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Abstract 

Histopathology, despite being the gold standard as a diagnostic tool, does not always provide a 

correct diagnosis for different pleural lesions. Although great progress was made in this field, the 

problem to differentiate between reactive and malignant pleural lesions still stimulates the search 

for additional diagnostic tools. Our research using vibrational spectroscopy and PCA statistical 

modeling represents a potentially useful tool to approach the problem. The objective method this 

paper explores is based on the correlation between different types of pleural lesions and their 

vibrational spectra. Obtained tissue spectra recorded by infrared spectroscopy allowed us to 

categorize spectra in different groups using a created PCA statistical model. The PCA model was 

built using tissues of known pathology as the model group. The validation samples were then 

used to confirm the functionality of our PCA model. Student's T-test was also used for 

comparing samples in paired groups. The PCA model was able to clearly differentiate the spectra 
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of mesothelioma, metastasis and reactive changes (inflammation), and place them in discrete 

groups. Thus, we showed that FT-IR spectroscopy combined with PCA can differentiate pleural 

lesions with high sensitivity and specificity. This new approach could contribute in objectively 

differentiating specific pleural lesions, thus helping pathologists to better diagnose difficult 

pleural samples but also could shed additional light into the biology of malignant pleural 

mesothelioma.  

Keywords: Pleura, mesothelioma, inflammation, metastatic adenocarcinoma, Fourier transform 

infrared spectroscopy, FT-IR spectroscopy, principal component analysis, PCA 

 

Introduction  

Malignant mesothelioma is a rare tumor with extremely poor prognosis and a tendency to 

increase its incidence.1,2 The challenge to objectively diagnose this type of tumor is rather huge 

as histologic patterns of malignant mesothelioma can imitate the appearance of many epithelial 

and nonepithelial malignancies.3 Moreover, some reactive changes of mesothelial cells can also 

mimic malignant mesothelioma.3–6 Reactive mesothelial changes that can mimic malignancy can 

be seen in the infection, infarction, systemic diseases, inflammatory changes, radiotherapy and 

chemotherapy, liver diseases, and in secondary changes in association with primary or metastatic 

tumors.7 

 For the time being and despite its subjectivity, histopathological evaluation remains the 

golden standard in diagnostics.5,8 Immunohistochemistry is especially important in differential 

diagnosis of malignant pleural mesothelioma and helps in differentiating primary from metastatic 

disease, for example pulmonary adenocarcinoma.4 Standard immunohistochemical panel 

includes antibodies specific to mesothelium (calretinin, thrombomodulin, WT-1, D2-40, CK 5/6, 

mesothelin) and negative markers (such as CEA, TTF-1, MOC-31, Ber Ep4).9–13 A panel, 

including at least two positive and two negative stains helps in identifying lesions of the 

mesothelial origin.9 

 For pathology, the main challenge lies in differentiating between malignant and reactive 

mesothelial cells. Tumor invasion into a lung or surrounding fat and muscle tissue presently 

remains the only criterion of malignancy.3,9,14–16 Immunohistochemistry markers CD147 and 

GLUT-1 were used to differentiate reactive from malignant mesothelial cells, and they were 

shown to have sensitivity of 88.8% and 90.9% specificity.17 Recent studies have analyzed 
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possible markers for differentiating malignant from benign mesothelial cells, like loss of BAP-1 

expression by immunohistochemistry and p16 deletion by FISH, together showing high 

specificity (100%) and good sensitivity representing the currently applied standard diagnostic 

tool.18–23 Also, MTAP and BAP-1 immunohistochemistry in combination were shown to be 

highly specific (100%) for diagnosis of malignant mesothelioma and sensitive in 90% of 

cases.24,25 CD47, being a molecule that inhibits the phagocytosis, was found to be overexpressed 

in malignant mesothelioma and in combination with BAP-1 was shown to be sensitive (78%) and 

specific (100%) to differentiate malignant mesothelioma from reactive mesothelial cells. 26 

It has recently been shown that tumor cells can be distinguished from normal counterparts by 

comparing their Fourier transform infrared (FT-IR) spectra.27–29 The necessary information for 

the differentiation between normal and abnormal cell and tissues is based on their biochemical 

content which generates small differences in their infrared spectra (i.e., intensity, bandwidth and 

spectral position of the vibrational band).30–33 On the other hand, FT-IR spectroscopy offers 

many advantages in the cancer diagnosis such as simplicity, reproducibility, short procedures, 

and is a relatively cost-effective process.34–36 This method was also successfully used to 

distinguish other benign from malignant changes in organs such as colon, prostate, breast, cervix, 

stomach, oral, liver, skin, thyroid and esophageus.37–41 

 The goal of our study was to evaluate FT-IR spectroscopy as an analytical method in 

mesothelial proliferations and as a possible diagnostic tool in pleural pathology. Finding a new 

diagnostic method should increase the diagnostic accuracy and help avoid misdiagnosis and 

inadequate treatment.  

 

Materials and Methods 

Tissue Samples 

In our study, we compared the spectra of tissue samples from 32 patients with different 

pathology in order to identify a possible difference between them. Tissue samples of malignant 

mesothelioma of the pleura (mesothelioma), pleuritis, i.e., inflammation, adenocarcinoma 

metastatic to pleura (metastasis), and normal pleura were obtained from the paraffin blocks 

retrieved from the archives of the Department of Pathology, University of Zagreb School of 

Medicine. All used blocks originated from different patients.  

Table I. Types and number of tissue samples.  
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Tissue type Number 

of 

patients 

Number of 

sections per 

patient 

Sections for 

histopathology evaluation 

(5 µm thick) 

Samples for FT-

IR (10 µm 

thick) 

Normal pleura 2 22 2 40 

Inflammation 10 23 2 210 

Mesothelioma 10 23 2 210 

Metastasis 10 23 2 210 

Total 32 91 8 670 

 As shown in Table I, 23 tissue sections were cut and prepared from each tissue block 

(patient) except for the normal pleura where we had 22 sections. The cutting was done on a 

sliding microtome (pfmmedical, Germany) after which the sections were placed on glass slides. 

The first and the last section were 5 μm thick, while the 21 others were 10 μm thick. The first 

and the last section were stained with hematoxylin and eosin (H&E) and re-examined by a 

pathologist using optical microscope in order to ascertain the tissue type. On the other hand, each 

of the 21 tissue sections (20 for normal pleura) from every block became a sample for FT-IR 

spectroscopy hence FT-IR spectrum was recorded from all 670 samples. Samples for FT-IR 

spectroscopy went through the deparaffinization process in which the removal of paraffin was 

done following standard histology protocols. The standard process of deparaffinization implies 

removal of paraffin from the tissue sample and rehydration of the cells. The tissue samples were 

put on silicon windows, placed in thermostat (60 °C) for one hour and deparaffinized by a 

standard procedure according to Bancroft et al.42 (xylene, alcohol, distilled water). Then, the 

samples were placed in vacuum for 60 minutes to extract remaining water since FT-IR spectra 

are sensitive to it (removing excess water from tissue, not from the cells) and thereafter their IR 

spectra were recorded.  

 

FT-IR Spectroscopy 

Vibrational spectra of the samples were recorded with PerkinElmer Spectrum GX spectrometer 

equipped with liquid N2 refrigerated mercury–cadmium–telluride (MCT) detector. Optical grade 
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silicon windows were used for acquiring 1000 scan background, which was automatically 

subtracted from tissue spectra. 100 scans were recorded for each tissue section in order to obtain 

the vibrational spectra, which lasted around 5 min. for each sample. Data were acquired in 450–

4000 cm–1 spectral range, in transmission mode with a resolution of 4 cm–1. The sample area 

with diameter of ~1 cm was recorded at once. The resulting spectrum was a sum of contributions 

of all the tissues in the sample area with characteristics depending on the relative contributions of 

those tissues (i.e., different relative concentration of standard molecules existing in every 

biological material).  

 

Data Analysis 

The software Kinetics, running under Matlab R2010b (The Mathworks Inc.), was used for 

processing the spectra.30 First, all recorded spectra were baseline corrected and normalized using 

the peak at 1646 cm–1 (amide I) at to exclude possible differences caused by the variations in 

recording conditions. Baseline of the spectra was determined by the lowest characteristic points 

along the spectrum; straight lines were interpolated between the selected points and then 

subtracted from the spectrum.43,44 Baseline correction and normalization are relevant 

preprocessing techniques for FT-IR spectra which create a linear correlation between absorbance 

and concentration. Many physical and chemical factors, like sample size, humidity, interferents, 

molecular interactions etc., can affect this correlation. The preprocessing techniques compensate 

the deviations from linear relationships and intensify the relationship between the spectral signals 

and concentrations of the analytes, although preprocessing corrections lead to slight changes of 

the raw spectra.  

 The Matlab R2010b and PLS_Toolbox (Eigenvector Research) were used to perform the 

principal component analysis (PCA). PCA is an unsupervised statistical method which reduces 

the multidimensional experimental data set to a much smaller number of uncorrelated variables 

called principal components.45 Usually, only the first two principal components, PC1 and PC2, 

which account for most of the variance presented in the experimental data, are utilized in 

majority of applications. Whole mid-IR spectra (4000–450 cm–1) were used for the PCA. Also, 

we used an advanced preprocessing method, generalized least squares weighting (GLSW), which 

is commonly utilized to identify the unwanted covariance structure (i.e., how variables change 

together) and remove these sources of variance from the data prior to calibration or prediction.46–
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49 In our analysis, the application of GLSW was necessary in order to minimize the differences 

between spectra recorded during the prolonged period of time (e.g., possible variations in 

recording conditions such as humidity) and to remove information from the inter-referring 

compounds without losing relevant tissue type-related variability among the data (e.g., removing 

the differences caused by different subtypes inside all three investigated pathological tissue types 

and emphasizing the true spectral differences between these tissue types). Then, using PCA we 

made a quantitative model, which was used to identify unknown tissue samples by their FT-IR 

spectra. Based on the presented model, new undetermined samples can be checked in order to 

establish whether they belong to a certain group of pleural changes. The Venetian blind method, 

in which the program autonomously selects N number of sets with M number of spectra, which 

are excluded from the modelling set and then used for prediction of the modelling set was chosen 

for the cross-validation. The cross-validation has been performed for both the models; in the first 

created PCA model, the cross-validation is mainly used for the determination of number of 

principal components by calculating errors, while in the second PCA model (used for 

prediction), the cross-validation assesses the ability of the model to predict the testing set spectra 

position in PC1-PC2 space, i.e., determine the unknown tissue type.  

 To overcome the possible problem of overfitting, two additional classification algorithms 

were applied: partial least squares discriminate analysis (PLS-DA) (PLS Toolbox) and k-nearest 

neighbor (KNN) algorithm (RapidMiner).50 For both procedures leave-one-out cross validation 

was utilized.  

 Another statistical method used to evaluate differences between studied groups was 

Student’s T-test (STT). To obtain the difference spectra, the mean spectrum of one sample group 

was subtracted from the mean spectrum of the another group, in six combinations. Student’s T-

test was used to analyze the difference spectra in the manner that each wavenumber was 

examined to determine if the difference in intensity between mean spectra of two tissues is 

statistically significant.  

 

Results 

Histopathologic Evaluation 

In our samples, selected from the archive of the Department of Pathology, University of Zagreb 

School of Medicine, the original histopathologic diagnoses were based on morphology and 



DOI: 10.1177/0003702820924726 

7 
 

immunohistochemical (IHC) analysis. For the purpose of this study the material was reviewed 

and the histopathological diagnosis was confirmed by one of the authors (SS) and ascertained by 

clinico-pathological and radiological correlation as well as follow up. In order to assure tissue 

quality and presence of given morphology the first and the last section of all selected paraffin 

blocks were stained with H&E and reviewed by a pathologist.  

 

 

 

Figure 1. H&E staining. (a) normal pleura, (b) inflammation, (c) metastasis, and (d) 

mesothelioma. (e) A representative photograph of the sample’s sizes.  

 

 The studied mesothelioma samples consisted of six epithelioid type, three sarcomatoid type, and 

one biphasic type. Metastasis samples originated from lungs (seven samples), colon (one sample), and 

kidney-clear cell (two samples). Tumor tissue in all samples from lungs consisted of atypical cylindrical 

to cuboid epithelial cells, forming regular to irregular glandular structures. Also the metastatic tumor 

tissue from colon consisted of glandular structures, while samples from kidney are composed of atypical 

epithelial clear cells forming closed lumens. In addition, all the tumors (metastatic and primary) were 

proven by immunohistochemically workup according to standard diagnostic guidelines. In our study, all 

inflammatory diseases of pleura samples were chronic inflammation including four samples of 

granulomatous pleuritis with giant cells. Normal pleural tissue samples were from visceral pleura, without 

lung tissue and prepared in a swiss role fashion (as seen in Figure 1a). A representative photograph of the 

sizes of the sample, which were almost all smaller than a beam diameter, is shown in Figure 1e.  
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Table II. Histopathology diagnosis (number of cases). 

Tissue types Histopathology diagnosis and number of cases 

Normal pleura Normal tissue (2) 

Inflammation Chronic inflammation (6) Granulomatous pleuristis (4) 

Mesothelioma Epitheloid (6) Sarcomatoid (3) Biphasic (1) 

Metastatis From lung (7) From colon (2) Clear cell type (1) 

 

 

FT-IR Spectra 

The infrared spectra of the studied tissues are complex, consisting of many spectral bands due to the 

presence of macromolecules (lipids, proteins, polysaccharides and nucleic acids). These tissues absorb the 

infrared light mostly in the two spectral regions: 800–1800 cm–1 and 2800–3700 cm–1. The diameter of 

infrared light beam that passed through our tissue samples was 1 cm, hence everything that was in the 

field of 1 cm diameter of every sample was recorded in a FT-IR spectrum. As tumor samples are 

heterogenous in their composition, every compound of every sample gave its contribution to the recorded 

spectra.51–53 As an example of the aforementioned complexity, the mean spectra of all four tissue types are 

presented in Figure 2. Each mean spectrum was calculated from 210 spectra of the same tissue type 

except for the normal pleura which was calculated from 40 recorded spectra. Generally, IR spectra of 

almost all tissues are rather similar, which is also visible in Figure 2. where very small and inconclusive 

spectral difference can be noticed. Hence, in order to recognize differences between different pathologies 

and possibly separate samples into discrete groups, more powerful statistical analyses are needed.  

 

 



DOI: 10.1177/0003702820924726 

9 
 

 

Figure 2. Mean spectra from four groups of samples. Lines of different color represent different group: 

red: inflammation, blue: mesothelioma; yellow: metastasis; green: normal pleura.  

 

Student’s T-Test on FT-IR Spectra 

Since the differences between mean spectra of four groups of samples on Figure 2 are not clearly 

visible, we performed Student’s T-test (STT) on all six possible pairs of mean spectra of 

different tissue types: metastasis-mesothelioma, metastasis-inflammation, metastasis-pleura, 

mesothelioma-inflammation, mesothelioma-pleura, and inflammation-pleura. Significance level 

of p <0.01 was used for all combinations. STT calculates statistically significant difference 

between intensities in mean spectra of the two tissue groups at each wavenumber.44,54 
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Figure 3. Student’s T-test for six possible combinations. Blue and green lines represent mean spectra of 

the compared groups of samples and the red line represents the differential spectrum between the 

following pairs. (a) metastasis and mesothelioma; (b) normal pleura and mesothelioma; (c) inflammation 

and mesothelioma; (d) metastasis and normal pleura; (e) inflammation and metastasis; (f) inflammation 

and normal pleura.  

 

 Results of STT performed on pairs of mean spectra is presented in Figure 3. In every STT, blue 

and green lines represent the mean spectra of the compared pairs, while the red line represents the 

differential spectrum between mean spectra of the two different groups of tissue. Thicker parts of the red 

lines in any differential spectrum represent wavenumbers with statistically significant difference. From 
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STT results presented in Figure 3, it is possible to assess the spectral regions that contribute most to the 

spectra differences between tissue types. Based on literature, vibrational bands present in FT-IR spectra of 

a biological tissue are listed in Table III.31,55,56 Student`s T-test indicated the existence of certain 

statistically significant difference between the spectra of different pathologies which opened the 

possibility to use multivariable methods for tissue type differentiation.  

 

Table III. Band assignments in FT-IR spectra of biological tissues.31,55,56 

 

Wavenumber (cm–1) 

 

Assignment 

3611 O–H and N–H stretching vibrations 

3500–3600 OH bonds 

3401 O–H and N–H stretching vibrations  

3396 O–H asymmetric stretching 

3330 N–H asymmetric stretching 

3300 Amide A bands sterning from N–H stretching modes in proteins and acid 

nucleic  

3008 Olefinic–CH stretching vibration: unsaturated lipids, cholesterol esters  

1630–1670 Amide I, peptide, protein 

1515–1570 Amide II, peptide, protein 

1468 CH2 scissoring: lipids  

1453 CH2 bending: mainly lipids with little contribution from proteins  

1400 COO– symmetric stretching: fatty acids  

1343 CH2 wagging: phospholipid fatty acid, triglyceride, amino acid side 

chains  

1238 PO2
– asymmetric stretching fully hydrogen-bonded: mainly nucleic acids 

with little contribution from phospholipids  

968 C–N+– –C stretch: nucleic acids, ribose–phosphate main chain vibrations 

of RNA–DNA  

933 Z-type DNA  

915 Ribose ring vibrations: RNA–DNA 

868 Left-handed helix DNA (Z form) 
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Principal Component Analysis 

Observed differences in Figure 3 indicated a possibility to build a PCA model which might be 

able to distinguish between three investigated pathological tissue types and may identify spectra 

of unknown pathologies.45 FT-IR spectra of biological samples are often very similar and 

important differences are covered with noise and spectral changes caused by small but 

unavoidable sample preparation variations. Therefore, statistical analysis must be used to 

recognize spectral changes due to the treatment or disease.  

 For the purpose of this research we created the PCA model from the recorded spectra in 

order to identify pathological tissue types. Figure 4 shows the scatterplot of PCA scores for the 

two first principal components of all recorded spectra from four groups: mesothelioma, 

metastasis, inflammation, and normal pleura. It is obvious that obtained data, which includes 

differences in intensity, bandwidth, and position of the vibrational band between spectra, are able 

to create a model that classifies unknown tissue samples into categories of different pathologies.  
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Figure 4. PC1-PC2 scatterplot as a result of PC analysis with all recorded spectra. Blue squares represent 

spectra of the mesothelioma, green stars represent the spectra of metastases, red triangles are 

inflammation spectra and light blue crosses are spectra of normal pleura.  

 

 Although there is not a clear distinction between the mean spectra of four groups of 

samples plotted in Figure 2, the difference between individual FT-IR spectra is visible after the 

application of PCA. As seen in Figure 4, in the PC1-PC2 principal component space, there is a 

difference between FT-IR spectra recorded from samples of mesothelioma, metastasis, 

inflammation, and normal pleura, hence it is possible to distinguish between four groups of 

tissues. Few spectra that overlap or fall into proximity of other groups do not change 

successfulness of presented PCA model. Reasons for overlapping spectra between two different 

tissue groups are probably small differences in recording conditions or sampling procedure. 

Nevertheless, their number is small and those spectra can be excluded from the model without 
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further consequences on the model precision. Number of problematic spectra can also be reduced 

by more precise defining of sample preparation and spectra recording procedure.  

 

Unknown Sample Spectra Identification and Model Validation 

In the final step, we validated the accuracy of our model in identification of the unknown 

samples. For that purpose, a new model was made using only three pathological tissue groups 

which pose differential diagnostic problems, i.e., normal pleura was excluded from the model.  

 

 

 

Figure 5. PC1-PC2 scatterplot of the PCA model without spectra of normal pleura and the 

validation of the model. Green star: metastasis (model spectra); white rhombuses: identified 

metastasis (validation spectra); blue square: mesotheliomas (model spectra); purple triangles: 

identified mesothelioma (validation spectra); red triangles: inflammation (model spectra); 

turquoise crosses: identified inflammation (validation spectra).  
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 The model used for identification of unknown samples was built with 150 randomly 

chosen spectra from each tissue group. The rest of spectra, 60 from each group, were used for 

model validation.57 In Figure 5, which presents distribution of PC scores in the PC1-PC2 space, 

the new model validated by the total of 180 spectra recorded from mesothelioma, metastasis and 

inflammation of pleura is shown. Spectra used to create the PCA model are grouped in three 

separated regions in Figure 5, with one region for each tissue type. Every region is encircled by 

an ellipse surrounding the area where 95% of spectra of the same tissue type are placed. Inside 

those regions, symbols representing spectra used for modeling are found: Blue squares for 

mesothelioma samples, red triangles for inflammation samples, and green stars for metastasis 

samples. Validation spectra, also visible on Figure 5, are shown with purple triangles for 

mesotheliomas, turquoise crosses for inflammation and white rhombuses representing metastasis. 

Spectra used for model validation are also surrounded by an ellipse with specific color 

representing the region of particular sample type with color matching the color of the sample 

symbols. As can be seen, samples of the same, identified pathologies are grouped together and 

their groups are overlapping with region of the graph were modeling spectra are placed, showing 

that validation spectra were correctly identified. Although the region of the inflammation 

identifiers is wider than the others, only small number of spectra are overlapping with the region 

of metastatic tumors (only two from 210 spectra from metastasis). Furthermore, more than 90% 

of the spectra from inflammation group are placed inside the inflammation region of the graph. 

Sample heterogeneity or different type of sample inflammation might be the possible reasons for 

wider spread of inflammation spectra in the PC1-PC2 space. Thus we can infer that the new 

model, built from randomly chosen spectra was validated with more than 95% certainty. This 

model allows us to add more new recorded spectra of pleural lesions and those spectra will be 

identified by the model as being either mesothelioma, metastasis or inflammatory (reactive) 

changes. Since the model validation with the randomly chosen testing set implies that the 

samples from the same patients are used both in training and testing set, the possibility of false 

positive results is increased. In order to verify our results two different procedures were 

executed. In the first procedure a new testing set, created by extracting spectra recorded on 

samples from two random patients from every tissue group, was made and the PCA modelling 

and validation procedure was repeated yielding almost the same results (data not shown). 
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Second, we used two new algorithms for model training: PLS-DA and KNN. The results 

obtained by these algorithms are presented in form of the two confusion matrices given in Table 

IV. Both algorithms exhibit extremely high accuracy confirming the correctness and 

demonstrating the viability of our PCA model.  

 

Table IV. Obtained confusion matrices for the PLS-DA and KNN algorithms. 

PLS-DA Class 1 Class 2 Class 3 

Predicted as Class 1 205 1 0 

Predicted as Class 2 3 208 1 

Predicted as Class 3 1 0 206 

    

KNN Class 1 Class 2 Class 3 

Predicted as Class 1 189 42 1 

Predicted as Class 2 19 153 12 

Predicted as Class 3 1 14 194 

 

Discussion 

Discriminating between different types of pleural lesions still remains a diagnostic challenge 

because of their often non-specific or overlapping histopathological appearance.3–6 Also, despite 

significant progress in the field so far, there is no specific stain that can ensure the definitive 

differential diagnosis between different types of reactive and malignant changes.16 PCA model 

presented in this article is a promising objective approach for their potential differentiation. 

Model and its validation are shown in Figure 5, in which it is visible that spectra from which 

model was made are clearly separated into three groups. Moreover, most of the spectra fall intoa 

smallerellipse which surrounds 95% of the same tissue type. Validation spectra are also grouped 

in the same areas, except there is a slight overlap between inflammation and metastasis 

validation group even though their overall separation is still very good. Furthermore, there is no 

overlapping of validation spectra between mesothelioma and metastasis group and between 

mesothelioma and inflammation group. From Figure 5 we estimate that PCA model accurately 

identified more than 95% of all validation spectra. For the current model the whole FT-IR 

spectra was used, while, as seen from STT (Figure3), not all parts of spectra equally contribute to 

the spectral differences. We assume that somefuture model can be improved by using only 
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relevant parts of the spectra. Also, certain scattering of the spectra on PCA score graph (Figure 

5) can be ascribed to small differences in sample preparation and recording conditions. That can 

be reduced if the details of FT-IR recording procedure are standardized. However, the presented 

model is already very successful in recognizing changes in pleural tissueand provides a new 

approach for tackling challenges in differential diagnostics.  

 As mentioned earlier, 10 blocks per tissue type were used in our experiment and each 

block was cut in 21 tissue sections (20 tissue sections for normal pleura). Consequently, more 

than 200 sections were produced for each tissue type hence our study altogeteher analysed 670 

spectra form 670 tissue sections. For PCA modeling, each tissue section can be considered as a 

separate sample because of the small molecular inhomogeneitieswithin each tissue block. As can 

be seen from validation process (Figure 5), the model built with this assumption is successful. 

Moreover, if the differences between blocks of the same tissue were significant, additional 

groups of spectra within a single tissue group, i.e., pathology would appear in both Figures 4 and 

5. Since there are no additional groups, we can safely assume that each section behaves asa 

distinct sample of the same tissue type. In this article we showed that this kind of approach to 

tissue type and pathological changesidentification is possible. For clinical application a model 

with tissue spectra from more patients must be built, so our next step will be to test this model on 

a larger patient cohort.  

 In ourfinal model (Figure 5) spectra recorded on healthy pleura samples were excluded 

due to several reasons. First, normal pleura is very thin and amount of tissue collected during the 

diagnostic procedure is rather small therebymaking it hard to produce samples with recordable 

infrared absorption. Second, normalpleura tissue can also be easily distinguished from 

pathological tissues using conventional methods, hence a special model for that purpose is not 

needed. Third, the PCA model can be successfully built without normal pleura because the 

distribution of pathological tissue spectra in the PC1-PC2 space does not depend on the spectra 

of normal pleura. Comparing the spectra distribution of in the PCA model where only 

pathologically changed tissue was used (Figure 5) and the one where normal pleura was included 

(Figure 4), it is obvious that relative positions of pathological spectra groups and their 

distributions are similar, suggesting that omission of the normal pleura group is an acceptable 

simplification. Furthermore, Figure 4 also shows a visible difference between three pathological 



DOI: 10.1177/0003702820924726 

18 
 

and one healthy tissue type and it is obvious that spectra from normal pleura formed a separated 

group, which shows the indubitable spectroscopical difference from the other tissue types.  

Preparation of samples for histopathology examination and the need for complex 

immunohistochemistry analysis is time-consuming and rather expensive. After the PCA model is 

built, the amount of time necessary for the analysis of new unknown samples is very short, 

approximately 30 minutes for the complete procedure which is performed on unstained formalin-

fixed paraffin-embedded sections. So FT-IR combined with the PCA modellingpromises to 

eventually be cost-effective and time-saving in comparison to the standard histopathological 

procedures.  

 The motivation behind this study was to create an objective method which makes it 

possible to distinguish between three most common types of pathological pleura tissues with 

accuracy at least comparable to standard pathological methods. Results showed that 

spectroscopic differences between pleural pathological tissues can be observed and used for their 

recognition utilizing PCA modeling. We also noticed that certain parts of spectra have stronger 

contribution to spectra separation in created PCA model. That fact will be used in our future 

work in order to detect which molecules undergo biochemical changes caused by certain disease.  

 

Conclusion 

From our results, we can conclude that FT-IR spectroscopy combined with PCA is very sensitive 

and can clearly distinguish different types of pleural lesions. FT-IR spectra of different pathology 

tissues were recorded followed by STT and PCA modeling which confirmed the existence of 

spectral difference between samples. Then, validation of the created PCA model showed that its 

accuracy is higher than 95%. This work indicates that FT-IR spectroscopy combined with PCA 

could represent a valuable tool in analyzing the still challenging problem of mesothelioma 

diagnosis although additional spectra of tissue samples should be recorded with more precise 

recording protocols in order to build a reliable clinical model.  
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