvariti tehni¢kim procesima. Takvo teleolosko
shvacanje nalaze kao pocetni korak u razvoju koncepta novog proizvoda utvrdivanje
tehnickog procesa kao procesa unutar kojega se sudjelovanjem tehnickoga proizvoda
ostvaruju efekti potrebni za svrhovitu transformaciju operanada sukladno radnim principima
na kojima se tehnicki proces temelji. Cilj istraZivanja u okviru izrade doktorskog rada jest
kreiranje racunalne podrske upravo za taj pocetni korak konceptualne faze razvoja proizvoda.
Generiranje varijanti transformacije operanada ra¢unalnom mogu stvoriti osnovu koja ¢e
posluziti za temeljitije razmatranje moguénosti za realizaciju tehni¢koga proizvoda. Sukladno
znanstveno-istrazivackoj metodologiji prisutnoj unutar podrucja znanosti o konstruiranju,
istrazivanje u okviru ovoga rada provedeno je unutar dvije faze: teoretska faza koja obuhvaca
definiranje metode za generiranje varijanti transformacije operanda temeljem poznatih radnih
principa, 1 prakticna faza koja obuhvaca razvitak racunalnog alata na osnovu definirane
metode do razine koja ¢e omoguditi potvrdivanje rezultata istrazivanja. Teoretska faza
istrazivanja zakljucena je sa glavnim znanstvenim doprinosima ove disertacije: (1) definiran
je formalni model tehnickog procesa, (2) definiran je formalni model sinteze tehnickih
procesa temeljen na graf-gramatikama, (3) uvedena je mogucnost pretrazivanja varijanti
transformacije koriste¢i se algoritmom gramaticke evolucije [3]. Prakticna faza ovoga
istrazivanja rezultirala je racunalnom implementacijom definirane metode za generiranje
varijanti transformacije operanada u okruzenju za tu svrhu osmi$ljenog i razvijenoga
raCunalnoga alata. Tijekom istrazivanja utvrdeno je da generalizirano i sistematizirano znanje
o tehnickim procesima i radnim principima unutar podrucja jos§ uvijek nije dostupno u obliku
dovoljno detaljne taksonomije ili ontologije za razinu koju zahtijeva definirana metoda. Iz tog
razloga predloZzene su smjernice za graf-gramaticku formalizaciju znanja o tehnickim

procesima i radnim principima (4).
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GRAMATICKA EVOLUCIJA TEHNICKIH PROCESA

Uvod i motivacija za istrazZivanje

Motivacija za razvoj racunalne podr$ke namijenjena procesu konstruiranju temeljena je na
pretpostavci da bi takva podrska omogucila efikasniji razvoj proizvoda. Pri tome se algoritmi
za kreiranje raCunalne podrSke cCesto temelje na sluCajnosti, heuristici 1 usmjeravanju
pretrazivanja vrednovanjem generiranih rjeSenja, te izmjeni konacnog broja gradivnih
elementa koji uredeni na novi nacin rezultiraju novim i potencijalno kreativnim rjeSenjem
problema. Katkada se u okviru ra¢unalnih sustava za podrsku ranim fazama konstruiranja

oponasaju i1 kognitivni procesi prisutni u ¢ovjeka.

Generiranje, vrednovanje i odabir varijante koncepta temeljeni su na konstruktorovu znanju,
iskustvu, te informacijama prikupljenim iz dostupnih izvora koje su potrebne za rjeSavanje
danog konstrukcijskog zadatka. Racunalni sustav koji bi bio u stanju procesirati informacije
na nacin da kvalitetno generira koncepcijska rjeSenja znaCajno bi utjecao na proces
konstruiranja i na tehnicki proizvod koji se konstruira. Generiranje varijanti nastalih kao
rezultat pretrazivanja prostora koncepcijskih rjeSenja racunalom, trebalo bi omoguciti
stvaranje racionalne osnove kojom se konstruktori mogu voditi prilikom donosenja odluka u
ranim fazama razvoja proizvoda. Razumno je ocekivati da bi ra¢unalni sustavi za podrsku
konstruiranju trebali mo¢i generirati rjeSenja brzo i da bi producirana rjeSenja trebala biti

korisna.

Na pocetku konceptualne faze, konstrukcijski zadatak se definira sukladno prepoznatim
potrebama u drustvu i stanju na trziStu. Razmatranje sudjelovanja tehnickog proizvoda unutar
tehnickoga procesa putem kojega se bi se udovoljio potrebama drustva i trziSta, polaziSte su
za razvoj koncepta novog proizvoda. Razvoj racunalne podrSke upravo za tu polaznu to¢ku u
razvoju proizvoda odabrana je kao predmet i tema ovog istrazivanja. Ovisno o odabranim
radnim principima na kojima se ¢e se temeljiti tehnicki proces, definira se funkcija, te
zahtjevi 1 ograni¢enja kojima mora udovoljiti tehnicki proizvod kako bi tehnicki proces bio
provediv. Kako odluke donoSene unutar konceptualne faze uvelike predodreduju faze procesa
razvoja proizvoda koje slijede, joS se viSe naglasava potreba za razvitak i uvodenje racunalne

podrske konceptualnoj fazi razvoja proizvoda.
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Teoretsko polaziste i ciljevi istrazivanja

U ovom radu istrazivanje se temelji na teoriji tehniCkih sustava (eng. Theory of technical
systems, TTS). Sukladno teoriji tehnickih sustava tehnicki procesi se modeliraju kao sustavi
transformacija kojima se postize potrebno stanje operanada: materije, signala i energije.
Tehnicki proizvodi se tretiraju kao tehnicki sustavi neophodni da bi se procesi transformacije
proveli. Takvo teleolosko shvadanje nalaze kao pocetni korak u razvoju koncepta novog
proizvoda utvrdivanje tehnickog procesa temeljenog na poznatim radnim principima,
potrebama 1 zahtjevima trZiSta, te ogranicenjima. Pojam radnog principa obuhvaca postupak
transformacije definiran nizom operacija kako bi se postiglo odgovaraju¢e konacno stanje
operanda. Svaki radni princip odreduje i potrebne efekte proizasle kao rezultat aktivnosti
covjeka i/ili tehnickog sustava koji sudjeluju u tehni¢kom procesu osiguravajuci pri tome
potrebnu energiju, materijal, regulaciju i kontrolu. Bez odgovaraju¢ih efekata proces
transformacije operanda ne bi bio mogu¢. Sukladno teoriji tehnickih sustava sinteza
tehni¢kog procesa, odnosno utvrdivanje procesa transformacije operanada, krec¢e od potrebe
opisane skupom operanada sa poznatim ulaznim i izlaznim stanjima, a dekompozicijom

zavrSava kona¢nim skupom varijanti razradenog procesa transformacije.

Cilj predlozenog istrazivanja jest kreiranje racunalne podrske za sintezu tehnickog procesa
sukladno teoriji tehnickih sustava. kako bi se konstruktorima omogucilo da razmotre razlicite
mogucénosti za realizaciju proizvoda obzirom na poznate radne principe, potrebe i zahtjeve
trziSta, te ograni¢enja. lako je iz literature poznato da se analiza tehnickog procesa obi¢no
provodi tijekom konstruiranja potpuno novih proizvoda razradeni tehniCki proces ce
konstruktoru ipak zorno predociti kako i u kojoj mjeri Covjek i tehnicki sustav sudjeluju u
procesu transformacije, te se na taj nacin odreduje funkcija proizvoda. Drugim rije¢ima, ako
se sposobnost isporuke odgovarajué¢ih efekata u tehnickom procesu shvati kao funkcija
proizvoda, tada proizlazi da varijacije transformacije na razini tehnickog procesa uzrokuje
varijaciju funkcijske strukture proizvoda. U okviru ovoga istraZivanja biti ¢e pokazano da sve
postoje¢e metode unutar podru¢ja racunalom podrzane sinteze proizvoda (eng.
Computational Design Synthesis, CDS) u pravilu ne razmatraju razinu tehni¢koga procesa.
Uzimaju¢i u obzir tehnicki proces 1 sudjelovanje tehnickog sustava u transformaciji
rezultiralo bi proSirenjem podrucja pretrage definiraju¢i funkciju tehnickoga sustava kao
varijablu pretrazivanja, za razliku od postoje¢ih CDS metoda gdje se funkcija proizvoda

razmatra kao ulazni parametar.
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Kako bi se ostvario zadani cilj istrazivanja potrebno je ostvariti sljedece:

1) definirati metodu za generiranje varijanti transformacije operanada temeljem poznatih
radnih principa, i
2) razviti raunalni alat do razine koja ¢e omoguditi verifikaciju rezultata.

Definiranje metode za generiranje varijanti transformacije operanada temeljem poznatih
radnih principa je cilj ovoga istrazivanja Sto je u skladu sa znanstveno-istraZzivackom
metodologijom unutar podrucja znanosti o konstruiranju. Implementacija definirane metode
unutar racunalnog alata kako bi se provjerila njena valjanost i na taj nacin se potvrdili

rezultati istraZivanja, moze se shvatiti kao prakti¢ni cilj ove disertacije.

Ocekivani dugoro¢ni ciljevi istrazivanja usmjereni su ka daljnjem unapredenju metode 1
raCunalnog alata za generiranje optimalnih varijanti transformacije operanada temeljem
poznatih radnih principa. Nadalje, jedan od dugoroc¢nih ciljeva jest i moguca integracija
metode za generiranje varijanti transformacije operanda, koja je razvijena u okviru ovoga
rada, sa nekom od postoje¢ih metoda u podrucju racunalom podrzane sinteze proizvoda.
Cjelokupno racunalno okruZenje za podrsku konceptualnoj fazi kreiralo bi osnovu na kojoj bi
se mogli realno testirati razvijena metoda i racunalni alat. Medutim, da bi integracija bila
ostvariva trebale bi se prevladati razlike nastale kao posljedica drugacijih teoretskih osnova
na kojima se temelje formalni modeli tehnickog sustava i1 procesa konstruiranja kod drugih

CDS metoda 1 alata.

Hipoteza rada i istrazivacka pitanja

Sukladno definiranim teoretskim polaziStima i ciljevima formulirana je hipoteza istrazivanja:

Skupom produkcijskih pravila formalizirano inZenjersko znanje o tehnickim procesima,
radnim principima i potrebnim efektima mogu se generirati varijante transformacije

operanada koje omogucavaju razvoj koncepta tehnickog proizvoda.

Hipoteza ovoga rada zahtijeva realizaciju teoretskih ciljeva: definiranje formalnog modela
tehni¢koga procesa i formalnog modela sinteze tehnickoga procesa. Sukladno postavljenoj
hipotezi, teoretski ciljevi imaju stoga najvece teziSte unutar cjelokupnoga rada. Za predvidjeti
je da ¢e se prakticni dio istrazivanja moc¢i provesti korektno samo unutar okvira stvarne
inzenjerske prakse. Medutim, da bi ispitivanje u praksi bilo ostvarivo, prethodno se trebaju

realizirati dugorocni ciljevi ovoga istrazivanja.
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U skladu sa definiranom hipotezom formulirana su sljedeca istrazivacka pitanja :

Kako interpretirati tehnicki proces na racunalu razumljiv nacin? Cjelokupna
upotrebljivost metode za generiranje varijanti transformacije operanda ovisiti ¢e o
nacinu na koji ¢e se formalno modelirati tehnicki proces. Istrazivanjima unutar
podrucja racunalom podrzane sinteze proizvoda pokazano je da kvaliteta rezultata,
odnosno moguénosti i ograni¢enja racunalne podrske, ovise o nainu na koji je

problem formaliziran.
Kako generirati varijante transformacije operanada unutar tehnickog procesa?

Koji matematicki koncept upotrijebiti za definiranje formalnog modela sinteze
tehnickoga procesa? Da li ¢e definirani model teziti vise ka emuliranju kognitivnih

procesa u ¢ovjeka ili ¢e viSe teziti ka algoritmima temeljenim na heuristici?
Da li je moguce uvesti optimizacijske metode na razinu tehnickog procesa? Ako da,
po kojim kriterijima je moguce provesti optimizaciju tehnickoga procesa?

Kako je predlozeno da se metoda temelji na formalizaciji znanja o tehnic¢kim
procesima i poznatim radnim principima koriste¢i produkcijska pravila, koje su tada

osnove potrebne za formalizaciju takvog znanja?

Metodologija istrazivanja

Metodologija predlozenog istrazivanja slijedi deskriptivnu DRM metodologiju (eng. Design

Research Methodology). Plan rada predlozenog istrazivanja sukladno DRM metodologiji

moze se sljede¢im koracima:

1)

2)

Analiza koja obuhvaca pregled postojeca dostignuca u podrucju kako bi se opravdali i
razjasnili ciljevi i svrha istrazivanja. Prikupljenim ¢injenicama se utvrduje postojece
stanje racunalne podrske za rane faze procesa razvoja proizvoda, tj. podrucja koje se
predlozenim istrazivanjem zeli unaprijediti. Cilj predloZzenog istrazivanja moze se
razloziti na dva dijela: definiranje formalnih modela tehnickoga procesa i sinteze

tehnickoga procesa, te na razvoj racunalnog alata temeljem definiranih modela.

Odredivanje teoretskih osnova koje prethode razvoju ra€unalne metode pomocu koje
¢e se generirati varijante transformacije operanada u tehni¢kom procesu. Posebno ¢e
se razmatrati fenomenoloski modeli procesa konstruiranja i razvoja proizvoda

sukladno teoriji tehnickih sustava kako bi se proucila odgovarajuca teoretska podloga
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3)

4)

potrebna za razvoj formalnih modela i racunalne podrSke. Istrazivanja koja za cilj
imaju razvoj racunalne podrSke procesu konstruiranja zbog svoga opsega gotovo
uvijek nalazu uklju¢ivanje multidisciplinarnog pristupa u istrazivanje, pa je iz tih
razloga nuzno proSiriti razumijevanje problema koji se sti¢e uvidom strucne i
znanstvene literature u strogom podrucju istrazivanja. Analizirati ¢e se rezultati
istrazivanja iz raznih znanstvenih disciplina ¢ije bi spoznaje mogle pridonijeti ovome
istrazivanju. Neke od znanstvenih disciplina koje ¢e se razmotriti jesu: evolucijsko

racunarstvo, viSe-ciljna optimizacija, formalni jezici, teorija sustava.

Sinteza koja ukljuCuje izradu formalnih modela za razinu utvrdivanja tehnickog
procesa temeljem teoretskih osnova utvrdenih u proslom koraku. Prvo ¢e se izraditi
formalni modeli tehnickoga procesa i sinteze tehnickoga procesa, a zatim ¢e se

definirati arhitektura ra¢unalnog alata.

Verifikacijom rezultata istrazivanja trebalo bi se pokazati u kojoj razvijeni alat utjece
na povecanje efikasnosti i kvalitete proizvoda. Pristupiti ¢e se izradi raCunalnog
modela alata u nekom od postojecih programskih jezika ili razvojnih okruzenja. Biti
¢e dan 1 osvrt na primjenjivost metode 1 alata za sintezu tehni¢kog procesa obzirom na
vrstu inzenjerskog zadataka, odnosno tehnickog sustava koji se razvija. To je posebno
vazno obzirom da se generiranje varijanti tehni¢kog procesa preporucuje kod razvoja
potpuno novih ili kod razvoja vrlo slozenih tehnickih sustava, jer kod njih zbog
velikog broja elemenata i relacija medu njima broj mogucih alternativa na samome

pocetku konceptualne faze razvoja proizvoda moze biti vrlo velik.

Ocekivani znanstveni doprinos

Sukladno navedenim ciljevima i istrazivackim pitanjima ocekivani znanstveni doprinos

istrazivanja se moze sazeti na sljedeci nacin:

Razvijenim formalnim modelom tehnickoga procesa dan je doprinos unutar podrucja
racunalom podrzane sinteze proizvoda koja do sada razmatra samo funkcijsku razinu

kao najvisu razinu apstrakcije.

Formalni model procesa sinteze tehni¢koga procesa. Rezultat sinteze bi trebale biti
varijante transformacije operanada temeljene na poznatim radnim principima i

potrebnim efektima.
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¢ Implementacijom metode unutar raCunalnoga alata omoguceno je generiranje varijanti
transformacije operanda koji mogu posluziti kao osnova za dalji razvoj koncepta

proizvoda.

Sinteza u konstruiranju

Unutar drugoga poglavlja doktorskog rada analizirao se proces konstruiranja kao proces
rjeSavanja problema, s naglaskom na sintezu kao jednu od aktivnosti procesa konstruiranja.
Rezultatima provedene analize utvrdili su se principi potrebni za razvoj racunalne podrske za
sintezu tehnickih procesa. Sa stanovista konstruiranja i razvoja proizvoda utvrdeno je da je
proces konstruiranja proces rjesavanja problema abdukcijom. Takvo promis$ljanje tijekom
procesa konstruiranja rezultira generiranjem tehni¢koga opisa proizvoda kao objasnjenja
postoje¢ih drustvenih potreba 1 potrazivanja na trziStu. Konstrukcijsko rjesenje nastaje kao
rezultat koevolutivnog iterativnog procesa izmedu predloZenog rjeSenja problema, te razine
znanja i razumijevanja o problemu koji je zadan. Drugim rije¢ima, definicija problema i
rjeSenje problema se u procesu konstruiranja sustavno vrednuju i redefiniraju jedno u odnosu
na drugo. Zbog takve medupovezanosti ne moze se jednoznacno ustvrditi da li je generirano
rjeSenje konstrukcijskog problema i1 konacno, tj. te da li ono stvarno najbolje rjeSenje koje

udovoljava stvarnim potrebama u drustvu i na trzistu.

Rane faze razvoja proizvoda gdje je sinteza najprisutnija aktivnost, razmatrane su opcéenito
kao proces generiranja varijanti transformacije operanada sukladno teoriji domena (eng.
Domain Theory) 1 teoriji tehnickih sustava. Analizom teorije domena utvrdeno je da opce
odlike tehnickoga procesa (eng. universal virtues) ukoliko su mjerljive, mogu posluziti kao
funkcije cilja prilikom optimizacije tehnickoga procesa. Konac¢no, teoretski model tehnickoga
procesa kao i pristup promisljanju i definiciji konstruiranja i sinteze u konstruiranju
prihvaceni su kao teorijska osnova istrazivanja sukladno Teoriji tehnickih sustava (TTS) koja

daje objasnjenje sinteze tehnickih procesa.

Racunalom podrzana sinteza proizvoda

Analizirane su postoje¢e metode i alati u podruc¢ju racunalom podrzane sinteze proizvoda
(CDS) kako bi se utvrdile teoretske osnove i principi koje se koriste u svrhu podrske
pojedinim fazama razvoja proizvoda. Zakljucci koji su proizasli iz te analize posluzili su za
odredivanje doprinosa podrucju CDS-a, te principa na kojima ¢e se definirati metoda za

generiranje varijanti operanada u tehnickome procesu. Racunalom podrzana sinteza
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proizvoda implicira sistematski pristup definiranju racunalnih algoritama i metodoloskog
modeliranja tehni¢koga sustava i procesa konstruiranja sa ciljem kreiranja konstrukcijskih
rjeSenja upotrebom racunala. CDS jest slozeno multidisciplinarno istrazivacko podrucje koje
obuhvaca napredne racunalne tehnike i algoritme pretrage, te znanje o procesu konstruiranja i
tehniCkim sustavima. Namjena postoje¢ih CDS metoda i alata moze se formulirati kao
pruzanje podrske konstruktoru u situacijama kada pronalazenje potrebnog rjeSenja problema
iziskuje generiranje prevelikoga broja varijanata da bi se ono moglo rijesiti u potrebnom

vremenu. Pregled podrucja ra¢unalom podrzane sinteze proizvoda dan je u nastavku.

Osnovni pristupi. Dobar primjer uporabe evolucijskog ra¢unarstva za ostvarivanje racunalne
podrske u konceptualnoj fazi razvoja proizvoda jest koriStenje genetickog algoritma za
generiranja konceptualnih varijanti temeljem morfoloSke matrice koja sadrzi razlicita
tehnicka rjeSenja parcijalnih problema. Vrednovanje konceptualnih varijanti rjeSenja provodi
se provjeravanjem kompatibilnosti tokova energije, dok se optimalno rjesenje trazi temeljem
definirane funkcije cilja. U istraZivanju je koriSten raCunalni generator koncepta (eng.
Concept Generator) kod kojega se koristila matricna algebra za odredivanje komponenti
kojima je moguce realizirati odgovarajuce funkcije iz zadane funkcijske strukture. Drugaciji
pristup rac¢unalnoj podrsci namijenjenoj konceptualnoj fazi razvoja proizvoda donosi metoda
A-Design. Okosnica podrSke jest skup softverskih agenata — raCunalnih programa kojima
ugradeno znanje omogucéava i propisuje izvrSavanje to¢no odredenih zadaca potrebnih za
kombiniranje komponenti u smisleno tehnicko rjesenje. Kompatibilnost medusobnog spajanja

komponenti provjerava se na ulazno/izlaznim suceljima.

Graf-gramaticke metode temeljene na formalnim jezicima. Pristup inspiriran pionirskim
radovima Chomskog i Minskog na polju formalnih jezika, koristi formalne gramatike kako bi
se na lingvisti¢ki nacin opisala pojedina konstrukcijska rjeSenja, te tako definirao jezik
konstruiranja. KoriStenjem gramatika se znanje o konstruiranju, koje postoji u specificnom
podrucju primjene, formalizira skupom pravila. IzvrSavanjem svih dopuStenih kombinacija
pravila stvara se velik, ali ipak konacan broj varijanti rjeSenja ¢ime su definirane granice
prostora pretrazivanja, odnosno jezik podrucja. Iz literature su poznate gramatike oblika (eng.
shape grammars) koje se zajedno sa stohasticko-optimizacijskim algoritmom simuliranog
poboljSavanja (eng. simulated annealing) primjenjuju za potrebe strukturne i topoloske
optimizacije. Na se slicnim principima temelji razvoj racunalne podrske za konceptualnu fazu
razvoja proizvoda gdje se za formalizaciju znanja u podru¢ju najceSce primjenjuju graf

gramatike (eng. graph grammars). Pribjegavanje graf gramatikama moZe se opravdati
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¢injenicom da gotovo sve teorije koje se bave proucavanjem procesa konstruiranja u
konceptualnoj fazi modeliraju proizvod kao transformacijski sustav koji se formalno i
vizualno opisuje grafom. Graf gramatike pri tome opisuju skup pravila kojima se moze
transformirati graf, te uvjeta koji odreduju kada se zapo€inje i1 zavrSava izvrSavanje pravila.
Pregled istrazivanja u podrucju pokazao je da su postoje¢e metode koje koriste graf
gramatike orijentirane na dekompoziciju na razinama funkcija i komponenti proizvoda.

Optimizacija se naj¢esc¢e provodi samo razini komponenti.

Dobar primjer kako se racunalom moze simulirati proces generiranja koncepata proizvoda
prikazan je unutar koevolutivnog okruzenja za podrSku konstruiranju (HiCED). Pristup se
temelji na ko-evolutivhom razvoju proizvoda na razliitim razinama apstrakcije. Postupak
zapocinje generiranjem populacije funkcijskih dekompozicija zadanog proizvoda koristeci
formalizirano znanje u obliku pravila. Nakon toga se pomoc¢u genetickog programiranja i
genetiCkoga algoritma istodobno evoluiraju funkcijska struktura i komponente koje su u
stanju realizirati pojedine funkcije. Funkcija cilja formulirana je uz koriStenje teZinskih
faktora. Ideja ko-evolucije na razli¢itim razinama apstrakcije proizvoda objaSnjena je u
okviru opce teorije konstruiranja (eng. General Design Theory) i FBS (eng. Function-
Behaviour-State) pristupa modeliranju proizvoda (tehnic¢kih sustava). Novije istrazivanje
temeljeno na FBS modelu pokuSava iskoristiti 1 objediniti dostupne racunalne alate kako bi se
kreiralo cjelokupno okruzenje za raCunalom podrzanu sintezu mehatronickih proizvoda. Za
provedbu graf-gramatickih transformacija koristi se GrGen, vizualizacija grafova rijeSena je
unutar okruzenja TULIP, a za modeliranje tehnickoga proizvoda pokusava se iskoristiti jezik
za modeliranje sustava SysML. Racunalno okruZenje omogucava korisniku da se pravila
definiraju unutar vizualnog sucelja pomocu skriptnog programskog jezika koji je integralni
dio GrGen-a. Generiranje varijanti konceptualnog rjesenja provodi se unutar posebnog

modula. Za sada okruzenje ne podrzava optimizacijske metode.

Ostali pristupi. Nesto drugaciji pristup kreiranju racunalne podrske konceptualnoj fazi
razvoja proizvoda dostupan je unutar CAM racunalnog okruZenja (eng. Cambridge Advanced
Modeller) razvijenog na temelju P3-Signposting alata. Racunalna podr$ka namijenjena je
sintezi arhitekture proizvoda koja se unutar CAM-a opisuje pomocu mreze komponenata.
Korisnik kroz vizualno sucelje koristec¢i graficki jezik za modeliranje definira ulaznu shemu
koja moze sadrzavati komponente razli¢itog tipa, vise tipova relacija te ogranic¢enja temeljena
na predikatnoj logici prvoga reda. Varijante arhitekture generiraju se racunalno analizom

zadane sheme.
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Utvrdeno je da se za kreiranje podrSske ranim fazama konstruiranja ve¢ina metoda unutar
racunalom podrzane sinteze proizvoda oslanja na generiranja rjesenja koriste¢i formalizirano
znanje unutar skupa produkcijskih pravila. Sukladno istrazenome odluceno je da ce se
razvitak predlozene metode temelji na formalizaciji znanja o tehnickim procesima i radnim
principima u obliku produkcijskih pravila ¢ijom ¢e se sukcesivhom provedbom moci
generirati varijante transformacije operanada. U svrhu modeliranja tehnickih procesa biti ¢e
definiran usmjereni multigraf sa operacijama operandima 1 efektima, generiranje varijanti
transformacije operanada provesti ¢e se upotrebom graf-gramatika, dok ¢e se pretraZivanje

implementirati kroz algoritam gramaticke evolucije.

Formalne gramatike

Cetvrto poglavlje doktorskoga rada objasnjava formalne gramatike i formalne jezike kao
teoretske osnove graf-gramatickih metoda unutar podrucja racunalom podrzane sinteze
proizvoda. Iz toga razloga su formalne gramatike i formalni jezici objasnjeni u obliku: (1)
opceg pristupa formalizaciji znanja u podru¢ju umjetne inteligencije gdje se razjaSnjavaju
mehanizmi metoda temeljenih na formalizaciji znanja pravilima, i (2) kao formalizam koji se
moze iskoristiti za formalizaciju znanja o tehnickim procesima kako je to prikazano u okviru
doktorskoga rada. Objasnjen je razvitak podrucja formalnih jezika obuhvacaju¢i Postov
sustav produkcijskih pravila, hijerarhije gramatika kako ih je definirao Chomsky, te opis
kontekstno-nezavisne gramatike u obliku Backus-Naurove forme (BNF) koja ¢e se koristiti
za potrebe definiranje metode za generiranje varijanti transformacije operanada. Objasnjene
su formalne definicije generativnih gramatika 1 formalnih jezika. Prikazan je 1 objaSnjen
primjer kojim se naglaSavaju implikacije sekvencijalnog izvodenja gramatika kako ih je
definrao Chomsky i to prvo po dubini stabla, odnosno po Sirini stabla u odnosu na graf-

gramatike na kojima ¢e se temeljiti metoda za generiranje varijanti transformacije operanada.

Gramaticka evolucija

Peto poglavlje disertacije daje osvrt na algoritam gramaticke evolucije. Sinteza u
konstruiranju usporedena je sa spoznajama u podrucju evolucijskoga raCunarstava obzirom na
paradigmu evolucijskog konstruiranja kako bi se naglasile razlike izmedu procesa
pretrazivanja sa ciljem vodenim abduktivnim promis$ljanjem i generiranja rjeSenja koriste¢i se
evolucijskim algoritmom. Op¢i model genetickoga algoritma temeljen na evolucijskim

operatorima je opisan u radu jednako kao osnova za opis procesa kojim algoritam gramaticke
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evolucije generira rjeSenje. Prikazana je veza izmedu genetickoga algoritma i algoritma
gramaticke evolucije, a definirane su i dodatne funkcije preslikavanja kako bi se u obzir uzele
posebitosti modeliranja tehnickih procesa i dovelo se u vezu algoritam gramaticke evolucije 1
graf-gramatike. U zakljucku poglavlja obrazlozeno je zasSto je algoritam gramaticke evolucije
pogodan kao osnova za pretrazivanje ili optimiranje u domeni tehnickih procesa, te ranih faza
razvoja proizvoda opcenito: (1) obzirom da je gramati¢ka evolucija temeljena na genetiCkom
algoritmu slijedi da se standardni evolucijski operatori mogu Kkoristiti bez dodatnog
prilagodavanja, (2) princip rada algoritma gramaticke evolucije temelji se na generiranju
rjeSenja izvodenjem niza pravila $to je u skladu sa odabranim nac¢inom formalizacije znanja o
tehni¢kim procesima, (3) stablo izvodenja slijedi proces dekompozicije prilikom sinteze
tehnickih procesa, (4) zbog principa generiranja rjeSenja pravilima gramaticka evolucija brze
konvergira nego srodni algoritmi kao §to je primjerice geneti¢ko programiranje, (5) moguce
je uspostaviti vezu izmedu gramatika kako ih je definirao Chomsky i graf-gramatika, (6)
gramaticka evolucija omogucava i pretrazivanje na razini pravila koriste¢i postojece gradivne

elemente za generiranje novih pravila.

Graf-gramatika tehnickih procesa

Metoda za generiranje varijanti transformacije operanada koja je predlozena u okviru
doktorskoga rada opisana je u Sestome poglavlju. Znanje o radnim principima na kojima se
transformacija zasniva formalizirano je skupom produkcijskih pravila u BNF notaciji.
Predlozena metoda za generiranje varijanata transformacije operanada definirana je kao
formalni sustav koji se temelji na graf-gramatikama kojima se omogucava sinteza tehnickog
procesa nizom derivacija, odnosno koraka izvodenja. Kako bi se opisala transformacija
operanda unutar tehnickoga procesa definiran je usmjereni multigraf sa operacijama,
operandima i efektima. Za potrebe opisivanja formalnog modela sinteze tehnickoga procesa
definiran je i1 objaSnjen graf-gramaticki transformacijski algoritam usmjerenog multigrafa sa
operacijama, operandima i efektima koji se temelji na produkcijskim pravilima. Definiran je i
skup pravila spajanja kojima se nacin integracije dekomponirane operacije unutar strukture

tehnickoga procesa.

Smjernice za formalizaciju znanja i primjeri

Sedmo poglavlje doktorskoga rada obuhvadéa formalizaciju znanja i primjere sinteze

tehnickoga procesa u kojemu sudjeluju tehnicki sustavi razli¢ite razine sloZenosti provedeni
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upotrebom metode za generiranje varijanti transformacije operanada. Prilagodba standardne
taksonomije namijenjena opisivanju funkcija proizvoda koristi se sa ciljem definiranja
produkcijskih pravila kako bi se koliko je god to moguce pravila odrzana konzistentnima. S

time u svezi predloZeni su napuci za formalizaciju znanja o tehni¢kim procesima.

Arhitektura racunalnoga alata

U osmome poglavlju doktorskoga rada razmatrane su moguénosti ratunalne implementacije.
Prikazan je model trorazinske arhitekture raCunalnoga sustava realiziranog objektno-
orijentiranim pristupom. Razina pohrane i dohvata formaliziranoga znanja sadrzi relacijsku
bazu podataka unutar kojoj je znanje pohranjeno, logi¢ka razina obuhvaca dva modula od
kojih se jedan koristi za vizualno definiranje produkcijskih pravila, dok se drugi koristi za
formulaciju cilja pretrazivanja i prikaz rezultata. Razina prezentacije obuhvaca sucelja obaju
modula putem kojih se omogucava interakcija s korisnikom. Prikazani su i osnovni dijagrami
klasa vezani uz provedbu graf-gramatickih transformacija, formalne jezike kao dijela veceg
racunalnog okruzenja namijenjeno viSe-ciljnoj optimizaciji unutar kojeg je podrzan i
algoritam gramaticke evolucije. Racunalni alat koji je razvijen temeljem formalnog modela
tehni¢kog procesa i metode za generiranje varijanti tehnickog procesa razvijen je do razine

prototipa koji omogucava testiranje i daljnji razvitak.

Rezultati istrazivanja

Sukladno motivaciji koja je potaknula na ovo istrazivanje, te definiranim teoretskim

polazistima, ciljevima istrazivanja i istrazivackim pitanjima postignuto je sljedece:

e Temeljem istrazenoga osmiSljena je 1 definirana graf-gramaticka metoda za
generiranje varijanata transformacije operanda. Podru¢je primjene 1 kvaliteta
generiranih rjeSenja tako postaju i funkcija formaliziranoga znanja, a ne samo
algoritma provedbe pretrage u uzem smislu. Pokazano je da se upotrebom graf-
gramatike koristec¢i formalizirano znanje o tehni¢kim procesima i radnim principima u
obliku produkcijskih pravila moze provesti dekompozicija tehnickih procesa do
sinteze varijanti transformacije operanda. Pri tome su koriStene transformacije
operanda implementirane na razini ¢vorova grafa odnosno na razini pojedinacne
operacije tehni¢koga procesa. Za svaku transformaciju definirana su pravila umetanja
1 spajanja novih pod-struktura u postojecu strukturu grafa, odnosno dekompozicije

pojedinog pod-procesa u niz operacija, te njihova integracija u postojecu strukturu
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tehnickoga procesa. Algoritam dekompozicije tehnickog procesa, kao i1 pravila

umetanja i spajanja definirana su u Sestom poglavlju ove disertacije.

Za potrebe kreiranja formalnog modela tehni¢kog procesa razvijen je usmjereni
multigraf sa operacijama, operandima i efektima (Sesto poglavlje disertacije). Nuzno
je bilo uvesti takav model tehnickoga procesa kako bi bilo moguce opisati sve tokove
operanada koji mogu postojati izmedu dvije operacije unutar tehnickog procesa.
Jednako tako, definirani formalni model tehnickoga procesa u stanju je opisati tokove
koji ulaze 1 izlaze iz transformacijskoga sustava, te efekte. Sukladno objektnom-
pristupu operacije, operandi i efekti definirani su kao entiteti tehnickoga procesa,
pridruzeni su ¢vorovima 1 lukovima grafa nosioca ¢ime nastala struktura opisuje
tehnicki proces. Usmjereni multigraf invarijantan je obzirom na slozenost entiteta
tehnickoga procesa i njihove medusobne relacije koje se mogu uspostaviti izvan
okvira tehni¢koga procesa, te tako ostavljajuci prostor za daljnje unapredenje metode
na razini entiteta tehni¢koga procesa. Sli¢no je definirana metoda dekompozicije na
nacin da ovisi samo o tipu grafa nad kojim je definirana. Entiteti tehni¢koga procesa

zajedno ¢ine vokabular tehnickih procesa.

Varijante transformacije operanda mogu se kreirati na nacin da se zadani aksiom,
odnosno odabranu operaciju sa operandima i njihovim stanjima specificiranim prije i
poslije transformacije, generiraju sve mogucée varijante upotrebom skupa
produkcijskih pravila. Na taj nacin se prikazuje jezik tehnickih procesa za tu operaciju
u okvirima znanja koje je formalizirano. Kako bi se samo generirale varijante obzirom
na zadani kriterij i ograni¢enja koristi se algoritam gramaticke evolucije (peto
poglavlje disertacije). Gramati¢ka evolucija jest robustan stohasticki optimizator koji
je moguce primijeniti za racunalnu podrSku na svim razinama rane faza razvoja
proizvoda pod uvjetom da formalni modeli ukljucuju modeliranje graf-gramatikama,
odnosno zapis znanja pravilima. Kako se na trenutnoj razini istrazivanja entiteti
tehnickog procesa jos$ uvijek ne dopustaju postojanje atributa koji bi ih poblize i
detaljnije opisali, te obzirom da se za definiranje istih prvo zahtijeva generalizacija i
sistematizacija znanja o tehnickim procesima, trenutno nije moguce uspostaviti
slozene 1 realne kriterije vrednovanja tehnickih procesa koji bi posluzili za
formulaciju funkcija cilja 1 optimiranje. lako je u okviru racunalnog alata prikazanog
unutar ove disertacije razvijena i podrSka za viSe-ciljnu inzenjersku optimizaciju

koriste¢i algoritam gramaticke evolucije, trenutno osim za trivijalne slucajeve nije
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mogucée provesti slozeniju pretragu od one koja uzima u obzir jedan cilj sa

ogranicenjima.

e Kako bi se koliko je god to moguée produkcijska pravila odrzana konzistentnima,
utvrdeno je kako je potrebno definirati taksonomije operacija, operanda i efekata sa
ciljem boljeg razumijevanja dekompozicije tehnickog procesa koja se pokusava
provesti produkcijskim pravilima. S time u svezi predloZzene su smjernice za
formalizaciju znanja o tehnickim procesima i poznatim radnim principima. Potrebno
je naglasiti da disertacija nije imala za cilj definiranje generalizacije i sistematizacije
znanja o tehnickim procesima, ve¢ je namjera bila da se kreiraju mehanizmi koji ¢e
omoguciti formalizaciju znanja 1 njegovu upotrebu za generiranje varijanti rjeSenja
koriste¢i skup produkcijskih pravila. Tijekom istraZzivanja utvrdeno je da
generalizirano i sistematizirano znanje o tehni¢kim procesima i radnim principima jos
uvijek nije dostupno u obliku dovoljno detaljne taksonomije ili ontologije za razinu
koju zahtijeva definirana metoda kako bi se bilo u stanju detaljnije opisati tehnicki
proces. Iz tog razloga predloZzene su smjernice potrebne za graf-gramaticku
formalizaciju znanja o tehni¢kim procesima i radnim principima (sedmo poglavlje
disertacije). Predlozene smjernice ukljuCuju formalizaciju na temelju dostupnih
jezicnih leksikona (WordNet), inZenjerskih ontologija (SUMO) i drugih istraZivanja u
podrucju kako bi se znanje o tehni¢kim procesima definiralo koliko je god to moguce
konzistentno. Na kraju, kao potvrda valjanosti definirane metode pokazani su primjeri

generiranja varijanti transformacije operanda u tehnickom procesu

Ovo istrazivanje temelji se na uspjeSnosti definiranja metode za generiranje transformacije
operanda tehni¢koga procesa ukljucivsi formalni model tehnickoga procesa i formalni model
dekompozicije tehnickoga procesa, te njihovu implementaciju u okviru racunalnog alata.
Formalni modeli koji ukljuCuju usmjereni multigraf sa operacijama, operandima i efektima,
te njegovu graf-gramaticku dekompoziciju kako su definirani unutar ove disertacije mogu se
smatrati doprinosim znanstveno-istrazivackom podru¢ju racunalom podrzane sinteze
proizvoda. Doista je teSko usporediti metodu razvijenu unutar ove disertacije sa ostalim
metodama 1 alatima unutar podrucja racunalom podrzane sinteze proizvoda obzirom da su
proizasle iz potpuno razliCitih teoretskih osnova. Ipak, gotovo sve teorije konstruiranja, pa i
teorija tehnickih sustava za modeliranje ranih faza temelje model tehnickog proizvoda
sukladno op¢oj teoriji sustava. 1z toga razloga bilo je prirodno odabrati osnove za modeliranje

tehnickoga procesa 1 njegove dekompozicije sukladno teoretskim polaziStima. Za
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pretpostaviti je da ¢e pravo vrednovanje ovoga pa i srodnih alata i metoda biti moguce kada
se one implementiraju u stvarnoj inzZenjerskoj praksi kao dijelovi cjelovitih okruzenja za
raCunalom podrzanu sintezu proizvoda. Konacno, temeljem postignutih rezultata istrazivanja
sukladno postavljenim ciljevima 1 istrazivackim pitanjima moze se zakljuciti da je hipoteza

ovoga rada potvrdena.
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INTRODUCTION

1. INTRODUCTION

Understanding activities and mental processes that are performed in design process creates a
rational basis on which these activities could be logically structured and researched in order to
improve the outcome of the design process. Development of various design methods and tools
for supporting a design process resulted with better overview and understanding of the task at
hand, which in the end may increase the possibilities of designing more efficient and
performance-optimised products. Introduction of a systematic method to the product
development [1], [4], [5], [6], [7] is therefore motivated by causal relationship between a
product and the design process through which that product was conceived and created.
Stimulating innovativeness and creativity, being able to objectively evaluate in order not to
jump to the first available solution to a given problem and implementation of different search
strategies are some aspects of the support provided to designers through systematic methods
[1]. Moreover, the transformation of a design process into a prescribed problem solving
procedure enables activities such as planning, standardization of task solving process and
utilization of past solutions while providing the possibility to learn on account of prior

experience.

As in many other disciplines, computers have also found their place within the product
development process. The advent of computers has made possible the development of
engineering design support tools which have been intended for tasks that required a large
number of repetitive operations performed accurately. These tasks are hard and tedious for
designers to be solved manually and although they could perform sufficiently well in respect
to being accurate, requirements such as shortening of product time-to-market in combination
with the increasing complexity of products that has to be managed imposed serious time
constraints. To be able to manage increasing number of tasks and assignments, a translation of
problem solving procedures to computational algorithms and tools is a reasonable step to be
taken. One of the most common examples are various types of computational analysis and
simulation tools where a given problem is described by a finite set of equations that need to
be solved numerically in order to obtain solution. Likewise, computational support is desired
in order to be able to perform fast and efficient engineering optimization tasks. The problem
of finding an optimum may well include various search strategies being applied to a

multidimensional space comprised of a large enough number of possible solution variants.
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Application of heuristic search is a probable best fit for exploration of such large design
solution spaces which emerged as a result of involving multiple-criteria and n-dimensional
vectors as arguments and the results obtained most often outperform designers not only by

calculation time but also by its quality.

Depending on the purpose, the translation of complex engineering problems and problem
solving procedures to develop computational design support tools sometimes requires
formalisation that moves beyond just proper problem representation and solver algorithm
development. In addition an adequate knowledge encoding must be devised which will have
to suit both the problem statement and the mechanism of the search algorithm. The
engineering knowledge about the problem so far has always been and will continue to be an
integral part of these support tools at least as a part of the evaluation step where behaviour is
determined by calculating the properties of a technical system considered. However the
distinction is in the approach by which the formalisation has been accomplished and for
which purpose. Rather than being solely for the evaluation of the solution, formalised
engineering knowledge can also be a part of the solution proposition process where it is used
to generate the structure of a design which will be later evaluated. That is a distinction in
respect to search strategies that rely only on random numbers and heuristics when proposing
solution alternatives. Therefore, to be able to efficiently solve a given problem the
engineering knowledge about the problem considered must be involved on both ends, on the
proposition and on the evolution side of the search process. Such approaches to knowledge
formalisation bring computational design support tools a step closer to the process of
engineering design synthesis. The explanation of engineering design synthesis as interplay
between structure proposal to define design characteristics and then evaluating properties to
determine behaviour is given within the Domain Theory [8] and will be used throughout this
thesis as a reference model of engineering design synthesis process. Although proven reliable,
computational support to product development is left domain limited and oriented to solving
of the specific types of engineering problems. Very often the scope of support is realized as a
limited mapping of existing method to computational environment thus not offering support
to the individual phases of engineering design or to the engineering design process in-whole.
Usually it is found that the later stages of product development which are more or less
bounded to the specific calculation type or details fine-tuning became more extensively
computationally supported. Such computational support is realized by various expert and

analysis systems, feature-based solid-modelling packages. The latter is aimed at components
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parameterization, preparation of technical documentation and similar type of activities in

order to assist designers [1], [9].

Work that is presented within this thesis aims at development of method and computational
tool intended for the very beginning of the computational design phase where according to the
Theory of Technical Systems (TTS) [1] a technical process needs to be established. Thus, this
work is coherent with the efforts made within the Computational Design Synthesis research
community (CDS) with its aims set as to provide better search and solution generation
possibilities to designers by developing computational support for the early design stages [2].
Introduction of new aids to design process, as in this case a computational tool, should make
the process of designing more efficient and in that way increase the possibilities for design of
a better product [10]. Development of method will seek out a way to formalise technical
process in computationally acceptable manner, as well as trying to define decomposition of
technical process using available computational modelling methods and techniques. The result
of methods application within computational environment should be generation of variants
showing how technical process could be accomplished. These variants will serve as a

foundation for further concept development.

1.1 Motivation

Conceptual design is an early product development phase that is most intensive in respect to
the implementation of heuristic search strategies and knowledge-based techniques. Designers
have a task to generate several unambiguous solution variants or concepts that is based on the
initial state of the recognized market and societal needs. Since a concept is defined in terms of
working principles on which a designed product will operate, all of the design stages that will
follow will be greatly affected after a decision which concept to choose was made. As design
progresses, some improvements to the designed product could still be made, but changing of
the core principle on which the product operates could not be done without major set-backs in

the product development process.

Introduction of computational support to the conceptual phase of engineering design was
predominantly motivated by the fact that it could possibly provide designers with novel or
even creative concept alternatives as a result of an efficient solution space search. Generation,
evaluation and selection of a concept variant are processes based on designers knowledge,

experience in the field and information retrieved from the external sources [7]. A
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computational system that is able to process information and generate solution alternatives
becomes a vital part of conceptual design therefore affecting both the technical system being
designed and the process of designing [1]. Solution alternatives provided as a result of
efficient search across the design space should create a foundation on which designers could
make well established decisions. Reasonable expectation is that such system that would be
initially aimed at the specific areas of application is capable of performing efficient search
both in respect to being fast and to usefulness and the number of solutions being created. The
possibility to store feasible and useful concept alternatives should be incorporated as well.
Generated concept alternatives should serve as valuable starting points to solution
development or as a complete conceptual solution to a given design problem statement. A
good example of how computers can be used to generate creative solutions is often advocated
by the evolutionary computation community [11], [12]. As argued many times before, search
done by computers is performed in an objective manner which is not burdened by
conventional or prescribed solutions to a given problem. Navigation through the search space
partially relies on randomness, and partially it is a learning process exhibited by the exchange
of solution building-blocks (although building-block hypothesis was never proved [11] it is
widely accepted in the evolutionary computation community). If the information content of
building-blocks is of no matter and if only their contributive occurrence in the formation of
the solutions is accounted for, than for it could be said that the exchange of building-blocks is
a non-biased process. Such search is capable of creating novel concept alternatives that would
normally require human reasoning that surpasses common engineering practice. Systematic
approaches to design intent to keep the search space as broad as possible to enable
consideration of unconventional solution principles and the reuse of previous solution

building-blocks in order to generate creative concepts.

According to the Theory of Technical Systems [1] which will serve as a theoretical
foundation to this research, technical evolution, design and product development are
explained as a response to those needs and requirements within human society for which, to
be satisfied, an assistance of technical means was necessary. Such teleological view implies as
a starting point to a development of a new product concept the definition of technical process
as a process of technical system usage in which necessary effects must be delivered by
technical product and human beings in order to enable purposeful transformation of operands.
Built in the systemic reasoning, TTS models technical processes as transformation systems

composed of series of operations interrelated with operand flows and supported by necessary
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effects. Thus, the capability of delivering the necessary effects as the result of an internal
transformation within technical system is considered as the function of technical system.
Changing of state of operands in the desired manner can be accomplished in different ways in
respect to various the existent technological principles which prescribe and establish a
sequence of necessary operations that must be performed in transformation processes.
According to TTS, technology is understood as a collection of knowledge describing how and
with what to perform a transformation in order to achieve a desired state of operands [1].
However, to choose which technological (working) principle to select and how to compose
the whole transformation process is an assessment made by designers [7]. Based on designer’s
in-filed experience, the knowledge of existing technologies (working principles) and on the
understanding of the task, a decomposition of technical process is performed in order to gain
insights and to reveal details about the transformation process. The result of decomposition

performed is conception of information necessary for design of technical system [7].

Designers must consider different duties that human operator and technical system have to
fulfil in order to enable transformation by reasoning about transformation variants within

technical processes (Figure 1.1, [1]).

( )

Transformation system

Environment

Technical
system

y Effects y Effects y

Operands® _ Operands?
» Technical process >

. J

Figure 1.1 General model of transformation system according to TTS [1]

The interplay between human operator and technical system, i.e. the product being designed,
is necessary to provide effects. Depending on the complexity of the given tasks, the process
might be supported by several technical systems and human operators. Design theory states
[1], [7], [13] that technical processes are established as sequences of operations based on
different technological (working) principles. Designers than to extent of their knowledge
compose technical processes and try to select the most suitable one that satisfies given

requirements and constraints. The assumption on which the research presented in this thesis is
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based on is that if engineering knowledge about technical processes, technological principles
and the necessary effects is formalized and embedded within computational tool that when
such tool is provided would enable designers to consider optimal product realization

possibilities more efficiently.

Possibilities of product realisation are therefore understood in respect to the extents of
technical system’s participation in the transformation. Determination of these duties as an
ability to deliver necessary effects thus defines a technical system’s function as an entry point
by which the organ structure of a technical system will be established. Implications and
importance of the consideration of technical processes in respect to whole of the conceptual
design was thus one of the prime motivators why to research computational means that could
aid designers at that particular stage of design process. Taking into an account how a technical
system would participate within technical process is clearly at least equally important to the
other design phases and since it is the first stage it may contribute the overall success of

design process by the most.

1.2 Aim and objectives of the research

The Design Science considers two main research areas: formulation and verification of
models and theories related to designing and process of design; and development of support
founded on design models and theories to aid designers in product development process [10],
[14]. Research presented within this thesis is an attempt that fits into Computational Design
Synthesis, with purpose of development of computational support for establishment of
technical processes. For computational implementation it is necessary to consider
Computational Design Synthesis both syntactically and pragmatically. Syntactical aspects
should include adopting one of the existent design process and product models offered by the
existent design theories. Prescribed and well-structured design phases with appropriate
product models provide foundation and a starting point for development of computational
tool. Within this research the focus is set at model of technical processes as defined by TTS
[1]. Pragmatic aspects are aimed at devising a method that should be well suited match both
for design theory modelling and for the computational implementation. Most often,
development of a method considers application and embedding of the existing computational
algorithms and techniques. In case of this research pragmatics related to method definition
goes well into how to define formal model of technical processes and process of

decomposition of these in a way that is acceptable for computational implementation. The
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outcome of how well the method will perform, whether results will be purposeful and method

could be extended further, depends directly on the applicability of developed formal model.

The aim of this thesis is formulated as to provide a support to the beginning of the conceptual
development stage by offering designers the possibility to computationally explore operand
transformation variants in technical processes. To accomplish the postulated aim it is

proposed that following objectives have to be reached:

1. To devise a method for generation of operand transformation variants based on

different technological (working) principles, and

2. To implement the method for generation of operand transformation variants based on

different technological principles as a computational tool.

According to research methodology in applied sciences to which Design Science is a part of,
the mathematical definition of the proposed method can be understood as a theoretical
objective of this thesis. Within this research a tool will be built to a completion stage that
allows verification of the research results. Most often in the research projects that include a
development of computational support to design, the practical objective is a prime motivation
behind the existence and realisation of theoretical research objectives [10]. Thus, the
development of computational tool on the basis of the method for generation of operand
transformation variants based on different technological principles can be regarded as a

practical objective.

The expected long-term objectives would be aimed at further development and improvement
of computational tool for generation of operand transformation variants in development of
technical processes and possible integration of the developed method in the existent
frameworks for Computational Design Synthesis and application in industry. It is reasonable
to expect problems regarding the integration, since most of the present research are function-
behaviour-structure (F-B-S) oriented [2]. For complete design synthesis framework by
considering technical system’s function as the highest abstraction level serious search space
constraints are imposed. Thus, one of the goals is to emphasize the importance of
consideration of technical processes which enables to keep the search space as broad as

possible by taking into account technological principles and man-machine interaction

Research conducted in the praxis have clearly shown [14] that engineers seldom use or

deviate from as they feel fit methodological approaches as prescribed by design theories. A
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hypothesis formulated by Jensen [10] probably as a reflection on Herbert Simon’s claim [15]
that “The Design Science’s models and theories had become widely accepted only when there
was a need for the introduction of computers as a helping tools for design”, states that
engineers can be involved in practicing methodological approaches if these are embedded
within available computational tools. Likewise, if/when the tool developed within this thesis
is accepted within community, designers could then pursue technical process synthesis as
modelled by the TTS as a part of computational design support. However, attracting an
engineer working inside his or her everyday environment to use a problem solver or design
support software package requires more than devising a proper and clever method. The user
interface with visual tools to ease the work or cross platform operability is necessary for the
acceptance of tool; however, all of these features although being a must, do not add weight to

method’s scientific worth.

1.3 Hypothesis

An output to the scientific endeavour should be the generation of hypothesis in order to find
the explanation of some given phenomena [16]. To achieve that, the research process must
evolve both the content of hypothesis and the body of facts for which the hypothesis is
supposed to hold. The goal is that the explanation of the matter provided should be more

complete and better than the already existing ones.

Hypothesis as a generalization is used to explain the facts established by the observation and
measurement or else, the hypothesis is formulated to define non-observable phenomena by
which observable phenomena could be explained. Those phenomena are presumed to exist in
the world around us, meaning they are of natural origin, and are as such considered as
observable entities [17]. However, the Design Science to which this research belongs to, for a
research focal point has set phenomena which are not of natural origins [10]. The design
process and output of it, technical system designed as is, thus both belong to the body of
knowledge that is in literature referred to as The Sciences of the Artificial [15]. As a
consequence the task of The Design Science is not only to describe or to explain, but also to
prescribe the procedures through which design should be carried out. Put succinctly, design is
concerned with how things ought to be, with devising artefacts to attain goals [15]. The same
line of reasoning must hold with the understanding of the aim and objectives of this thesis,
where the introduction of computational tool in order to improve the product being designed

alters the process of designing. One of the focal points of this research is to propose formal
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models of both technical processes and their decomposition. How to verify these models in a
strict sense, like for instance if assuming viewpoint to the philosophy of science as defined by
the logical-positivism [18], than the model verification is a daunting task which more or less

depends on the acceptance of the computational tool itself.

Thoughts and considerations expressed in the previous sections as well as the research aims

and objectives lead to formulation of the following hypothesis:

1. A set of production rules formalising engineering knowledge about technical
processes, technological principles and required effects might be developed for a

particular engineering problem domain.

2. Using a set of defined production rules a number of variants of operand

transformations for a particular design problem may be generated.
3. Generated variants may be used as a foundation for further concept development.

The hypothesis of this work is related to the theoretical aspects of the research. It is directed
to the development of the method based on the production rules formalism. A set of
condition-action production rules is a mean for achieving knowledge formalisation. In this
case the knowledge about technical processes, technological principles and required effects is
the knowledge to be formalised. Rules when applied within a production system generate set
of valid operand transformations variants achieved through a successive rule application
sequence. A set of production rules is therefore understood as a grammar of a language of

technical processes consisting of all possible operand transformations variants.

The empirical part of the research is related to computational tool development. Real
verification of the purposefulness can only be obtained if the tool is accepted by designers.
For that to occur, the long term goals of this research should be accomplished. The method
should be integrated into one of the existent Computational Design Synthesis frameworks

(like shown in Chapter 3. of this thesis) where its usefulness could be fully verified.
The research questions of this thesis are summarized as follows:

e How to represent technical processes in a computationally acceptable manner? The
applicability and usability of the whole method depend on the way how the problem
will be represented, thus it is necessary to devise an appropriate technical process

formalisation.
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How to generate variants of operand transformation within technical processes? What
mathematical concept to use in order to formalise and model decomposition of
technical processes, thus rendering it computationally performable? Will this
formalised model tend to emulate and resemble by the most the human problem
solving activity or it will be drawn to computational problem solving methods like

heuristic and stochastic search?

If possible, how to introduce optimisation methods within decomposition process as

optimisation is a must within engineering problem solving?

What are the fundaments for engineering knowledge formalisation about technical

processes, technological principles and necessary effects?

1.4 Research methodology

This thesis follows descriptive Design Research Methodology or DRM as proposed by

Blessing and Chakrabarti [14]. According to DRM, a research work plan is organized within

the following four steps:

1.

Analysis consisting of the literature review to establish the state-of-the-art on
development of computational tools for conceptual design support and Computational
Design Synthesis in general. As a result of the review aims, the objectives and purpose
of the research will be set and clarified. The literature review will also serve as to
determine the scope of the research, i.e. the stage of the design process for which the
tool should be implemented and thus possibly enhanced. The aim of the research will
be defined as dual since development of computational support tools unequivocally

asserts prior development of computational method.

Determination of theoretical foundations necessary for the definition of the method
for generation of operand transformation variants. In order to identify and to select
appropriate model, the focus would be set on a consideration of phenomenological
models of the design process as offered by the design theories. Research that for an
aim has a development of the computational design support demands a multi-
disciplinary approach. Within this research effort the following disciplines will be

considered: formal languages, multi-objective optimisation and systems theory.

Synthesis involving development of the actual method for supporting technical

process stage of conceptual design. Based on the established facts as a result of
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previous research steps, the formal and information models of the method will be
defined. This step will conclude with the definition of the architecture of

computational tool.

4. Verification consists of the results analysis to which extent the proposed method may
influence the increase in efficiency and quality of technical systems designed. To
accomplish that a computational tool will be developed within the available
programming languages and frameworks. An outlook of the applicability of the
developed method and computational tool in respect to type of technical system
designed will be given. The latter is most important since the determination of
technical processes is proposed when developing completely new and/or complex
technical systems. Complex technical systems involving multitude of technological
(working) principles on which the transformation is based, may prove to be an ideal

application framework for this method.

1.5 Expected contribution and results

The state-of-the-art review in research area of the design synthesis as provided within Chapter
2 of this thesis will show that there is no formal model of decomposition of technical
processes as provided and described by the Theory of Technical Systems. Formal models are
prerequisites for computational implementation. The formal model presented within this
thesis will have to describe decomposition of technical processes. The outcome of
decomposition should be operand transformation variants that have to clearly depict the
necessary effects that are required to sustain transformation. Moreover, since this method is
knowledge driven method, then at least guidelines for the formalisation of knowledge about

technical processes, technological principles and necessary effect will have to be formulated.

The state-of-the-art Computational Design Synthesis (CDS) [2] overview that is presented in
Chapter 3 of this thesis on provided with the findings that none of the existent methods and
tools consider synthesis of technical processes, thus most of these stay limited to supporting
of the early design stages ranging from the establishment of product’s functional structure to
the determination of components which can realize these functions. While it may be that the
approaches to the CDS emerged out of different theoretical backgrounds, the claim that the
process level should be included in the reasoning according to the TTS is strongly supported
within this thesis. If the function of a technical product is understood as its ability to deliver

the effects necessary for supporting of operand transformation, than it is clear that non
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consideration of technical processes will impose limitations to the design search space, thus
inducing the loss of potential solutions. Further methods such as the morphological chart
method can add new effects to the established functional structure. The only other way to
accomplish this is to affect the technical process inside, where the main operand
transformation is realized. In order to provide solid foundations on which designers can make
well established decisions as a result of efficient search across the design space a technical
process must be included. Although the search for innovative technologies for operand
transformation is usually considered only for the design of completely new products and not
for redesign tasks, the intention is to provide the basis on which the functional structure of the

product can be determined computationally.
The expected contributions and results of this thesis are given as follows:

e Formal model of technical process. With the introduction of a technical process level a
contribution will be achieved to the research area of Computational Design Synthesis
which was until now only focused on function-to-component method and tool

development.

e Formal model describing decomposition of technical processes. The outcome of
decomposition should be synthesised operand transformation variants describing the

necessary effects that are required to sustain transformation.

e By implementation of defined method within computational tool it is possible to
generate variants of operand transformations, thus presenting a foundation which may

further excel the concept development within a product development process.

1.6 Thesis outline

The Chapter on Engineering design synthesis will provide a viewpoint to design as a
problem solving process in order to determine principles which can be utilized to develop a
computational support to design process. Many of activities performed at everyday problem
solving are already being prescribed by the design methodology and it is necessary to identify
these and determine whether it is possible to transfer them to computational environments.
The early design stages where the synthesis is most intensive will be considered in general
with the generation of operand transformation variants put in focus as a subject of this thesis.
Formal models of design synthesis will be examined as a prerequisite for the development of

computational tool. Finally, theoretical model of technical processes as well as reasoning
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about design synthesis and designing will be adopted according the Theory of Technical

Systems (TTS) [1] providing understanding what a synthesis of technical processes is.

The third Chapter of this thesis will present the state-of-the art of the research efforts in the
Computational Design Synthesis (CDS) [2]. Present computational methods and tools will
be analyzed both in respect to their theoretical foundations, and mechanisms they apply to
perform at different Computational Design Synthesis stages which are determined according
to the generic CDS framework [2]. The findings provided will help to establish the principle
mechanisms of the method for operand transformation variants and to compare its scope and
theoretical foundations to the other existing methods and approaches. As a result, a

contribution to the field of CDS can be determined.

Formal grammars will be presented in the fourth Chapter both as a generic knowledge
formalisation approach in the field of Al and as a mean to formalise engineering knowledge
about technical processes as required by this thesis. Rather than just accepting those as a
popular approach in the CDS today, it is presented how formal grammars came to be and how
they were used in studies of cognitive processes to develop robust problem solving systems,
thus consequently relating them to engineering problem solving. Formal definitions of
generative grammars and formal languages will be given, as well as categorisation of
grammars according to Chomsky’s hierarchy [20]. An example will be given which
emphasizes the difference between sequential depth first and breadth first production rule
application sequences of string grammars and implication of these when applied to graph
grammars rewriting procedures. Graph grammars will be used throughout this thesis to model

decomposition of technical processes.

The fifth chapter will give an outlook of Grammatical evolution [3] which is a population
based stochastic optimiser that will be used to provide optimal decomposition of technical
processes. Engineering design synthesis will be compared to the findings of the evolutionary
computation community in respect to the paradigm of evolutionary design to emphasize
similarities between an explanatory search and creation of solution within evolutionary
algorithm. The evolutionary operators based model of genetic algorithm will be presented, as
well as a description by which grammatical evolution performs the search. Additional
mapping functions will be defined that take into account the requirements for technical

process modelling, thus extending the generic evaluation procedure of GA model to tackle
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both the GE and graph grammars. To clarify, an example of breadth-first rewriting will be

shown using the same grammar as in the Chapter about formal grammars.

The method for generation of operand transformation variants will be presented in the
sixth Chapter of this thesis. The needed knowledge about technological principles on which
the transformations are based is formalized within set of production rules in Backus-Naur
Form (BNF) [21]. Since the Theory of Technical Systems models technical processes as
operand transformation processes, thus the proposed method for generation of operand
transformation variants will be designed as a formal system based on graph grammar
transformations that should perform synthesis of technical processes throughout a series of
consecutive decomposition steps. It is proposed to base method on established concept of
node rewriting. For modelling of operands transformation inside technical processes a

directed multidigraph with operands effects and operations is designed.

Knowledge formalisation and examples will contain examples of technical processes
concerning the participation of technical systems which differ in their complexity. Since the
aim of this thesis is not to develop ontology of technical processes and technological
principles , an adaptation of standard taxonomy intended for product functions [22], [23] will
be utilized in order to define production rules with the least possible ambiguity. Moreover,

suggestions will be given how to formalise knowledge about technical processes.

The eighth Chapter of this thesis will elaborate in brief the prospects of the computational
implementation. The model of three-part architecture of computational tool, realised by
object-oriented programming and interconnected by a relational database, with one designed
to visually model rules and the other to process them will be presented. Also, diagrams of
principal classes will be elaborated concerning graph transformations, formal languages and
of larger multi-objective genetic algorithm optimisation framework that supports grammatical

evolution as well.

The conclusion, discussion and the prospects of the future work will close this thesis.
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2. ENGINEERING DESIGN SYNTHESIS

Nothing is more important than to see the sources of invention which are, in my opinion, more
interesting than the inventions themselves (Gottfried Wilhelm Leibnitz, Art of Invention, in his

unfinished work [24]).

Design is a backbone of every product development process, implying that demand for
innovative designs expressed as the need to excel technical development which “naturally”
should occur evolutionary. From the literature it is known that almost 60% of total costs of
product development are derived as a result of decisions made at the early stages of design
[1]. Moreover, up to 80% of the entire product malfunction cases which occur over in
exploitation time are related to the early design phases [4]. Removing possible errors from the
early stages might also be achieved if design space is being thoroughly checked and evaluated
against the requirements. Therefore, there is an ever growing demand for understanding of
design as a problem solving process and of synthesis as a design’s processes key element.
Exploration of the process of design, development of new methods and tools, altogether
provide designers with means to efficiently search and generate the most feasible or even
innovative concepts that may lead to a new product being put on the market. In respect to
computational tools these findings about design process, engineering design synthesis and the
principles of how do creative solutions emerge provide fundamentals on which computational

support could be developed thus excelling the design process even further.

This chapter will present an outlook on general problem solving methods and approaches
frequently used in engineering, like for instance generating and testing, decomposition and
heuristics. For all of the methods and approaches it will be found that they are carefully
integrated into many of the existing design methodologies. Moreover, the models of
engineering design synthesis according to the Domain Theory [8] and the Theory of Technical
Systems [1] will be presented. Insights that will be provided will prove helpful for design of
computational method and tool for generation of operand transformation variants in technical
processes. The related questions that will be addressed is what parts of these problem solving
approaches and design methodology regarding the synthesis of technical processes are
suitable for computer implementation, can they be translated completely to computer

environment, if not than to what extent and what are the means to accomplish that?
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2.1 Design as a problem solving process

The fundamental principle on which designing rests is generating and proposing alternatives
until they fulfil a set of given requirements and constraints [15]. Taking a guess about the
possible solution to a given problem and navigating through design space in order to find a
sufficient solution is a common strategy when dealing with design problems. Depending on
the complexity of a task, design search spaces will most often end up as being vast,
constrained, multimodal and full of discontinuities, frequently requiring a heuristic based
strategy to be efficiently explored. Consequently, by making assessments about the feasibility
of the individual solutions alternatives at different levels of abstraction, the designer will in a
stepwise manner progress from abstract to concrete. Each of these assessments is therefore a
necessity and each one will inevitably reduce a portion of the available search area. Building
on the latter the design process can be understood and modelled as a tree structured state-
space search process (Figure 2.1). Navigating through design search space and testing

possible solutions follows the established line of reasoning about how to solve a problem.

Problem

O O Processes

O O O Functions
OO O QO Principles
OO0 O O Organs

00O OO Structures
O00000O OOOQO Shape
O0O0O0O000O0 OOOO Materials
0000000 OOOOOO Dimensions

O00000O0 OO0OOOOOO Surface quality
000000 OO0O0O0OO0OOOOOO Details
Figure 2.1 Causality in design’s degrees of freedom [8], [25]

However, at one arbitrary point in design process the idea that looked promising at the
beginning might prove to be exhausted as designer realizes that if going further following that
path the product designed will never be able to successfully meet the given requirements and
constraints. Then, designer has to turn back and to consider the other available options.
Reasons for being that so can be argued since as design progresses the environment of design
process changes as well as the understanding of the task and object being designed thus
preventing envisioning of the course of the search. As once said for the artists that in creating

the work of art, the artist “evolves” to a new stage of how to realize hers or his ideas [26], in
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the same manner the designer evolves understanding and viewpoint of the task and the object
being designed. Design stalls and stops, or even going a few phases back in design process are
the issues that are also tried to be addressed by the introduction of computational design

support tools (elaborated within Chapter 3.).

Solving a design problem by using a random walk or a TABU search which excludes
infeasible design search space areas could prove to be a reasonable strategy; however there is
more involved, and it precedes the straightforward appliance of a heuristic search algorithm.
When dealing with complex problems like design, a direct approach with immediate mapping
from question to answer usually won’t work. If ever obtained, the results usually end up being
of a poor quality. Research in the field of human problem solving and cognitive psychology
have shown [27], [28] that every human being will more or less in a similar manner react
when facing a problem situation. Usually, a complex top-down reasoning process involving
the expectation of the outcome will govern the search. However, if there is a possibility to
introduce a methodological approach prescribing how to deal with a certain class of problem
which is of course an art and science for itself, then there is a chance that the results will turn
up better as an outcome of more efficient problem solving process. The role of design theories
[1], [4], [5], [6], [8] can here be reemphasized by explaining their task as to offer descriptions
of intermediate steps with corresponding activities and to prescribe methods that might help

guide designer to a successful design.

A generic methodology for problem solving including design problems can be summarized in
a few generic steps put within a loop: understanding of the problem that initiates the solution
process, devising a search plan or problem analysis, applying solution strategy and reflecting
back to see whether the results meet the requirements [29]. The ability to ask and formulate
the right question that will be able to describe most of the problem aspects is as equal in its
importance as the solution itself [29]. Problem definition is a statement of its meaning on
other terms which are supposed to be well known to a person. Understanding of a design task
is an internal representation of the problem including person’s initial beliefs and analysis of
the given problem, its constituent elements and the representation of the goal. Search
strategies which are employed and no matter how clever they might be depend on the initial
input and the goal of the search. Problem analysis involves the application of various
techniques in order to gain insights on the problem. Framing or relating problem to similar
situations encountered helps restating problem to identify all of the aspects that need to be

addressed. As once recognized by Herb Simon [15], decomposition of the problem to a
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smaller chunks of a size that still maintains and tracks the relations to the system but permits
independent consideration of each of the elements is the norm for the engineering design. The
same reasoning was adopted by most of the methodological design approaches and design
theories like TTS [1], Systematic Design [4] and Domain Theory [8]. Building on the
foundations of the General Systems Theory [30], thus embracing a holistic reasoning, within
most of design theories [1], [4], [8] and it was adopted to model a product as a transformation
system the at the early design stages. Eloping to abstract enables designers to focus on the
architecture of the system, rather than dealing with the details. However, there are degrees and
alternatives to decomposition. As design process can take different paths, so can the
decomposition process. Alternatives of decomposition are to be understood in the sense that
there are different ways by which the designer can define the scope and assign duties among
the system elements. The assignment of duties defines the system in respect to the elements
which is in fact a bottom-up solution process. The latter is a synthetic activity under inductive
inference thus clearly showing that decomposing is not always performed and understood in
strict reductionist sense, but it may be quite the opposite. Since numerous alternatives can
appear as a result of different viewpoints on what an element is and how it should perform,

the introduction of computational support might prove valuable to designer.

The study of human cognition aimed at finding out how creative ideas emerge shows a pattern
in problem solving processes [27], [28]. Through analysis of artwork and engineering
achievements, it was shown that creative ideas were conceived as a result of an ordinary and
deliberate process. Intensive problem solving techniques based on the knowledge from a
decade long collection of expertise in the field as well as other domains were applied. The
same applies to the engineering design it is; solving involves both heuristic search with
knowledge intensive methods like analogical transfer and in-the-field expertise. Heuristics in
general tries to find a solution candidate that will at least achieve the given goal without
considering the utility of the solution. When performing a design task, designers most often
recombine chunks of past solutions into a novel solution. In fact, this is the norm [1]. Past
solutions are often mental models and to patch them together requires an abstract search
process. Inductive and deductive reasoning and the resulting expectations of the product’s
behaviour based on a designer’s knowledge and experience are involved in such search [31].
Knowledge help constrain the search area; however, when heuristics progress stalls with no
answer found, a work around by establishing analogies might prove fruitful. Analogous

objects are these that match to a certain extent by the way in which their constitutive elements
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relate [29]. On foundations of expertise and external sources like text books or reports,
designers can transfer solution or at least a work principle that might solve the problem.
Recognizing analogy, i.e. inference by analogy, to generate solutions is most often present
inside a design process. The awareness of the new solution possibility extends the borders of
design space thus enabling further heuristic search. Possibilities that arise by patching-up of
new and old building-blocks in a novel way might lead to a problem solution. Only recently
the advances in the field of computational cognitive linguistics presented a conceptual
blending method which to an extent enables a knowledge-intensive reasoning by establishing

analogies applied to general and common problems [32].

Abstract reasoning and specialization or detailing, are two more problems solving techniques
that are most often present within a design process. Ability to use symbolic systems like
natural languages and to establish hierarchical class structures are the key element of
cognition that allows abstract reasoning [33]. Abstraction enables to focus on the important
but general, to disregard all of the features that are at the moment irrelevant or too distant to
be accounted for. A systemic reasoning about the world surrounding us is an archetype of
abstract representation. The same approach was adopted by design theories to manage with
the complexity of product development at the early design stages. In design moving from
abstract to concrete is understood as process of the assignment of new attributes to the product
under the consideration [8], [34]. If framing the same process to optimization problems then it
can be understood as to put the design objectives in order by the degree of importance and
acting accordingly when searching for a solution. Specification or detailing is understood as
assignment of values to attributes [34]. From the perspective of design methodology, design
stages and phases are ordered in a way that they maintain the introduction of design
characteristics gradually at the points in evolution when design solutions are evolved enough

to allow proper reasoning. Therefore, detailing requires concretization of an attribute first.

Based on the design theory and methodology literature review Sim and Duffy [34] tried to
identify a generic set of design activities. The outcome of their research efforts resulted with
an overview of design activities per design process model as shown here in Table 2.1. As
defined by [34] generic activities performed in design process are subdivided in three
categories: design definition activities aimed predominantly at problem restructuring and
managing problem solving complexity, design evaluation activities concerned with the testing
of solutions and reduction of search space by identification of unfeasible candidates and

design management activities with the purpose of coordinating the previous two set of
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activities. In fact, the whole of design process can be modelled as a process of search done by
a specific method and involving different reasoning principles and solution representations.
To conclude; in respect to synthesis a similar viewpoint is adopted as presented by the GDT

bringing it close with the explanatory search process of design.

Table 2.1 Overview of design activities [34]

Design activity Hubka (1982) Pahl & Beitz (1996) Pugh (1991) Suh (1990) Ullman (1992)  Ulrich & Eppinger (1995)

Design definition activities (function to form/structure)
Abstracting
Associating
Composing
Decomposing

Defining

Detailing

Generating
Standardising
Structuring/integrating
Synthesising

v v v
v

AN NN
AN

AN NN YR NN
AN
AN
AN
AN

ANE NN NN

Design evaluation activities (form/structure to behaviour/effects)
Analysing

Decision making
Evaluating

Modelling

Selecting

Simulating
Testing/experimenting

AN N N N YR SR
AN NN
AR NN
AN
AN AN
AN

AN
AN
AN

Design management activities

Constraining v

Exploring v
Idnetifying v v v v

Information gathering v

Planning v
Prioritising

Resolving

Searching v v

Selecting v v v v v
Scheduling v

Based on this section and on the presented analysis of general problem solving methods, the
principle mechanisms that drive an engineering problem solving process can be summarized
n:

e Problem definition, analysis and variation,

e Abstracting and specifying,

e Heuristics and knowledge intensive search,

e Decomposing to realize and define elements of product as a transformation system,

e Generating and testing of solutions, and

e Deciding upon a solution variant.
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2.2 Design as an explanatory search

The study of a creative process and how creative ideas emerge requires an analysis directed
both to the problem being solved and to the methods and techniques being applied for solving
of that particular problem. Many research efforts in the past and present were directed towards
the understanding what a creative process is and how to stimulate and simulate it. Our world
is shaped by the activities of creative people [27] where design and designing is the mean
through which that shaping was achieved. Therefore, with no doubt, a creative process is most
often taken as the subject of analysis of how solutions to a problem emerge. Design can be
understood as performed in a cycle that interlopes analysis, synthesis and evaluation. Each of
these phases is equal in its importance for solution generation; however in respect to
reasoning processes performed they differ a lot. By all means, the synthesis as a key creative
step in which by combining and mixing of ideas new solutions emerge is a focal point of
interest. The previous sections addressed the design as a problem solving process from the
methodological point of view leaving the classification of problems and reasoning processes

that are being applied to be addressed in the forthcoming text.

Design practice shows that almost often design problems go beyond being ill-defined. The
initial problem statement is incomplete, the goal is unknown thus recursively affecting the
input. Because of the uncertainty on both ends, the literature categorizes design problems
being as even more elusive than wicked problems [34] (wicked problems are these where the
problem definition is dependant or influenced by the solution [35]). Complex problem solving
processes as design is, exhibit activities that are of iterative and evolutionary nature guided by
different logical principles. Finding out the logical reasoning process was a prerequisite in
attempts that were made in order to create computational simulations of human reasoning
processes as test beds for determination of creative solution emergence [27]. Development of
the computational design tools aimed for design synthesis is no exception. The necessity to
investigate logical principles of reasoning processes is driven by the assertion that all
formalised processes can be rendered computational. If the formal models could be devised
then there is a chance to simulate the engineering design synthesis by computational systems.
In respect to reasoning performed the research has shown [24] that solely deductive models
do not suffice. Deductive reasoning process is by definition as good as the initial premises
are. If performed correctly, the outcome must hold, since the truth of inference is determined
by the truth of the premises, assuming a valid inference process [16]. The goal of design is

understood as the satisfaction of the existent market and societal means that can be achieved
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using the technical system designed, then using deduction a direct mapping from the list of
requirements and needs to design solution should be possible. However, due to
incompleteness of premises and the evolutionary nature of the design process, the
appropriateness for design synthesis to be modelled as deduction was refuted [31]. Deduction
1S a one-way process that cannot provide necessary means required for solving of design

synthesis problems.

Assigning deduction to analysis and evaluation seems as a reasonable step. Deductive
inference applied to conclude some facts about design situation assumes a valid outcome as a
result of true premises. However, the uncertainty that comes with the absence of absolute
knowledge is present both in the formulation of the design requirements and the object
designed. Therefore an extension to the reasoning model is necessary calling for addition of
an inductive reasoning part. Induction can handle situations of incomplete knowledge
including beliefs and expectations of the person thus mimicking top-down reasoning
processes. Examples of such are classifier computational systems or concept-learners like PI
[16]. The valid results of induction include occurrences where although the inference process
itself was consistent, the outcome must be considered with a degree of uncertainty and not as

an absolute truth.
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Figure 2.2 Design as an explanatory search according to GDT [31]

The expansion of the deductive model of design synthesis to include both uncertainties of
inference results and iterative nature of design process was accomplished with the formulation
of The General Design Theory (GDT) [31]. GDT modelled designing as a process of
knowledge manipulation based on the axiomatic set theory. Axiomatic foundation offered a

possibility to derive theorems and to develop a formal model of synthesis process within
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intention to run it computationally. Although, the initial assumption of the GDT that the
design knowledge can be organized as a topological structure proved too idealistic [19], the
contribution of mathematical modelling of design synthesis was valuable. GDT presented

deductive-abductive model of a design process (Figure 2.2).

In respect to the problem solving strategy that is applied for generating solutions to
engineering design problems, it can be said that designing, and in particular the early design
stages where the need for generation of novel solutions is most emphasized, are performed as
an explanatory search. An abductive reasoning is a logical principle behind the explanatory
search undertaken by designer which results in the creation of a technical description of the
designed product as an explanation to the recognized market and societal needs. The solution
to a design problem is achieved through an iterative process which assumes co-evolution of
the object being designed and designer’s knowledge and understanding of the problem he or
she is facing, i.e. the problem and solution are being redefined iteratively in relation to each
other. Explanatory search and co-evolution result in a solution which can be systematically
evaluated, but because of causal relationship that exists between a problem understanding and
its solution it cannot be told whether the generated solution is a final and best answer to the
existing requirements and needs. Moreover, the implication that with a designed product the
existent market need will be fulfilled is a premise in abductive reasoning. Put differently,
there may be many solutions to the given design tasks. Deductive part of model is of course
linked to analysis and evaluation parts. More recent advances in understanding of design
synthesis and its modelling offered an extension to abductive model replacing it with creative
abduction or innoduction [24]. The Assertion is that abduction alone cannot produce creative
solutions since a solution proposition is already included in the premise as a part of
explanatory search. In respect to that, abduction can yield only a design the principles of
which are already known. Therefore, it is proposed to include innoduction to synthesis
modelling, and that inference search should result both in the explanation and the design
specification. However, at the moment, design support tools do not go beyond deductive and

inductive reasoning models.

2.3 Engineering design synthesis according to the Domain Theory

According to Hansen and Andreasen [8] the explanation of engineering design synthesis
should at least address the following three points: understanding of synthesis activities,

synthesis as cognitive activity performed by humans and object of synthesis, designed artefact
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as 1s. Theoretical model of synthesis should try to unify these three points, what is in contrast
to most of the design theories which offer only partial descriptions necessary to elaborate their
viewpoints to engineering design. The Domain Theory (DT) [8] which served as a foundation
for synthesis modelling [8] was proposed by Andreasen. Built on the Theory of Technical
Systems (TTS) [1], The Domain Theory adopts viewpoints to the product being designed

consisting of transformation, organ and part views (Figure 2.3).
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Figure 2.3 Domain Theory applied to design object [8]

The core principle of designing as advocated by the DT is compliant to the fundamental
principle on which design rests as to generate and propose solution alternatives until they
fulfil a set of given requirements and constraints. Generation and test [15] of alternatives is a
process where the DT recognizes two important aspects; what has been accomplished as a
proposition of structural characteristics of the product being designed, and what is tried to be
accomplished as behavioural properties exhibited as a result of the proposed characteristics.
Such generation and test algorithm is performed at all three domains (see Figure 2.3).
Applying the DT to the object being designed results in designer examining behaviour in
respect to object’s structural realisation in each of domains. As a consequence, decisions

made in one domain affect other domains.

24



ENGINEERING DESIGN SYNTHESIS

The transformation domain considers the purpose of technical product as to support
transformation of operands by delivering necessary effects, the organ domain considers
structures and modes of actions which create and deliver necessary effects, and the part
domain resolves how to distribute organs into machine parts. At this point, it is important to
stress out that among all of the design theories only TTS [1], TRIZ [5], and DT [8] realize the
importance of transformation performed within technical processes as being crucial for design
of technical products. It is of an interest to note that product function as a domain per se, has
been omitted from the consideration. Explanation for the latter can be drawn from the
assertions made by The Systems Theory [30], where a function of an observed system is
defined as a property of that particular system. Building further according to the DT [8], a
product function is a class of behaviour realised as an output of the organ domain. Put
succinctly, although DT omits the existence of functions as a domain per se, it still concurs

with the TTS recognizing the function as an ability to deliver the necessary effects.

According to the Theory of Domains [8] two approaches to modelling of engineering design
synthesis are understood in a sense of function-means law [15] relating to two design

situations:

e Design-process-oriented synthesis referring to design of a completely new product.
Generation and test algorithm performed over all three domains thus synthesising a
new product design. This refers to products for which the working principles of

process domain are not given within design task specification.

e Artefact-oriented synthesis which is based on the reuse of the past design processes
where the relationship between product characteristics and required properties is at

least partly known.

DT realises that a frequent activity inside process oriented synthesis is a decomposition
carried out for two reasons; to be able to reduce the overall complexity of the design task by
dividing it into more manageable chunks, and secondly to assign these chunks to designers
allowing them to work in parallel. The authors argue that there is no definition what
decomposition really is [8]. This thesis however, as explained before, understood
decomposition from a systems’ theory viewpoint as a synthetic activity. Proposing of
structural characteristics, testing and navigating between the three domains is the explanation
of the synthesis under DT. After the identification of the purpose of the technical product,

following generic synthesis steps are proposed according to the function-means law:
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¢ Detailing: select means to realise behaviour.

e Concretisation: assign values to means.

e Decision-making: select best means.

e Composition: compose selected means.

e Decomposition: identify support for selected means.

The identification of support is performed according to Hubka’s Law which states that the
means synthesised for solving of the required function are seldom self-sufficient thus most

often accompanied by auxiliary functions realised by additional means.

Artefact oriented synthesis allows the implementation of heuristic computational methods. It
relies on re-usage of past design solutions in order to create new ones. Past solutions may be
stored inside design catalogues or a specific design task methodology aimed at solving the
given class of problem may be applied. As DT claims, utilization of the past design is a
powerful method offering high optimization potentials and generating promising design
synthesis solutions. However, the way in which reuse of past solution has been framed is
somewhat in contrast to the explanation of how creative solutions emerge. Combination of
heuristics, top-down reasoning as a result of past experiences combined with the knowledge
intensive methods relies on the past solutions. Reuse of building-blocks is an invariant
approach applicable to any-kind of problem solving, thus being difficult to accept its

presence, being emphasized only inside artefact-oriented synthesis.

2.4 Synthesis of technical processes

Following sections will provide an approach to engineering design synthesis as defined
according the Theory of Technical Systems. The teleological viewpoint which is undertaken
within TTS that sets synthesis of technical processes as an initial stage of conceptual design is
theoretically fundamental to this thesis, thus it is necessary to elaborate it. Two types of
synthesis which are recognized by the TTS will be presented as well as the models of
technical processes and technical process decomposition. All of these are required to
emphasize the importance of technical process synthesis, the relation between technical
processes and the function of a technical system that needs to be designed and to provide the

insights needed for design of the method for creation of operand transformation variants.
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2.4.1 The Theory of Technical Systems

The Theory of Technical Systems (TTS) is concerned with studying technical systems as
artefacts that are of technical or engineering content [1]. Based on the legacy from the
systems theory and cybernetics, the TTS argues that it is necessary to understand both the
behaviour of technical system and the methods and processes which conceived and created
that technical system. The TTS builds its reasoning by bringing together how technical
systems came to be in the first place what is necessary to understand when designer needs to
establish duties of the technical system under development. Such reasoning is deeper and in
contrast to the most of the other design theories which tend to accept technical products as a
fact per se, it offers the possibility to recognize more of the important aspects necessary to
design successfully. Technological progress achieved throughout centuries of innovation,
creation and continuous improvement was pushed by societal needs that demanded assistance
of technical systems in order to make possible and to alleviate attaining of the existent
purposeful goals. Understanding the motivation for development of technical systems as tools
being required by the human society is observed throughout the history and in a way it
equates the evolution of mankind with technical evolution. The history of engineering,
presents the evolution of artefacts driven by teleological principles, and is therefore an
inherent component of the civilization and human society. To study and understand the

history of mankind, one must study and understand the history of design [15].

Like any other problem solving, the fulfilment of the existent societal needs and requirements
can be framed as a transformation process inside which the initial unsatisfactory state is
transformed through a series of operations into a presumably desired state. In different
domains involving designing in a broad sense, a transformation through series of operations is
managed differently but understood as the same. For instance, a straightforward
computational sciences example of a programming function that ought to be designed in order
to transform the input variables into the desired output. In the literature one’s own thoughts
and impressions are transformed into a written text using grammar of a language to make it
understandable and interpretable for the reader. The examples are numerous and are all look
alike. Therefore, in mechanical engineering and design a transformation is always perceived
as being performed inside an artificial process in which an object is transformed intentionally
and with the purpose. The object that is undergoing the transformation is regarded as an
operand; a passive member of the whole process that exists in the world around us and which

exhibits both structural and behavioural changes. How to achieve a desired sate of operands
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that may fit the existent societal and market needs is put as a central question and it is most
often answered in terms of which technology to apply. Technology is a collection of
knowledge describing how and with what to perform a transformation in order to achieve a
desired state of operands. Technologies differ in principles by which the change of operand’s
state has been performed, i.e. technological principles based on physical laws by which the
transformation sequences with their requirements are being derived from. In terms of the
Theory of Technical Systems, applying a technology is always considered together with the
assistance of supporting technical systems. Human operator and technical system compose an
execution part of the transformation system which by interaction with the environment
provides all the means necessary for transformation to be possible. According to TTS, these
means are denoted as effects which include actions exerted onto operands by technical
system, human operator and environment, auxiliary operand’s flow with regulation and
control [13]. A general model of the transformation process [1] is presented in Figure 2.4 as

an extension of Figure 1.1 in Chapter 1.
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Figure 2.4 General model of transformation process [1]

Following Figure 2.4 a technical process is defined as an artificial process in which the state
of an operand is transformed intentionally under the influence of effects delivered from a
technical system, a human operator and the environment which are collectively referred to as
transformation system’s operators. In the context of the existent societal needs and
requirements, it can be said that the fulfilment of these may be achieved within a technical

process as a transformation processes in which technical systems are in extensive use [1].

28



ENGINEERING DESIGN SYNTHESIS

According to the TTS, determination of the operand transformation process as a sequence of
operations and operand flows in respect to different technological principles and
corresponding necessary effects to drive the transformation is referred to as the establishment
of technical processes and is in a fact the first step which is proposed to occur when moving
into development of a new product. Technical systems are objects of design and since
technical processes may be based on different technological principles, then the duties and
roles of technical systems in the transformation will vary accordingly. These duties and roles
must be assigned optimally alongside technical process distributing them among all of the
parties inside transformation system [13]. This is an important aspect since designer must
establish the expected behaviour, i.e. a function framed as the collection of effects, of a
technical system that is about to be designed. Interplay between human operator, technical
system and the environment must be envisaged in a way that all of the parties inside a
transformation system are capable of producing effects necessary for supporting the
transformation of operands. Such systemic approach imposes early design stage
considerations of how the technical system is going to be used once in service. The most
suitable technologies for operations which are intended to be driven by effects from the
technical system must be in compliance with the existent market and societal needs. As a
consequence, various product realization possibilities can emerge as a result of considering
technical processes variants. Search for optimal or at least suitable near-optimal technical
process is precisely that what is advocated by the TTS and TRIZ for instance [5], as being

necessary step, if one aims at designing of truly new and innovative products.

2.4.2 Decomposition of technical processes

Following the systems theory approach, systems can be modelled as the collection of
elements put into a connection inside system’s boundary. Connections or connecting
elements, most often arrows rather than solely edges are used to introduce the order into the
structure thus making it interpretable in different ways by which system elements can be
related one to another. In the same manner, the TTS approaches the modelling of technical

processes (Figure 2.5).

Elements of technical processes are operations put into a mutual relationship by operand
flows which connect between the outputs of one operation to the inputs of subsequent
operations. Such structure clearly depicts the operand state transition exhibited by operands

during the transformation process. Building on the latter implies that operations can be in a
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sequence or parallel. The effects delivered from the execution part of the transformation
system and the environment, are modelled as arrows directing from operators to operations.
Flows emerging from an output can be multiple as well as the inputs. On the bases of the
selected technological principles the task of designer is to structure to structure technical
process in such a way that it would yield in transformation of operands that has to correspond
to the existing needs and requirements. If more than one alternative is created the most

suitable one is to be selected.
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Figure 2.5 Structure of technical process according to TTS [1]

According to TTS in decomposition of technical process a methodological approach is

proposed. Designer starts from a single operation creating a black-box type of problem
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representing the existing needs as transformation and then gradually decomposing it (Figure
2.6). As decomposition progresses towards the problem tearing down to its constitutive parts,
it becomes easier for designer to grasp all of the aspects and to better understand the nature of
the problem at hand. High-level decomposable operation is denoted as the process, which can
be decomposed in a transformation sub-system composed of sub-processes and operations

interconnected with operand flows.
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Decomposition process is repeated again and again resulting in the growing number of
simpler elements interconnected with flows inside fixed systems boundaries. The whole
process lasts until designer gains sufficient insights about the duties of technical product that
is ought to be designed and the secondary operands flows that emerge as a consequence of
technology being applied. Since the definition of technical processes structure involves
selection of operations, relating them with operand flows and adding the corresponding
effects and since it occurs at every level of decomposition process thus creating iteration in
which designer fine tunes at all of the decomposition levels, it is more reasonable to address it
as synthesis rather than just establishment of technical processes. The analytic part of
decomposition is concerned with the insights that are gained, but to attain these, a
transformation process synthesis is required at each and every step of decomposition. As
argued in the previous sections of this Chapter a decomposition involving the definition of
system boundaries, elements and prescribing interrelationships between them is not an
analytic activity, but on the contrary it is a synthetic activity. Therefore, it should be more

appropriate to use the term synthesis of technical processes.

2.4.3 Synthesis of technical process as a prerequisite for novel product design

In respect to engineering design synthesis two design situations are envisaged by the TTS;
design of a completely novel product and a redesign task [13]. Designing is a mixture of
systematic and intuitive processes and the TTS defines its task to stimulate efficient search of
solution alternatives on all the levels of abstraction [1]. The focus is set to tackle the problems
arising with the novel design, but the theory might be successfully applied also for the
redesign tasks. According to the TTS, during design process a technical system can be
considered on different levels of abstraction including technical system’s internal
transformation process, organs and components used to realize functions and organs at any
level of completeness. Depending on the intended aims and resources assigned, most often a
product redesign starts with the identification of the existing organs structure or functions
these organs fulfil [13]. Starting at higher abstraction level will enable broader search, thus
generating more solution variants, where if the aim is to preserve product development
resources than design process will be limited adopting the most of the existing product’s
structure and behaviour considered at different abstraction levels. After the initial analysis
step the rest of design process can evolve on the basis of the prescribed methodology given by

the TTS exhibited in the very well known analysis-synthesis-evaluation cycle.
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As any problem solving, design starts with a task clarification process which for an outcome
has to point out at least vaguely what is to be achieved, i.e. what is the required behaviour of a
future product in order to help it satisfy the existent market and societal needs. Apart from
design specification as an initial and fixed starting point which is a result of awareness of
current needs resulting from a market analysis and surveys, problem definition also takes part
later on inside the design process itself. The latter can be understood if bearing in mind the
nature of design process which is performed as an explanatory search with constantly
evolving mutually dependant problem statement and solution. Of course, the explanatory
search, or creative innoduction, occurs at the point of design process where synthesis is the
most intensive, therefore mostly constraining the problem redefinition to conceptual design
phase. Building on the same foundations, the TTS states the principle differences between
design of a novel product and a redesign on the grounds of the type of initial design activities
performed in order to determine and clarify what is and how is to be accomplished. With
redesign task a problem definition emerges as a result of an analysis of the existent product’s
structure at desirable level of abstraction whereas a design of a completely new product
considers technical processes synthesis as a part of design problem definition. For instance,
the function of technical system is a capability to deliver necessary effects is derived on the
basis of technical process synthesis, what is in contrast with redesign which would start with

an analysis of an the existent product in order to obtain the function structure.

Natural question which has to be stated at this point is what are the central points that need to
be addressed when designing a novel product? According to the TTS, the main areas of
concern are synthesis of the optimal or at least of the appropriate technical process which is
referred to as synthesis of horizontal causality chain and establishment a structure of the
internal technical system’s transformation denoted as vertical action chain [1], [8] (see Figure

2.7).

Each technical system exhibits different structures and relationships of its elements depending
on the abstraction level considered, e.g. function, organs and components [1]. According to
the TTS a process (not a technical process, see Figure 2.7) within a technical system TS is
equivalent to functions of TS. After the technical process and the necessary effects have been
clarified, design of technical system can be equated to establishing the vertical action chain
and making it realizable by physical components. Depending on the task, the exploration of
systems structures at various abstraction levels may or may not be used by designer to help

design a technical system, however, the outcome must be in physical components structure.
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The vertical action chain is performed through a set of actions which occur within technical
system’s internal transformation. The latter is modelled as an analogy to technical processes
and it may be considered as the upmost abstraction level considering technical systems as
proposed by the TTS. Since this thesis is concerned with the development of computational
support for generation of operand transformation alternatives it is necessary to address the
distinction between the two transformation processes and clarify the relation between internal
transformation and functions of technical system. Internal transformation process represents a

technical system in its working state.
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Figure 2.7 Horizontal and vertical action chain [1], [8]

The input on the system boundary inputs consist of material, energy and information which
are within internal process being transformed into the needed effects. Effects may be

movement, energy flux as heat or cooling for instance, protection, force and so forth. The
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principles of transformation are prescribed inside the mode of actions which are derived from
physical laws. Output locations on which the effects are delivered to the corresponding
operations to drive technical process are denoted as action locations. Principle difference
between technical process and internal transformation process, lays in the fact that technical
system’s transformation is performed internally by technical system itself [1]. What is of
interest is that the TTS when considering function structure models technical systems as being
in the state capable of working, and the effects which are in fact products of the internal
transformation as a technical system’s capability of performing necessary tasks what is most
commonly referred to as product’s function. Even further, the TTS proposes to equate internal
transformation and functions in one to one correspondence [13] thus rendering one level of

consideration as unnecessary.

2.5 Implications to this work

This thesis will not undertake such ambitious task that aims to simulate the whole process of
engineering design synthesis; rather it will just try to automate one stage, i.e. technical process
synthesis as given by the TTS that is, of methodological design approach inside its own-build
logical framework where some of the problem solving methods and techniques can be
computationally utilized. Computationally supporting the existent methodological design
approaches additionally benefits with the ease of in-practice acceptance, since designers are
supposed to be familiarized with various approaches to design during their studies at
universities or as a part of their professional everyday routine. Moreover, since the
methodological approaches serve as templates which are to help designers to more efficiently
solve the given task within a meaningful sequence of steps and although these steps involve
different cognitive processes which cannot be so easily put into an algorithm, yet it is still a
firm foundation for the creation of computational design support tools. The extent of mapping
from systematic approaches to computational environment usually cannot be achieved in one-
to-one manner. Either appropriate encoding of preferred design methods must be devised in a
manner acceptable in order to suit the existing computational techniques or new

computational methods must be developed altogether.

The aim of this thesis is set at generation of method and operand tool for operand
transformation variants in order to support design process. As shown, the transformation is of
special interest to the TTS as it recognizes both, the horizontal or technical process and the

vertical as the internal transformation process. Designer in relation to different technological
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principles composes the structure of technical processes in order to achieve desired operand
states corresponding to the existent market and societal needs. Technical processes synthesis
is a part of design task clarification. It contains both the operand in its end state which should
be in compliance with the existing market and societal needs and the behavioural properties of
the transformation process itself. According to the Theory of Domains (TD) the latter is
referred to as universal virtues of technical process encompassing cost, quality, risks,
environmental aspects etc. If metric could be established over universal virtues than they
could be used as objectives which alongside operand’s end state as a goal could serve to
optimize technical processes. Both the TTS and the TD realize the importance of technical

process synthesis as the requirement for successful design of a novel technical system.
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3. COMPUTATIONAL DESIGN SYNTHESIS

1t takes two to invent anything. The one makes up combinations; the other chooses, recognizes
what he wishes and what is important to him in the mass of the things which former has

imparted to him (P. Valéry; taken from D. E. Goldberg’s, The Design of Innovation [11]).

A fairly young research field of Computational Design Synthesis (CDS) to whose body of
knowledge would the findings of this thesis be incorporated, has in the recent two decades
emerged as a constitutive part of the Design Science. The advent of computers has excelled
solving of engineering design problems which initially were more or less performable as
calculation based tasks. However, with the ever present Moore’s law the increase in the
available computational power, the ongoing development of programming frameworks, and
advances in the field of discrete search and optimisation techniques, the extension in the
applicability to tackle problems involving complete designs generated by computer
applications have become possible. About a decade after the appearance of expert systems in
the eighties of the last century, the first significant successes were produced inside the
evolutionary design frameworks aimed predominantly at the engineering optimisation tasks
[11], [36], [37]. Most often the results of topological optimisation surpassed the initial
intention of just optimising yielding in complex designs which have emerged as a
consequence of evolutionary learning processes encompassing trial and test search method
which altogether very much resembled the process of engineering design synthesis [38].
Currently the CDS supposes an algorithmic creation of designs implemented on computers
involving an organized approach and methodological modelling [2]. It is a complex
multidisciplinary research area that brings together advanced computational techniques and
search algorithms with the knowledge about the object of design and design processes [2].
Rather than just aiming at the optimisation, by building on the principles on which human
designers arrive at a design solution the goal of the CDS can be formulated as to provide an
assistance in situations where solving of a problem would require generation of a too large to
cope number of variants. Chapter 2 presented findings about the problem solving in general.
The models of engineering design synthesis and the synthesis of technical processes as the
focal point of this thesis where adopted according to the TTS. These postulated the theoretical
foundations of this research taken from a Design Science’s viewpoint. This Chapter, on the

other hand, will give the state-of-the-art overview on the Computational Design Synthesis
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methods and tools in order to add the computational perspective of this thesis. Theoretical
origins, product modelling approaches and mechanisms by which the existent CDS methods
and tools generate designs will be explored in order to determine the general principles that
will be used for development of computational method and tool for evolution of operand
transformation variants. Since grammar based approach will be used in this thesis a more
thorough overview of similar methods will be presented. The necessity to considerate

technical processes inside computational synthesis tools will be re-emphasised.

3.1 Generic model of CDS

To consolidate various approaches, methods and tools that emerged over the years, efforts
were made to establish a generic model of a design synthesis process. Two correlated models
appeared in the literature: a generic framework [2] that proposed representation, generation,
evaluation and guidance as four basic steps (Figure 3.1) which must be addressed inside a
computationally driven design synthesis process; and a performance-based framework
emerged for topological synthesis proposing investigation, generation, evaluation and
mediation as steps of a parametric based computational synthesis [39] (Figure 3.2).
User defined:
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Figure 3.1 A generic model of CDS [2] Figure 3.2 Parametric synthesis model [39]

Although the two approaches differ slightly by the nomenclature, the content of the proposed
steps is almost the same. To reflect on the CDS steps, this research will adopt a model
nomenclature according to a generic model of CDS [2] (Figure 3.1). Both of the models

consider the Computational Design Synthesis in the context of a very well known synthesis-
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analysis-evaluation cycle which is so often present in the everyday problem solving.
However, since CDS assumes a design synthesis performed on the computer and by the
computer, than the content of the proposed steps is tailored so to meet the requirements of
such execution. Of course, the immediate and obvious is the necessity to represent the
problem of interest in a way which is understandable to computational environment.
Formalizing a problem using a language is a kind of problem representation for itself which
rests on a well defined formal system, but what is more elusive is how to cope with different
mental models that designer constructs when dealing with design problems. In the opposite to
static bounds of programming code, the human mind when confronted with a task acts as a
pre-processor using various representations as felt fit in order to patch up a complete solution
inside a generate-and-test processing loop. Creation of analogies, understanding of semantics
and utilization of abstract reasoning which occur so easily inside one’s mind during problem
solving are difficult to be performed computationally, and in order to even get near the
simulation of these cognitive processes, an establishment of in-domain knowledge
understandable to computers is necessary. As shown many times before by the evolutionary
computation community [11], [36], [37], the outcome of a search process is directly
dependant on the feasibility of the encoding that was applied. For instance, an example
exhibiting dependency between encoding and search is a map from binary encoded string to
real numbers resulting in discretisation of the real number search space, thus possibly

concealing the real optimum.

An effort was made to emulate designers “out-of-the-box” kind of reasoning [27] framing it
by using dynamic fitness functions which were evolvable themselves thus adapting to the
course of evolution [40]. However although promising, such considerations always retain the
same founding model thus being not sufficient to achieve the desired effect. At the moment,
the CDS understands problem representation as a static part of synthesis framework which
ought to be designed in a fashion that captures the most of the form and attributes of the
design search space [2]. Moreover, the problem representation should be founded on the
established design theory models as these are familiar to designers and are constructs of years
of research and expertise in design processes study. Depending on the purpose of design
synthesis, the complexity of the task and considered viewpoints on technical system’s
structure applied at different stages of design process, the solution representation may be
realised as a geometrical expression of object’s form as distribution of material in space, a

real valued vector, matrices, graph structures according to different design process models etc.
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In contrast to representation, the generation is of course a dynamic part of the model, as well
as the evaluation and guidance. As shown in Figure 3.1, the mechanism of solution generation
is closely linked to the type of representation which can be selected or devised anew. It should
be the best possible fit to the encoding requirements in order to get as much as possible from
the search across the design space. Moreover, since solution generation very often includes
systemic integration of building-blocks, a generation method must also obey the approach by
which the synthesis method utilises engineering knowledge necessary to perform that
integration. Therefore, it can be said that the principles by which solutions are synthesised are
founded according to human problem solving methods and techniques ranging from the
straightforward random generation to more complex knowledge intensive methods. Typical
generation principles may be heuristics, matrix transformation, grammars, and state space
search over a tree based model. Solution can be generated as a result of collaboration of
various types of semi or fully autonomous programs, i.e. software agents, which act as driven
by the perception of their environment [2]. Very often genetic algorithms are utilised for
design synthesis, and these require additional decoding function which accepts genotype at
which evolutionary operators perform and transforms it into a phenotype to obtain the
structure and behaviour of the system in order to be able to evaluate, rank and select the most
feasible solutions [11]. For the creation of computational support aimed at conceptual design,
graph structures are of special interest since most of the design theories use these to model
technical system in the early design stages. Graph grammars are then used as a means to

construct and explore different solution variants.

Evaluation considers ranking as a result of solution analysis showing how well the solution
candidates perform against the preset requirements. Assignment of a rank to a solution over
multiple objectives in the present engineering optimisation tools is most commonly performed
using the well known the Pareto principle. The same is encountered in the CDS. Rather than
guessing weights and summing them up, the weak Pareto principle for example provides at
least an objective ranking approach which for a consequence results with a collection of
feasible solutions bearing the same rank. Ranking demands the establishment of some kind of
metrics according to which evaluation can be performed. It was shown that performance
based synthesis [2], [39] usually opts for integration of a commercial simulation and analysis
software systems. Most of these systems rely on numerical solving of systems of equations
composed in respect to mathematical model applied and boundary conditions input.

Integration of such systems which are often originating from different developers results in
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tedious but unavoidable programming and scripting involving several programming
languages to be able to patch up a semi automated and to an extent controllable framework.
The other option is to develop analysis systems from the scratch which most often surpasses
the intended resources and stems out of research focus leading to a trade of situation between
the two options. Guidance completes the whole CDS loop. Based on the results of the analysis
and assignment of rank to individual solutions the feedback is provided to the synthesis
system enabling it to guide search further in the direction of improvement of the results [2].
To select the most feasible solution different strategies can be applied ranging from random
walk, or in contrast, it can be guided as a result of an emergent property of the algorithm, like
for instance in the case of genetic algorithms. Sometimes the assistance and supervision of
designer is called for in order to interpret the results of search accordingly. Some of the very
well known selection principles include TABU based selection, greedy search which stems at
selecting the first found best fit solution within each search iteration step, or the evolutionary
elitist principle which keeps the best found solution as a good gene pool for directing the

further search.

In the following sections of this Chapter a related work will be analysed in respect to four
steps according to the Computational Design Synthesis model [2], [39]. The findings will be

used to in order to specify scope and impact of this thesis.

3.2 State-of-the-art on CDS

The first few approaches examined consider various non-grammar based techniques which
stem at synthesizing of product concept as a configuration of components. The search for
solution alternatives is always conducted only at the component level. Most often
configuration of components emerged as a result of stochastically controlled mapping from
predefined product functions to components. All of the three following methods have adopted

theoretical foundations according to Systematic Design [4].

A good example on how to apply the existent search method for the conceptual design stage is
a genetic algorithm (GA) based search inside a morphological chart [41]. The problem of
generating optimal concepts was reduced to a combinatorial search with GA searching for an
optimal set of technical solutions that can realize product sub-functions. The components
were divided into the domain dependable families and had to be pre-selected by the user in

order to obtain meaningful concept solutions. The approach only dealt with problems having a
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number of functions for which it was meaningful to represent their relationship inside a
simple chain. If considering more complex structures, the user had to compose function
structure in such manner that the overall structure is reducible into series of function chains.
For the creation of functional models it was proposed to use standard taxonomy as defined by
NIST [22], [23]. The validation of the solution principles is performed by the energy flow
compatibility check. To tackle the problem of multiple objectives, a canonical GA was used
with fitness function defined as algebraic sum of objectives multiplied by a corresponding

weighting factor.

Similar approach was undertaken with the Concept generator which is a computational tool
developed by Bryant et. al. [42], [43] intended to create design solutions by establishing
mapping from a predefined function structure to the lists of components using matrix algebra.
Solutions are generated on basis of a web sited repository of function-to-component matrices
(FCM). The FCM’s show which technical solutions can realize a given function and a design
structure matrices (DSM) in which component to component compatibility in respect to
energy flows is defined. Ranking is achieved by comparing the frequency of occurrence of
components inside the generated solutions to the data gathered from over 70 consumer
products and put inside the repository. Since the Concept generator can only accept chains of
functions as an input to the search, then the initial functional decomposition of a product
considered has to be partitioned in the same manner. Based on the sub-function chain input
and corresponding technical solutions derived from FCM using matrix algebra, the outcome is
a full set of all possible component configurations. DSM is then applied to filter incompatible
components. Apart from chaining that occurs both in the input and the generated solutions,
the main drawback was not considering the possibility that multiple components can realize

one product function.

A different approach was presented with A-Design [44] which included a collection of
software agents with embedded knowledge, enabling them to perform specific duties in order
to create meaningful solution concepts using a catalogue retrieved components. A-Design is
founded on an assumption which relates design to optimization processes with a solution
generated and improved through iteration until meeting the set of predefined objectives.
Different agent types where developed; configuration agents which performed an interface
based connection of components managed by an input-output type compatibility check,
instantiation agents the duty of which is to retrieve new component from the catalogue and

fragmentation agents that segmented solutions and preserved them to be improved in iteration
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steps to come. The selection of agents based on their merit of past performance was controlled
by a manager agent, however to avoid local optima the cooperation had to be randomized to
an extent. Learning was achieved in a process similar to TABU search algorithm; designs
were identified as the Pareto optimal, and as good or bad, and were stored as such. Than at the
end of each iteration step the manager agent was employed to start a dialogue with the user
prompting for his or hers action to additionally interpret the stored designs. The user had a
chance to affect evolution the course adapting it to its own preference so that the created

designs successfully meet the preset criteria in a desired way.

3.2.1 Shape and spatial grammars

Using formal grammars for architecture and visual arts applications was first achieved by
Stiny and Gips [45] who developed shape grammars as a production system that specifies a
set of design solutions called a language, by the transformations required to generate that set
[46]. Thus, to create a formal grammar it is necessary to define elements as well as a set of
production or inference rules on account of which these elements are transformed inside a
formal system. To specify transformations, two sets of elements have to be defined; a set of
symbols denoted as variables onto which transformations can be applied, and a set of terminal
symbols or alphabet from which onwards no more transformations are possible. In respect to
developing computational support for product development and design, applying a sequence
of rules from such formal system as formal grammar is, implies carrying through a series of
transformations necessary for the creation of design solution. Thus, a successive derivation of
all possible combinations of rules creates a design search space regarded as a formal language
of specific engineering domain for which the rules were defined for. The resulting design
solution can be understood in a linguistical sense as a syntactically correct expression or a
sentence composed of alphabet of a formal language. In order to produce optimal solutions an
extension to the method was made with an addition of various stochastic search algorithms.
For instance, a shape annealing become by matting shape grammars with a simulated
annealing algorithm [46], [47] and these were successfully applied for solving topological
optimisation problems of truss structures involving both in-plane and in-space problems.
Design of product’s form or shape assumes aesthetics and appearance that can attract potential
customers. A grammatical approach to structural design offered that by including aesthetic
principles or specific style in a set of rules by which a form of an object will be created

(Figure 3.3-Figure 3.5), [46].
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A series of industrial design papers attempted to identify brand style features and then to
generate solutions using these specific styles embedded within grammar rules. Research was
predominantly motivated by vehicle applications [48], [49]. Although shape grammars are
invented to create and investigate solution alternatives for architectural or industrial design
where function is a direct consequence of object’s form or shape, the basic principle of
grammatical formalism seemed extensible and applicable for supporting of other engineering

domains concerned with different types of artefacts.
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Figure 3.3 Planar truss grammar (f-free line, black dot -  Figure 3.4 Example of rule applications [46]
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Figure 3.5 Cantilever truss designs for minimum mass using shape annealing [46]

In view of mechanical design and product development, shape grammars based methods and
tools are most commonly aimed at supporting design phase which includes late conceptual
and embodiment design stages. Often, the structure of a product or the optimal configuration
of product components to achieve for instance close packing but to retain desired functionality
is the aim of support. As a consequence, the grammatical systems which are used are referred
to as spatial grammars. Most of the existent methods and tools developed and used today are

domain and product specific and are therefore lacking a common model [50].
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A parallel grammar for mechanical design synthesis was developed by Starling and Shea [51].
The aim of the research was also to investigate the feasibility of creating simulation-driven
search in order to produce better quality designs. To achieve that, a cross-domain modelling
language Modelica inside Dymola was used to obtain simulation results. However, full
automation was never reached, so instead, precompiled simulation executables were used that
required only parameter value update inside input files to deal with new designs. Parallel
grammar was founded on FBS product representation [52], [53]. It consisted of two types of
rules: function grammars which generate function structure using predefined building-blocks
and structure grammars which then create parametric component structure as a simulation
starting point. The Pareto optimal solution was found using hybrid pattern search algorithm.
As an extension of the parallel grammar method and the research of Starling and Shea, a
simulation-driven method for gearboxes synthesis was developed by Lin et. al. [9] (Figure

3.6-Figure 3.8):
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The method scope was limited to embodiment design. The component structure was
represented using a virtual graph consisting of gear pairs and shafts which thus were depicting

a power flow inside a gear-box. The system topology and geometry modification were
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derived by following a set of spatial grammar rules inside a simulated annealing search

process. Grammar rules were ranked according to the performance of designed they created.

An interesting approach for computational support of simulation driven
microelectromechanical system (MEMS) synthesis was presented by Bolognini et. al. [54].
CNS-Burst method was developed as a combination of Connected-Node System which is in
fact a hypergraph based representation of MEMS systems, and a multi-objective generate-and
test search algorithm denoted as BURST. Search principle is based on the procedure where
the CNS modification operators are applied in short bursts to current system layout.
Frequencies of modifications are user-defined. Special evaluation module was used to obtain
performance metrics of the created system by which a non-dominated solution population was

created.

3.2.2 Graph grammars

Capturing the engineering knowledge as a set of production rules and then obtaining solution
alternatives by automating derivation process computationally provides a generic model of
design support on the basis of which designers can establish their decisions when considering
product realization possibilities. For the creation of computational support for the early stages
of product development most common is the application of graph grammars [2], [51] and

[55].

Following the systemic reasoning, technical processes and technical products are most often
modelled as transformation systems, both formally and visually represented as graphs.
Depending on the abstraction level and context of respective early design stage,
transformation system’s elements can differ but the basic graph representation will be
retained. Graph grammars are like shape grammars defined as production systems consisting
of vocabulary and a set of rules for implementing graph transformations. In most cases
computational support is provided for product function structuring and component

configuration. Optimisation is most often aimed at component level.

A good example of how to tackle the problem of computational concept generation using
grammars was presented by Jin and Li [56]. The idea of their hierarchical coevolutionary
design approach (HiCED, Figure 3.9) is to iteratively co-evolve products on different
abstraction levels in parallel. First, based on the knowledge stored inside a rule library, an

initial population of functional decompositions is created. Then, a genetic programming and
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genetic algorithm are triggered to co-evolve products’ functions and components as functional
means. Functional and component structures are represented with simple flow graphs. The
fitness function is formulated using multiple weighting factors. The idea of co-evolution on
different abstraction levels was explained earlier in the General Design Theory (GDT) [31]
and function-behaviour-state functional modelling (FBS) [52], [53].

(2) Requirements
(3) Top level function
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Figure 3.9 Design process of HICED [56]

The existence of product functions is confirmed through the behaviour of components as a
result of deductive and abductive reasoning. Therefore, there is a point for using co-evolution
on different abstraction levels of the product abstraction. The only problem is how to

formalize a co-evolution process for computational purposes in order to make it generic.

Schmidt and Cagan developed GGREADA [57] which is an approach to graph grammar for
support of mechanism synthesis. Built on the foundations of its predecessor, the FFREADA
algorithm which is a function-to-form recursive annealing algorithm that used a string of
symbols to generate hand drill designs, GGREADA uses graph grammars to generate
concepts using components based on a Meccano® parts set. It is a mixture of configuration
and catalogue selection design tasks. Function-to-form transformation is realized by top-down
reasoning by which a component is selected to realize a product function. Also, a function-
sharing in respect to a component realizing several functions is supported. Instead of state-

space search algorithm, GGREADA tried to use a simulated annealing to recursively evolve a
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product on two abstraction levels: function level and form (component) level. In that way it
outperformed state-space search. The objective function was formulated as multi-objective

with multiple weighting factors.

Determination whether a solution is unique and the recognition of similarities in structure are
most often present in the evaluation phases of engineering design. Design synthesis methods
and frameworks which rely on graph representation of a product, resolve that issue by
detection of isomorphism among solution variants. Most often this demands a special
detection algorithm to be developed. Siddiqque and Rosen use graph grammars to develop a
Product Family Reasoning System (PFRS) which would help designers in developing product
platforms [58]. Two questions were addressed: how to establish common platforms for a set
of different products, and the opposite, how to specify the product portfolio supported by the
platform. Using sub-graph isomorphism, common functions can be identified. First, the
production rules were applied to generate a variety of product function structures which were
then mapped to components containing relationships among functions and components.
Afterwards the identification modules were represented as hypergraphs. Answering how to
specify the product portfolio supported by the platform, results in viewing the grammar not as
a generative but as an acceptance grammar thus parsing the product architectures to see
whether they fit in the language of the specific product family. Slightly different approach
aimed only at structure synthesis was developed for the automated synthesis of mechanisms,
for epicyclical gear trains in specific [59]. Graph grammars were used to add vertices and
loops to the initial start graph. With the interpretation of the resulting structure by processing
vertices and edge labels the desired gear transmission ratio was obtained. Additional graph
grammar rules were added for identifying isomorphic graphs what enables designers focus

just onto unique solution variants.

Wu et. al. developed a systematic approach for automated support for design of mechatronic
dynamic systems based on bond graph formalisms [60]. It is a simulation driven approach
which requires as an input a conceptual definition of dynamic system to define a state space.
For that purpose, a conceptual dynamics a CD graph is introduced, which represents
information about the connections between components of a system. Generic models of
components having various types of connection possibilities are stored within a repository.
Dynamic model of a system represented with state space equations is automatically generated
on account of a defined concept using bond graphs transformation and user defined goals.

Optimization is performed using real-valued genetic algorithm with individual solution
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genotype being derived based on hierarchical representation of component design rules,

constraints and physical laws.

BOOGGIE, which is a recent method developed according to FBS product model, tends to
make use of the available graph grammar transformation tools and other available open-
source software packages and to integrate them into a framework for synthesis of mechatronic
products [61]. GrGen [62] which is utilised for conducting the graph grammar
transformations, and open-source TULIP provides a graph visualisation. Integration of
SysML modelling language is also being considered. The framework enables user to visually
define rules which are then interpreted to GrGen’s internal script language. Framework
considers top-down approach of decomposing product’s structure on all three levels of FBS
(Figure 3.10). Currently the framework only aims at variants generation without the

optimisation support.
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Figure 3.10 Top-down graph grammar approach according to FBS [61]

3.2.3 Other approaches to early design support

Cambridge Advanced Modeller (CAM) developed by Wyatt et. al. [63] is a computational
tool built on top of P3-Signposting which aims to support product architecture design. In
order to help designer systematically consider conceptual variants of product configurations,
the method generates a set of all possible alternative architectures for a given product. The
basic principle of the approach claims that for any given initial architecture, any other

architecture of that product is reachable through a state space search process by carrying out
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sequence of transformations. Therefore, it is required that designer using a graphical
modelling language for an input defines a schema which is a graph composed of a finite set of
different relations, components and logical constraints. The schema logically frames an
architecture state space. Using a depth first search, elementary transformations on initial
product architecture are executed and then tested against the proposed schema. Two
evaluation metrics are proposed: changeability representing immunity to change propagation,

and designability which represents the relative design effort required for architecture.

Another recent approach that is worthwhile mentioning, is a SOPHY developed by Rihtar§i¢
et. al. [64]. It aims at supporting designers by generating a sketch of a concept clearly
depicting the working principle on which that concept is based. Process of sketch generation
is performed with the assistance of designer but using predefined building-blocks or schemes
which are coupled into complete concept. These basic schemes are in fact a representation of
wirk elements. Which schema will be used is resolved with automated part of the method and
the tool which manages to create linear chains based on physical laws, which is based on the
principle of causality. The tool substitutes one variable from the chain of equations, i.e.
physical laws, until a derived output equates the one as specified by designer. More physical
laws can help to resolve one product’s function, or more alternatives for the same function
can be generated. At the moment, neither open systems nor expressions containing n-
dimensional vectors can be modelled. Similar approach based on the chaining of equations

was utilised some years ago for development of mechatronic systems.

3.2.4 Implications on this thesis

The overview of methods and tools shown in Table 3.1 (see the following page) gives a
summary of the state-of-the-art analysis on CDS presented within this Chapter. Recent
methods and tools are put in comparison in order to justify the scope and principle of
synthesis method as proposed in the introductory Chapter of this thesis. The overview is
structured to show what means are used to perform synthesis steps according to the adopted
generic CDS process model (Figure 3.1), and to show for which design phase was the
computational support intended. If relevant, the underlining design theory and methodology
according to which a method was founded is also identified. What is clearly visible from the
presented data is that the bulk of methods and tools for the support of conceptual design and
concept generation (see Table 3.1 rows 6-14) choose graph grammar or spatial grammar

representation.
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Table 3.1 Overview of CDS methods and tools
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Argumentation for that can be drawn on account that almost all of design theories model
product as a transformation system of some sort which is then in a formal and visual manner
represented as graph. From mathematics and computational sciences it is known that graph
transformations can be achieved using formal grammars [65] and with an addition of
advanced stochastic search methods the possibility is created to evolve graph-like solutions in
an elegant manner. What adds more points in favour to the selection of grammars is that
engineering design knowledge formalization for specific area of application can be achieved
using formal grammars. Moreover, the decomposition process as an activity that is so often
performed by designers the early design stages is to an extent analogous to grammar
derivation process. The latter will be addressed in the next Chapter in more detail. Formal
grammars are means that were extensively used thought the history of Al to create formal
systems that allow machine learning and machine induction [16], [66]. At the moment the
systems of such capabilities (like [58]) are rarely implemented in the research area of product
development, but in time, they will appear since grammars allow such possibilities. Moreover,
rather than creating a number of methods based on different principles (see Table 3.1 rows 1-
5); formal grammars offer the possibility of creation of a unified formal language of product

development.

3.3 Implications on this thesis

The creation of a unified formal graph grammar based language of product development is a
distant and visionary idea, but as people as individuals may understand and speak several
different languages, then why shouldn’t the language describing engineering knowledge in
different domains be shared and understood by different computational systems. The research
presented within this thesis will embark on route of developing computational support for
operand transformation variants in technical processes. Given an overview showing current
research efforts aimed at graph grammars utilization for the creation of early design support
and in a view of justification presented it seems reasonable to selected graph grammars as a

mean to synthesise technical process variants.

As shown in Table 3.1, the highest point of abstraction from which current approaches start is
the functional level not recognizing technical processes at all. Reasons for being that so are
argued in some of the recent publications in the CDS [67], [68] where it is pointed out that the
TTS and its philosophical views are not widespread often concealed by the well known

Systematic Design. Focusing only on technical system excludes other parties participating

52



COMPUTATIONAL DESIGN SYNTHESIS

inside a transformation system (Figure 2.4) and thereby neglects processes of interaction with
human operator and the outside environment. If the ability to deliver desired effects is
considered a function of the product (behaviour), then the need for these effects must be
recognized before the functional decomposition. Converting effects into initial conditions of
search starting at technical system’s function level has for a consequence an unavoidable
restriction in design search space. Further consideration of technical system at lower levels of
abstraction cannot add new effects since they would redefine what a technical system should
do within a transformation system, and the only other way to accomplish that change is to
affect the technical process inside where the main operand transformation is realized.
Therefore, a selection of the Theory of Technical Systems to provide a theoretical foundation
to this research in field of the CDS can be summarized with the following claim: variations on
the process level yield different function decompositions; as a result a design search space

broadens.

Fellow researchers in the field of design theory and methodology may point out that only
TTS, TD and TRIZ in their special way recognize technical processes as such, and that
different methodology such as Systematic Design or FBS product modelling excludes
technical processes from consideration (Table 3.1), which is in fact true [53]. However this
does not mean that technical processes do not have to be considered and that an addition of
another layer, the technical process as a top layer, in a form of computational method and tool
could be beneficial to the current research efforts made in CDS. From design theory point of
view current approaches that aim at differencing functions as lower and upper, where the
latter denotes fulfilment of societal needs, would hopefully embrace reasoning as presented by

TTS or TD, since functions do not equate processes.
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4. FORMAL GRAMMARS AND LANGUAGES

The question, 'Can machines think?' I believe to be too meaningless to deserve discussion.
Nevertheless I believe that at the end of the century the use of words and general, educated
opinion will have altered so much that one will be able to speak of machines thinking without

expecting to be contradicted. (Alan Turing, 1950 [69])

The introduction of information theory and the advent of computers made possible that any
kind of mathematical objects like graphs, matrices, images or even sound waves can be
interpreted transformed and conveyed as sequences of strings composed of symbols [70].
Development of programming languages to write computer programs that when compiled and
executed pass sequences of instructions to processor, all of this, each in its own special way
operates on the basis of some sort of formal system which involves transformation of string
like, or, to use a more precise term tree like structures. Clarification of what transformations
on strings of symbols have to do with a development of computational design support in
general case and in specific with the generation of operand transformation variants is closely
linked with the studies of linguistically based knowledge representations done in Al. The aim
of the previous Chapter was to provide an overview of the Computational Design Synthesis
methods and tools showing that recent research more or less, tend to develop computational
support based on formal grammars and languages. Although it could be sufficient to accept
them as a foundation of this research, it seemed necessary to somehow relate current CDS
efforts and the method for generation of operand transformation variants produced within this
research with its theoretical foundations by explaining how formal grammars and formal
languages came to be. This Chapter will try to lay out a formal point of view on grammars
and languages which is necessary for understanding of method’s definition in the Chapters to
come. Moreover, the distinction between sequential depth-first and breadth-first grammars
will be stressed out since this thesis assumes breadth-first derivation sequence. The Chapter
will conclude with a small example of string formation in context-free language the grammars

of which will be expressed in meta-language of Backus-Naur Form [21].

4.1 Grammars, knowledge representation and engineering design

How to tackle the knowledge formalisation problem in such manner that it can be effectively

used and interacted or integrated is the key issue in the field of AI [71]. Rather than
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embarking on the approach which aims at achieving increase in the performance by
developing new types of hardware or more optimized search algorithms, the epistemological
approach considers development of new and efficient ways of knowledge formalisation
techniques to excel computationally performed problem solving. Efforts in the Al community
done from 1950s to the end of the 1980s resulted in development of computational models of
human cognition where the increase of performance of the respective model is to be achieved
by an increase in the amount of the knowledge acquired [71]. Modelling of human cognition
as an information-processing system [15], [27] was created as an analogy to computational
systems; it could be emulated by computer. In fact the aim is to understand cognition thus
creating platform independent models [71], and since computers are designed to operate in
symbolic languages like humans do, they proved to be ideal test beds for the theories about

human cognition [27].

Maybe one of the earliest and according to some the most surprising examples is Shenker’s
Theory of Tonality made for Western music in 1935, where a set of rules was used to expand
initial motive into a complete musical composition [72]. The pioneering work, of course not
related to knowledge formalization when it appeared in 1940s, was production systems as
formal systems conceived by Emil Post [73], [74]. The Post production system in particular
performed transformations on strings composed as sequences of symbols using a finite set of
condition-action rules, or simply productions. Formal languages as a scientific discipline
came to be as results of studies that Noam Chomsky performed in 1950s. In attempts to
determine the basis and goals of linguistic theory he devised a formal model for the
description of natural languages. Establishing of a formal basis was necessary to create a
systematic approach to formation of scientific theory. Guided by the previous work of Post
and others, Chomsky seeks out transformational model for language syntax as a mean for
producing the sentences of the language under analysis [20]. In contrast to the semantics of a
language that gives meaning to the sentences, grammar only determines the correctness of the
form of sentences. Productions systems being nothing else but string based transformation
systems provided principle for the creation of formal grammars. As a case study Chomsky
defines a context-free grammar as at least adequate to capture formalisms of the English
language grammar. In the early days of artificial intelligence and machine learning it was
recognized that it was possible to tackle machine induction problems by means of formal
grammar [20], [75], [76]. The basic principle was that after learning an initial set of rules, a

machine using a formal language would be able to create grammatical statements with the
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possibility to explain given phenomena beyond the set of given rules. According to
Solomonoff, a machine could accept categories that have been useful in the past and than by
means of a small set of transformations, derive new categories that have reasonable likelihood
of being useful in the future [75]. In 1970s, Minsky, Newell and Simon and others developed
computational models of human cognition and problem solving where formalisation of
knowledge was achieved on the basis of production systems and formal grammars. Problem
solving process is modelled as a formal system comprised of intermediate problem-to-
solution states which are transformed under effects of knowledge formalised within a set of
condition-action rules. If the knowledge about domain can be encapsulated inside these set of

rules, then a robust problem solving system could be created.

Translation of engineering design methods into a computational environment has a
prerequisite in creating formal models of the method under consideration; a GDT as a logical
description of design process is an example of such attempts. Design is a problem solving
activity which exhibits formation of space of possible solutions and exploration of it using
different search strategies [15], [74]. Decomposing a problem in order to reduce it to its
constitutive elements or generating and testing solution candidates against the requirements
by heuristic recombination of solution building-blocks are some examples of solution
strategies, but how a person will perform and navigate through search space depends on the
knowledge and experience of the person in a particular domain. Rather than rely on random
walk, the knowledge about a task may narrow the search space, thus minimizing the number
of candidate solutions. Creating analogies require out-of-domain knowledge so that designer
can frame problem in respect to different contexts in order to identify similarities in structure
and to ultimately produce an analogy. If the aim is to computationally emulate some of the
more complex problem solving processes so that their prospects could be utilized for
engineering design purposes, then a knowledge formalisation presents a necessity. For
example, complex processes like learning and then usage of the acquired knowledge to expect
and foresee a solution of the problem situation to which a person is confronted demand
knowledge formalization of some kind which has to be embedded into a more flexible
programming architecture, rather than hard coding of all the possible instances that might
occur [27], [77]. Formalisation using a set of rules enables easy extension of the body of
knowledge that has already been implemented by adding the new rules from within or from
the outside of application domain. Up to recently, optimisation methods were usually those

that were transferred to computer environment; such methods are most often numerical in-
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core, not aiming in simulating human performed problem solving. Most often these methods
are limited in their scope in respect to design process and operate within limits of very

concrete attributes of the product under consideration.

4.2 Production systems

Production system is a formal system designed to perform transformation of certain input to
particular output using a set of condition-action rules that can be applied whenever conditions
to do so have been met [78]. The set of condition-action rules is denoted as a set of production
rules or simply productions; whereas a sequence of rule application is referred to as a
derivation sequence. In case of strings, the production rule application is often denoted as
rewriting. Control of which rule will be triggered is performed dynamically at run-time in
respect to the current state of transformed object. Since the inference procedure is embedded
into a set of rules performing transformation governed by condition-action principle, it can be
said literally that a system’s output has been produced rather than derived or inferred, what
consequently resulted in naming the whole system as a production system. It is necessary to
present this brief classification of production systems in general, since formal grammars are

nothing more than a special type of production system.

According to Stiny and Gips, every production system can be categorised in terms of objects
for which they are intended to transform, the way by which productions are defined,
mechanism by which rules are applied, and finally in respect to objects that they generate

[74]:

e Object types: initially Post’s system [73] transformed strings as sequences composed
of symbols belonging to a specified fixed vocabulary. However, since production
systems became of interest in other domains, like theory of computation, linguistics,
automated text processing, image processing, biology and even within mechanical
engineering and design, altogether resulted in a development of production systems

that accept more complex types of objects including graphs, lists, trees and so forth.

e Definition of productions: the generic form by which production rules are defined is
expressed as @ — f§, where a stands for the left-hand side of the rule denoting a string
of objects that will be replaced by the objects on the right side of the rule for whom f8
stands for. Moreover, production systems must also contain an object w onto which

the transformation is being applied. Elements that are belonging to fixed vocabularies,
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set of objects’ building-blocks are used to construct a, f and w. In addition to fixed
objects, both @ and f may contain variables. Like specified in Post’s production
system [73], a production could be applied to string w whenever strings could be
assigned to variables so that a is identical to w [74] (for extensive explanation of Post

production system see [79]).

e Rule application mechanism. Procedure starts with an initial object w which is then
being transformed through consecutive steps using production rules of @ = . To
apply a rule and perform the transformation, first the identification of any of  inside
w is performed. After all of the requirements have been met to identify a inside w, the
identified structure is subtracted from w, and then on its place object(s) inside [ are
added and integrated. The production process stops after there is no more rules to
apply to w since none of its parts and w as a whole do not match any of a. Post’s
production system which contains variables has an additional operation first of
assigning values to variables and then if the match of object @ to the whole w is
positive, the whole w is being replaced with 5. Not all of production systems perform
in such manner, most often only the sub structures are being replaced in order to

transform w.

4.3 Grammars as production systems

As defined by Minsky [79] a formal language is a set of expressions formed from some given
set of primitive symbols or expressions, by the repeated application of some given set of
rules; formal language is than defined as primitive expressions plus the rules. Primitive
expressions are the sentences of the language and can be infinite in numbers. Formal
grammars are a type of production systems, aimed at describing linguistic structures of the
language under consideration. Initially developed for modelling purposes within linguistic
theory, they have found extensive use for defining syntax of programming languages which
are artificial languages by which we communicate with computers. Syntax defines the formal
relations between the constituents of a language, thereby providing a structural description of
the various expressions that make up legal strings in the language without the consideration of
their meaning [81]. This section will attempt to present some formal definitions of what
formal grammars and languages are. The aim is to provide only what is necessary for this
research, by skipping some of the intermediate steps. Moreover, various authors [70], [78],

[80] and [81] tend to present same concepts in formal language and grammars theory as felt
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convenient to fit the intended purpose; this thesis adopts consolidated approach

predominantly founded as given in [70].

The same set of letters of the Greek alphabet in lowercase which are already being used to

explain principles behind general string based production systems, will be used again to

define string based formal grammars; left-hand side of production rule will be denoted as «

and the right-hand side will be denoted as . String at arbitrary derivation step including

initial step will be denoted as w. The definition of formal grammar § is given as follows [70]:

DEFINITION 4.1 A grammar G is expressed as a quadruple (X,V,S,P) where: X' is a

finite nonempty set of terminal symbols or alphabet, V is a finite
nonempty set of non-terminal symbols or variables satisfying
2NV =0,Sis a starting symbol or axiom withS €V, and P is a
finite nonempty set of production rules of the type a¢ — [ where:

a € (FUV)V(ZUV) and B € (ZU V)",

Clarification of the former definition [78], [80]:

Asterisk denotes all possible arrangements of elements within a string, a concatenation
of objects within the string that is, contained within the set to which it is being applied

including the element of zero length denoted with ¢, |e| = 0.

Terminal symbols or simply alphabet are these which constitute all of the expressions

within language.

Variables are sometimes referred to as syntactic categories are symbols which are to

be substituted during the derivation as specified by production rules.

The set of all possible rules to which P belongs can be expressed using Cartesian
product if considering each production as an ordered pair of @ and S, thus:

Pc(EUV)VEUPV) X (EUD).

Left-hand side of production a, or simply /ead, is a string that always contains at least
one variable. Right-hand side of production £, or simply body, may contain any of the

symbols.

Production to form a string in language is applied successively to all symbols of the string w

by substituting or simply rewriting variables and leaving terminal symbols as they were.

60



FORMAL GRAMMARS AND LANGUAGES

Derivation process § =¢ w is conducted as series of productions under grammar G until

initial symbol § is transformed into string w consisting only of terminal symbols from 2.

DEFINITION 4.2 A formal language £ = L(G) generated by grammar G = (X,V,S,P)
is defined as:

L(G) ={w|w € 2",§ =; w}

4.4 Classification of grammars and Chomsky's hierarchy

Grammars as formal systems can be categorised in respect to principles by which they
operate, what kind of inputs they accept and what kind of outputs they produce. If input to a
formal system is an initial symbol, a single start symbol, and the produced output is a
sentence in the language defined by its respective grammar, then such grammar is referred to
as generative grammar. Generative grammar will be thus used throughout this thesis for
formalisation of operand transformation variants. Almost all of CDS methods intended for
early product development support are generative grammar based (see overview in Table 3.1).
On the other hand, accepting systems belongs to the automata theory and are in opposite to
generative grammar; they accept a sentence of formal language as an input and, at the output,
it usually end with a stop symbol [78]. The Turing machine is a very well known example.
Grammatical inference accepts a set of sentences written in the language under consideration
and tries to determine the grammar of that language [82]. Generative grammar can be
distinguished in various ways; as deterministic or stochastic in respect to how to select among
the productions, rewriting can be conducted sequential or in parallel, grammars can be
parametric or non-parametric, pass attributes and so forth. However, the hierarchy devised by
Chomsky which categorises grammars by stepwise introduction of restrictions to productions,
shows in a practical way the capabilities of individual grammar for representing formal
languages. Assumption is that the grammars are of course generative and that rewriting is

performed sequentially. The grammar types according to Chomsky are given in the Table 4.1:

Table 4.1 Chomsky's hierarchy of grammars [20]
Type | Grammar

type, | unrestricted grammars

type,; | context-sensitive grammars

type, | context-free grammars

type; | regular grammars
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Definition of grammars according to Chomsky's hierarchy is given as follows:

DEFINITION 4.3 LetG = (2,V,S8,P)be a formal grammar of language £ = L(G) [70],
then:

1. G is called unrestricted grammar or type, grammar if no restrictions are applied to

productions.

2. G is called context-sensitive grammar (CSG) or type; grammar if each production in
P satisfies that |a| < |B]| resulting that no production can decrease the length of
string. The productions of type § — ¢ are allowed if no occurrences of head symbol

exist on the right-hand side of any other production.

3. G is called context-free grammar (CFG) or type, grammar if each production in P in
addition satisfies that |a| = 1 resulting that productions are of form A — 8, where A is

single variable.

4. G is called right-linear or regular grammar or types; grammar if each of the
productions in P comply to any of three following forms: A - cB,A—->c, A - ¢,

where A and B are single variables and c is single terminal (A = B is allowed).

Regular grammars may also be left-linear, which intuitively results with quite the opposite
formation of body of productions given as A — Bc. It was necessary to present distinctions
between grammar types since context-free grammars will be used for formalisation of

operand transformation variants (see Chapter 6).

Relationship between different types of grammars is given with the following expression [20],

[70]:
types C type, C type; C type, 4.1)

For example, any language defined with type, grammar is a subset of language defined with
type; grammar and so forth according to expression (4.1). Of course, type, grammar can be
used to describe any language according to proposed classification. However, that doesn’t
mean that language described with type, cannot be described by type; grammar if
productions and restrictions allow that transition. In the field of theoretical computation there
are means to perform such transitions by eliminating occurrences of recursions in rules. Most

common example is translation of CFG to regular expressions.

62



FORMAL GRAMMARS AND LANGUAGES

4.5 Backus-Naur Form

Backus-Naur Form or simply BNF was initially developed for describing the syntax of 4lgo!/
60 programming language [21]. BNF is another way to express the grammar of a language; in
fact the BNF is a language for itself thus considered as a meta-language for representation of
other languages. BNF formalizes and simplifies syntactic expressions and since it is mostly
unambiguous it allows construction of language parsers, or compiler-compilers, for a given
BNF language grammar. A brief definition of BNF is given hereby, since the underlying
search mechanism of method for generation of operand transformation variants will be based
on grammatical evolution algorithm which is a genetic algorithm that operates within the
bounds of BNF. An example of small context-free grammar in the BNF is given as follows
(4.2). In the BNF notation the non-terminals are represented as tokens or phrases with <non-
terminal> and the terminals are bracketless. The left-hand-side of the production rule is
separated from the right-hand-side by the production sign :: =. If the right hand side of a rule

has multiple alternatives then they are separated using the or sign.

2= {ty, 6 t3}

V = {start,n,,n,}

S =< start >

Production rule set P:

< start >u=<n; >
| <n;> 4.2)
| <start ><n, ><n; >

<ng >u= by

| t, <n, >
<ny > =ty

| t3 <n, >

The rewriting process starts from a predefined single symbol or axiom, defined by < start >
in (4.2). The initial symbol is rewritten in the first decomposition step, and then the process is
repeated until the rewriting string is comprised only of terminal symbols. The examples of
one possible derivation sequence assuming sequential depth-first left side rewriting (4.3) and

then breadth-first rewriting (4.4) are given as follows:
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<start> = <start> <n,> <n > (1)
= <n > <n,> <n; > (2
= t <n,> <n; > (3) 4.3)
= t; ts <n > 4
= t; ts ty (5)
<start> = <start> <n,> <n;> (1)
= <n > <n,> <n; > (2
= <n > ts <n;> (3) 4.4)
= <n > ts t 4)
= t; ts ty (5)

What can be easily noticed by comparing (4.3) and (4.4) to each other is that although the
final sentence in the derivation step (5) is identical in both examples, the derivation process is

not. The difference is noticeable in steps (3) and (4).

4.6 Implication to this work

Development of computational tools for engineering design support should include methods
modelled according to human reasoning and problem solving and formalisation up to a limit
that is convenient for computer application. Formal grammars can accomplish both of the
requirements. Manipulating symbolic expressions composed as strings to convey meaning
and to communicate is an inherited feature of human cognition. The computers were
conceived in the same manner. Production systems and finite automata all initially operated
with the sequences of strings, creating foundations for computation which held in-core of any
computer’s architecture. Advances in the theory of formal languages and grammars and the
theory of categories have shown that all kind of objects can be transformed and manipulated
as sequences of symbols, which qualified grammars as a powerful method for knowledge

formalisation being close and understandable to both humans and computers.

When speaking of grammars in the context of design and product development, it can be said
that solving of a design problem can be achieved through means of grammars. By prescribing
finite sets of primitive knowledge building blocks used to form rules, the knowledge of
specific application domain can be formalised. The generation of good or feasible solutions is

therefore analogous to the generation of grammatically valid statements using a formal
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language. This presents a pragmatic approach in contrast to computational simulation of
cognitive processes and techniques that occur when person is designing by hard-coding such
models inside the programming code. If the grammatical rules are logically sound, they can
be continuously improved and expanded further either wholly computationally or with the
assistance of the designer thus creating a robust problem solving mechanism. As Herb Simon
[15] wrote down and expressed the most practical advantage of rule-based formal systems that
rather than adding new lines of fixed programming code, it is much more convenient to just
add a new rule. In that respect, the rule database maintenance, which can pose an issue, is still

much more acceptable than frequent programming code interventions.

Each decomposition step of technical process into a set of interrelated operations and sub-
processes must transform operands from the initial to the desired state obeying given
constraints set for the transformation. Thus, the definition of the decomposition step in respect
to engineering and technical process would be a single step that may consist of multiple
derivation steps in which the whole transformation of operands from the input to the desired
states should be performed. To use generative grammar to technical processes decomposition

which is based on the BNF expression following the aspects must be met:

e A mapping from strings to graphs must be defined accompanied with additional
connecting rules according to which nodes and sub-graphs will be integrated in the

existing graph structures [65].

e At each decomposition step, a breadth-first rewriting starting from the leftmost
operation will be performed until all of operations are rewritten or copied and

transformation process is established.

0 For example, these which can be considered decomposition steps are
derivations (1), (4), (5) in (4.4). In fact steps (2) and (3) in (4.4) are passing
steps, where (1), (4), (5) in (4.4) are full bread-first derivation steps in the
decomposition of technical process. It is to assume that insights will be
provided to engineer not only by the final all-terminals step as a sentence in the
language of technical processes, but that also decomposition steps composed
of variables and terminals mapped as graphs will provide information about
transformation process. Of course, terminals that cannot be rewritten are

simply added to new decomposition step.
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According to the TTS [1], a rewriting of a graph node should always refer exactly to a
preceding decomposition step and not to an arbitrary number of steps back to
determine exact surroundings of a node or a sub-graph, thus requiring a breadth-first

rewriting.

0 If considering a graph rewritings thus assuming existence of mappings from

strings to graphs, then in the first column of (4.3) derivation (3) the
determination of surroundings for node t; is done in respect to n, and n,,
while in (4.3) derivation step (5) the surroundings of the “same” node is
performed in respect to t; and t; . When transforming graph by parallel
rewriting, at each derivation step graph structure is produced dynamically both
in respect to initial graph structure as a whole and to new emerging structure.
Presented examples are simple; however in a larger custom-made grammar
defined by a user, which is not necessarily more complex grammar,
unexpected results may appear. Formal grammar usually is or should be
defined non-ambiguously so that no matter what rewriting principles are
applied the result should be in the same language produced by the same

derivation process.

Questions left open at the moment are what type of grammar to use to formalise engineering

knowledge about technical processes, and can such grammar be recursive. For the latter, if the

knowledge is represented with the condition action rules, can the body of a rule contain the

head of a rule? Grammar in (4.2) is a recursive grammar, and it is to assume that recursion

will not be necessary to model engineering knowledge regarding decomposition of technical

processes. The type of grammar used for string rewriting doesn’t have to be in CFG but

instead regular grammars can be applied relating more to engineering purposes. However,

graph rewriting on the other hand is a context-sensitive process thus opting for a CSG.

66



GRAMMATICAL EVOLUTION

5. GRAMMATICAL EVOLUTION

...and point out in addition the isomorphism between the genetic logic system, the logic
systems of communication systems, the logic systems of computers, and the logic system in
mathematics by which theorems are proved from a list of axioms. These systems may be
regarded as being the same abstract system. (D. S. Ornstein, taken from H. Yockey's,
Information Theory, Evolution and the Origin of Life [83])

Evolutionary algorithms (EA) are population based stochastic optimisers that are built on
mimicking the notions from the natural evolution. Charles Darwin wrote that evolution begins
with the inheritance of good gene variations and that basically defines what the evolutionary
algorithms are all about [84]. Enforcing the survival of the fittest principle is managed by
allowing higher ranked solutions to influence the course of a search process by the most. By
stochastically mixing together building-blocks which constituted two parent solutions an
offspring is produced. If building blocks originate from higher fit individuals than there is a
chance that newly generated individual might get a bit closer to a feasible solution of a
problem. With the whole process repeated a population of offspring is produced from parent
population. In fact the emergence of solution occurs as a consequence of a learning process
that is exhibited by the algorithm since it tries to construct the optimal solution by

arrangement of most fit building blocks [11], [37].

The famous class of evolutionary algorithms, genetic algorithms (GA) resembles core
principles of natural evolution by the most. Information exchange between solutions is
performed by exchanging binary strings, or chromosomes, by stochastically invoking a
recombination operator. To avoid pitfall of local optima low probability mutation operators
for bit flip operators are introduced. Inside a genetic algorithm two levels of representation
exist. At the genotype level, the solution representation is a binary string, at which the
mechanisms of evolution operate with recombination and mutation. At the phenotype level
the results of evolution manifest. Phenotype is realisation of genotype into problem specific
form which is obtained by decoding the information stored inside a genotype. It is necessary
to evaluate solution performance inside the given problem environment in order to enable
fitness comparison between the individuals on the grounds of which the selection operates. As

genotype, a solution is only a bit string of structured data that needs to be interpreted As
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phenotype the solution is “full-grown” possessing different attributes thus representing
behavioural level of an individual. Chromosome is structured as the collection of genes
situated at their respective places or locus. If chromosome is a binary string, then gene is a
binary substring which is recognized by decoding function according to its place on the
chromosome. The applicability of algorithm to tackle discrete problems is devised from its
recombination operators, which when generating new solutions, are reusing and mixing
together pieces of the past solutions making it very useful when dealing with non continuous
problems. Being robust and natively not calculus based, genetic algorithms are used as a good
all-purpose optimization algorithm. The range of applications included scheduling, TSP class

problems, tiling, close-packing, single or multi-objective optimization and so forth.

This thesis considers also a grammatical evolution (GE) based method for the search and
optimization of the needed operand transformation for a selected technical process. GE is a
population based heuristic search algorithm built up on GA which obtains a solution to a
given problem by evolutionary means through recombination of the rule-based rewriting
sequence [3]. The formalized knowledge regarding technical processes, technological
principles and needed effects to support the main transformation of operands inside technical
processes are stored in a set of production rules in Backus-Naur Form (BNF) [21]. GE
searches for the rule sequence that can perform the decomposition of the technical process
black-box level to a structured system consisting of sub-processes, operations and operand
flows according to TTS [1]. The following sections will try to explain similarities between
design and evolutionary computation, which emerged as a paradigm of evolutionary design
[11], [37], [85] and [86], where, design is to be understood in a broad sense including both the
artefacts and the objects of natural origin. Generic EA model will be presented as a
foundation to explain principles on which algorithm of grammatical evolution operates. An

example of string derivation process in GE on CFG represented in BNF will be presented.

5.1 Recombination and Evolutionary design

The exploration of alternatives by combining chunks of past solutions can yield creative
solutions; although the principle can be simple and not creative, the results could be quite the
opposite. Goldberg’s attempt of proving convergence of genetic algorithms published in his
famous Building Block Hypothesis [37] was all about how iterative recombination of building
blocks composed as strings of binary digits stems towards an optimum in a search process. If

taken from a formal standpoint, to prove a heuristic process might be regarded as somewhat
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dubious, however the scientific evidence confirm that transformation systems the principles of
which are based on simple information chunk exchange involving a degree of randomness can
generate creative and complex results. The study of cognition has shown that human
achievements ranging from art forms like painting and music to scientific work involve some
kind of building block recombination [27]. Besides Shenker’s Theory of Tonality made for
Western music in 1935 [72], in other domains like in engineering, one could create a data
base of chunks of successful past solutions and by mixing those in a synergetic and holistic
way, produce new innovative solutions can be produced; the example is Roth’s catalogues.
Even the processes that deal with artificial, but are of natural origins confirm the latter;
information exchange during forming of amino acids is linear string like and digital involving
finite number of building blocks which resemble the principles on which computers are being
founded on [83]. Moreover, the recent advances in molecular biology confirmed that it is
possible for broken sections of chromosomes to recombine and to change genomes to spawn

new spices [87].

The second Chapter of this thesis has shown that engineering design is difficult to be
described inside an algorithm, since it is an explanatory search process. However, let us
assume that acceptable correlation can be established between design process and an iterative
problem solving procedure with a finite number of steps. One could define such a procedure
as a search algorithm where the search space itself is built on lists of requirements or design
variables and constraints. The feasible solution is being created by proposing solutions
iteratively using suitable encodings acceptable both to the computational environment and to
the problem of interest. From computational point of view an ideal algorithm candidate that
would be able to carry such search process would be one belonging to the class of
evolutionary algorithms. Evolutionary computation community expressed such claims
frequently [11] and [37], since there really are some resemblances to design process with
obvious one of being both evolutionary in respect to solution emergence. The design process
modelled using EA’s can be viewed as a shortcut to a satisfying technical product using
knowledge and experience of designing in order to accelerate the technical development
which naturally should occur evolutionary [88]. In fact because of the similar nature, the
evolutionary methods may provide enhancement of design process or findings about process
itself. Inside an EA, at each evolutionary turn solutions are being generated and tested by
using selection, recombination and mutation operators and evolved as a result of exchange of

good building-blocks. Similar reasoning activities occur not only at designing but at any kind
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of problem solving situation. In respect to the properties of search spaces that depend on
complexity of the design task being constrained, multimodal and full of discontinuities, they

still can be handled since EA’s rely on randomness inside mutation operators for their search.

5.2 Generic model of EA

Based on the same process of that they are mimicking, all classes of evolutionary algorithms
are similar both in the structure and the behaviour exhibited during the search process. Back

et. al. [36] have established following similarities between EA’s:

e Evolutionary algorithms exhibit collective learning process.

e FEach of the potential solutions to a problem is an encoded point in a search space

which may hold additional information that can be used to enhance further search.

e Offspring population is created from parent population by random recombination

which represents information interchange.

e Simulating error in information transcription may occur randomly thus introducing

mutation.

e To converge towards a solution it is necessary to evaluate individuals therefore
introducing a fitness function which assigns a real value to each population individual

corresponding to how well it solves a given problem.

As a consequence of their findings Back et. al. [36] defined a finite set of classes of input
parameters and evolutionary operators which perform transformations over populations, they
formalised a fitness function which altogether resulted in the creation of a generic model of
EA which is presented within a pseudo-code (5.13). Existence and influence of individual
evolutionary operator, and relation between sizes of parent and offspring populations are used
to unambiguously define a search process as being driven by genetic algorithm, genetic
programming or evolutionary strategy. However, model as presented by Back et. al. didn’t
include classes of EA’s where evolutionary operators, sizes of populations or evolution
stopping conditions are functions of iteration step, generation, or some other specific
parameter. Stochastic change of parameters which is measured over populations during the
search process can be utilized to influence both the evolutionary operators and the fitness
function tailoring them to best fit thus successfully guide the evolution process. Put

succinctly, in their model Back et. al. did not acquire with dynamical behaviour by
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generalizing it completely providing only basic outlook on EA’s. Similarly, the generalisation
at the level of selection strategies could be more complete since it only accounts for complete
replacement of parents with their offspring. If that would be the case then the elitist selection
strategy that favours a single best solution throughout generations until outranked would not
be possible. Merkle and Lamont [89], [90] proposed a complete generalisation to overcome
deficiencies of Back’s model by introducing a random function based framework for
evolutionary algorithms. Such framework enables to formalise occurrences where the
operators are chosen stochastically, like in cases of genetic programming assuming both
evolvable code and solution. To be strict, Merkle and Lamont have introduced evaluation as a
part of selection operator, which differs with the common EA understanding. What is to be
adopted from their model is a fitness function representation as a composition of functions
containing objective function, decoding function and scaling function enabling to explain
each of its parts in detail. A generic model of EA will be accepted as proposed by Back et. al.
[36], but it will be supplemented by findings of Merkle and Lamont [89], [90] as required by
the scope of this thesis.

5.2.1 Population

In general a population P is understood as a finite or infinite set of objects which can be
enumerated. Building on the latter, let I, I # {@} be a non-empty set of all possible solutions

such that for every population member a it holds that a; € I, with j € Z*.

I* is a set of all populations P(t) of size u. Most often in EA community I is referred to as
the individual space of an algorithm, and a is simply denoted as an individual. Depending on
the type of individual and the purpose of the algorithm a population accepts any kind of
objects. According to [89], [90], to allow dynamical alteration of population sizes it is

possible to express them as functions of iteration step t as p = u(t) and 1 = A(¢t).

Population P of size u € Z* at generation t € N can be defined with the following

expression [36]:

P(t) = [a, (D), az(£), az(D), ..., au ()] € I* (5.1)
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5.2.2 Fitness function

Fitness function expresses how an individual aj €1 satsifies the given problem. By structure
fitness function equates objective function of standard optimisation, however due to
specificities of EA’s and different strategies that may be applied when evaluating the
individual there exist additional mapping between the two. However, what remains in spite of
differences is that ordering of population done over fitness of individuals is retained by
objective function. Providing guidance to the evolution course, individuals with higher fitness
tend to exchange their building blocks more often thus creating a collective learning process

as a result of generating and testing. In general the objective function may be defined as:
f:R*-> R (5.2)

Expression (5.2) is given assuming n-dimensional search space. The set of all possible
solutions I doesn't prescribe the type of individual, so for instance, genetic algorithms operate
with bit strings while other may use real numbers or parse tree structures. In order to be able
to map to real numbers it is necessary to apply additional mapping by using a decoding
function. Introduction of another level of individual representation might add some weight to
the complexity of the overall algorithm, but what is accomplished is the creation of a robust
framework to tackle different kinds of tasks. What becomes problem specific is determination
of individual encodings and decoding functions, where the former need to be designed as a
best fit to describe the nature of a problem and to be adequate for direct application of
evolutionary operators leaving them problem invariant. Assuming an n-dimensional search

space, the decoding function D is defined as:

D:I- R" (5.3)

Let there be objective function @ which maps a positive real number, or evaluation mark, to

every individual a; € I [36]:

®:1-> R (5.4)

Different strategies can be applied to enhance the performance of EA's. To prevent influence
of a high fitness solutions which can sway the course of evolution especially, different
mathematical functions T have been introduced to scale fitness in order to reduce the
differences between solutions. In that way individual solutions that are less fit, get a chance to

exchange their building-blocks. At the early stages, or early generations, it is difficult to
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determine which building-blocks will compose the optimum since collective learning process
has barely started, therefore scaling is necessary. Common example is ranking of solution for
which functions of type k In (n) can be used, where k € R and n € Z* is ordinal number of

individual inside population sorted over f. Scaling fitness function T is defined as follows:

T,:R->R (5.5

Finally, the fitness function @ : I - R* may be expressed as composition of functions

following (5.2)-(5.5), [89]:

(D:TsofoD (5.6)

The result of calculating fitness of each individual inside the population P(t) € [# at iteration

step t € N will be denoted as evaluation or simply as F(t):
F(t) = o(P(1)) (5.7)

5.3 Evolutionary operators

According to [89] and [90] evolutionary operators (EVOP) are defined as population
transformations or mappings from populations to populations. A population transformation T

is defined as given here by the following expression:

T:I*—>[* (5.8)

If T(P) = P' than the expression (5.8) shows creation of offspring population P’ (t) of size
u' = u'(t) € Z* from the parent population P(t) of size u = u(t) € Z* at generation t €
N. If the following holds I* = [*, than no transformation occurs resulting with 4 = u’ as the

size of population.

Following (5.8) evolutionary operators; selection (5.9), mutation (5.10) and recombination

(5.11) are defined over individual space as the following transformations:

s:It 5 H (5.9
m: <-4 (5.10)
r:It > (5.11)

Different types of EA's can be applied by comparing domains and ranges of each

transformation as given in (5.9)-(5.11), three possibilities are such as (5.12):
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I* # I = [* Genetic algorithms, evolutionary strategies with u, A > 1.

< = [A No mutation. (5.12)

"= 1" No recombination, evolutionary programming, initial

evolutionary strategies with uy = 4 = 1.

For each of evolutionary operators there exists a set of parameters on which EVOPs depend
on. Let Sets of parameters are 6, 0,,, 0, with subscript denoting their respective operator. Set
0, contains additional real valued parameters necessary for execution of the algorithm, and ¢ is
a logical test or stopping condition which terminates the search loop. Finally, pseudo-code of

evolutionary algorithm according to [36] and assuming I* # I # [* is given as follows:

Input: #4605, 0m, 0,
aopt' popt

Output:
t <« 0;

P(t) « initialisation(u);

F(t) « evaluation(P(t),u);

while (¢(P(t), ©, # true) do (5.13)
P'(t) « recombination(P(t), 0,.);

P"(t) « mutation(P'(t), 6,,);

F(t) « evaluation(P'(t),);

P(t+ 1) « selection(P"(t),F(t),u, 06;);

t<t+1;

od

o 0 N SN N A W N -

Beginning with the initialization which is in fact a random sampling of u individuals from I,
an initial population P(0) is being formed, (2). Following the first evaluation (3) algorithm
enters a do-while loop executing it until satisfying the termination condition defined as
t(P(t),0, # true) (4). Offspring population P'(t) and the mutated offspring population
P"(t) are determined under the recombination (5) and mutation (6) operators. After the
evaluation of the P (t), (7), u individuals are selected to create population that will continue
the search (8). Asterisk marked individual a®?* or population P°P¢ refer to best solutions
found during the search. Within this thesis a full GA will be necessary extended as GE to

operate with BNF as a mean to formalise graph grammar transformations.
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5.4 Grammatical Evolution

Grammatical evolution was initially developed to write computer programs in any language
[3], [91], or it is even used as a general optimiser [92]. Depending on the explicit purpose,
both the programs and the rewriting rules can be evolved accordingly [93]. The grammar of a
particular formal language is expressed as a collection of rewriting rules in Backus-Naur
Form (BNF). For the search of an optimal rule-based rewriting sequence, GE relies on an
embedded genetic algorithm (GA). In that way, GE inherits the robustness of GAs. The
mechanism for creating grammatically valid statements is achieved through mapping from a
binary encoded chromosome to the sequence of rewriting rules, thus introducing another layer
into a decoding function. Phenotype emerges after the sentence in a language £ = L(§) has
been created and evaluated. However, as in the case of this thesis, additional mappings both
from variables and terminals into graphs is necessary, as BNF tokens serve only as a graph
rewriting symbols. The search uses the concept of survival of the fittest, where a solution or a
set of solutions to a given problem evolve in time using the fitness function as an evolutionary
guide. The same grammar G = (X', V,§,P) given in BNF as in (4.2) will be used to explain
how GE operates. Since it is necessary to introduce enumeration of rule alternatives per rule

required by GE search mechanism, an extension of (4.2) is given below:

X = {tl' tz, t3} Rule
V = {start,ny,n,} alternative
S =< start > per rule

Production rule set P:

< start >u=<n, > 0)
| <n, > €)) (5.14)

| <start ><n, ><n; > (2)

<n >u=1 (0)

| t, <n, > (1)

<Ny >u= tg (0)

| ty <ny > (D

Let an individual a; € I be represented as /-bit string composed of concatenation of n € Z*

substrings &; of unique lengths [; € Z*. [86]:

4= 5 (5.15)

n
=1
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Each gene carries information necessary for decoding function to create solution phenotype.
Depending on their length each of the substrings occupies a space §; € BY = {0, 1}%. The
mapping to a real value x; € [u;, v;], with x;,u;, v; € R for each substring §; at position

i € Z* is performed by standard binary decoding function Dg, [86]:
Dp;:BY — [uy, ;] (5.16)

The decoding function y; is a simple mapping of a binary coded string into x; € R that is then
normalized by desired mapping range [u;, v;] € R. Decoding function y; is given as follows

[86]:

-1

x=u 2N s (5.17)

l l 2L —1 ili=5) :
Jj=0

Concerning GE, the usual desired range is a closed interval of nonnegative integers set within
[0, 255] thus yielding x; € N. Complete decoding that produces a vector x of integer values
by repeating the (5.16) and (5.17) to whole chromosome composed of i € Z* genes [86] is

given here by:

DB = DBl X DBZ X ... X DBi (518)

To achieve exact one to one mapping in the desired interval [0, 255] each binary string is 8
bits in length. If multiple alternatives for rewriting a non-terminal symbol in & exists, then the
selection of body of the @ = f productions has to be determined. Such grammar is a
stochastic generative grammar since application of rules depends on randomness embedded
into genetic algorithms. The application of rule r; for rewriting is calculated as a function of
the decoded integer x; € [0, 255] of the gene i and the number of the available rule

alternatives n; € Z* [3]:
1; = x; mod n; (5.19)

To clarify by means of an example using CFG as given by (5.14) and assuming decoded
integer values of a binary encoded chromosome as shown in Table 5.1: regarding the initial
< start > symbol the total number of rewriting alternatives for equals n; = 3 and the first
decoded value equals r; = 8. As a consequence, the equation (5.19) yields 2 for solution,

thereby triggering the last rule alternative < start ><n, ><n; >.
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Table 5.1 Decoded chromosome and rule sequence selection

i [1 ]2 [3 T[4 I5 [e [7 |3
x; |8 [120]33 [42 [32 [39 [124]48
rn 12 (o Jo o [o [/ [/ |/

For the sake of simplicity, the binary genotype has been left out of Table 5.1 and only the
decoded integer values x; are shown. It is assumed that the chromosome is composed of 8
genes. The selection of the rule alternative 7; is calculated with the expression (5.19) based on

the grammar shown in (5.14).

Using CFG as given by (5.14) and assuming decoded integer values as shown in Table 5.1 an
example of breadth-first derivation sequence done by GE equating the example (4.4) is given
bellow in (5.20). Integer values are selected sequentially as they appear within the

chromosome.

<start> MU 0 cstart> <n,> <ng >

120mod220 <> <ny> <ng >

3Bmod3=0,  <ny > ty, <n > (5.20)
42 mod 2=0 < n, > t3 tl

32 mod 2=0 tl t3 t1

Note that the genes ranging from 1 to 5 are the only ones used and the rest of the chromosome
is left unused because an all-terminal state has been reached and no more rewritings are
possible. This is in contrast to usual evolutionary approaches, where the entire chromosome is
almost always used. With GE there is a possibility of creating redundant information. In the
opposite case, if the entire genetic material is used for triggering the BNF rules, the gene
reading process starts over again from the first gene. This process of reusing information to
achieve a state consisting only of terminal symbols with complete mapping is known within
the GE community as wrapping [94]. The number of allowable reading runs for mapping to
BNF rules is a set using a wrapping operator. Both the existence of the redundant genetic

information and the re-use of the genetic information occur in living organisms [83].

In general, with, GE on the phenotype level, each solution should be represented with a string
consisting of a set of terminals. However, like with the cellular automata [95], a set of rules

can produce a rewriting process that is indefinite or very large but with a finite number of
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decompositions that must be performed before achieving the all-terminals state. Example of
CFG in (5.14) can produce indefinite rewriting sequence. For practical purposes, indefinite or
too large sentences yielding in a very well known spaghetti effect render the solution in an
unacceptable manner. Such occurrences are the direct consequence of the size and quality of
the utilized grammar. To prevent these occurrences, a special kind of stopping rule needs to
be introduced in the form of a maximal derivation step constraint. After reaching the specified

number of steps the rewriting process will stop, declaring the finding of a solution unfeasible.

5.5 Extension of fithess function

The specifications of GE in conjunction with the method for operand transformation variants
require an extension of fitness function as given in (5.7). The first one is restriction of the
individual space of algorithm as in respect to i € Z* substrings of unique lengths [; € Z*

composed of binary alphabet {0, 1}, thus accepting expression for Dy given in (5.18):
[=Ip =B x B2 x ..x Bl (5.21)

Let there exists D) that maps from x; € [0, 255], x; € N to sentences in formal language

L = L(G) defined with context-free formal grammar G as in (4.3). Mapping within an
ordinary GE is thus described as:

Dy © [0,255] = Lyp(CFG) (5.22)

Let us assume that there is a mapping D) that maps from Chomsky’s strings to a

language of technical processes L1p = L1p(GG) defined with graph grammar GG:

Diipigg)  LTp(CFG) = Lp(GG) (5.23)

Due to (5.18), (5.22), (5.23) the objective function exhibited domain change resulting with

following frp with n € Z* objectives:
frp + Lrp(GG) - R™ (5.24)

Finally, the fitness function for individual a; € Ip representing a technical processes is an

extension of (5.6), resulting with the following expression for @7p: I;p - R*:

Drp = Ts © frp ° Dropigs) © D) © Di (5.25)
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Extending the fitness function to describe a method through mappings is much more
convenient than definition of completely new evolutionary operators. To tailor it both to GE
and search of operand transformations, the effective change in pseudo-code (5.13) is just
applying population evaluation using F(t) = @;p(P(t)) according to (5.25). In that way, a
GE layer and graph grammar transformations in the language of technical processes are

simply added to GA. The condition I* # I # I* from (5.12) is applied to account for GA.

5.6 Implications to this thesis

One of the key issues [2] is how to approach the problem representation as an input to the
search. The problem representation has to concur to the algorithm’s requirements, thus most
often remaining as a fixed part of the search process. Since the mechanism within the
algorithm usually accepts only one encoding, creating dynamical fitness functions may help
deal with the problem of design task re-formulation. The evolutionary computation
community [40] often pointed out that in order to go beyond current successes in
optimisation, that it is necessary not only to evolve the problem statement parametrically as
assignment of values to means, but that it should be reformulated if possible. Design process
considers evolution of both the design task and the problem. Therefore, the fixed encoding
which is a direct consequence of the algorithm should be expanded at least in a direction for
which it can be predicted that will prove significant for the formation of solutions. In that way
navigating to more detailed design solutions by expanding the set of means to realize
behaviour can be achieved. However, the up-to-date efforts [40] are limited only to
optimization directed parameterization to enhance fitness functions dynamically and few

attempts of encoding alterations.

The reasons why grammatical evolution in particular can be used as a foundation for
development of computational support for early product development phases are argued as

follows:

1. Asitis built on an embedded genetic algorithm (GA), grammatical evolution inherited
GA behaviour and robustness rendering it applicable for a wide range of problems.
Moreover, since GE is GA on the genotype level having a chromosome representation
as binary strings, straightforward application of the entire standard GA selection,
crossover and mutation operators and various multi-objective genetic algorithms are

possible.

79



GRAMMATICAL EVOLUTION

2. Since grammatical evolution is a stochastic optimizer, then it can search for the

sequence of BNF rules through which the optimal decomposition can be generated
rather than just generating all of the possible solution variants. Initially GE was
developed to write computer programs in any language. Depending on the explicit
purpose, both the programs and the rewriting rules can be evolved accordingly. The
grammar of a particular formal language is expressed as a collection of rewriting rules
in Backus-Naur Form (BNF) defined over a finite set of symbols or tokens. The same
BNF system will be applied to formalise engineering knowledge about technical

processes first using string CFG and than extending it o graph grammars.

Derivation process through which grammatically valid sentences are generated inside
GE is analogous to the activity of decomposition performed by designers at the early
stages of the conceptual design phase. Both processes, the decomposition and
grammar derivation using BNF type rules, can be represented as a tree structured on a
parent-child relationship. Applying of BNF production rules creates a parent-child
relationship between rewritten symbols in successive derivation steps. According to
TTS market demands and societal needs inside technical process are modelled using a
black-box concept with operands in their states and desired states before and after the
transformation. Then the decomposition of the black-box is performed step-wise into
the systems of interrelated sub-processes and operations in respect to knowledge about
processes and technological principles on which these processes are based on.
Breaking of a complex problem into a system of smaller interrelated problems, thus
synthesising a transformation system is necessary for designers to establish and
consider different product realization possibilities in respect of various effects that
need to be delivered in order to sustain a technical process. In the same manner GE
performs step-wise derivation starting from an initial symbol and rewriting it to
sequence composed of symbols from vocabulary following set of production rules in
BNF. Decomposition performed by designers stops after black-box has been
decomposed into a system of operations after which further decomposition would be
meaningless, what corresponds to GE stopping rules where rewriting of a symbol

cannot be accomplished if that symbol is a terminal one.

A closure problem is avoided since the BNF production rules are applied always as in
response to the symbol that is to be rewritten with evolutionary operators being aimed

at selecting a variant of a rule that is able to perform a rewriting. That is in contrast to
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genetic programming where recombination and mutation can result in incompatible

building-blocks which when mixed together yield in unfeasible solutions.

By following a holistic paradigm the TTS relies on a systemic modelling approach
used for representing technical processes as transformation systems and products as
technical systems. It has been shown [65] that equivalence exists between the
Chomsky’s grammars which are in fact used by GE and graph grammars enabling to
utilize BNF type rules and context-free grammar to define graph transformations rules.
As a result, a robust token based rewriting system is created which is easier for
computer implementation. Technical process as an operand transformation system is
then modelled as a token composed sentence which has to be interpreted as graph
accordingly. The whole decomposition process of technical processes into a system of
sub-processes and operations interrelated with operand flows is in fact a successive
graph transformation process which is for the purpose of the presented computational

method performed by a symbol rewriting system.

An important property of GE is that if elevated to a meta-level GE, it can infer new
rules. Meta-level GE is referred to as grammatical evolution by grammatical evolution
or GE? [93]. By recombination of the existing rules new rules are generated. The
extension of the presented method to include the possibilities of GE* will be explored
in future work and may provide the true advantage of using GE. If considering the
Computational Design Synthesis it can be concluded that computational support of
design activities such as decomposition and search can be achieved using GE and GA.
However, since synthesis also involves design activities such as associating,
composing and combining most likely is that the machine inductive reasoning would
be necessary in an abductive iterative process in which solution is affecting problem

statement. For that purposes GE* could be used.

Therefore, GE is a population based algorithm, the search is build around a concept of

survival of the fittest, where a solution or a set of solutions to a given problem evolve in time

using the fitness function as an evolutionary guide. At the genotype level, the chromosome

representation is a binary string, thus enabling easy application of the entire standard GA

selection, crossover and mutation operators.

It is to assume that powerful stochastic search like GE will not be fully utilized unless the

complex technical systems are considered. Combinatorial explosion may occur only if
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technical process involves technical system like industrial plant, ship or similar. However, the
intention is to lay foundations for development of complete graph grammar based framework
for support of early design phases. GE as a robust problem solver based on GA which can be
applicable as a search method for any of the phases in the early design assuming that
engineering knowledge is formalized using graph grammars. Almost all of design theories are
following systemic reasoning thus resulting with early design modelling tends towards
transformation systems. When developing computational support it would be natural to merge
graph grammars with grammar based stochastic search algorithm. Moreover, the method that
will be presented in the next chapter is invariant to the level of abstraction considered the
early design stages. Although the search for innovative technologies for operand
transformation is considered only for the design of completely new products, the intention is

to provide the basis on which the functional structure of the product can be determined.
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6. GRAMMAR OF TECHNICAL PROCESSES

.1 will consider a language to be a set (finite or infinite) of sentences, each finite in length
and constructed out of a finite set of elements...the set of 'sentences' of some formalized

system of mathematics can be considered a language.(Noam Chomsky [20])

Both formally and visually, graphs are widespread as means to express and model various
types of systems in order to represent their structure and behaviour. The application range
includes entity relations diagrams, UML diagrams, Petri nets, flow diagrams, identification of
software product structures, modelling graphical interfaces [96] and last but not the least,
graph representations are utilized at least implicitly by different design theories [1], [4] to
model technical products at early stages of product development process. In the computing
graph based formal systems, like for instance parse trees and term rewriting systems are
unavoidable as means for accepting and inferring syntax and semantics of sentences written in
programming languages. Further uses are found among more dynamical graph transformation
systems developed with the purpose of expressing behaviour of an evolvable system that is
under consideration, and as such the most applications include search for optimal resource
allocation possibilities both in economics and computation [96], [97]. Thus, decomposition of
technical processes performed to synthesise optimal variant of operand transformation

modelled according to TTS could be considered as a graph transformation system.

Graph grammars are means to perform a rule-based transformation of graphs. The application
of rule first identifies a target structure, a sub-graph that is, inside a host graph, which has to
be replaced by a new sub-graph. As the result of deletion of the old and integration of the new
sub-structure with the remainder of original graph a transformed graph structure emerges.
Thus, bearing in mind advances from Al showing that knowledge from the domain of interest
can be formalised within grammars, than decision to design the method for generation of
operand transformation variants based on graph grammar transformations becomes well
justified. Development of graph transformation systems emerged from three different
application areas: from Chomsky’s strings grammars which initiated the theory of natural
languages by providing it with formal foundations, from term rewriting systems and the
theory of computing and programming languages, and to account for enhancement of

modelling processes by providing visual interfaces rather than textual ones [96]. This thesis is
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drawn by the former, thus using Chomsky’s context-free string grammar expressed within
BNF. A mapping will be established by linking BNF tokens to graph structures thus creating a
graph grammar based formal system over which a heuristic stochastic search of grammatical
evolution will be imposed. Such system, providing an adequate and consistent knowledge
formalisation, should be able to generate operand transformation variants within technical

processes.

This Chapter will deal with the formal definition of graph grammar of technical processes. It
will not present new method for conducting general graph transformation, instead it will offer
an adaptation of graph grammar node based transformation to suit the purposes of technical
process modelling. Moreover, it will add heuristic search to graph grammars in order create a
framework suitable for multi-objective optimisation. The single node graph grammar
transformation algorithm will be presented, and the implications of the connecting rules to the

knowledge formalisation possibilities will be elaborated.

6.1 Method overview

Decomposition and synthesis of technical processes until operand transformation variants are
produced will be defined as a formal system by means of graph grammar containing rule
represented engineering knowledge of technical processes, technological principles and
necessary effects. Production rules within graph grammar will prescribe the mechanism and
conditions that must be satisfied in order to conduct decomposition and synthesis process. For
the method to be operational, and to be able to conduct graph grammar transformations, an
adequate mathematical modelling of technical process must be provided.
Technical
process
Grammatical  decomposed
evolution into system of

sub-processes
Black-box model and operations

of technical Generation of operand with needed

Control

process i ; effects
nout transformation variants Sutout
npu i utpu
P in TP P
Formalized
knowledge of
Mechanism technical
processes,

technologies and
needed effects

Figure 6.1 IDEF0 model of generation of operand transformation variants within TP
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Thus, a technical process will be defined as a labelled directed multigraph, or multidigraph
with operands effects and operations. The method for generation of operand transformation
variants within technical processes, as presented using IDEF0O process model is shown in

Figure 6.1.

The proposed method relies on the grammatical evolution for controlling and directing the
search which requires establishment of a link between Chomsky’s string grammars and graph
grammar. The result of merger is applying a breadth-first node based rewriting system. The
term rewriting is applied hereby, since if the map between symbols within strings and graphs
nodes is achieved then it can be said that rewriting takes place, of course, providing necessary
embedding mechanisms. Thus, to perform decomposition a breadth-first node based rewriting
will be performed with embedding mechanisms as determined by applying a set of connecting
rules. That set of connecting rules will help to account for the integration of secondary flows
into graph’s structure. Because GE uses genetic algorithm three encodings will be performed
as defined in (5.21)-(5.25): (1) genotype level as binary strings, (2) GE intermediate level as
BNF token strings, and at upmost level to allow grammatical evolution to conduct the goal

search for transformation alternatives graph structures will emerge (3).

The same principles used for generation of operand transformation variants can be extended
to include other stages and phases of product development providing of course the existence
of design language. Product functions are also both visually and formally represented with
graphs however function unlike processes, they cannot be considered as sequences of
operations since functions represent technical system in a state in which it is ready to operate
or be operated. There is no time flow like with processes. The entry point to functional
decomposition is the output of TP level, and the result is a technical system being in the state
capable to produce the necessary effects. Organism as a technical system is a composition of
its interrelated subsystems or organs, where each of them exhibits its own unique graph like
structure in which the necessary wirk elements appear to fulfil one or more products
functions. The establishment of technical system’s organs concludes conceptual design stage
by providing a sketch, a concept of product that is. In general, a generative grammar driven
approach, like the one presented within this thesis, is a process that is conducted in a one way
top-down manner. Solution, alternatives can be produced, but after the rewritings have been
exhausted the search process inevitably ends. However, since synthesis of technical process
and technical system at different abstraction levels should establish relations that extend

between these and in fact interconnect elements belonging to different levels thus providing
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additional semantic meaning to explain and provide behaviour of product as a complex
system, then an iteration should be created resulting in top-down and bottom-up refinement
scheme. Complex behaviour cannot be represented simply within a set of rules governing the
search at only one level of system’s representation, but must extend to relate the system
elements between the levels. Creation of these inter-level relationships, which originally occur
within designers mind, might be considered as the bottom-up part of the loop. And finally
considering other stages of product development, embodiment and detailing namely,
assemblies and subassemblies of technical systems are also both structurally and
behaviourally describable using graphs. Assemblies are represented as trees of components
and parts as trees of features and from them derived drawings, what is indubitably seen within
a today’s feature based design CAD packages. Although this thesis is limited by its scope to
technical processes, the findings provided can be utilized further to create a complete

framework driven by unified design language.

6.2 Modelling of operand transformation system

Multigraphs are considered as non-simple graphs in which multiple edges between vertices,
i.e. nodes, are allowed but no loops are permitted [98], [99]. In general, a multigraph G can be
defined as an ordered pair (V,E), where V is set a of nodes and E a bag of edges. If a
direction is required to represent binary relation between the vertices, than edges are replaced
by directed edges or put succinctly by arcs. To model technical process formally it is
necessary to introduce related technical process entities; operands, effects and operations
namely, into a graph’s structure. Hence, operations will be mapped to graph’s nodes, where

operands and effects are mapped to arcs.
The definition of set of TP entities X; is given as follows:

DEFINITION 6.1  Let there exists a set of TP entities defined as X5 = Xpq U Xgpp U
2Zop» Where Xpg denotes a finite non-empty set of operands Od €
2Zoa» 2gfy 1s a finite non-empty set of effects Ef f € Xgsr and 2,

as a finite non-empty set of operations Op € Xy,

In general, depending of the purpose graphs can be defined over different sets of objects,
strings, types and instances of these thus relating starting graph structures to other graphs. The

set of TP entities X = Xpq U Zgsr U Xy, denotes entities that participate within technical

process. Thus in order to achieve robust mathematical modelling, multidigraph as presented
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within this Chapter is not restricted to accepting TP entities as objects. The same holds for the
graph-grammar transformation algorithm that is also presented within this Chapter. Moreover,
as it will be later shown in Chapter 8 where the architecture of computational tool is
presented, data model of TP entities will be performed object-oriented, thus defining entities
as class instances. However, although both mathematical and data modelling are robust,
Chapter 7 lay out only foundations for formalisation of the knowledge about technical
processes. The goal of this thesis wasn’t by any means to qualitatively define technical
process taxonomies or ontologies which could have served well for generalisation of
production rules and transformation system. The latter is the reason why the multidigraph is
referred as labelled and not as typed multidigraph denoting that only labels of TP entities,

alphanumeric strings that is, are considered although 7P entities are types.

TP entities will be defined by the user when formalizing knowledge about technical
processes, technological principles and necessary effects. Let operand Od be an element from
a finite set of all possible operands X4, Od € X,,. Operand as a type has ID, name, state,
states and label as attributes. In the same manner effect Ef f is an element of a finite set of all
possible effects Xgfr, Eff € Xgsf having ID, name and label for attributes. Hence, in Chapter
8 data model of both operands and effects is Flow class, and edge of multidigraph is an object
container which can accept both operands and effects. The same reasoning is applied with the
graph vertices where each vertex is a container accepting operation Op, where Op € Xy, and
Zop 1s a finite set off all possible operations. Op is an object with ID, name, label and three
collections of input operands, output operands and effects as attributes. Most common,
symbol X denotes set of terminal of symbols, a language alphabet that is. Decomposition
which synthesises technical processes lasts until all appropriate rewritings have been utilised
which is only dependent on the amount of knowledge that has been formalised. Thus, there is

no sense to give the usual meaning to Xp4, Xgsf, Zop as being variables or terminals, since

they are used as building blocks to define graph grammar production rules. In respect to X; a

multidigraph Gwith operands effects and operations may be defined in Definition 6.2.

Figure 6.2 shows an arbitrary structure of technical process modelled as labelled
multidigraph. Operands Od;, ...,0d, can be understood as operands of different types
(classes), as operands of the same type but in varying states or both all of them represented as
labels. Some of these operands (Figure 6.2) may be the operands the transformation of which

directly satisfies the existent users’ needs, and some may emerge secondary as required or
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generated by transformation system. Operations are represented with graph nodes labelled as
Ops, ..., Op3. TS Input, TrS Output and TrS Effects are represented by labelling of nodes

with in, out and eff respectively.

Transformation
system's (TrS) border

TrS Operators

|
| |
: (eff) |
|
|
| Ef,
: Ods Y |
> |
| Op2 I
> Od
| Od, 1
| .
TrS Input [ Ody ™ TrS Output
in) [ > Op Ll (out)
| Ody o |
| 5 Od I
: » Ops N
|
' |
|

Figure 6.2 An example of TP modelled by G with TP entities

DEFINITION 6.2 A labelled multidigraph G with operands, effects and operations
with no loops allowed is defined over alphabet X; as ordered tuple
G=,Estlgly):

e I finite non-empty set of nodes,

e Ec{(u,v)|u,v eV A u# v} finite non-empty bag of arcs
e, with restrictions to loops,

e mapping s: E — V assigning for each arc e a source node u,
e mapping t: E — V for each arc e assigns a target node v,

e mapping lg: E - Xpq U Xgrr which for each arc e assigns
operand Od or effect Ef f,

e mapping ly:V — Xy, which for each arc e assigns operation
Op.
These are added to graph’s structure to represented flows crossing the systems borders and the
source of the effects within the transformation system. Sources of effects are operators:
human, technical system an environment, however to simplify the modelling all of them are
represented with only one node. Operations Op, and Op; are performed in parallel, thus

creating a sequence when coupled together with Op;.An effect delivered by transformation
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system’s operators is required to enable Op, is shown as Ef f;. Returning operand flows, i.e.
arc e from Od, to Od,, are supported by the model but are not permitted by TTS since they
would violate the time flow inside transformation process. Returning flows are thus implicitly
omitted through productions rule definition process. Relations of type s(e) = t(e) are not
permitted. Thus, additional rules that have to account for modelling of technical processes are

given here by:

DEFINITION 6.3 A labelled multidigraph G = (V,E, s, t, lg, 1) as defined in 6.2 is a
model of technical process iff at least the following is satisfied:

1) |V| =4,
o F,ve V|L,[V)=inA
o F,ve V|L,(V)=outA
(0] EllvE Vllv(V)=eff

2) restrictions to relations E:
o Ae€ E|l(t(e)) =inA
o #e€ E|l(s(e) =outn

o Aee€ E|l(tle)) =eff
3) graph G has to be well connected in respect to the

transformation of Op.

To clarify the definition 6.3; 1) requires existence of minimally one operation node, alongside
in, out and eff labelled nodes, 2) imposes restrictions to relations stating that in doesn’t accept
any inputs as well as eff, and that out doesn’t emits any output flows, 3) states that operations
must be well connected by operand flows, accepting isolation of the eff labelled node. Thus
(Ae€ E|l, (s(e)) = eff) = T may happen, and is allowed, which assumes that designer
doesn’t know in advance all of the necessary effects required to sustain transformation within
technical process. In fact this is one of the overall search goals. Interpretation is as follows: if
an effect already exists than it must be obeyed, which is checked at the production rule

definition, otherwise eff can be left isolated.

Incidence matrix 7;,,, (Table 6.1.) of labelled multidigraph G is constructed object-based using
a collection type as a prime building block to allow easy insertion of new rows and columns
and any other matrix transformation required by phenotype construction within GE.
Collection is a type of list accepting and enumerating any object. Thus, to account for
dynamic requirements 7;,,,, is composed as a collection of matrix rows, where each of rows is

a collection of dependencies, with every dependency accepting a collection of arcs and every
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relation accepting a collection of relations. Such layered structure can tackle any imaginable

transformation inside TP providing construction of appropriate methods to achieve them.

Table 6.1 Matrix representation of operand transformation process

Nodes in Op4 Op; out eff
in 1 Tin
Op.
Opj
out
eff Tm1 Toun

Taking into account that dependency is a collection of arcs which are labeled with effects or
operands, and operations as source or target, then arc e, may be written as ep,, S
{(um, v) U, vy €V AUy, # v}, with [m] = {1, ...,j + 3} and [n] = {1, ...,j + 3} where j
denotes the number of operations. The complete structure of the transformation process is
obtained by assigning a set of TP operations as source or target to relations inside incidence
matrix 7y,, as shown in Table 6.1. Put succinctly, by mapping operations to nodes and then

relating them by arcs which are stacked inside the r;,,, dependencies are denoted.

System border

".0d,

Figure 6.3 Multidigraph with operations, operands and effects and its incidence matrix

Of course as a consequence of Definition 6.2 it follows that V e;,, € 1y, = [, (s(ey,)) = in,
VY ep-1yn € Tp-1)n = ly(t(ep-1yn)) = out and Ve,, € 1y = ly(s(epn)) = eff with
fixed index p = m. Loops are not permitted in any of 7;,,, of incidence matrix fields. Fields of
Ti(q-2)> Tie(q—1)> Tieq With [k] = {1, ..., m} and ¢ = n have no meaning in respect to modelling

of technical processes and as such are not being used. Incidence matrix 17y,, with technical
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process partitioned in layers depicting different operand flows that may occur between the

same two operations is shown in Figure 6.3.

6.3 Graph grammar of technical processes

Rule based transformation of graphs can be understood as performing a local change to
graph’s structure under the instructions given by the production rule p. These instructions

should address the following points [65], [96], [97], [100]:

e cxactly which part of graph’s structure will be replaced — definition of matching

procedure since L from p: L — R must be somehow identified in G,

e the sub-graph that will be inserted at desired place inside the graph G — definition of
right side of the rule R,

e and finally, what is the mechanism for inserting R — specification of how to embed R

into the structure of G.

Unlike string grammars (Definition 4.3) where rewriting is a straightforward procedure of
sub-string or word replacement with the new sequence of symbols inside a sentence as
defined by given grammar, graph grammars involve more complex procedures. Graphs are
not just plain linear sequences of symbols; instead they have a structure defined through a set
of nodes mutually related by a set of edges. In case of G, structure is even more complex, G is
non-simple graph, with TP entities belonging to X; being mapped to nodes and directed
edges. Thus, when replacing a node of graph or sub-graph of graph, it is necessary to consider
the surroundings of the structure that is to be replaced. Most often, these surroundings are
referred to as a context of the replaced structure. Embedding mechanism prescribes a
procedure by which the new inserted structure will be interconnected with the rest of host
graph. Embedding assumes respecting the identity of graph’s elements including both
lg:E » Xpq U Xgsr and ly: V — Xy, through which operands, effects and nodes have been
assigned to arcs and nodes. How to redirect edges to avoid occurrences of them having source
or target pointing to nil, or how to reconnect edges properly to serve the purpose of graph
transformation system, all of these implications must be accounted for by embedding

mechanism or connecting procedure.

Thus, in order to be able to define a graph grammar that consists of production rules p: L — R,

first a mechanism for identification of L inside the host graph must be defined. Then the
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embedding procedure has to be specified. A definition of sub-graph is a prerequisite and it is

given hereby [65], [96]:

DEFINITION 6.4 Let Gy be a finite set of all possible graphs that can be constructed
over the alphabet of technical processes X, then a graph C € Gy is
called a sub-graph of H € Gy, if and only if the following conditions
are to be satisfied:

Ve S Vy, Ec SEp, sc(e) =sye), tc(e) =tyle) , lg(e) =

lg, (@), ly,(u) =1, ,(W)Ve€EE.NuEV.
Definition 6.4 simply states that if a graph is also a sub-graph of another graph that the former
must match both by its structure, nodes and arcs, and by its labelling to the graph of which it
is a sub-graph. When considering the Definition 6.4 in a view of G, then a sub-process of
technical process is a composition of the finite number of operations interrelated with
operands flows and supported by necessary effects. To be able to apply graph production
p: L — R rule a match L in host graph must be identified [65], [96]:

DEFINITION 6.5 For graphs C,H € Gy a TP graph morphism m: C — H is a pair of
structure preserving mappings my: V. = Vy and mg: E; = Ey such
that the following holds:

1) Ve€E;— (e|lEC(sC(e)) € {in,eff}A lEC(tC(e)) = out)) A
u € Ve —ully (w) € {in,out,eff}:

0 mv(sc(e)) = SH(mE(e))s
o mv(tc(e)) = tH(mE(e)),
o lEH(mE(e)) = lg.(e),
o ly, (mV(u)) = ly, (W),

2) Ve€ EC|lEC(sC(e)) = in:

o mv(tc(e)) = tH(mE(e))a
o lEH(mE(e)) = lg.(e),
3) Ve€ EC|lEC(tC(e)) = out:

0 mv(sc(e)) = SH(mE(e)),
o lEH(mE(e)) = lEC(e):
4) iff3e € E¢|lg (sc(e)) = eff:

o mv(sc(e)) = SH(mE(e))a
o lEH(mE(e)) = lg.(e).
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First of all, the Definition 6.5 of morphism is a general one in respect to technical processes
allowing that graph C consists of more than one operation Op, thus 1) defining morphism of
interrelated operations with disregard to in, out and eff labelled nodes treating them as a
special cases. Relations that have a source in in are explained with 2) by retaining only their
target and label. How to connect the source is dependent on the set of connecting rules, hence
if L has e € Ec|lEc(Sc(€)) = in then the same edge can change the source when being
interconnected with the source graph’s structure. The same principle but inversed as given by
3) applies for edges of type e € EC|lEC(tC (e)) = out, where the source and label are being
retained and where the target changes depending on the connection rules. Finally, for the
effects 4) if they exist inside the rule than he source and label are conserved, while the target
depends only on the contents of the right hand side of production rule. Again, for the effects

the same assumptions are used as in Definition 6.3.
Match of L in G can be defined using morphism as given in Definition 6.5 [65], [96]:

DEFINITION 6.6 A match of L in host graph G is found by existence of morphism
m:L — G, withm(L) € G, thus satisfying contact conditions.
Match of L in host G supports arbitrary number of operations, however it is important to stress
out that match applied within this thesis will always correspond to only one operation node
that will be indentified in G as given in definitions 6.4 and 6.5. Hence, since CFG is applied at
GE level then a mapping will be established from single Op to single BNF token. The right

hand side of the rule R, can have more than one Op.

Transformation system's
(TrS) border

____________ 1
L | |
| TrS Operators |
| (eff |
| |
| |
: Ods ! |
I
TrS Input
(In)p : Opz | TrS Ol:tput
q Ode | (OU )
|  Ods |
.- - - _ _ _ _ _ _ _ 1

Figure 6.4 Example of rule p left hand side L
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Graphical interpretation of morphism m from Definition 6.5 and match m(L) from Definition
6.6 that is applied to the individual operation Op, and its neighbourhood in the host graph is
given by the following two pictures (Figure 6.4 and Figure 6.5):

Transformation system's
iransiormation sysiem

(TrS) border

TrS Operators

|
| |
| (eff) |
: |
| m(L) Eff, :
| Ods y |
| > |
I Op2 I
: Ods Ods | |
|
| NN
TrS Input [ 0Od, o ™ Trs Output
i) [ (R Ll (out)
| Ody | : g
| Od5 Od7 |
| > Ops |
| |
| |
| I

Figure 6.5 Identification of match of L as given in the Figure 6.4 using morphism m(L) from

Definition 6.5

Figure 6.5 depicts, marked in shaded area, an identification of match of L within a host graph.
The extents of the morphism as given by Definitions 6.2 and 6.3 and example of L in the
Figure 6.2 are clearly shown by excluding sources and targets of operand flows crossing the
system’s border, as well as the source of effects within transformation system. Hence, graphs
of type L from p: L — R that are to be replaced by R are identified by m(L) thus not paying
attention to the connecting structure of host graph G. How to embed R within G will be

regulated by connecting rule set p.

Applying p: L = R to graph G first identifies, then removes m(L) from G and afterwards
inserts R in its place, thus completing one step in the derivation process. Insertion of R into G
assumes the application of embedding mechanisms regulated by connecting rule set e,.. The
derivation step is driven by the set of production rules p, morphism m and a set of connecting

rules p is defined as follows [65], [100]:

94



GRAMMAR OF TECHNICAL PROCESSES

DEFINITION 6.7 Using alphabet 4 € X since graph is labelled over X; and taking
finite non-empty set of production rules p:L — R, then for every

existing match m: L — G a direct derivation can be found stated as

pMp
G —H.

Following the Definition 6.7, generative graph grammar of technical processes is defined as:

DEFINITION 6.8 A graph grammar of technical processes GG is defined as ordered
triplet GG = (S, P;, 4), with § € Gy as starting symbol, P;; as finite
non-empty set of productions p € P, of type p: L = R and alphabet
A € X over which graph is labelled.

Since grammar for describing technical processes is user-defined, it may be assumed that it
will be difficult to tell which elements will be variables and which will be terminals in
advance. However, what can be stated is that terminal graph structure will contain terminal
TP entities A C X since graph is labelled over X;. Hence, terminal entities are operations

from Xy,,. All graphs composed of terminals is defined as Go € Gz. A definition of language

of technical processes Lrp generated by GG is stated directly from Definition 6.7:

DEFINITION 6.9 A language of technical processes L;p generated by graph grammar
GG is a set of graphs G € G5, which can be derived according to
GG = (S,p,4) as:
Lrp(§9) = {GIG € Ga,S =54 G)

6.4 Map between Chomsky’s grammars and graph grammars

Generative grammars according to Chomsky and his proposed hierarchy are defined for linear
strings of symbols. Linear strings in genotype and phenotype representation are also used
within grammatical evolution to produce sentences in some formal language whose syntax
has been defined within BNF. Since derivation of a sentence is nothing more than tree
structured process, an attempt to generalise string structures to represent decomposition and
synthesis of technical processes becomes reasonable and well justified. According to the
literature [65], Chomsky grammars can be translated into string graph grammars. Thus if a
string is composed as a sequence of symbols a;a,a;5 ...a,, n € Z, |a| = 1 with symbols

being elements of some given alphabet a,, € X, then it is possible to construct a string graph
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consisting of n + 1 nodes and n arcs or edges. Of course each of the edges that connect two

consecutive nodes is labelled as prescribed by the a,, € X [65].

Method presented within this thesis is node rewriting with underlying grammatical evolution
working with BNF grammar, thus creating linear sentences. What is tried to be argued here is
that each derivation step under BNF generative grammar has to correspond to one
decomposition step of technical processes in graph-grammar. In fact this is a necessity in
order to create technical process decomposition step which is composed of a number of
successive rewritings. As an example, Figure 6.6 shows BNF derivation process and its

corresponding map to graph grammar derivation:

ot e oo,
|I_ .

Op2 Ops ‘ Op; ‘

: > Ody,"
SAF Sentence TR = N 0 Dt F ?

Input Effects

Figure 6.6 Example of the BNF derivation process and its corresponding map to graph grammar

derivation

Definition of graph grammar productions of type p: L — R requires first a definition of rule
building blocks by the user; X, U Zpgq U Zg¢ that is. Than according to Definition 6.3 each
side of the rule is defined by designer as multidigraph labelled over X;. In that way the
relation Dy, o) + LTp(CFGrp) = L1p(GG) as given in (5.23) is only partially established
since it is bounded only to the knowledge describing how individual operation can be
decomposed without addressing of how each of these decompositions can be integrated with
one and another. Context-free grammar of technical processes CFGp and its language of

Lrp = Lyp(CFGrp) are defined as follows (definitions 6.10 and 6.11):
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DEFINITION 6.10 A context-free grammar of technical processes CFGrp expressed in
BNF is as a quadruple (X5, Vs, S5, Ps) where: X € X5, is a finite
non-empty set of terminals belonging to operations, Vi € Xy, is a
finite nonempty set of non-terminal symbols or variables satisfying
2NV, =0, Ss is a starting symbol or axiom with S € V,, and P
is a finite nonempty set of production rules of the type a =

where: a € Vg and § € (25 U V)",

DEFINITION 6.11 A formal language L;p = L;p(CFGrp) generated by grammar
CFGrp = (X, V,, S5, P,) is defined as:
Lrp(CFGrp) = {w|w € X", 8; = (pg,p 0}

Hence, two steps are required to fully establish relation (5.23), one performed by designer
when creating productions, and one automated by the computational systems when these
productions are applied and need to be interconnected. Linear sentences generated with
CFGyp provide layout which should be followed by the computational system when patching
up technical process provided by the right hand side of productions. On the left hand side of
Figure 6.6 a derivation tree in CFGrp is presented. Rewritings of SubTP; into Op, and Ops,
and TP into Op; are predefined by designer, however connecting together Op, and Op; with
Op, is determined by predefined connecting procedure p embedded within computational
system. Although a single node is always being rewritten it is still necessary to establish
morphism m(L) to determine node’s neighbourhood within the host graph G. Hence, the
information about edges and how to reconnect them after the node has been rewritten can only
be provided by the graph grammar GG = (S,P;,4) and its connection procedure p. As an
example, on the right hand side of Figure 6.6 it can be clearly seen how operand Od,’ enters
the transformation from outside the system in second derivation step. Finally, at the last
derivation step it was determined by the connection mechanism that Od," flow could be
provided by Op; instead, thus eliminating one unnecessary flow. Finally, it is important to
stress out that graph-grammar inherits the orderings of operations Op as presented within
CFGrp generated string. Since operations within processes can be performed in parallel taking
into account the influence of knowledge formalisation map (5.23) and predefined connection
procedure, then resulting structure obtained from linear string a;a,q; ... @, can take structure
of the multigraph from Gy (as in Figure 6.7). However, the connecting procedure p which

patches the flows has to follow operation’s orderings, thus not being completely invariant.
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Figure 6.7 Example of resulting TP structures after map from BNF to graph grammar language

Providing the existence of (5.23) the orderings of the nodes inside incidence matrix 7, also
inherit orderings from linear BNF strings. Each derivation step is complete after all n
rewritings of original a;a,q; ... ay, [i] € {1, ...,n} strings in BNF have been accomplished
breadth-first. Identification of the insertion place k; in 7;,,,, thus 73— n= for i-th rewriting by

production a; — B; is given as follows recursively (size of individual token |a;| = 1):

ki = ki1 + |Bi| , with ko = 2. (6.1)

The orderings of arcs €mn; stored in dependencies, a cell of r;,,,, that is (see Table 6.1), are

also respected when applying embedding procedures.

With addition of connecting procedure p the mapping as given in (5.23) is accomplished thus
defining graph-grammar language of technical process L15(GG) by that rendering synthesis of
technical processes to be run computationally. In the upcoming section multidigraph’s

transformation algorithm as well as connecting procedure p will be defined formally.

6.5 Transformation algorithm and connection procedure p

Two types of embedding principles can be considered: connecting and gluing [100]. In case of
connecting production rules of type p:L — R contain embedding rules p which are to be
applied to integrate R into structure that emerged after m(L) was subtracted from G, or put
succinctly after G —m(L) . The principle difference between two approaches is that
connecting performs creation of edges that have to be added to connect R with G — m(L),
whereas in gluing searches to identify which elements are present both in L and R to reuse

them as much as possible when integrating R into G — m(L). In fact only the elements that
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are unique in R are added anew, while elements both present in L and R are preserved. This

thesis will use connecting approach thus defining connection procedure p.

Algorithm for transformation of graph G = (V, E, s, t, lg, l};) under the set of production rules

of type p: L = R with |V;| = 4 according to Definitions 6.3 and 6.4 specifying the graph of

TP is given as follows:

1)

2)

3)

4)

5)

First a match m: L — G of the rule p left hand side L must be established in the
host graph G according to Definition 6.6. The rewriting is performed always by
replacing only a single Op labelled node of the host graph G with structure in R

consisting of an arbitrary number of operations satisfying |Vz| = 4.

After the match m(L) has been established and the place of insertion specified,
the Op labelled node uq,, such that L 3 uy, € G, ugp|ly (uop) € 2o, present both
in the left hand side L of production rule p and in the host graph G has to be
subtracted from the host graph G thus creating an intermediate structure as
G~ =G —1ugp. The G~ is left without up, node thus resulting in number of
dangling edges, either one of these edges is deprived of only one source or target
but not of both at the same time. For sake of being pragmatic it will be assumed
that these sources and targets which are left empty simply point to zi/ thus yielding

with the following set of interfaces Eg- = {(w,nil) A (nil,u)|u € Vz-}. Than

using DelEff(G™,E;-) delete all the edges € E;-  satisfying

€651y
bve (s (e(;b:ff)) = ef f from G~ and Eg-.

Graph on the right hand side R of the production rule p first has to be deprived of
nodes labelled as in and out. The subtraction R~ = R — Vs, with set of nodes
defined as Vs = { ug € R|l,,(ug) € {in, out}}, creates a set of edges deprived

of only one source or target but not of both at the same time. Again, interface
edges of R~ are defined as Eg- = {(u, nil) A (nil,u)|u € Vg-}.

Within Erg., = {((ug-ly p-(ug-) = ef ), vr-)|ug-, vg- € Vg-} the effects edges
are collected.

To complete the transformation, R"must be added to the G~ and reconnected to

.. . . P _ -
the remaining structure according to connection procedure p, thus Gy < G~ + R™.

Matching of R~ edges with the edges that have emerged as a result of creation of
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G~ and with respect to order of edges within dependencies of the host graph’s G~

incidence matrix 7, - proper interfaces will be created. Interface matching

function Inter(e¢-, eg-) is defined as follows:

Inter(eci—, eRi—) = true iff:

lE(eGi—) = lE(eRi—) A 5(96{) =u€l;-A s(eRi—) = nil, 6.2)
\%
lE(eGi_) = lE(eRi_) A t(eGl_) =UueE VG_ FAN t(eRl_) == nll

If Inter(eGi—,eRi—) yields truth, then eg- will take for source/target the node v
from R~ for which it holds the following v = (v € R™| s(eg;) =v V t(exr-) =

v ) Interface edge connection procedure Reconn(eGi—, eRi—) is defined as follows:

iff s(eRi—) = nil, t(eGi—) « t(eRi—)

iff t(en-) =mil,  s(eg) < s(exr) (6.3)

Reconn(eGi—, eRi—) = {

The effect edges within Ep~ . are simply copied to G~ using Copy(E R3pp G™) thus
reconnecting the effect node from G~ with proper node v from R~ that satisfies
t(eRi—) = v. Finally, the reminder of edges in Eg- are either secondary input or

output flows which are reconnected to G~ as follows:

iff S(E’R;) =nil,u € ¢G"|l,(w) = in « s(eRi—)

iff t(eRi—) =nil,u € G |ly(w) = out « S(eRi_) 4

rrsens) - |

Transformation algorithm required for Gp EG-+R for kth rewriting of
derivation step providing G, ps:a = 8, p:L = R is given with the following

pseudo-code (connection procedure p is defined in lines 8-12):

Input: G, ps:a = B,p:L - R

Output: G
For a; calculate insertion in 73, providing ps:a - 6.5)
Upgp < m(L); .

G~ « G —ugp;

EG-_ « G_,

14
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5 DelEff(G™,Eg);
6 R~ <R—Vps
7 Er- <i—R_;ERe—ff < R7;R™ < R —Vggs
g Gr<G +R7;
9 Compare each e;- with each ep- using Inter(eGi—, eRi—) do
10 Iflnter(e(;i—, eRi—) do
11 Reconn(eg-, eg-), Delete, eg- from Ex- od
12 od
13 Copy(Eg,,, G7);
14 Foreach ep- reconnect secondary flows using TrS(eg;);

15 od

Example of the transformation process performed according to (6.5) is depicted in the

following figure:

G G
In In
r—-51T __"l r——T1T—71-—" r——Tr— ___1|
|
Op Op

| | | : | |
[ [ | |
| ! : | 1 : | Op1 |
| | | |
| Od; | m(L) ! | 0dgl ' | 0ds
I y : | : | v 0d, |
| | | |
| Op : ) : - Opa4 |
| | | |
| 0d,| "o* | 0ds ! | 0d, ods | | 0dg !
| b 4 h 4 l | [ | 3 |
| : Eff | : Eff | |
I Op | 0 | 0
' ’ | ' Ps | , s I%Eff, |
| od | | | | | EfF
I___ﬁl;___l I__gdil,___l | Odq4 Ods
Out Out : T . :
| O |
| |
'__fldil _____ |
Out

Figure 6.8 Transformation steps G = G~ = G
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6.6 Implications to the knowledge formalisation

The summary of the most important implications to technical process synthesis modelling is

given as follows:

1)

2)

3)

4)

5)

6)

Technical processes are defined as a labelled multigraph with operands, operations

and effects G = (V, E, s, t, lg, l) according to Definitions 6.1 and 6.3, with |V | > 4.

For operation Op € Xy, it is said that it transforms operand Od € X4 only if there

exist input and output flows from such operation.

Derived from 2), for nodes labelled as in, out, and eff it is said that they only
participate in transformation, since nodes in, and out provide only the source and
target crossing the transformation systems border, and eff provides necessary effects

for support of transformation.

Principle operands Od and the transformation of these are represented by initial graph

S (principle transformation marked with asterisk in Figure 6.9)

Left hand side of the rule p: L — R with |V, | = 4 is defined according to Definitions
6.3 and 6.4.

Right hand side of the rule p:L — R with |Viz| = 4 should contain at least two
operations from which at least one operation should transform operands as given in 3);
according to TTS, secondary flows and effects can appear as shown in Figure 6.9
(principle operands marked are marked with asterisk, in, out and eff nodes omitted for
the sake of simplicity). Special cases where |Vz| = 4 are allowed only if change of

operation labels posses significant semantic meaning, or an effect has been added.

* 1 > Mt S N
Od; Opq Op; 0d,' I
' |
I
- e e e e e e e e e e e e e e e e =
In Eff

Figure 6.9 Emergence of secondary flows (principle transformation marked with asterisk) in right

7)

hand side of rule p: L = R

Unless specified otherwise, the decomposition of technical process stops when all

possible rewritings for the corresponding derivation tree have been exhausted.
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The selection of formalism applied came to choosing a labelled multidigraph. Multigraph
is on the line with engineering intuitive rule of a thumb reasoning resulting in the
immediate mapping of operations to nodes and operands to arcs. However, a slightly more
advanced concept of hypergraph came into consideration. In distinction to multigraphs,
hypergraphs [101] are generalisation within graph theory, thus every graph is a
hypergraph. Moreover, hypergraphs allow relations that are able to connect by definition,
any number of graph’s node. That set based approach for definition of relations, although
at first glance somewhat awkward and distant to engineering applications and modelling,
offers an easy way of implementing double and single push-out approaches to graph
transformation, what is in contrast to hereby applied node rewriting principles. Utilisation

of concept of hypergraphs will be left for the further research efforts.
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7. KNOWLEDGE FORMALISATION AND EXAMPLES

In the beginning is the relation. (Martin Buber, philosopher, from I And Thou [102])

7.1 Formalization of the knowledge about technical process

Making knowledge both understandable and consistent is of great importance for design of
knowledge-driven computational reasoning systems. The system’s overall performance will
be determined by the boundaries of knowledge formalisation that has been applied; either it
will be hindered by it or the system would be robust and efficient. Thus, creation of the
computational system that applies automated reasoning consists of two equally important
parts; a strictly formal part dealing with the logic behind method’s definition involving
definition of means to make knowledge computationally understandable and of a subjective
part when knowledge from the selected application domain was formalised as required by the

method [103].

The method was elaborated in the previous Chapter presenting a formal part in the creation of
a computational reasoning system - a graph-grammar rule based transformation system that is
being applied to perform the decomposition of technical processes. The outcome of
decomposition should be synthesised operand transformation variants. These have to clearly
depict the necessary effects emerged under technological principles and resulted as a
consequence of the process of product’s usage, thus consequently imposing requirements to
the function of technical system that is ought to be designed. Knowledge representation
involves definition of objects and relations between these objects in order to provide
semantics thus facilitating inference processes. Production systems manage to achieve
semantics by using set of rules, thus bringing in relation different concepts. Inference is then
conducted by rule application according to type of grammar applied. The subjective part
refers to an actual event when designer must describe some of his or hers knowledge within
the application domain using means provided by the computational tool. To clarify, the same
concepts can be interpreted and related in many different ways and contexts depending on the
viewpoint taken. Design know-how used to achieve required result within conceptual design
phase depends on designers knowledge and experience in the field, thus varying from person
to person both in viewpoints and in depth. Although such diversity in solution finding is

precisely what is tried to be captured, computational reasoning systems must maintain a
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degree of consistency of formalized knowledge in order to produce meaningful results. It can
be assumed to an extent that among designers working and collaborating together there exist a
shared understanding about concepts they deal with as a part of a daily routine. However if
taking into account designers within domain that do not collaborate or even among different
engineering domains, than the shared understanding would be reduced for sure. For large-
scale knowledge systems the experience tells that before actual formalization, the content of
knowledge requires careful systematisation to facilitate a maximum out of systems

capabilities [104].

This Chapter will provide findings that are required to define foundations for knowledge
formalisation about technical process. Although the generalisation of technical process
entities is not yet supported within the boundaries of developed method for generation of
operand transformation variants, it is still necessary to at least suggest guidelines for
knowledge formalisation which should be followed when defining production rules. For that
purpose online lexicon of the English language WordNet [105], the Suggested Upper Merged
Ontology (SUMO) as the largest open ontology [106], and recommendations for
reconciliation of product function related terms accepted by the NIST (National Institute for
Standards and Technology of US) [23] where examined. The Chapter will conclude with two

examples of synthesis of technical processes using method as developed within this thesis.

7.2 Taxonomy and ontology

The knowledge driven computational method for the generation of operand transformation
presented in Chapter 6 considers creating and expanding production rules database by
designer. Unlike productions that are operated only by the computer, suggestions how to
formalise the knowledge are intended for designers in order to produce structured knowledge
organized in such manner that is “best-fit” for the developed method. In fact these suggestions
should at least include a taxonomy which can be utilized further also by the computational
system to help maintain consistency and reduce the overall number of rules thus creating solid
foundations for method’s application. Taxonomies denote subclass relations among the
objects of the domain of interest, or more broadly entities that include concepts, attributes and
relations and are the first step in rendering of the body of knowledge to computational
environment [103], [107]. Understanding of taxonomic relations among concepts emerge as a
result of the observations, although the surrounding world might appear random and

unordered, there is a way how to assign concepts that share same properties to their respective
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class. As a result the generalisation is created focusing just at the relevant entities attributes
and relations. To put the latter the other way around, it is mandatory to add terms that could
be sufficiently well told distinct, otherwise a bias that occur in respect to the meaning of

individual terms may hinder the inference capabilities of the whole system.

A step further is the introduction of ontology which allows a multitude of various types of n-
ary relations among the domain objects to facilitate a more extensive computational inference
process. In a broad sense, definition of ontology states that it is the study of the categories of
things that exist or may exist in some domain [34]. Put more specific, the ontology can be
described as an explicit specification of a shared conceptualization, which can be
taxonomically or axiomatically based [108]. In general, to define ontology three parts must be
specified: concept definitions attribute definitions, and further inference definitions like
backward chaining rules, path grammars, and so forth [107]. If taking the intended purpose
viewpoint, then ontology can be recognized as two general types: the problem solving
ontology and domain ontology [103]. The first involves the activity of identifying,
formulating and obtaining a solution to the problem, and the latter corresponds to the domain
as distinct from the problem or tasks in that domain [34]. However, recent and ongoing
research efforts in the field of knowledge engineering including both general-purpose and
low-level engineering specific applications do not present straight as it is the definition in
respect to the basic technical process taxonomy [104], [105] and [106]. At the moment only
the Design Ontology [18], [107], [109] provides product knowledge vocabulary as given
within the Theory of Technical Systems. Vocabulary contents are classified into six main
subcategories divided between physical and abstract world with the categorization of the
relations based upon logical properties of symmetry, reflexivity, and transitivity. True, the
Design Ontology offers the definition of high level concepts in respect to TTS and technical
process, however for computational applications lower more concrete process related

concepts should be also provided.

In fact, there is a strong division between ontology based problem solving approach and the
Computational Design Synthesis directed mainly to the application of formal grammars.
Reasons for being that so lay in the complexity and interdisciplinarity of both approaches
requiring immense effort in order to create a unified and even more robust framework to
support early product development. For example, production rules require generalisation and
broader scope thus introducing complex mathematical structures involving both type graphs

and typed graphs which are nothing more than taxonomies and specific mid-level ontology.
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In order to model technical process formally it was necessary to introduce related technical
process entities such as operands, effects and operations namely, into multidigraph’s
structure. TP entities are considered as labels of nodes and arcs, with operations mapped to
graph’s nodes, and operands and effects mapped to arcs. All of these TP entities are members
of vocabulary set X; (Defintion 6.1). However, what have not been addressed are relations
between these objects which can be established as consequence of technical processes
understanding. This thesis will not embark the course to extend the rewriting system to
include attributes, types and inheritance or to define operations as a part of algebraic system
over operands. Instead it will only try do define the principles as recommendations that
should be obeyed when defining production rules of technical processes. Full generalisation
of production rules by creating TP entity taxonomies thus providing inheritance over instances
of classes, both at computational and knowledge engineering levels will be left for the further

research.

7.3 Foundations for the knowledge formalisation

On epistemological level of modelling for a particular domain of interest, the knowledge
formalisation is performed first by identifying basic and generic terms and possible relations
that could be raised between these terms [18]. Of course, one might than define a body of
knowledge that has been formalized as a set of terms/objects that are connected with different
type of relations thus altogether providing higher semantic meaning. The usual outcome of
knowledge formalisation is the creation of an abstract high level model that captures basic and
wide spread common sense knowledge. However, most often the engineering or scientific
application opts for a more detail and specific definitions demanding the loss of bias that is
present with the general knowledge. Thus, on the account of the underlying formalisation two
cases can occur [45]: knowledge is formalised completely without bias and it is domain
specific - a formal language that is, or bias in semantics can occur since the knowledge being
formalised tends to be close to a natural language. Selection depends how close the
computational system will have to come close to emulating human reasoning. The truth is, a
strictly formal engineering formalisation can produce coherent results, but because of the one-
to-one mappings the system will be deprived of possibilities to use more knowledge intensive
reasoning techniques like establishing of analogies. In that way creating out-of-box reasoning
which is sometimes cited as the source of creativity within cognitive linguistics remains

unreachable [27]. This section will in its continuance provide examination of some existing
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high and mid level taxonomy and ontology and work that has been done in order to formalise
functions of technical system in order to suggest recommendations for the definition of
production rules considering decomposition of technical processes. Lexicon of the English
language WordNet [105] will be compared to the largest publicly available engineering
ontology or SUMO [106], [110], in order to propose additions to product function’s taxonomy

to be reused as guiding lines for production rule definition [23].

7.3.1 WordNet

The WordNet [105] is the Internet based lexical database of the English language developed at
the Princeton University. It is a lexicon where nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms or synsets. In order to capture expressiveness of a
natural language synsets are interrelated by means of conceptual-semantic and lexical
relations. The result is creation of a conceptual network which can be navigated following
conceptual-semantic and lexical relations by wusing the Internet browser. Although
predominantly oriented to natural language processing WordNet offering more than one to
one mappings between terms, it can still be utilized for the purposes of formalisation of
engineering knowledge about technical processes. Figure 7.1 presents a portion of the
WordNet lexicon that can be utilized when designer is about to define production rules for
decomposition of technical processes. The structure shown is in almost taxonomic
relationship; above of a chosen term is denoted as term’s inherited hypernym. Consequently
all the terms bellow are a troponym of the chosen term. Pure inheritance structure is not exact,
thus semantic, since troponym only partially fulfil type-of relationship. In general, troponym
of a verb bears a lot of semantics since it is applied to expresses a more specific meaning of a
verb that it is to replace. In Figure 7.1 (if further decomposition exists a three-doted element is

related to the term, thicker line denotes no more decomposition possible).

Two distinct trees which can be observed in Figure 7.1 which are of special interest to TP’s;
the one with (shaded) root specifying change as to undergo or experience a change and the
other with its root denoting a change as a cause. The change as undergo a change is a
viewpoint taken when considering operands with their respective change of state and change
as a cause to change denotes viewpoint that has to be taken when considering operations, a
process that is. Change of operand attributes thus include change of form or shape, change of
state, change of internal physical properties as change of integrity, conversion, change of

magnitude including addition and finally a division of objects in parts (Figure 7.2).
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Figure 7.1 Semantic links between terms related to TP’s according to WordNet [105]

110



KNOWLEDGE FORMALISATION AND EXAMPLES

add ‘/calve, break up\‘

change (undergo a change; become |
different in essence; ]
losing one's or its original nature)

: (release |ce) :

fadd (make an addition (to); join or combine or |

{disjoin, disjoint (become separated,
disconnected or disjoint)

unite with others; increase the quality,
quantity, size or scope of)

|

__—increase

i segment, section !
i (divide into segments) !

i decrease, diminish, lessen, fall |
i (decrease in size, extent, or range) |

{increase (become bigger or i [,
greater in amount) E\Change magnitude

! separate, divide,
part (come apart) ;

ionize, ionise
(become converted into ions)

salinate/desalinate
(add/remove salt from)

make (undergo
fabrication or creation)

[

synthesize (combine and

form a synthesis)

size (make to a size; !

{ bring to a suitable size) | constellate

: change magnitude |
i (change in size or magnitude) :

change surface (undergo or caus!
to undergo a change in the surface)

(form a constellation or cluster)

[cool, cool off, cool down (lose intensity)]

flake (form into flakes)

modlfy (make less severe |
i orharsh or extreme) !

shear (become deformed by
forces tending to

stabilize, stabilise
| (become stable or more stable)

|
form—__

bead (form into beads, | ———
as of water or sweat, for example)

form, shape
assume a form or shape) |———change:
i pe) =

produce a shearing strain)

/ hydrolyze, hydrolyse (undergo hydrolysis; '
i decompose by reacting with water) :

[granulate, grain (form into grains)

change shape, change form, deform §
: i (assume a different shape or form) 7 !

ldestabilize, destabilise (become unstable)

dissolve, fade out, fade away

¢ cool, chill, cool down (loose heat | |
s ! ( D (become weaker)

{ change state, turn (undergo
a transformation or a change !
of position or action)

boil (come to the b0|I|ng point
and change from a liquid to vapor):

| \ empty, discharge (become
: empty or void of its content
[ Jige

break (be broken in)

ice up, frost over, ice over
(become covered with a layer of ice;
of a surface such as a window)

gel (become a gel)

onvert (change in nature, purpos

boil (immerse or be

or function;
undergo a chemical change)

immersed in a boiling liquid, |
often for cooking purposes) |

{freeze (change to ice)“
quefy (become I|qu|d)

homogenize, homogenise }

change mtegrlty ;
(change in physical make-| up)

(break up the fat globules of) |

: react (undergo a chemical reaction
i react with another substance
{solvate (undergo ¢ under certain conditions)

; onvert into a solvate) ;

i heat, hot up, hedc-ap-y--------pmmnesyoen
(gam heat or get hot)

{integrate (become one; become |ntegrated)
homogenize, homogenise |
reak up the fat globules of) |

‘explode, detonate, blow up, set off
(cause to burst with a
violent release of energy)

thicken, |nsp|ssate \
(make viscous or dense) change in integrity
/ T~

convert ™

immobilize, immobilise
caramelize, caramelise

malt (turn into malt,
become malt)

crystallize, crystallise,
crystalize, crystalise

(cause to form crystals or |
assume crystalline form) |

liquefy, flux, liquify !
(become liquid or fluid when heated)

gasify, vaporize,

vaporlse, aerify (turn into gas)

divide, split, split up,

separate, dissever, carve up
| (separate into parts or portions) !

separate (divide
|nt0 components or constltuents)

burn, incinerate
(cause to undergo combustion) [ 1

blend, flux, mix,

break, separate, |

splitup, || condense (cause a gas or conflate, commingle,
fall apart, vapor to change into a liquid) lef fuse, coalesce, meld,
come apart combine, merge

(mix together
different elements)

! dissolve, resolve, break up i
: (cause to go into a solution)g
,,,,,,,,,,,,,,,,,,,,,, e
cook (transform and make
swtable for consumption by heatmg)

melt, meld (lose its distinct
outline or shape; blend gradually)

blend in, mix in

| (cause (something) to be mixed | |

with (something else))

A
blend
/ \
alloy (make an alloy of)
p—— admix (mix or blend)

-
separate

filter, filtrate, strain,

separate out, filter
out (remove by

passing through a filter)

extract (separate
(a metal) from an ore)

fwash (separate dirt or gravel from
: (precious minerals) :

Figure 7.2 Semantic links in the context of operand transformation as in WordNet [105]

Each of these terms can be divided further (omitted in Figure 7.1 because of simplicity).

Process viewpoint assumes a cause of change, involving regulation and adjustment, affecting

with processing, mixing, converting and so on. It is necessary to emphasize that processing or

cause of change as a root is understood in much broader sense making it less usable to

engineering applications. Roots involving moving of objects, connecting them or treating of
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living beings are presented separated of root that involves causing of a change. For a natural
language processing this holds, however it is necessary to include at least some of these as
processes which makes perfect sense in engineering application domains, thus opting for

considering more engineering oriented taxonomies.

7.3.2 SUMO

Like the WordNet, The Suggested Upper Merged Ontology (SUMO) is open for public and
being available for browsing over the Internet [106]. SUMO is the largest formal public
ontology in existence today [106]. It is written in SUO-KIF language and it achieved a
complete mapping over the WordNet lexicon of the English language, thus bringing together
formal and natural content in an acceptable way. SUMO ontology is axiomatic in its core
which allows an automated inference process, both offering both taxonomy and ontology over
related terms. Since all of the terms are formally defined their meanings are independent of

inference procedures applied and in that way create a robust inference system [106].

Most upper levels of the SUMO ontology are defined starting with the term entity thus
denoting both physical and abstract that exists in our surroundings (Figure 7.3). Such
approach is coherent with the application in the field of artificial intelligence, for example
with the general ontology as proposed by Russell and Norvig [103]. At this point of research
only the branch that is composed of physical entities is of interest. The latter encompass both
objects and processes. According to SUMO, an object is defined as a tangible and visible
entity. Some of its derived subclasses, i.e. agent, are closely related to the inference processes
built in SUMO. Although these objects might prove handy for the generation of operand
transformation operands they exceed the scope of the method presented within this thesis.
Thus, the self-connected object with its instances is of interest, however as it will be shown
later in this section, the taxonomy of operands will be adopted as given within engineering
product function reconciliation, adopted as a part of NIST [23]. Moreover, SUMO specifies
objects as of biological origins, as material, content bearing objects as information container
and collections [18], [106]. Such specification is somewhat coherent with the one given by
TTS where operands are categorised as being of biological organ, material, information and
energy. Process in SUMO is defined as a sustained phenomenon or one marked by gradual
changes through a series of states. Such definition of process is coherent with engineering
understanding of process and technical processes as given by the TTS, thus more closely

related to the scope of this thesis than the definition provided by WordNet stating that process
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denotes subject to a process or treatment, with the aim of readying for some purpose,
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Definition of technical processes is given by [18] as a process of technical product usage in
which necessary effects are need for purposeful transformation of operands; hence, technical
product is also an operator within technical process. Only the root node cause of a change in
Figure 7.1 as provided by the WordNet specifies process like definition as cause to change,
make different and cause a transformation provided in much broader sense than required by

the engineering applications.

Process branch of SUMO (see shaded terms in Figure 7.3) with its derived instances bringing
together motion, transfer, internal change, internal process as making or creation and dual-
process defined as any process that requires two, non-identical patients (in the scope of this
thesis patient equals operand), creates a rational basis for engineering applications. In Figure
7.3 only the initial taxonomy of SUMO with some extensions in respect to processes is

shown.

7.3.3 Functional basis for engineering design

It was shown [22], [23] that is necessary to reach common and shared understanding of
product’s functions in order to enable unbiased communication between product development
process participants. Functional decomposition that is performed by designer, like
decomposition of TP’s, requires at least a taxonomy, or standardisation of terms being used
that is, to enable understanding between participators of the product development process.
The need for standardization is even more emphasized especially if considering computational
reasoning systems. Unlike the WordNet which was constructed based on the epistemology of
the general terms as natural language, or as in the case of the SUMO which extended the
WordNet further towards more specific engineering domains, defining functional basis was
driven only by the present design methodologies and research papers in the field of
engineering design [23]. Differences and similarities identified within considered
methodologies like Systematic Design [4] and TRIZ [5], and research papers manage to result
with product function taxonomy. The expected impact of creating functional basis was
intended towards lessening of the ambiguities which occur at the function modelling level as a
result of similarities between terms applied for description of the same function. By
specifying vocabulary the efficiency of the function modelling could be increased in respect
to the effort necessary to process, interpret and facilitate the exchange of information about
technical product. If bearing in mind artificial reasoning systems utilized for any form of

automation of design than synonyms which are regular and understandable within a context of
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a natural language could as such present an impeccable barrier to inference system of a
computer. Thus, at least with a tendency to follow principle of parsimony choosing a
minimalist approach to define vocabulary of function modelling in spite of issues which may
emerge since not all of the concepts could be described in the way only as prescribed.
Embracing a standard vocabulary a long term repositories of technical products’ function
models could be established. Consequently the whole project was accepted by the NIST as a

standard.

Table 7.1 shows taxonomy of operands, or as more commonly referred to as taxonomy of
operand flows, which are as such being proposed by functional basis [22], [23]. Operand
taxonomy is composed as a result of extensive in-domain scientific literature review including
reconciliation of functional modelling terms adopted from known design methodologies like
Systematic design from Pahl and Beitz [4] and Altshuller’s TRIZ [5]. The truth is that the
taxonomy presented in Table 7.1 is not directly derived from TTS, however the TTS itself
follows Systematic approach as its natural precursor [4] but only addressing operand
taxonomy in its basics specifying operands as materials, energy or signal without further more
detail specification. Further extension of taxonomy presented in Table 7.1 is possible if for
each of the operands additional attributes would be considered and then defined following the
SUMO and the WordNet respectively. These would be able to accept their change of states
according to predefined type graph structure. This thesis, however, will adopt state change
and internal change as proposed by SUMO (Figure 7.3) in conjunction with taxonomy of
operands as in Table 7.1 only in a form of suggestion required when defining production
rules. The classification of operands remains the same whether they are transformed within
technical process as a requirement to satisfy existing market needs or within technical product
itself as required by technical process to deliver the necessary effects. Label formation is
adopted as proposed by [22] and [23], where term applied must contain level of interest
combined with its class root, e.g. optical energy where the former is a tertiary and the latter is
a class/primary term. Moreover, a power conjugate is provided for bond-graph system

modelling driven by propagation of energy flows, thus offering more precise description of

energy type.

Table 7.2 shows taxonomy of technical products’ functions. Similarly to operand flows, the
taxonomy of functions emerged from the reconciliation of different taxonomies as proposed
by Pahl and Beitz, Hundal and Altshuller [23]. Approach involved an analysis of each of the

terms in respect to already constructed structure.
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Table 7.1 A taxonomy of operands (operand flows) as accepted by NIST [23]

Cla.ss Secondary Tertiary Correspondents
(Primary)
Material Human Hand, foot, head
Gas Homogeneous
Liquid Incompressible, compressible, homogeneous
Solid Object Rigid-body, elastic-body, widget
Particulate
Composite
Plasma
Mixture Gas-gas
Liquid-liquid
Solid-solid
Solid-Liquid Aggregate
Liquid-Gas
Solid-Gas
Solid-Liquid-Gas
Colloidal Aerosol
Signal Status Auditory Tone, word
Olfactory
Tactile Temperature, pressure, roughness
Taste
Visual Position, displacement
Control Analog Oscillatory
Discrete Binary
Energy Human
Acoustic
Biological
Chemical
Electrical
Electromagnetic Optical
Solar
Hydraulic
Magnetic
Mechanical Rotational
Translational
Pneumatic
Radioactive/Nuclear
Thermal

If a term overlaps and if a term is not a synonym of an existing term and it is a subset of that
term, than it would be placed lower in the taxonomy; the other way around occurs when a
new term presents a superset, thus placing the term above in the hierarchy the corresponding
structure. Synonyms adjoined rather than added as new terms in the hierarchy. According to

TTS [1], the functions of technical process are equated in one-to-one mapping to processes.

Processes that are performed as vertical transformation, or vertical action chain that is (see
Figure 2.7), are those which are performed within and only by technical product itself. It is
possible only to speculate why have the authors of the TTS chosen to put focus on product
functions instead of technical system bound processes although they are equivalent and
following Pahl and Beitz legacy might be one plausible explanation. However, the latter does

not diminish issues which appear when technical processes are not being considered, it is
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quite the contrary since being unaware of underlying reasoning can hinder the search even

more.
Table 7.2 Taxonomy of technical products’ functions as accepted by NIST [23]
Class )
) Secondary Tertiary Correspondents
(Primary)
Branch Separate Isolate, sever, disjoin
Divide Detach, isolate, release, sort, split, disconnect, subtract
Extract Refine, filter, purify, percolate, strain, clear
Remove Cut, drill, lathe, polish, sand
Distribute Diffuse, dispel, disperse, dissipate, diverge, scatter
Channel Import Form entrance, allow, input, capture
Export Dispose, eject, emit, empty, remove, destroy, eliminate
Transfer Carry, deliver
Transport Advance, lift, move
Transmit Conduct, convey
Guide Direct, shift, steer, straighten, switch
Translate Move, relocate
Rotate Spin, turn
Allow DOF Constrain, unfasten, unlock
Connect Couple Associate, connect
Join Assemble, fasten
Link Attach
Mix Add, blend, coalesce, combine, pack
Control Magnitude Actuate Enable, initiate, start, turn-on
Regulate Control, equalize, limit, maintain
Increase Allow, open
Decrease Close, delay, interrupt
Change Adjust, modulate, clear, demodulate, invert, normalize,
rectify, reset, scale, vary, modify
Increment Amplify, enhance, magnify, multiply
Decrement Attenuate, dampen, reduce
Shape Compact, compress, crush, pierce, deform, form
Condition Prepare, adapt, treat
Stop End, halt, pause, interrupt, restrain
Prevent Disable, turn-off
Inhibit Shield, insulate, protect, resist
Convert Convert Condense, create, decode, differentiate, digitize, encode,
evaporate, generate, integrate, liquefy, process, solidify,
transform
Provision Store Accumulate
Contain Capture, enclose
Collect Absorb, consume, fill, reserve
Supply Provide, replenish, retrieve
Signal Sense Feel, determine
Detect Discern, perceive, recognize
Measure Identify, locate
Indicate Announce, show, denote, record, register
Track Mark, time
Display Emit, expose, select
Process Compare, calculate, check
Support Stabilize Steady
Secure Constrain, hold, place, fix
Position Align, locate, orient

According to the TTS [1] technical processes are broader in scope since they involve more

types of operators with operations based on various technological principles, what is in

contrast to the transformation within a technical system. Still the classification of basic or

common operations can be taken as the same no matter which action chain is considered. This
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is an explanation of why to reuse work done to create basis for technical product’s function
modelling and then to broaden it with technical process specific operations (as in Figure 7.1

and Figure 7.3) in the form of suggestion or guidelines for production rules definition.

7.4 Examples of methods application

The knowledge formalisation about technical processes, technological principles and
necessary effects shown within these examples is conducted using functional basis expanded
with process related terms as suggested by the WordNet and SUMO. Examples of different
levels of technical systems complexity will be considered. The two examples that are
presented here are intended to serve as a proof of concepts showing all of the possibilities and
drawbacks of developed method for generation of operand transformation variants. These

findings will provide foundations for the future research.

7.4.1 Tea-brewing process

The decomposition of the technical process of tea-brewing is adopted from the literature [7]
and will serve as a first example of the method’s application. The formulated task is the
design of an tea-brewing machine [7]. The task assumes that the energy needed for the
heating of water is provided by the technical system that is ought to be designed. The black-

box process formulated according to requirements is shown in the following figure:

_ Water | ) | Tea (hot)
Tea being
_Tealeaves ,| BREWED [Tealeaves

(waste)

Figure 7.4 Tea-brewing black-box process formulation

The possible technologies for tea preparation are numerous some of which are very well
known. Thus the search performed by the method developed within this thesis probably will
not yield an innovative solution, but still the results provided will gave insights to designers
what effects are required to sustain operand transformation process. In Figure 7.4 the input to
the search is specified in the process’ black-box representation. Operands in their required
input states are water and tea leaves, and the desired output states are tea (hot) and tea leaves
(waste). Provision of energy for heating by the machine is also checked during the
decomposition. The search objective function is formulated as the minimization of the number
of operations needed to accomplish the required transformation. Knowledge about technical

processes, technological (working) principles and necessary effects is formalized as proposed
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by the knowledge formalization foundations provided within this Chapter (Section 7.3).
Formalization guidelines included the Functional Basis (Table 7.1, Table 7.2), the WordNet
(Figure 7.1) and the SUMO (Figure 7.3).

What designer has to do first is to formalise knowledge about tea-brewing process thus
creating tea-brewing graph-grammar. First the method requires definition of 7P entities X ;.
Then, designer has to map these to labelled multidigraph for representation of technical
processes (Definition 6.3) of size |V| = 4, thus creating set of rule building blocks. For an
example the black-box process formulation as shown in Figure 7.4 can be used (in, out and eff
nodes omitted from picture). These building blocks can be used to specify left hand sides of
graph-grammar productions p: L — R of size |V, | = 4, or in combination with other building
blocks to form right hand sides with |V| > 4. Table 7.3 shows context-free grammar CFGp
of tea brewing processes expressed in BNF with its alphabet Xy, (Definition 6.10). Grammar
was enumerated in accordance with Section 5.4 and expressions in (5.14) to be able to apply
grammatical evolution. Table 7.5 shows graph-grammar GG = (§,P;,4) of tea-brewing
which is defined in accordance to Definition 6.8. Operands Od € X,; mapped to arce € E
are depicted ontop of black head arrows, where effects Ef f € Xgrr (Human force, regulation
and energy) are shown over default arrows. For simplicity reasons left hand side of the
productions p: L — R are represented only as tokens as represented in Table 7.3, where the
right hand sides of productions are shown in full as multigraphs, thus operation of brewing
defined with token < brewed >, in multifigraph representation equals black-box formulation
as given in Table 7.4. That holds for each of the tokens. The graph transformation algorithm
for decomposition of technical processes performs as defined in Chapter 6 and within pseudo-

code given in (6.5):
e rewriting procedure for each of decomposition steps is followed as prescribed by

token sequence (Table 7.3),

e cach of thep:L — R is applied by first indetifying soroundigns of L by determining

match m(L) in host graph (current derivation step) as defined in Defintion 6.6,
e [Lisreplaced with R,
e connecting procedure p is applied to connect R to host graph’s structure (Section 6.5)

Technical process synthesis is depicted as derivation tree in Figure 7.5. Production application

sequences of all possible theoretical variants that can be created providing grammars as
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defined in Table 7.3 and Table 7.5 yields in only 6 variants. The variant with minimal number

of operations is shaded.

Table 7.3 Context-free grammar of tea-brewing process in BNF

(-infused, _infused’, _stored, _stored’,\
5 = _exchanged, _exchanged', _mixed,
$ _stored, _separated,_separated’, .
_separated’,_separated'”’ 2
S
{brewed, heated, infused, mixed,} =
Vs = &
separated, stored =
o)
E
Ss = < brewed > %
Production rule set Ps:
< brewed > =< heated >< mixed >< infused >< separated > 0)
| < mixed >< infused >< separated > )
< heated > 1= _stored _exchanged (0)
| _stored _exchanged’ (1)
< mixed > = _mixed (0)
| _mixed _stored’ (1)
< separated > | ::= _separated _separated’ (0)
| _separated'_separated’"’ (1)
<infused > | := _infused (0)
| _infused'’ (1)
Table 7.4 Correspondence between CFGrp and TTS
CFGrp TTS Remark
2 Operations No more decompositions possible
Vs Sub-processes Can be decomposed further
Ss Technical process Starting point
Formalized knowledge about TP -showing only _
Ps ) Set of productions a = f§
operation sequences
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Table 7.5 Graph-grammar of tea-brewing

< brewed > (0)
Water Tea
. Water (hOt) i h Tea
Water | Water is Water, tea Teais | (oY) | Leaves, tea [ (hot)
— (hot) . )
hetaed are mixed | Teg infused Tea | separated L,
Tea leaves leaves Tea
leaves leaves
(waste)
< brewed > (1)
Water : Tea (hot)
W Water, tea | Water (hot) [ Tea'is Tea (hot) | Leaves, tea >
are mixed |Tea leaves infused | Tealeaves | separated L
Tea leaves
leaves (waste)
< heated > (0) < heated > (1)
; . | Water. ) Water
Water | Water is |Water| Heatis |Water Water | Water is Heat is W
stored exchanged | (hot) stored exchanged
Human H
force T EnerQYT RegT fg?::ZnT Heater TReg. Heatei
< separated > (0) < infused > (0)
Tea Tea Tea (hOt)T - Grapple Water - Tea
(hot) leaves | Tea, grapple eavels, > _(hot) | Teais | (hot)
separated Tea | 9r@PPe | Tea Tea infused | Tea
Graopl leaves L Separated | eq leaves leaves
rapple te),
Human C(;Arlaa;pelé Human (waste) Reg.
force force
< separated > (1) < infused > (1)
Tea Tea (hot) Infuser (-:;e?) Tea
(hot) | Tea inf Leaves, |—» o Teais (hot)
’ ::,;;ai? Tea | infuser | Teq infused
Infuser | separated [ * Infuser
Teal eaves leaves Tea leaves Tea
ea eavesH (waste), H (waste) leaves (waste)
uman Infuser uman Reg. Infuser
force force
< mixed > (0) < mixed > (1)
Water Tea Water
(hot) | Water, te: _I\{VatT;r(h"t), leaves "| Tea stored | (hot) | Water, inf. | Water (hot)
are mixed | Tea leaves o ininfuser .| are mixed | Infuser
Tea
leaves Infuser Infuser Tea leaves
Energy Human Tea leaves
(Mech.) force

To explain the derivation process in Figure 7.5, triggered rules are labelled by their left-hand-
side with the applied rule alternative following in brackets. Rewriting rules < brewed > (0)
and < brewed > (1) denote two different processes, the first carries out automated heating
of the water and the second assumes the water is already heated when it enters the process.
For this reason, given that water (hot) is not an input to the starting black box model (Figure

7.5), the sequence on the right hand side in Figure 7.5 is infeasible, thus purely theoretical.
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Branch < heated > (1) is determined to be unfeasible as well, since it requires heat from an

external object and not from the product itself.

<brewed>(0) <brewed>(1)
<heated>(0) <heated>(1)
<mixed>(0) | <mixed>(1) <mixed>(0) <mixed>(1) <mixed>(0) <mixed>(1)

<infused>(0) /<infused>(1) <infused>(0) <infused>(1) <infused>(0) <infused>(1)

separated>(0)<separated>(1) <separated>(0) <separated>(1) <separated>(0) <separated>(1)

Figure 7.5 Production application sequence of tea-brewing process (only left hand sides of applied

production is shown, unfeasible branch expressed as dashed)

Assumption is that the heat is provided as an effect from the product. Finally, since both of
the branches under the < heated > (0) sub-process are feasible under the given
requirements, the < mixed > (0) symbol has one transformation less, therefore designating
the fit rewriting sequence as shown in Figure 7.5. Rewritings that may include sequences
containing, for an example < mixed > (1) and < infused > (0), are omitted since they
violate the requirement that at least one operation should participate in the transformation of
at least one input operand (as defined in Chapter 6). Best-fit working principles under given
criteria and based on black-box in Figure 7.4 would consist of the following set of operations:

_stored, _exchanged, _mixed, _infused, separated, _separated’.

7.4.2 Design of stiffened panel assembly line

The purpose of this example is to show how the variation on technical process level can yield
in different function structure of technical system that has to be designed. The scope of this
thesis is set to technical process level with no further search on the function level. However,
effects necessary for the transformation of operands are taken into account and are a part of
the technical process synthesis, and based on those effects the dependency between technical

process and technical system can be shown. It can be only hypothesized what kind of

122



KNOWLEDGE FORMALISATION AND EXAMPLES

grammar is required, and what level of concreteness in respect to operands’ attributes is
necessary to achieve design automation on both technical process and technical system levels.
Thus, the example will try to exemplify at least one difference between technical systems’
function structures that could have emerged only as the result of the variation on technical

process level.

The formulated task is the design of an automated assembly line that is able to deliver
stiffened panels. What designer needs to gain are insights about working principles on which
the transformation of operands is performed, as well as the necessary effects that need to be
provided to sustain the transformation. Within this example’s grammar, the process of
stiffened panel assembly is divided within three logical steps: step one is the positioning of
steel plates and their assembly into a steel panel, step two comprises of cutting of panel to
desired dimensions and then, possible surface cleaning and setting of the markings for
placement of stiffeners. The final step comprises of stiffener transport and its positioning.
Step three is concluded with further distribution of the welded panel. In order to exemplify
differences on a technical system level emerging as the result of technical process search,
welding and riveting are considering as two alternatives for the creation of stiffened panel. It
is assumed that steel plates and stiffeners enter transformation in the state appropriate for
appliance of those two technologies including welding joints or holes required for riveting.
Example is taken from the naval architecture praxis referring to an assembly line for merchant
ship production, and in that way implicitly determining much of the attributes of operands
involved in the transformation as well as of the working principles. Since plates and stiffeners
could be welded or riveted four possible combinations may exists in respect of working
principles applied for joining structural parts together: a fully welded panel, a fully riveted
panel, and two combinations involving welded panel and riveted stiffeners or vice versa. If
the example’s grammar (Table 7.6-Table 7.11) would be even broader thus referring to
stiffened panel assembly like in the aviation industries, than welding and riveting alternatives
would increase in numbers even more. A completely general grammar may as well include

soldering, gluing and screwing as working principles of joining two structural parts together.

Depending on the required effects, the design of an assembly line is a complex process
involving solutions which may contain multitude of different technical systems. A black-box
formulation of such process as it might be specified by designer, with operands in their initial

and a desired state is given in Figure 7.6. Operands in their required input states are both
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plates and a stiffener, and the desired output is a stiffened panel. Effects are rendered as

unknowns.

___ Plate ] Stiffencd I

Plate lIfened panel | Stiffened
W ASSEMBLED W
— e

Figure 7.6 Stiffened panel assembly black-box process formulation

The search objective function is formulated as the minimization of the number of operations
needed to accomplish the required transformation; goal is set to find automated procedure
involving only welding as primary working principle and pneumatic based securing of the
panel structural elements. Table 7.6 and Table 7.7 show context-free grammar CFGrp of

stiffened panel assembly process expressed in BNF with its alphabet Xy, (Definition 6.10).

Grammar was enumerated in accordance with Section 5.4 and expressions in (5.14) to be able
to apply grammatical evolution. A correspondence between CFGrp and TTS is given in Table
7.6 and Table 7.7. It is assumed that the knowledge was formalised prior a designer actually
applies a tool. Additional stooping rule is introduced if iteration exceeded large enough
number of derivations. It was necessary to apply such condition since recursive rule have been
applied (see Table 7.6 at < plateWeld > (1), which represents two sides welding procedure
involving intermediate stage of turning the steel plate. High level operations of the stiffened
panel assembly involve joining plates into a panel, treating and preparing of panel’s surface
and finally a panel stiffening involving attaching of a stiffener to the panel. Two types of plate
welding technologies are considered: a manual arc welding (see Table 7.6 at
< plateWeld' > (0)) and a submerged fully automated arc welding under a granulate flux
(sand) (see Table 7.6 at < plateWeld' > (1)). Riveting of plates into a panel considers three
different variants in respect to the automation level imposed (see Table 7.6 at
< plateRivet' >) which results with the participation of different hand tools (or widgets
according to Table 7.1) used by the human operator. The same reasoning applies for panel
stiffening involving a welding (see Table 7.7 at < stfWeld >) and riveting based
technological principles (see Table 7.7 at < stfRivet >). The knowledge about technical
processes, technological (working) principles and necessary effects is formalized as proposed
by the knowledge formalization foundations provided within this Chapter (Section 7.3).
Formalization guidelines included Functional basis (Table 7.1, Table 7.2), WordNet (Figure
7.1) and SUMO (Figure 7.3). A graph-grammar of the stiffened panel assembly process is
shown in Table 7.8-Table 7.11.
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Table 7.6 Context-free grammar of stiffened panel assembly process in BNF (Part I)

.

_platePos, _panelRelease, _panelTurn, _plateSec’,
_plateSec"”, _plateWeld', _plateWeld",_maw,_saw
_rivetPos' _rivetSec' _impactRiv’,
_rivetPos" _rivetSec" _impactRiv"

Y. =< _granRemoved, plateSec', plateSec'"’, plateSec'” }
_panelCut,_stfPos,_brush,_blast, _abrSeparated’ %
_panelPos, _stfSec', _stfSec”,_stfSaw,_abrSeparated" '%
_rivetPos'" _rivetSec"' _impactRiv'", g
\ _rivetPos"" _rivetSec"" _impactRiv""" ~
(]
_ {spa, assembled, treated, stif fened, plateWeld, plateRivet, plateRivet’,} E
s plateSec,plateWeld', treated, dirtRemoved, stfWeld, stfRivet, stfSec
Ss =< spa >
Production rule set Ps:
< spa > n=< assembled >< treated >< stif fened > 0)
< assembled > = _platePos < plateWeld > (0)
| _platePos_ < plateRivet > (1)
< plateWeld > =< plateSec >< plateWeld' > _plateRelease 0)
| <plateWeld > _panelTurn < plateWeld > (1)
< plateRivet > i=< plateSec >< plateRivet' > _plateRelease (0)
< plateWeld' > = _maw (0)
| _saw_granRemoved (1
< plateRivet' > 1= _rivetPos' _rivetSec' _impactRiv' (0)
| _rivetPos’ _rivetSec" _impactRiv" (1)
| _rivetPos’ _rivetSec" _impactRiv" )
< plateSec > 1= _plateSec’ 0)
| _plateSec” (D
| _plateSec'”’ )
< treated > ::= _panelCut < dirtRemoved > _stfPos (0)
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Table 7.7 Context-free grammar of stiffened panel assembly process in BNF (Part II)

< dirtRemoved > | ::= _blast_abrSeparated’ 0)
| _brush )
< stif fened > ::= _panelPos < stfWeld > (0)
| _panelPos < stfRivet > (1
< stfWeld > n=< stfSec > _stfSaw_abrSeparated” (0)
< stfRivet > n=<stfSec > _rivetPos"' _rivetSec"' _impactRiv'" (0)
| < stfSec > _rivetPos"' _rivetSec"" _impactRiv""" (1)
| < stfSec > _rivetPos"" _rivetSec'""' _impactRiv"" )
<stfSec > n=_stfSec’ (0)
| stfSec” )

Table 7.8 Graph-grammar of stiffened panel assembly (Part I)

<spa > (0)
Plat Panel |
4’Plae Panel Panel Panel (treated) Panel |stiffened
—Plate__,) assembled treated stiffened | Ppanel
Stiffener
< assembled > (0)
Plate ) Plate
Plates  [(positioned) Plates Panel
—Plate\} hositioned |2t welded
(positioned)
< assembled > (1)
__ Plate | Plate
Plates (positioned) Plates Panel
Plate | positioned Plate | riveted >
(positioned)
< plateWeld > (0)
Plate Plate
—ostioned ®|  Plates [ (ecured vt:;eez Panel Panel Panel
Plate Plate (secured) EE—
(positioned) secured (secured) (1 side) released
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Table 7.9 Graph-grammar of stiffened panel assembly (Part II)

< plateWeld > (1)
Plate Plate Plat
(positioned) Plates Panel Panel ftioned)] ates Panel
Plate ane (positioned) »
= welded turned Plate welded
(positioned) (postioned) >
Energy
(mech.)
< plateRivet > (0)
Plate Plate R Plat
(positioned) Plates (secured) ~ates Panel Plates | Panel
Plate secured Plate rlv.eted (secured) released
— (both sides acc.)
(positioned) (secured)
< plateWeld' > (0) < plateWeld' > (1)
Plate (sec.
s:!itrz Panel Plate Esec; Sub d FrZ:nerquelg-t)eg Panel Panel (sec.)
-" b
Plate Manual arc | (secured) u melr(sjged g- granulate
(secured) welded Fumes arc welded [Ceramic separated Granulate
Electrode Electrom. slab
(coated) emmisons Granulate| gperqy Energy
Reg. (light) flux (electrical) | Reg. (pneumatic)
Energy (electric.) Ceramic slab
< plateRivet' > (0)
Plate (secured) Plate (secured) Plate (sec.)
e
Plate (secured)I Rivet Plate (secured) Rivet Plate (sec.) Impact Panel (sec.)
" i Rivet . . .
positioned | et (pos.) secured et (sec.) »  riveting
Rivetin > Pneumatic
. . o g > S
Gripping | Rivet Gripping Riveting supp Riveting | hammer
tool | (hot) Hyyman tool support pyman ; Human support
force force Pneumatic Force
hammer (Reg.)
< plateRivet' > (1)
Plate (secured) Plate (secured) Plate (sec.)
4’ P> .
Plate (secured),|  Rijyet  |Plate (secured) | Riyet Plate (sec.) Impact | Panel (sec.)
positioned |-Rvet (eos.) secured | Rivet(sec) I riveting
Gripping| Rivet P
ool (hot) Gripping
Human tool Energy Energy
force (Mech.) (Mech.)
< plateRivet' > (2)
Plate
Plate (sec.)
(secured) . Plate (secured)_| .
Plate Rlyet Plate (secured)” Rivet Plate (sec.) Impgct Panel (sec.)
(secured) positioned [ Rivet (pos ) secured [ Rivet (sec.) riveting
Rivet
(hot) Energy Energy Energy
(Mech.) (Mech.) (Mech.)
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Table 7.10 Graph-grammar of stiffened panel assembly (Part I11)

< plateSec > (0) < plateSec > (1) < plateSec > (2)
Plate Plate Plate Plate Plate Plate
(positioned) Plates (secured) (positioned) Plates (secured) (positioned) Plates (secured)
Plate Plate Plate Plate Plate Plate
(positioned) secu red (secured) (positioned) secu red (secured) (positioned) secu red (secured)
Energy Energy Energ)_/
(pneumatic) (electromag.) (hydraulic)
< treated > (0)
. . Panel
Panel Paqel Panel Dirt Panel Stiffener (prepared]
cutting removed position located
Particles Plasma Plasma
Energy marker marker
(heat) (waste) Reg.
< dirtRemoved > (0) < dirtRemoved > (1)
Panel,
Panel Panel Panel ﬂb bFl)arleld Pa_nel particles panel
brushed aste Fgfvgft':)s separated
bariclos | Brush Abrasive Abraslive Particles | |Abrasive
articles articles particles waste articles
Brush — Human | =~ te) i Energy Energy (waste) | |p
force (pneumatic) (pneumatic)
< stif fened > (0)
Panel .
Plate Panel (positioned)”| Stiffener | stiffened
(treated) positioned welded panel
Stiffener
< stif fened > (1)
Panel .
Plate Panel (positioned)”| Stiffener | stiffened
(treated) positioned riveted panel
Stiffener
< stfWeld >
Panel . Panel
(positioned) Stiffener | Siffener (sec) | gupmerged Stiffened | GPa"?I’t Stiffened
secured Arc welded Panel ranulate panel
. Free garnulate separated
Stiffener Granulate
‘ Energy flux Reg Energy Granulate
Energy ' (pneumatic)  flux
(pneumatic)
< stfRivet > (0)
Panel Panel Panel Panel .
(positioned) |  Stiffener  [sifener (sec) ] Rivet Siffener (sec.) Rivet Siffener (sec.) Impact  |Stiffened panel
secured positioned [-Rivet(pos) secured [vet(see) ol yeting -
Stiffener - . Riveting > _——Pneumatic
Rivet Gripping Riveting supp Riveting | hammer
Energy Gripping (hot) Human tool SupPOrt Hyman N Human support
tool force force Pneumatic| Force
hammer (Reg.)
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Table 7.11 Graph-grammar of stiffened panel assembly (Part IV)

< stfRivet > (1)
Panel - Panel Panel Panel
(positioned)”|  Stiffener [Siener (sec) Rivet Siffener (sec.) Rivet Siffener (sec.) Impact  |Stiffened panel
secured positioned |t (pos.) secured | Rivet(sec) riveting
Stiffener Rivet
. Gripping
Eneray Gr;zg:ng (hot) Human tool Energy Energy
force (Mech.) (Mech.)
< stfRivet > (2)
Panel ) Panel | - Panel - Panel .
(positioned)”| ~ Stiffener  [Siener (sec) Rivet Siffener (sec.) Rivet Siffener (sec.) »| Impact  [Stiffened panel
» secured positioned | Riet (pos) secured | Rivet(sec) | riveting
Stiffener .
Energy Rivet
(hot) Energy Energy Energy
(Mech.) (Mech.) (Mech.)
< stfSec > (0) < stfSec > (1)
Panel mb Panel
(positioned) Stiffener Panel Stiffener Manual arc |Siffener (secured)
secured Siffener prewelded Fumes
] secured Electrode
Stiffener ( ) (coated) Electrom.
Energy Energy Human emmison
(hydraulic) (electrical)| Force (Reg.) | (9ht)

Technical process synthesis is depicted as a tree in Figure 7.7 and Figure 7.8 showing all
theoretically possible production application sequences involving only welding or only
riveting. All possible theoretical variants that can be created providing grammars as defined in
Table 7.8-Table 7.11 also consider plate welding and stiffener riveting in combination and
vice versa. These derivations are not shown as per se, but are only denoted as welding and
riveting branches in Figure 7.7 and Figure 7.8. Goal search variant with minimal number of
operations under the given criteria of one-side welding and pneumatic based securing is
presented as gray-shaded in Figure 7.7. Number of technical process variants that can be
created using grammar of this example equals 600 not taking into an account 4 additional
branches involving < plateWeld > (1) (see Table 7.6) for which introduction of stopping
rule was necessary. If only welding alone is considered, than 168 variants exists, only riveting
yields in 108 variants. Combination of technological principles as welding of plates with
riveting of stiffeners produces 288 variants, and finally riveting of plates and welding of
stiffeners results in 36 operand transformation variants. It is important to stress out that the
mechanisms on which GE is based, a combination of genetic algorithm and formal grammar,
enable the creation only of the meaningful alternatives. If genetic programming would be
considered as the search mechanism of the method for generation of operand transformation
variants, than the number of variants generated would be immense and in the vast majority

not feasible (for GP a random selection of each operation as a building-block is assumed).
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Figure 7.7 Welding branch productions sequences of stiffened panel assembly (left hand sides of

productions shown, recursive branches expressed as dashed, goal gray-shaded)
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S
Welding branch ~ <SPa>(0)

AN

<assembled>(0) <assembled>(1)
T |
<plateRivet>(0)
Welding branch <treated>(0)
<stiffened>(0) <stiffened>(1)

<plateSec>(0) <plateSec>(1) <plateSec>(2)

<plateRivet'>(0) <plateRivet>(1)  <plateRivet'>(2) \X

<dirtRemoved>(0) <dirtRemoved>(1) Same possible
production
/I\ seguences as on

<stfRivet>(0)  <stfRivet>(1) <stfRivet>(2) Same possible the left hand side
production
<stfSec>(0) <StfSec>(1) sequences as on

the left hand side

Same possible production sequences as on the left hand side

Figure 7.8 Riveting branch productions sequences of stiffened panel assembly (left hand sides of

productions shown)

Based on grammar as defined in Table 7.6, Table 7.7 and Table 7.8-Table 7.11 an example of
how a variation on technical processes level may yield in different technical systems is shown
in Figure 7.9). Because of complexity, only excerpts two technical processes variants are
being depicted; one with fully automated panel riveting and the other with technical process
variant involving fully automated panel welding (as gray-shaded in Figure 7.7). Based on the
required effects one or more technical systems could be designed in order to sustain technical
process. This is the reason why the riveting based process is depicted with two technical
systems instead of one. Technical system for riveting must be capable of provisioning of
impact force, thus specifying one of the system’s functions. Consequently, the technical
system for welding must be capable of providing an electrical arc to be able to perform
unification of two plates into a panel. These two functions are direct consequences of different
technological (working) principles on which the operand transformation variants were
founded. There is no other way in which these two technical system’s functions could have
emerged. The same reasoning holds for securing of rivets and removal of granulate.
Moreover, the necessary output flows of technical systems, like rivets or welding wire for
instance, are also the result of different technical process that needs to be supported (it is

assumed that inputs and secondary outputs of technical systems are not the same). =
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Figure 7.9 Example of how a variation on technical process level may yield in different technical systems
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7.5 Implications to this thesis

The method for generation of operand transformation variants presented within this thesis is
focused on the in-domain knowledge thus creating an extensible and robust problem solver.
The same knowledge can often be used in several ways; extending and intertwine at the
knowledge level is often simpler than doing the same to the programming code. Thus, the
focus can be put just at formalisation, what is truly necessary for and relevant to the domain
of interest. Knowledge driven systems are easily adaptable for the domains exhibiting similar
solution modelling principles, and since the early design stages opt towards graph
representation it is intended to as a part of the further research efforts to cover the whole of
the conceptual design phase. To maintain an amount of the consistency among the production

rules at least a shared understanding in respect to technical process related terms must exist.

In order to define production rules the definitions about terms used must be clear to users in
order to be able for the computational system to produce coherent results in the end. Thus, a
prerequisite for knowledge generalization is at least having taxonomy of related terms thus
creating possibilities to organize knowledge more efficiently and if necessary to apply
predicate calculus of order as felt fit. Generalisation enables to put forward only what is
necessary to describe each of the objects, thus eliminating the irrelevant details and
maintaining the production rule redundancy. Moreover, the proposed method offers
possibilities for induction of new grammar if desired. Both the extension of the proposed
model to other stages of product development and utilisation of grammar induction to create
and add bottom-up navigation possibilities thus creating an iterative search process are set as
aims of the future research. The examples shown within this Chapter are label bounded
having no knowledge generalisation possibilities. As defined in Chapter 6 operands, effects
and operations attached to multidigraph’s edges are technical process labels and not objects of
their respective classes. The extension to include attributes, types and inheritance and to even
define operations as a part of algebraic system over operands and effects would require
definition of type graph and typed graph, thus creating a robust system. It is suggested to
define type graph of technical processes based on the SUMO ontology (Figure 7.3) and
extended with the operand taxonomy as proposed by reconciled functional basis as adopted by
the NIST (Table 7.1). The definition of type graphs will enable to utilize the full power of
stochastic search of grammatical evolution, since rules would not have to be defined so strict

and label bound, but would be instead tied to types of objects.
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8. COMPUTATIONAL TOOL’S ARCHITECTURE

In the computer field, the moment of truth is a running program; all else is prophecy (Herb

Simon, taken from The Shape of Automation: For Men and Management [111]).

The aim of this thesis is to provide a support to technical process synthesis which is according
to the TTS a step within conceptual development stage. Devising a graph-grammar based
method for technical process synthesis provides theoretical fundaments for its implementation
as a tool expressed within a computational environment. When completed such tool would
offer designers the possibility to computationally explore solution space of technical
processes in order to select the most feasible one in respect to existing market and societal
needs. To be fast and efficient is a necessity in today’s product development process, and
computational tools can help provide these features to the overall design process. In the
research projects conducted within the Design Science, realisation of a computational tool is
considered as a practical part of the research effort, since it allows creation of results as it was
once envisaged at the beginning of a project. Most often, the practical objective is a prime
motivation behind the existence and realisation of theoretical research objectives. However,
development of a computational tool up to a stage in which it is completed to an application-
ready state is a daunting task for itself. Thus, the computational tool in this thesis that was
completed up to a prototype stage driven by an intention to be somehow able to test and to
produce results, however ending up to being much more than a sole computer implementation
valuable notion about how to design the method itself have emerged. Hence, design
methodology and experience from practice which show us how engineers design, or if
referring even more generally than how do designers design, learns us that order of prescribed
activities is most often not followed and that it depends both on the individual involved and
the amass of external creation process related causes. What is tried to be argued here now is
that the implementation of a method within a computational environment can and does teach
us a lot about the method itself. Like design of artificial, thesis development is an endless
aiming to perfection abductive process, where it’s developed and involved concepts having
mutual impacts on each other. Thus, the usual strict division [10] to theoretical objectives
which encompasses development of a method and to practical objectives as method’s
implementation doesn’t hold since both of them carry parts of each other as a result of their

emergence from a conceptually overlapping and iterative process. The latter expresses the
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precise way in which the famous Herb Simon’s [111] statement put as an opening to this

Chapter is viewed upon within this thesis.

This Chapter will try to present in brief the architecture of the computational tool that has
been developed based on devised method for generation of operand transformation variants.
Class diagrams of labelled multidigraph and its corresponding data structures, as well as class
diagrams of grammatical evolution which are a part of an extensive genetic algorithm
framework are developed in-house by the author of this thesis. It was, and still is a part of an
effort to create a general purpose engineering problem multi-objective optimiser. Developed
optimisation framework together with labelled multi-digraph should provide solid foundations
for achieving long term research objective (see Chapter 1) towards creating complete graph-
grammar based computational design framework for early design. Computational tool
architecture will be represented in brief. The basic data structures will be represented as well.

Finally, a graphical user interface screen shots will be shown.

8.1 Architecture of computational tool

The kernel of the computational system that will perform the synthesis on the technical
process level is shown in Figure 8.1. The BNF library is defined by the assistance of a
designer through a visual builder interface which comprises a Preparation module. From the
author’s own experience it has been learned that designing production rule libraries by hand
as text files becomes tedious and almost impossible to keep errorless especially when
considering structures like labelled multidigraphs. As a result of a visual user interface for
production rule builder has been designed. This has provided an enhancement to overall
functionality. BNF rule library should contain a large enough set of rules through which
meaningful and useful results can be obtained. In Chapter 7 it was suggested to define
production rules by extending functional basis with process related terms according to the
WordNet and the SUMO ontology. It is a necessity for user to follow these suggestions in
order to create a consistent rule database; however no automated consistency check in respect
to these suggestions has been implemented yet. Preparation module both stores and retrieves
production rules from the BNF rule library as a part of an ongoing rule development process

and refinement.

Execution module as shown in Figure 8.1 contains grammatical evolution based search and

optimiser that produces operand transformation variants. To create rule derivation sequences,
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the solver must make a request to the BNF rule library to find an appropriate rewriting rule
according to the expression from the previous section. Information flow between designer,
library and solver is possible for the input of the problem formulation, addition of new rules

and provision of assistance to the solver.

4 , -Computational tool— — — — — )

I

Preparation module

Visual rule
builder

External
sources

External
sources

rule Lib.

|
|
|
I Input
Retreiving ' I il
I specification
rules I Execution module: I
|
: GE search I
|
|
/
. Dttt ettt - Y,
\)

Operand transformation variants

Figure 8.1 Schematics of the kernel of system for generation of operand transformation variants

Both the designer and the BNF rule library can communicate with external resources beyond
the system boundary to pass or retrieve new rule definitions. External sources for the tool may
well include other BNF rule libraries. By choosing the initial axiom symbol, which is a
technical process, the designer partially formulates the input information from which the
rewriting procedure begins. To fully define the necessary input data, the information about
operands and their initial and desired states must be provided. The black box representation of
the search formulation is defined by technical operands with input states which are

transformed to output states through a general technical process.

Findings about design process, and technical system that has to be designed are equally
important for a successful product development [1], [4], [7], [8]. The Theory of Technical
Systems uses same the modelling principles, transformation system paradigm, for technical
processes and technical systems and design processes. Thus, design process is defined as a
process of information transformation from design specifications based on the existing needs
and requirements to complete technical specification of technical system [1]. Operators

belonging to executive part of such transformation system are designer and various tools that
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aid him or her during the course of design. The method embedded within the computational

tool developed in this thesis participates in design process as shown in Figure 8.2:

(—Design process/Conceptual design/TP synthesis stage——————

TP
decomposed
?,Li%';f’gﬁ‘ Computational design synthesis ;T;,’;ZSQZZ‘SZL
T—> echnical process synthesis >
technical Information transformation and operations
process with needed
effects
Results
Rule Designer Decomposed
I - -
specification U Thr_ee tier
Technical svst , architecture
—T - 7 Technical system | - -
Black-box Executi ) |
Preparation TP search xecution X .
Module formulation Module | Prese_ntatlon
GuI cul : tier
e A
1. . L o L
\ _ P |
,\-Shared comps.- !
Store/ | : Black-box Results I
Retrieve : | TP search Decomposed .
rules NI z formulation TP |
y -
_ _ | Logic
Preparation Execution tier
module | ‘—————-— module |
I
Store/ N 0949 0———-——- . :
Retrieve Retrieve |
rules rules |
I
| Data storage
BNF and
Rule Lib. | retreival tier
\ ) |
\_ J

Figure 8.2. Three-tier architecture with tool's participation in design process

Figure 8.2 clearly models how designer interacts with the computational tool developed in
this thesis, and how such interaction affects design process in order to improve the technical
system being designed (see Chapter 1). The effects delivered by designer and computational
tools are all of these activities which are necessary to perform computational synthesis of
technical processes. It is clearly shown that designer was not replaced by computational tool.
Thus, the results provided just advice designer to facilitate better search across the solution
space of operand transformation. Tier modelling is often used for representing physical

distribution among components of an application [112] in contrast to application’s logical
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groupings. Figure 8.2 shows three-tier modelling approach for design of computational tool
within this thesis. Although at the current development stage computational tool and rule
database are located completely at client side, future implementations consider relocating
BNF Rule Lib. on server to allow multi-user access. At the moment rule database is
developed in MS Access and computational tool is programmed in MS C# with the
communication between the two done in SQL. The future implementation may consider
graphical user interfaces and processing parts as separate applications within distributed

client-server online system.

8.1.1 Architectures of Preparation and Execution modules

Processing level is composed of preparation and execution module containing a number of
libraries and components. Figure 8.3 presents component diagrams of Database management

(DMU) and Graphic management (GMU) units:

Interface
Interface to GUI
from Engine Operand Sond
transformation . . en
Interface variants  —Graphic management unit graphical
to Engine °blg°df to
Graphical
O\ :: Graphi c{l orsze;f: Graphic{l Interact with
Craph-grammar <Database management unit—-— | obj. generator obj. display user
Data EW t based validation  ~
Valldator vent based va |§n/ Interface
) Dynamic from GUI
? Conversion to validator w Event based
=] Graph-grammar \\ user
interaction
Parser AN /
f Graph\ic{I . Graphic$:I
Data = Data N // object parser obj. manager
/
reader writter “ N / S
\ AN | J

Retrieve and
store data
using SQL

BNF
Rule Lib.

Extracting data from
graph-grammars

Figure 8.3 Component diagrams of DMU and GMU with data/object flow

Database management unit has a task to establish connection to the database and to retrieve
and store production rules. All data that has been retrieved from the database is run through
the Parser to obtain rule syntax and. Hence, based on data from DMU Parser creates

appropriate graph-grammar representation using Multidigraph and BNF dynamic link
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libraries. Afterwards, productions are to test the basic rule semantic in order to minimize
possible errors which may end up stored inside the database. Errors might have appeared due
to lost connection during write process or because of direct intervention within database. Data
with errors is discarded as not valid. Data validator has an interface towards Engine which

requires production rules in order to create operand transformation variants.

Execution moduleﬁ

-

/—Preparation module Send
Black-box buidling blocks/ 2 )
5 ] Transformation variants GUI
GUI Multi- to GUI
BNF ) .
DLL digraph Interact with user
DLL
IDSfijnd/tr_etreivle Black-box
roducton rules specification
to/from GUI / Operand P
Interact with M ] transformation
User GMU < variants =
Engine
Retrieve S 9
data /. oraph-
gfammal‘ /
E| -
DMU  —1 Graph-grammar
GE
A
\_ ) DLL
N J
~———— Retrieve and

store data using
SQL

BNF
Rule Lib.

Figure 8.4 Architecture of Preparation and Execution modules with principle components, dynamic

link libraries and dataflow

Unlike DMU which is completely procedural, Graphic management unit is partly event based
since it interacts with the user. After the validation of the data retrieved from the DMU, the
data is being sent to the Graphic objects generator. GMU has to prepare graphical
representation whether they are production rules, technical processes or technical process
decompositions thus creating proper instances and storing them in the memory. These are
then read by the Graphic objects display component and sent via an interface to Graphical
user interface (GUI) to be displayed. Hence, only Data writer in DMU and Graphic object
parser in GMU are components only used by one module, Preparation module that is. The rest
of DMU and GMU components are shared by both modules (Figure 8.4). Interaction with the

user is monitored by Graphical object manager. All of the events within GUI are interpreted
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and passed further to Dynamic validator which informs the user about his or hers actions
through Graphic objects display for both modules. When the user decides to save the created
rule (Preparation module only), the graphical rule representation is parsed into suitable form,
accepted by DMU and written to the database. The architectures of Preparation and Execution

modules are shown in Figure 8.4.

Figure 8.4 shows how components and dynamic link libraries are reused among modules.
Database interaction through DMU and graphical representation by GMU are developed
robust and therefore could be used in both of the main modules. BNF DLL for production
rules formulation and Multidigraph DLL as data model shared by both modules; where GE
DLL as grammatical evolution library is utilized only by Execution module. BNF DLL and
Multidigraph DLL are used by all of the components.

Execution module consists of several interconnected components as shown in Figure 8.4. The
central component of the whole system is simply referred to as the Engine. It has a task to
generate operand transformation variants as specified by input black-box specification. All of
the three available dynamic link libraries are used by this component. Up on execution
module start graph-grammar is delivered to Engine by DMU. Simultaneously, GMU stores in
memory and than delivers necessary graphical representations of TP Entities to GUI so that
the user can specify black-box input to search. Based on the multidigraph node rewriting
principle as specified in Chapter 6 and a set of given constraints and objective functions given
universal virtues as specified within Chapter 3, variants are created. Node rewritings are
accomplished through FEngine component’s built-in methods with the assistance of
Multidigraph’s own functionalities as specified in Figure 8.5. Operand transformation

variants when obtained are passed to the GMU, and then delivered back to GUI.

8.2 Class diagrams

Class diagrams shown in Figure 8.5 are data models of technical process itself alongside all of
the relevant technical process entities. The centre class is MultiGraph with its duty to
represent and sustain transformation in a computational sense. In respect to its mathematical
model already shown in Table 6.1, MultiGraph is a derived class out of topmost abstract class
of BaseArray<T> and of DependenciesFlow respectively. BaseArray<T> is a dynamic
matrix of size m X n composed of n lists of size m accepting via a template 7" any kind of

object as an input to its cells. Using a list of lists to structure matrix as a collection of its rows
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is just another way of matrix representation differing slightly from the usual array data type.
Every row within Rows is of type BaseRow<T> with its corresponding attributes as shown in
Figure 8.5. Although more complex than array, BaseArray<T> as structured as it shown
allows the application of fast built-in list type methods which are altogether chained through a

set of BaseArray<T>’s own row and column manipulation methods.

DependenciesFlow is an instance of BaseArray<FlowArrow> representing a matrix that has
FlowRow for each row as an instance of BaseRow<FlowRow>, thus accepting the FlowArrow
type within its cells (as defined within Table 6.1). FlowArrow is an instance of abstract
BaseArrow<FlowArrow> representing a relation between nodes of graph when the
MultiGraph is instantiated. DependenciesFlow was conceived within an intermediate
development stage leading towards MultiGraph and although the question of programming
pragmatics could be raised here, the structure of DependenciesFlow survived as a legacy part
of an effort to design a MultiGraph class. FlowArrow represent a bag of arcs that can be set
between two nodes of graph. Attributes of a FlowArrow class contain pointers to nodes within
source and target for easier accessibility. FlowArrow is a collection of arcs between two
nodes. Moreover, FlowArrow class accepts single or a collection of operands thus
representing operand flows between consecutive operations. Since DependenciesFlow accepts
collections of FlowArrows, thus it is possible to represent complex relations occurring within
labelled multidigraph. Flow class is biased as it represents both operands and effects
depending on the value of the string within type property. Although such class construction
should be avoided it will remain until next source upgrade. As shown class flow contains state
as given by Table 7.2 as a publicly accessible collection defined in order to be able to track
history of state transition, in case type property is set as operand. Operations are derived
classes starting from abstract class of BaseNode. Ultimately two types exist; an operation and
a DummyNode required for the modelling of source and target of operands coming towards
and out of the transformation system. Likewise, the former is also utilised for modelling the
source of effects. The similar applies for the source of effects. Finally, these entire
aforementioned classes tie up together in MultiGraph class which is designed in order to
create objected-oriented model of a transformation that is occurring within technical
processes. Unlike classes from which it has been derived, MultiGraph class is a graph thus
accepting a list of operators for its nodes. Correspondence between TP data model and

method as defined within Chapter 6 is shown in the following table:
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Table 8.1 Correspondence between TP data model and the method as in Chapter 6.

Class TTS/method correspondent Remark
Operation, If operation can be
Operation decomposed than it is

Inherits OperationNode and
BaseNode

TP entity - Definition 6.1,
Graph labelling ly: V - Xy,
Definition 6.2.

referred to as sub-process.
Top most sub-process is a

process.

DummyNode
Inherits OperationNode and
BaseNode

Source and target of operand flows,
Source of effects,

Graph labelling ly: V = X,
Definition 6.2.

Add just for technical
process modelling
purposes to avoid
dangling arcs within

multidigraph.

Operand or Effect,
TP entity - Definition 6.1,

Operand or effect

Flow . depending on the value

Graph labelling lg: E = Xoq U Zggf,
of type property.

Definition 6.2.
Bag of arcs e,
Incidence matrix 1, Table 6.1,

FlowArrow ] Accepts Flow(s)
Source and target mappings, s: E = V,

Inherits BaseArrow (Operand or effect)

t:E->V,
Definition 6.2.

FlowArrows

Row of incidence matrix,

Table 6.1.

Accepts FlowArrow(s).

FlowRows

Inherits BaseRow

Container of incidence matrix rows,

Table 6.1

Accepts FlowArrows(s).

Multidigraph
Inherits DependeciesFlow and

BaseArray

Technical process,

Multidigraph G = (V,E, s, t,1g, 1)),
Definition 6.2,

Left or right hand side of production
rulep:L - R,

Section 6.3.

As described in Chapter 6,
left and right hand side of
productions are also

multidigraphs. Accepts all

of the classes.
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Figure 8.6 shows a class diagram of a grammatical evolution framework. Correspondence
between GE search and optimisation classes and GE is shown in Table 8.2. Abstract class of
individual solution to a problem at hand is a BaseChromo<T> again accepting any object
through template 7 to become as a chromosomal gene. Attributes of BaseChromo<T> contain
multiple lists, properties and methods that are used in this thesis or can be used when the
results of further research will be implemented. String is a string of 7" denoting a collection
of genes that constitute chromosome. Thus, BinaryChromo 1is a class derived as
BaseChromo<byte> representing common binary genetic algorithm chromosome. Again, the
applicability and robustness of grammatical evolution and genetic algorithms can be
reemphasized here by. To begin with, an excerpt of a larger MOGA library is applied for a
new purpose, to drive grammatical evolution that is, and vice versa the whole grammatical
evolution is built on top of an underlying genetic algorithm. Algorithms that is used for
MOGA is NSGA-II [113] with plans to add Omni-optimizer [114]. Optimisation related
classes as shown in Figure 8.6 like single-objective ranking or sorting are directly reusable for
both GA and GE. Finally, a GrammarChromo is derived from BinaryChromo with addition of
special BNF language and related methods. It can be observed that the list phenotype of
GrammarChromo is a new definition in respect to BinaryChromo since it contains a
collection of MultiGraphs what was necessary to represent the course of technical processes
synthesis which is conducted as a derivation procedure resulting in creation of single
MultiGraph at each of the derivation steps (see example as given in Figure 6.6). TokenBNF is

used to establish a connection between rules in BNF and graphs.

Table 8.2 Correspondence between GE related classes and its definition as in Chapter 5.

Class GE/method correspondent Remark

GrammarChromo Accepts Multidigraph
Population member a as in (5.1) and Table 5.1/ | / o roc whole

Inherits BinaryChromo and . . o
satisfies relation (5.25) decomposition

process

BaseChromo

GrammarRecombination | Binary recombination

Inherits BaseRecombination | P'(t) « recombination(P(t), 0,), as in (5.13)

GrammarMutation Binary mutation
Inherits BaseMutation P"(t) « mutation(P'(t), ©,,), as in (5.13)
Parameters
GrammarPop P(t) as given within (5.1) 2,05, O, Oy
Inherits BasePop defined over
population

145




COMPUTATIONAL TOOL’S ARCHITECTURE

<aWkq>wsn3aseq 4
ssep >
3 wspyakeuig

A 1 ()eeIsApesis
SPOIRW 1=

58| J1BURD.
¥ <l>uwspl3eseg

wopuey : pul
<dAq>dogaseg : dogindur

<dAg>0)91edaseg 4
ssepy

¥ v9SsoWAieurg

PO =

SSB|) JLIBURD
+syssaumiIAgHos

 ()eAIBIUIRAIR(GO
()aouelsIalqOULION @
*)S3u01J032 edANUSPT
2 (Uepuispuld ey
L)
[

(Quougssddodiunoy

PIoA : ()IIvOSNaseg

PloA : (JvOsOnaseg
SPOURIW [=

58| 1RSqY JLAURD

<1>o0j32/ed9seqg

o

ui : ()asedwo) #y
SPOWRRW 1=
“OMOS : JapIOMOS L
U1 1 XSPUIHOS 5=
saadold 1=
“HOS @ J3PIOHOS ™
Ul : xepur gt
spPRH =

SSe|D) J1IBURD
***31edWo)OLIUID

2jebapg
3] P3PS 9ebaRa
ur : ()asedwo) iy Buipuznsag R BE
SPOYIBW = Buipusosy <o)Aq>dodoseg : dodyo
<aAq>owoaydaseg : piyd
. mmm_u>u_‘_w=wu Lnu3 <aJAq>owoiydaseg : zaualed
bty e e <a)Ag>owoiydaseg : Tjuased
ebajpg
53] ssou)~ajebajeq
ploA : (Jog s
SPOUIPW = ur : ()asedwo) #y sadAL paisaN =
SPOYRW 1= PIOA : (Juoneuiquiody
<21Aq>0)218495RG PIOA : ()BumeWBUIPMOI)
ssep) SSe|) 1AL SPOURW =
3 IIVOSNAreurg (¥ ‘reqasssulldhguos
Q <2)Aq>U0NRUIqUI0IDYISEY -+
ploA : (Jog =
10A : )
1': (seduon 4 uoneuiquodYIewels
SPOWRI =

"yoaseq : ()aUoON”Awopuedsies
<, >owouy)aseg : ()Ajwopueyos[es
ayoeseg : ()ypieasbasyuedigiops
roaydaseg : (JyosessulgiuedAgises
urpuy
3jgnop : (Jeodpuy

PIOA @ ()WIOJIUNJSA0SSOLD)
PIoA : ()1dz49n0SS01D)
PIOA : ()1dT49A0SS01D)

u & ()yoteashseurg

SPOUIBW [=

58| 1PRSqY JLAURD
<.>uoneuiquiorsyaseg

ploA ¢ ()diiguguoneniy #
SPOYRIW =

<31Aq>uoneniNase
ssep
[¥) uonenwjednewwess

s (upuy

1Gnop : (eopuy

pIoA : ()1equisyoelday
SPOUIRW =

SSB|D 1esqy LU
® <4>uopeinposeg |

PIOA : (JNUT oy
“"0lA0 7 +) ()dogiewwels) ey
PIOA : (Jliv4e3)D)
PIoA : (uroLAieurg
SPOURIW =
ul ¢ usbuls %
sapedold =
U Tuebuys g
<U>3SN ¢ spwruwedled \.
<yoys>is : depsusn
SPIRH =

<@)Aq>dodeseq 4
ssep
6] dodiewwess

()l0jesownuUIAN
100q : ()IXONSAOW
SPORN 1=
<1>owoiydaseq : Juaun) R
sapadold =
Ul Xapuru
<1>dogaseg : uopa|jod 4
SspRH =

ssep)
Jojesdwnuzipy

apebajpa
osunjubissy @jebajaq

sadAL pajsaN =
PIOA : (JUOS #
pIoA : ()sdoidowoiylas
pIoA : (Jowodydaoe|day
pIoA : ()pugwoigabueyanowsy
a|gnop : (Jo1607
3|gnop : ()4eaur]
JojesswnuIAl : ()lojesswnuieg
ploA : ()iiv-e3D
pIoA : ()Bupjueyubissy
pioA : (Jabueyppy
SPOURIW =

>32323353D

ul : aziS|0odbumey %
Wkl
ul: epwie) s
U1 : JBynuBpIRUOD &S
sansadold [=
W Tw e
1 : “eziS|00dbumeW ¢
W
Ul : Tepwe| :
Jur : Taaypuspreuop ¢

1 >0WO0IYDISeg>1SI] | SWOSOWOID ¢

PRI =

sse|) 10eASqy dUAUAD
<1>dodaseg

()10jesoWnUIA .
ur ¢ (Janjeadosguinioy A 100G : (JIXONSAOW #
pIoA : (juolAeurg &% SPOURI [=
SpoyIeW = 12(qo : uBun) 5
dNguayol : ebawQ %ﬂ saadold =
souadosd = U & Xapuru \ﬁ
“eI9RNW>ISI ¢ adAjousyd & “*>0wolyJaseg : UORDI0d af
<JuI>ISM : siejeweled SPRH
4NgudoL : TebawQ @
spRM = ssep)
53] Jojesswnuzin
cEEPUEmcm_Mm_M sadAl paisaN =
3 owoJydiewwels PIOA : ()4aquisjyaoe|day
Ple AW = ()i 199
ur : (Jolssedwo) #
SPOURIW =

jur: (uebojuroL 4f

ur: ()1emod 4

=0 T +) 9|qnop : ()asueaur] a,f
pioA : (JAleuigoapodAesn 4
pIoA : (Jleayolheuig 4=

pIoA : ()apoDAeioAteulg
SPOURIW =

<d|qnop>3sI7 : adAjousyd &
SpiRld

<aMkq>owoiydaseg 4
ssep
2 owoaydhieuig

3|qnop : ssauyjuey mmw

U 1 jueyolled 5

3|qnop : ssaud phi
sapadold =

<1>3sm:TBus A
3|qnop : “ssaupuey AF
<3|qnop>1siT : saadold  #
Ul : jueyoped 4T
<3[gnop>1sI : SiejPwered  #
<3|qnop>1sr1 : S2ARIGO ¢
d|gnop : Tssauly A
<9[qQnop>3sI : sulensuo) ¢
spRH =

SSe|) 1RSqY JLAURD

(¥ <1>owouydsseg

o

iy

Figure 8.6 Class diagram of grammatical evolution search and optimisation framework
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BasePop<T> is an abstract class used for instancing of the population of individuals
depending on template 7 linked to the types of chromosomes and their genes (Figure 8.6).
The Chromosome list presents a collection of chromosomes. Various population and overall
algorithm related parameters like population size A, matting population size, or offspring
population size u are raised to the level of population. Alongside population manipulation and
ranking methods, an enumerator class has been encapsulated into population as well as a
collection of pointers to the functions required for more robust and reduction in size code
programming. GrammarPop 1is directly derived from BasePop< GrammarChromo >, since
the relation between BaseChromo and GrammarChromo already exists. Initialization of

population is embedded into the respective population class.

Genetic algorithm operators or EVOPs: recombination and mutation are also being shown in
Figure 8.6. Abstract class BaseRecombination<T> consist of chunks or elements that were
programmed as broad in scope, if possible, as permitted by abstract class, thus containing
variants of crossover methods, random number generation and selection.
GrammarRecombination class is instantiated from BaseRecombination<byte> as all of the
operators take place at the level of an embedded genetic algorithm. Few special delegates
used for programming function exchange within recombination methods where also defined.
Recombination is a general purpose method for gene exchange, where as CrowdingMatting is
required by the NSGA-II MOGA. Likewise, the BaseMutation<T> abstract class is used to
derive GrammaticalMutation using byte type for 7. Again, mutation as a randomized bit-flip

occurs at the level of genetic algorithm.

What is left to be described in Figure 8.6 are the Pareto optimisation classes, single objective
elitism principle class and few helping structures including interface comparers required to
apply build-in quicksort over ranked individuals. BinaryMOSGA and BinaryNSGAII, as well
as BinaryElitism can be applied directly to GrammarPop that accepts byte type via template.
The BNF DLL that is shown in Figure 8.4 is used for production rule definition. It accepts
Multidigraph as it is necessary to define left and right hand sides of productions.

8.3GUI

As presented within Figure 8.4 it can be seen that the Preparation and the Execution modules
each have their own graphical user interfaces. Since GMU is built event based towards the

user than the interaction provided assures less effort for the user in achieving desired

147



COMPUTATIONAL TOOL’S ARCHITECTURE

computational support. Such approach enables capturing of the users actions and triggering of
the appropriate system’s response whenever a prescribed event has occurred. Paramount
responsibility of the system is to assure correct and valid rule creation; otherwise the
usefulness of the results produced might not be satisfactory. Since the error checking is being
implemented at the GUI level by GMU event based Dynamic validatior, and within
procedural DMU by Data validator during data retrieval, there is no need to perform error
checking when the method is being implemented within Engine component in Execution
module. Although not implemented yet, it is be most likely that different application utilities
would be required not only to help manage rule syntax, but also to check out and verify the
usefulness and impact to the consistency of the knowledge data-base if considered rule would

be created.

Two separate modules with their own GUI’s allow users to only actively participate in
knowledge formalisation, just to conduct search, or both. In continuance two GUI screenshots
are provided: in Figure 8.7 screenshot of interactive rule builder GUI in Preparation module
through which productions are specified using TP Entities as building-blocks and in Figure
8.8 a screenshot of synthesized tea-brewing process (example 7.4.1) as shown in Execution’s
module GUI. In both figures presented objects are not just the static pictures, they are
interactive thus responding to the user actions. Consistency of the graphical objects during
users interaction is monitored by Graphical object manager which are then interpreted and

passed to the Dynamic validatior (Figure 8.3).

T 1P Grammar Builder 1.8 [=1l2l

Figure 8.7 Screenshot of interactive rule builder GUI in Preparation module
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Finally, when the user defines goals and constraints the generation of optimal variants can

start. If no stopping criteria have been set, the user can always stop the search process as felt

fit.
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Figure 8.8 Screenshot of synthesized tea-brewing process (example 7.4.1) as shown in Execution’s

module GUI

8.4 Implications to this thesis

Success of computational tools most often depends on their visual interfaces which allow
users better interaction in order to get required support. At the current level of tool’s
development with no application of advanced algorithms for graph visualizations, the result
will be displayed in form as shown by example in Figure 8.8. Algorithms that are able to
untangle and depict graph in a manner comprehensible to the user have not yet been
implemented within the computational tool. Complexity management methods and tools like
dependency structure matrix will also be considered for that purpose. Computational tool as
presented in this Chapter is built to a prototype stages in order to be able to see and test
whether the proposed modelling can deliver results. Object oriented architecture of presented

computational tool permits reuse of its components and dynamic link libraries in order to
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further develop computational support for other stages of conceptual design phase. Deciding
to model three-tier architecture Figure 8.2 assures multi-user participation allowing access to
the BNF rule library to construct rules further, and/or to conduct search based on these stored

existing rules.
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9. CONCLUSIONS AND FURTHER WORK

The concluding Chapter will present a summary of findings that emerged as the result of this
research. An outlook of the aims and objectives as defined within the introductory Chapter of
this thesis will be provided in respect to what was actually achieved. For the closing, the

future research directions will be laid out.

9.1 Research summary

The aim of this thesis as formulated within its introductory Chapter is to provide a support to
the beginning of the conceptual development phase by offering designers the possibility to
computationally synthesise technical processes in order to obtain operand transformation
variants in the respect to known technological principles. In contrast to the conventional
research conducted in the field of Design Science, within the Computational Design Synthesis
development of a method for design support always assumes the complementary development
of a computational tool. Thus, in order to accomplish the postulated aim it was proposed that
following objectives have to be met: to devise a method for generation of operand
transformation variants based on different technological (working) principles, and to
implement that method within computational tool. The tool is built to a completion stage that
allows method’s verification as a proof of concept. It is expected that future testing within the
engineering practice will be conducted as a part of more extensive early design computational
support framework. According to the accepted Design Research Methodology, development

of this research project can be summarized in the following four steps:

1. Analysis and state-of-the-art review. Analysis consisted of the multidisciplinary
literature review in the field of engineering design synthesis focusing on the synthesis
of technical processes and to the establishment of the state-of-the-art review on current
research efforts in the field of Computational designs synthesis. The literature review
on the engineering design synthesis provided with findings necessary to generally
understand the phenomenon of problem solving and cognitive aspects of solution
synthesis as a part of problem solving activity. It was tried to be established what kind
of logical models of engineering design synthesis exits and especially what is the role
of technical process synthesis within the design process. The state-of-the-art review on

the Computational Design Synthesis served the purpose to determine theoretical and
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methodological fundaments of the current CDS research efforts, to compare and
systematize them in order to focus this research. Based on the findings it was
concluded that contribution to the field of the CDS could be accomplished if a method
for technical process synthesis could be devised. To accomplish that goal it was
required to propose and develop the computational model of technical process as well

as the method that could perform technical process synthesis on proposed method.

Determination of theoretical and methodological foundations to this research. It
was necessary to determine the means necessary for devising of the method for
generation of operand transformation variants. Selection of theoretical fundaments
was of course predefined, since only the Theory of Technical Systems and its related
theories like Domain Theory acknowledge the existence of technical processes.
Nevertheless, teleological approach that TTS advocates proved to be new for the CDS,
thus even more firmly determining the selected course of the research. Efforts where
then turned to the exploration of the existent mathematical concepts that could be used
for modelling of technical processes and related synthesis methods. Based on the
findings from the fields of computation, artificial intelligence and the CDS it was
concluded to conceive the method as knowledge oriented rather than problem oriented.
Knowledge oriented methods achieve knowledge formalisation on a set of production
rules which is used rather than encoding the knowledge fixed within the method itself,
programming code that is. Based on the latter it was established that knowledge about
technical processes, technological (working) principles and necessary effects can be
formalised within a set of production rules. Since the roots of TTS are drawn from the
Systems Theory which opts for graph based system modelling, than it was concluded
to model technical process as graph and to base the method for technical processes as
a production driven transformation system. Optimisation as a frequent engineering
demand was also considered as a research question. Thus, to enable optimization of
technical processes it was found out that the existing method of grammatical evolution
combines productions and genetic algorithms to perform search, which proofs to be
ideal selection for the considered rule based formalisation principle and the
multidigraph based modelling. However, at the moment the optimization is limited to
goal based constrained search, lacking the introduction of technical process attributes
which would enable metrics and more useful consideration of the universal virtues [8]

of technical processes required for the optimisation.
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3. Contributing to the fields of the Design Science and the Computational Design
Synthesis. Based on all of the findings in the previous two stages of this research, led
to the development of a graph grammar based method for synthesis of technical
process. For modelling of technical process itself a labelled directed multigraph with
operations, operands and effect was created. Thus, the method was conceived as a
breadth-first node rewriting based on the knowledge about technical process that is
formalised within set of productions. Grammatical evolution was applied for the goal
based search. In addition, to be able to perform technical process synthesis, a set of
embedding mechanisms and connecting rules had to be defined in order to perform

multidigraphs decomposition.

4. Verification of the research results. Like with the fundamental sciences, it is
necessary that by any means verify the research results or at least to provide the
foundation on which the verification could be conducted. The focus of this research
which also is one of the expected contributions to the research filed was the
development of the method for decomposition of technical processes. It was
hypothesised that if the method would be production rule based, than it is possible to
formalise engineering knowledge within a set of production rules. Later it was shown
that these productions will be graph grammar based. Thus, for the purposes of the
research results verification a computational tool was conceived and realised.
Foundations for the computational tool development were as defined within the
method for generation of operand transformation variants. In the Chapter 7 examples
were presented in which graph grammars of tea brewing and stiffened panel assembly
were constructed. Using developed method it was shown that technical processes can
be synthesized efficiently using formalised knowledge within set of productions.
Knowledge about TP’s was formalised on the foundations of online lexicon of English
language WordNet [105], the Suggested Upper Merged Ontology (SUMO) [106], and
recommendations for reconciliation of product function related terms accepted by the

NIST [23].

9.2 Discussion

Problems, issues and prospects which motivated the author for his research and the creation of

the computational support for synthesis of technical processes where postulated in the
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introductory Chapter of this thesis (Section 1.3.). Hereby the findings on these questions are

summarized as follows:

Based on the findings it was concluded to devise a graph grammar based method for
generation of operand transformation variants (Figure 6.1). A multitude of methods in
the CDS today follow the similar knowledge—driven approach to the development of
methods and tools intended for design support. The increase in the performance and
the range of problems that can be tackled depends on the extents of the knowledge that
has been formalised, rather than in the change of algorithm itself. By applying graph
grammar transformations using a set of predefined rules, and by following a breadth-
first node rewriting principle, it is possible to conduct the decomposition of technical
process. The decomposition starts with black-box goal formulation and ends in
synthesized operand transformation process. In order to achieve embedding of each of
the rewritings into the host graph structure, special connection procedures had to be
devised. The algorithm of technical process decomposition as well as accompanied
connecting procedures is given in pseudo-code in (6.5). The knowledge based graph
grammar methods do not emulate human cognitive processes and reasoning, but they
do enable application of advanced high-level computational processes like machine
induction or grammar inference, what can be considered as a part of the future

research.

For the modelling of technical processes a multi-digraph with operations, operands
and effects was created (Definitions 6.2 and 6.3). Multigraph permits an addition of
more than one relation between the each of the nodes what was necessary for technical
process modelling (see Table 6.1). Following the object-based approach resulted in
operations, operands and effects being mapped (pointed) to the graph’s nodes and
arcs. A graph as a carrier structure is invariant to complexity of the objects that have
been assigned, thus creating possibilities for further development. Since the method
for decomposition is defined over the same multigraph type, than it is also invariant to
the type of objects being assigned to graph’s nodes and arcs. Operations, operands and
effects are process related objects defined as TP entities (Definition 6.1) and they
constitute graph’s vocabulary. At the current stage of development only their labels

are used by the system.

154



CONCLUSIONS AND FURTHER WORK

Operand transformation variants can be created as starting from the black-box
representation and than creating all possible rewritings providing graph grammar and
transformation algorithm as in (6.5). By applying all possible combinations of
production rules the whole of the language of considered technical process is
generated. However, to generate only the variant which can be described as a
constrained goal, a grammatical evolution is applied within this thesis ((5.14), (5.21)-
(5.24)). Since at the current stage of development TP entities do not permit more
attributes since these would require technical process knowledge generalisation and
systematization, it is not possible to construct useful metrics that could describe
universal virtues of technical process as defined by the Domain Theory [8] (see
Section 2.3), what is necessary to conduct engineering optimisation. Although multi-
objective support exists within GE LIB. (Figure 8.6), a constrained goal formulated

search is the maximum what can be achieved.

Since the proposed method for the generation of operand transformation variants is
knowledge-driven it was necessary to explore requirements what need to be met in
order to formalise the knowledge about technical processes within a set of production
rules. It is important to stress out that aims of this thesis did not include research about
the content of knowledge about technical processes in respect to its systematization
and generalisation. It was intended to provide means to formalise that knowledge
within a set of production rules and to utilise these productions by the developed
method to generate operand transformation variants. During the research it was found
out that knowledge about technical processes still does not exists in accessible open
taxonomies or ontologies as per se (Chapter 7). Thus it was necessary to at least
suggest guidelines for knowledge formalisation which should be followed when
defining production rules. This is an explanation of why to reuse the work done to
create the basis for technical product’s function modelling and then to broaden it with

process specific operations (as in Figure 7.1 and Figure 7.3).

Success of the research that involves deployment of a new method and computational tool is
most often measured by comparing it to the other related scientific work. However, theoretical
foundations as well as the level of modelling using multidigraphs or applying the GE for
optimisation still do not exist within the CDS. The TTS being rather unknown to the CDS
community was for the first time introduced as theoretical foundation within this thesis, which

altogether makes difficult to evaluate this work in comparison to the others. The intention of
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this research was to lay foundations for the development of TTS/GE complete graph grammar
based framework for support of early design phases. GE is a robust problem solver which can
be applicable as for any of the phases in the early design, assuming that engineering
knowledge is formalized using production rules. Almost all of design theories follow systemic
reasoning, thus resulting with the early design modelling as graph based transformation
systems. Therefore, when developing computational support as is the case within this thesis, it
is natural to unify graph grammars with grammar based stochastic search algorithm. It is to be
assumed that the full impact of these and similar tools to the design process and technical
products being designed can be evaluated when more complete frameworks appear within the
real life engineering environments. Based on the presented findings and on the achieved
research aims and objectives, it can be concluded that that the research hypothesis, as

postulated in the introduction of this thesis, is verified.

9.3 Limitations

Although the formal model of technical processes is defined generic in respect to types of 7P
entities that can be mapped to multidigraphs vertices and arcs as defined in Chapter 6, the
method for technical process synthesis has limitations in respect to type of 7P entities. At the
current research stage method is a proof of a concept, thus being constrained to only accept as
TP entities labels. Limiting of TP entities to labels poses a serious constrain because of which
production rules cannot be designed generic, but instead the rules must account for every
operand in its particular state even if the operation is applicable for all of these operands. One
of the consequences is an unnecessary build-up of production rules which may diminish the
constancy of the rules database. The other drawback of keeping the TP entities as labels is the
lack of attributes, or the universal virtues [8] of technical process, which may be used as
optimisation objectives. Thus although the support for multi-objective optimisation is already
developed, at the moment GE is only utilized for a constrained goal based search limited to

minimal number of operations and utilization of specific technological principles.

9.4 Further work

The expected continuation of this work would include a further development and
improvement of computational tool for generation of operand transformation variants in
technical processes. Another long-term objective might be the creation of an overall graph

grammar and grammatical evolution based computational framework for the early design
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support. What is aimed for is the integration of the method within one the existent
frameworks in the CDS with the consideration of the possible application in the industry. The
future work will also consider the introduction of taxonomies and ontologies as type graphs of
technical process entities in order to maintain rules consistency, to make easier definition of
production rules, enable multi-objective optimisation and finally to be able to facilitate higher

semantic reasoning within the computational design support system.
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