Novi pristupi u liječenju hipoksično-ishemične encefalopatije
Iva Hižar

Repozitorij / Repository: Dr Med
Vrsta objekta / Object type: Master's thesis
Godina izdavanja / Publication year: 2018
Trajna poveznica / Permanent link: https://urn.nsk.hr/urn:nbn:hr:105:477406
Licencija / License: In copyright
Datum pohrane u repozitorij / Date of storage: 2018-12-28
Datum preuzimanja / Date downloaded: 2020-03-14
Iva Hižar

Novi pristupi u liječenju hipoksično-ishemične encefalopatije

DIPLOMSKI RAD

ZAGREB, 2018.
<table>
<thead>
<tr>
<th>aEEG</th>
<th>Amplitudno integrirani elektroencefalogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIE</td>
<td>Hipoksično-ishemična encefalopatija</td>
</tr>
<tr>
<td>SHC</td>
<td>Selective head cooling</td>
</tr>
<tr>
<td>WHC</td>
<td>Whole body cooling</td>
</tr>
</tbody>
</table>
SADRŽAJ

SAŽETAK ... I

SUMMARY .. II

1. UVOD ... 1

2. HIPOKSIČNO-ISHEMIČNA ENCEFALOPATIJA ... 2

 2.1 EPIDEMIOLOGIJA ... 3

 2.2 ETIOLOGIJA .. 4

 2.3 PATOGENEZA HIE ... 5

 2.4 KLASIFIKACIJA I PROGNOZA ... 5

 2.5. DIFERENCIJALNA DJIAGNOZA .. 8

3. LIJEČENJE HIPOKSIČNO-ISHEMIČNE ENCEFALOPATIJE ... 9

 3.1. POTPORNA TERAPIJA .. 9

 3.2. TERAPIJSKA HIPOTERMija .. 10

 3.2.1. SELEKCIJA NOVOROĐENČADI ZA TERAPIJSKU HIPOTERMIJU 11

 3.2.2. METODE POTHLAĐIVANJA ... 14

 3.2.4. NEŽELJENI UČINCI TERAPIJSKE HIPOTERMije .. 16

4. NOVI TERAPIJSKI PRISTUPI U LIJEČENJU HIE ... 17

 4.1. ERIETROPOETIN ... 17

 4.2. LIJEČENJE MATIČNIM STANICAMA IZ PUKOVINE .. 19

 4.3. MELATONIN ... 20

 4.4. KSENON ... 21

 4.5. MAGNEZIJEV SULFAT (MgSO4) ... 21

 4.6. ALOPURINOL .. 22

ZAKLJUČAK ... 24

LITERATURA ... 26

ŽIVOTOPIS ... 35
SAŽETAK

Novi pristupi u liječenju hipoksično-ishemične encefalopatije

Autor: Iva Hižar

Unatoč značajnom unaprijeđenju kvalitete opstetričke, prenatalne i neonatalne skrbi u posljednjim desetljećima, perinatalna asfiksija i dalje predstavlja ozbiljan problem na globalnoj razini te značajno doprinosi novorođenačkom morbiditetu i mortalitetu. Neonatalna hipoksično-ishemična encefalopatija najzabiljnija je komplikacija perinatalne asfiksije s visokim rizikom kasnijeg neurorazvojnog oštećenja, uključujući i cerebralnu paralizu. Donedavno nije postojala adekvatna neuroprotektivna terapija za ublažavanje moždanog oštećenja te je hipoksično-ishemična encefalopatija liječena isključivo suportivnom terapijom. U posljednjih nekoliko desetljeća dokazano je da liječenje hipotermijom značajno smanjuje smrtnost i rizik neurorazvojnog oštećenja u djece s hipoksično-ishemičnom ozljedom mozga. Terapijska hipotermija je etablirana kao standardna metoda liječenja u novorođenčadi s umjerenim i teškim oblikom hipoksično-ishemične encefalopatije.

Liječenje treba započeti unutar prvih 6 sati života, prije nastupa sekundarnog oštećenja neurona. Pothlađivanje se provodi tijekom 72 sata uz kontinuirano praćenje tjelesne temperature. Novorođenčad-kandidati za pothlađivanje trebaju ispunjavati sljedeće kriterije: gestacijska dob ≥ 36 tjedana, mogućnost započinjanja terapije unutar 6 sati od rođenja, te dokazi o postojanju perinatalne asfiksije i umjerene/teške encefalopatije.

Terapijska hipotermija je manje učinkovita u teškim oblicima hipoksično-ishemične encefalopatije zbog čega nemali broj asfktične novorođenčadi i nadalje umire ili preživljava s teškim i trajnim neurološkim oštećenjima. U cilju poboljšanja ishoda traga se za novim, modalitetima liječenja koji bi povećali neuroprotektivni učinak terapijske hipotermije. Na temelju dosadašnjih istraživanja obećavajuće rezultate u liječenju hipoksično-ishemične encefalopatije pokazuje terapijska primjena eritropoetina, melatonin, matičnih stanica i ksenona.

Ključne riječi: hipoksično-ishemična encefalopatija, neuroprotektivna terapija, terapijska hipotermija, eritropoetin, melatonin
SUMMARY

New approaches in the treatment of hypoxic-ischemic encephalopathy

Author: Iva Hižar

Despite the major improvements in obstetric, prenatal and neonatal care over the latest decades, perinatal asphyxia remains a serious neonatal problem globally and it significantly contributes to both neonatal morbidity and mortality. Asphyxia can affect almost any organ in the body, however neonatal hypoxic-ischemic encephalopathy is considered the most serious complication of perinatal asphyxia that can result in cerebral palsy and other neurodevelopmental impairments. Until recently, there were no available treatments to reduce the severity of brain injury and treatment options were limited to supportive medical therapy. In the last decades, it has been shown that therapeutic hypothermia significantly reduces mortality and neurodevelopmental disability following hypoxic ischemic encephalopathy. Therefore therapeutic hypothermia has become the standard treatment for infants with moderate to severe hypoxic–ischemic encephalopathy. Hypothermia should be initiated in the first 6 hours of life in term infants, before the onset of secondary neuronal injury and duration of cooling should be 72 hours. Newborns selected for cooling must meet the eligibility criteria as follows: gestational age equal to or greater than 36 weeks, initiation of hypothermia within 6 hours after birth, evidence of asphyxia and presence of moderate or severe encephalopathy.

Hypothermia is less effective against severe than against moderate hypoxic-ischemic encephalopathy and still many infants die or survive with disabilities. Therefore, it is necessary to identify adjuvant therapies to improve the prognosis of neonatal hypoxic-ischemic encephalopathy. Potential neuroprotective agents are being investigated, and some of them, such as melatonin, erythropoietin, stem cells and xenon, appear to be promising agents, enhancing hypothermia-induced neuroprotection.

Keywords: hypoxic-ischemic encephalopathy, neuroprotective therapy, therapeutic hypothermia, erythropoietin, melatonin
1.

UVOD

Hipoksično-ishemična encefalopatija (HIE) označava patološko intracerebralno zbivanje u prvim danima ili tjednima života, koje nastaje kao posljedica perinatalne asfiksije. Terapijska hipotermija dokazano smanjuje rizik nastanka trajnog oštećenja mozga u novorođenčadi s umjerenom i teškom HIE, te je 2010. godine uvrštena u smjernice za kardiopulmonalnu reanimaciju asfiktične novorođenčadi. Unatoč liječenju, oko 20% djece s HIE umire, a oko 30% preživljava s trajnim neurorazvojnim posljedicama. Trenutno se istražuje potencijal neuroprotektivnog učinka eritropoetina, melatonina, ksenona i matičnih stanica koji bi kao adjuvantne terapijske metode mogli povećati učinkovitost terapijske hipotermije.
2. HIPOKSIČNO-ISHEMIČNA ENCEFALOPATIJA

Pojam „asfiksija“ potječe iz grčkog jezika, a u doslovnom prijevodu označava „stanje bez pulsa“. Perinatalna asfiksija je stanje koje nastaje zbog poremećene izmjene respiracijskih plinova (kisika i ugljikova dioksida), prenatalno, peripartalno ili tijekom ranog neonatalnog razdoblja te dovodi do posljedične hipoksemije, hiperkapnije i acidoze (Antonucci et al. 2014). Američka strukovna udruženja, American Academy of Pediatrics (AAP) i American College of Obstetricians and Gynecologists (ACOG), definirala su osnovne kriterije za dijagnozu perinatalne asfiksije koji uključuju: duboku acidemiju (pH <7) u arterijskoj umbilikalnoj krvi, Apgar zbroj ≤ 3 nakon 5. minute života, neurološke simptome u prvim satima nakon rođenja (npr. konvulzije, koma, hipotonija) te znakove multi-organskog zatajenja u prvih danima života (AAP & ACOG 1996).

HIE označava patološko intracerebralno zbivanje koje nastaje zbog smanjene opskrbe mozga kisikom (hipoksija) i smanjenog protoka krvi kroz moždane krvne žile (ishemija). Usljed hipoksije-ishemije u većini slučajeva nastaju multiorganska oštećenja, dok se tek u manjeg broja (<15%) razvija izolirana ozljeda mozga (Antonucci et al. 2014). HIE može završiti letalno ili ostaviti trajne posljedice kao što su cerebralna paraliza, epilepsija, smetnje sluha ili vida i umna zaostalost (Mardešić et al. 2016).
2.1 EPIDEMIOLOGIJA

Unatoč napretku perinatalne skrbi proteklih desetljeća, perinatalna asfiksija i dalje predstavlja važan uzrok morbiditeta i mortaliteta novorođenčadi. Uz prijevremeni porođaj (28%) i sistemne infekcije (26%), perinatalna asfiksija i dalje je (23%) među vodećim uzrocima smrtnosti u novorođenčkoj dobi (Lawn et al. 2005). U razvijenim zemljama incidencija HIE iznosi 1-3 slučajeva na 1000 živorođene djece (Allen & Brandon 2011), dok u nerazvijenim zemljama i zemljama u razvoju incidencija varira između 2 i 39 slučajeva na 1000 živorođenih. Veća incidencija HIE u nerazvijenim djelovima svijeta (Afrika) posljedica je lošije perinatalne skrbi (Namusoke et al. 2018). Procjenjuje se da su hipoksijsko-ishemijska zbivanja zastupljena u oko 30% slučajeva neonatalne encefalopatije u razvijenim zemljama te u oko 60% slučajeva u zemljama u razvoju (Antonucci et al. 2014).

Prema podacima Državnog zavoda za statistiku, u Republici Hrvatskoj je 2016. godine u perinatalnom razdoblju umrlo 249 djece tj. 6,6/1.000 ukupno rođenih, od čega je bilo 169 mrtvorođenih (stopa fetalne smrtnosti 4,5‰) te 80 rano neonatalno umrlih (stopa rane neonatalne smrtnosti 2,1‰). Porodna asfiksija bila je 5. po redu uzrok fetalne smrtnosti (4,4%), a 6. po redu uzrok rane neonatalne smrtnosti (2,5%). Vodeći uzroci ovih smrtnosti bile su komplikacije u trudnoći, kongenitalne malformacije, perinatalne infekcije i nezrelost (HZJZ 2017).
2.2 ETIOLOGIJA

U terminske novorođenčadi HIE može nastati za vrijeme trudnoće (prenatalno), tijekom samog poroda (intrapartalno) te u ranom postnatalnom razdoblju (postnatalno) (Antonucci et al. 2014).

Prenatalni faktori rizika:

- **od strane majke:** dob >35 godina, prorotka, višeplodna trudnoća, smanjena dostupnost prenatalne skrbi, dijabetes melitus, arterijska hipertenzija, anemija, poremećaji koagulacije, bolesti štinjače, liječena neplodnost, perinatalna smrt u prijašnjoj trudnoći, prekomjerna težina ili pretilost, pušenje, preeklampsija i eklampsija, krvarenja u vrijeme trudnoće, trauma, primjena lijekova.
- **od strane ploda:** kromosomske aberacije, kongenitalne malformacije, intrauterine infekcije, intrauterini zastoj u rastu ploda, anemija zbog hemolitičke bolesti.

Intrapartalni faktori rizika: prijevremeno odljučenje posteljice, placentna previja, plodova voda, stav zatkom, distocija ramena, kefalopelvina disproporcija, produljeno drugo porođajno doba, upotreba forcepsa ili drugih instrumenata u dovršenju porođaja, operativno dovršenje poroda (carski rez), mekijska plodova voda, patološki nalazi kardiotokografije.

Postpartalni faktori rizika: kongenitalne malformacije, intrapartalna aspiracija mekijska,

perzistentna plućna hipertenzija novorođenčeta (PPHN), nagli gubitak krvi ili septički šok, ozljede mozga, spinalne moždine ili živca frenikusa, depresija disanja uzrokovana intrapartalno primjenjenim lijekovima.

U oko 90% slučajeva perinatalna asfiksija nastaje prenatalno i/ili intrapartalno, a zastupljenost etiologije razlikuje se među istraživanjima (Locatelli et al. 2010; Martinez-Bierge et al. 2013).
2.3 PATOGENEZA HIE

2.4 KLASIFIKACIJA I PROGNOZA

U procjeni težine HIE, danas se najčešće koristi klasifikacija prema Sarnatu i Sarnatovoj, (tablica 1.) (Murray et al. 2010). Dugoročna prognoza ovisi o stupnju HIE. U slučaju teške HIE (stupanj III) vjerojatnost smrtnog ishoda je najveća i iznosi oko 50%, a u većine preživjelih nastaju teška neurološka oštećenja poput cerebralne paralize, umne zaostalosti, oštećenja vida, sluha i epilepsije. Većina djece s umjerenim stupnjem HIE (63-80%) ima normalan neurorazvojni ishod, dok ostali umiru ili rastu uz neurorazvojne teškoće različitog stupnja, osobito ukoliko su simptomi trajali dulje od 5-7 dana. Kod blagog stupnja HIE (stupanj I) može se očekivati preživljenje bez neurorazvojnih posljedica u gotovo svih bolesnika (Mardešić et al. 2016).
<table>
<thead>
<tr>
<th>Tablica 1. Klasifikacija HIE prema Sarnatu i Sarnatovoj (Sarnat & Sarnat 1976.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razina svijesti</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>hiperalertan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spontana aktivnost</th>
<th>normalna</th>
<th>smanjena</th>
<th>odsutna</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Neuromuskularna kontrola</th>
<th>tonus</th>
<th>postura</th>
<th>tetivni refleksi</th>
<th>segmentalni mioklonus</th>
<th>refleks sisanja</th>
<th>Moroov refleks</th>
<th>okulo-vestibularni</th>
<th>tonički vratni</th>
<th>jelenice</th>
<th>srčana frekvencija</th>
<th>motilitet probavnog sustava</th>
<th>konvulzije</th>
<th>EEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalan</td>
<td>blaga hipotonija</td>
<td>flakcidan</td>
<td>hiperaktivni</td>
<td>hiperaktivni</td>
<td>oслableni/odsutni</td>
<td>naglašen, nizak prag za izazivanje</td>
<td>slab, nepotpun, visok prag za izazivanje</td>
<td>odsutan</td>
<td>normalan</td>
<td>hiperaktivan</td>
<td>slab/odsutan</td>
<td>slab</td>
<td>izražen</td>
</tr>
</tbody>
</table>
Pri određivanju težine HIE može se koristiti i klasifikacija prema Thompsonu (tablica 2.) (Thompson et al. 1997). Thompsonova skala temelji se na bodovanju odgovarajućih kliničkih znakova (tonus, svijest, konvulzije, tjelesna postura, Moroov refleks, refleks hvatanja, refleks sisanja, respiracije i napetost fontanele), a stupanj HIE se određuje prema ukupnom zbroju bodova. Zbroj 15 ili više (stupanj III) prema Thompsonovoj skali dobro korelira s lošim neurorazvojnim ishodom. Treći način određivanja težine HIE je stupnjevanje prema Levene-u. To je jednostavniji način stupnjevanja kojim se ocjenjuje podražljivost, hipotonija, refleks sisanja i postojanje konvulzija (Murray et al. 2010).

Tablica 2. Klasifikacija HIE prema Thompsonovim kriterijima

<table>
<thead>
<tr>
<th></th>
<th>0 bodova</th>
<th>1 bod</th>
<th>2 boda</th>
<th>3 boda</th>
</tr>
</thead>
<tbody>
<tr>
<td>tonus</td>
<td>normalan</td>
<td>hipertonus</td>
<td>hipotonus</td>
<td>flakcidnost</td>
</tr>
<tr>
<td>svijest</td>
<td>normalna</td>
<td>hiperalertnost</td>
<td>letargija</td>
<td>koma</td>
</tr>
<tr>
<td>konvulzije</td>
<td>odsutne</td>
<td>< 3 dnevno</td>
<td>>2 dnevno</td>
<td></td>
</tr>
<tr>
<td>Tjelesna postura</td>
<td>normalna</td>
<td>stisnute šake, automatizmi</td>
<td>izrazita distalna fleksija</td>
<td>decerebracija</td>
</tr>
<tr>
<td>Moroov refleks</td>
<td>normalan</td>
<td>nepotpun</td>
<td>odsutan</td>
<td></td>
</tr>
<tr>
<td>Refleks hvatanja</td>
<td>normalan</td>
<td>oslabljen</td>
<td>odsutan</td>
<td></td>
</tr>
<tr>
<td>Refleks sisanja</td>
<td>normalan</td>
<td>oslabljen</td>
<td>odsutan, grize</td>
<td></td>
</tr>
<tr>
<td>Respiracije</td>
<td>normalne</td>
<td>hiperventilacija</td>
<td>kratka apneja</td>
<td>mehanička ventilacija (apneja)</td>
</tr>
<tr>
<td>Fontanela</td>
<td>normalna</td>
<td>puna, bez napetosti</td>
<td>napeta</td>
<td></td>
</tr>
</tbody>
</table>

Klasifikacija hipoksičko ishemičke encefalopatije (HIE):

- **Zbroj bodova**
 - 1 – 10 blaga HIE (stupanj I)
 - 11 – 14 umjerena HIE (stupanj II)
 - 15 – 22 teška HIE (stupanj III)
2.5. DIFERENCIJALNA DIJAGNOZA

U postavljanju dijagnoze HIE potrebno je isključiti druge uzroke koji se manifestiraju kliničkom slikom encefalopatije a navedeni su u tablici 3. (McIntosh 2008).

Tablica 3. Diferencijalna dijagnoza hipoksično-ishemične encefalopatije

<table>
<thead>
<tr>
<th>Uzroci</th>
<th>Primjeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infekcije</td>
<td>Meningitis (bakterijski ili virusni)</td>
</tr>
<tr>
<td></td>
<td>Encefalitis (herpes simplex)</td>
</tr>
<tr>
<td>Traumatska lezija mozga</td>
<td>Subduralno krvarenje</td>
</tr>
<tr>
<td>Vaskularni poremećaji</td>
<td>Perinatalni moždani udar</td>
</tr>
<tr>
<td></td>
<td>Hemoragijski šok zbog akutnog gubitka krvi</td>
</tr>
<tr>
<td></td>
<td>(prepartalno/intrapartalno)</td>
</tr>
<tr>
<td>Metabolički uzroci</td>
<td>Hipoglikemija</td>
</tr>
<tr>
<td></td>
<td>Hipo/hipernatrijemija</td>
</tr>
<tr>
<td></td>
<td>Bilirubinska encefalopatija</td>
</tr>
<tr>
<td></td>
<td>Nasljedne metaboličke bolesti</td>
</tr>
<tr>
<td></td>
<td>Poremećaji ciklusa ureje</td>
</tr>
<tr>
<td></td>
<td>Sindrom ovisnosti o piridoksinu</td>
</tr>
<tr>
<td></td>
<td>Laktacidemija</td>
</tr>
<tr>
<td></td>
<td>Aminoacidopatije</td>
</tr>
<tr>
<td></td>
<td>Organska acidemija</td>
</tr>
<tr>
<td>Kongenitalne malformacije mozga</td>
<td>Poremećaj migracije neurona</td>
</tr>
<tr>
<td>Neuromuskularni poremećaji</td>
<td>Spinalna mišićna atrofija</td>
</tr>
<tr>
<td>Majčina izloženost lijekovima/drogi</td>
<td>Akutna ili kronična</td>
</tr>
</tbody>
</table>
3. LIJEČENJE HIPOKSIČNO-ISHEMIČNE ENCEFALOPATIJE

Liječenje HIE uključuje postupke stabilizacije općeg stanja djeteta (reanimacijski postupci), potporno (pažljiva nadoknada volumena tjelesnih tekućina, kontrola glikemije) te simptomatsko liječenje (antikonvulzivna terapija). Intervencijski postupci odnose se na pothlađivanje novorođenčeta s umjerenom/teškom HIE, s ciljem zaštite mozga od nastanka sekundarnog, reperfuzijskog oštećenja mozga (Stola & Perlman 2008).

3.1. POTPORNA TERAPIJA

U većine asfiktične novorođenčadi u prvom danima života provodi se asistirano prodisavanje radi održavanja parcijalnog tlaka ugljičnog dioksida (pCO₂) unutar fizioloških granica, budući da i hiperkarbija i hipokarbija povećavaju rizik nastanka moždanog oštećenja. Hipokapnija se povezuje s nastankom periventrikularne leukomalacije u nedonoščadi te oštećenjima sluha u terminske djece, a hiperkarbija povećava rizik od intraventrikularnog krvarenja (Stola & Perlman 2008). U slučajevima hipoksemije potrebno je povećati frakciju kisika u udahnutom zraku. Pulsni oksimetar nam omogućava neinvasivno kontinuirano praćenje zasićenosti arterijskog hemoglobina kisikom te pravovremeno prepoznavanje hipoksemije (Mardešić et al. 2016).

Asfiktična novorođenčad je sklona retenciji tekućine jer perinatalna asfiksija dovodi do porasta bubrenog vaskularnog otpora i smanjenja glomerularne filtracije te posljedične oligurije (Gouyon & Guignard 1988). Tomu doprinosi i nerjetko prisutna neprimjerena hipereksekracija antidiuretskog hormona (SIADH). Stoga je potreban poseban oprez i kontrola bilance vode i elektrolita prilikom nadoknade volumena tjelesnih tekućina u asfiktične novorođenčadi (Stola & Perlman 2008).

HIE najčešći je uzrok ranih novorođenačkih konvulzija koje se javljaju u prva tri dana života. Konvulzije u novorođenčadi nerijetko imaju nespecifični klinički korelat, lako se previde te je stoga poželjno provoditi kontinuirano elektroencefalografsko praćenje, osobito u prvom danima nakon asfiktičnog inzulta. Konvulzije pogoršavaju dugoročnu prognozu i znak su povećanog rizika za nastanak trajnih neuroloških posljedica poput epilepsije i cerebralne paralize (Gazdik et al. 2004). Kao lijek prvoga izbora u liječenju novorođenačkih konvulzija najčešće se
koristi fenobarbiton u inicijalnoj dozi od 20 mg/kg intravenski, a povišuje se prema potrebi za 5-10 mg/kg do maksimalne kumulativne doze od 40 mg/kg (Mardešić et al. 2016). Zbog nedostatka dvostruko-slijepih istraživanja o primjeni antikonvulziva u novorođenačkoj dobi, ne postoje definirane smjernice za lijekove drugog izbora. U drugoj liniji antikonvulzivnih lijekova koriste se benzodijazepini (diazepam), fenitoin, levetiracetam i lidokain (Yozawitz et al. 2017).

Postasfiktičnoj novorođenčadi u prvom danima života prijeti hipokalcemija i hipomagnezemija, koje se mogu spriječiti parenteralnom primjenom kalcijevog glukonata, odnosno magnezijevog sulfata. Također je potrebno redovito pratiti razinu glikemije kako bi se izbjegao štetni učinak hipoglikemije i hiperglikemije koje mogu perpetuirati postojeću perinatalnu ozljedu mozga (Stola & Perlman 2008).

3.2. TERAPIJSKA HIPOTERMIJA

Prvi poznati zapisi o primjeni terapijske hipotermije nastali su u drevnom Egiptu oko 5000 pr. Kr. (Karnatovskaia et al. 2014). „Otac medicine” Hipokrat, primijetio je da je novorođenčad izložena na otvorenom puno duže preživljavala zimi nego ljeti (Gunn et al. 2017). Nakon brojnih eksperimentalnih istraživanja o neuroprotektivnom učinku hipotermije, sredinom prošlog stoljeća objavljeno je prvo kliničko istraživanje o njezinoj primjeni u liječenju asfiktične novorođenčadi (Cotten & Shankaran 2010).

Rezultatima randomiziranih kliničkih istraživanja dokazano je da hipotermija u novorođenčadi s umjerenim i teškim oblikom HIE smanjuje udruženi rizik smrtnog ishoda i preživljenja s teškim neurorazvojnim oštećenjima, uključujući cerebralnu paralizu (Allen &

Liječenje hipotermijom trebalo bi se odvijati u jedinicama intenzivnog liječenja terciarnih zdravstvenih ustanova, kako bi se osigurala najbolja moguća skrb i liječenje mogućih komplikacija povezanih s HIE, poput srčanih aritmija, krvarenja te multiorganskog zatajenja (Peliowski-Davidovich & CPS 2012).

3.2.1. SELEKCIJA NOVOROĐENČADI ZA TERAPIJSKU HIPOTERMIJU

Novorođenče, kandidat za terapijsku hipotermiju, treba biti zrelije od 36 navršena tjedna trajanja trudnoće, rodne mase ≥2000 g i vrijeme proteklo od poroda do postupka započinjanja terapije ne bi smjelo iznositi više od 6 sati. Neki protokoli kao kriterij uključenja koriste gestacijsku dob od 35 tjedana (Mehta et al. 2017). U sljedećem koraku, trebaju biti zadovoljene dvije skupine kriterija - kriteriji o postojanju peripartalne asfiksije te kriteriji koji se odnose na postojanje umjerene ili teške encefalopatije. U tablici 4. navedeni su kriteriji uključenja za terapijsku hipotermiju asfiktičnog novorođenčeta. (Boston Children's Hospital, 2015).

Kao dodatna metoda pri odabiru kandidata za terapijsku hipotermiju koristi se zapis amplitudno integriranog elektroencefalograma (aEEG) u trajanju od duljem od 20 minuta. aEEG omogućuje detekciju subkliničkih konvulzija i preciznije određivanje stupnja encefalopatije u novorođenčadi (Toso et al. 2014), a pokazao se i pouzdanim prediktorom neurorazvojnog ishoda. Vjerojatnost smrtnog ishoda ili razvoja umjerenih/teških neurorazvojnih oštećenja raste ukoliko je zapis aEEG-a patološki u dobi nakon drugog dana života (Chandrasekaran et al. 2017).
Tablica 4. Kriteriji uključenja i isključenja za terapijsku hipotermiju

Kriteriji uključenja za terapijsku hipotermiju (Sva tri kriterija trebaju biti zadovoljena)

| 1. Gestacijska dob ≥ 36 tjedana, rodna masa ≥ 2000 g, dob < 6 sati |
| 2. Dokaz o fetalnom ili neonatalnom distresu, najmanje 1 od navedenog: |
| Anamnestički podatak o akutnom nastalom, neželjenom perinatalnom zbivanju (npr. abrupcija placente, prolaps pupkovine, značajan poremećaj srčane frekvencije) |
| Apgar zbroj ≤ 5 u desetoj minuti nakon rođenja |
| Asistirano prodisavanje započeto po rođenju i nastavljeno tijekom najmanje 10 minuta |
| pH ≤ 7,0 ili deficit baza ≥ 16 mmol/L iz krvi pupkovine ili arterijske, venske ili kapilarnе krvi unutar prvih 60 minuta života |
| 3. Dokaz za umjerenu/tešku HIE kako slijedi: |
| Temeljna metoda u dokazivanju neonatalne encefalopatije je fizikalni pregled |
| Ukoliko fizikalni pregled ukaže na postojanje umjerenog/teškog stupnja encefalopatije potrebno je učiniti snimanje aEEG-om tijekom najmanje 20 minuta |
| U okolnostima kada je fizikalni pregled nepouzdan (npr. primjena mišićnih relaksansa), postojanje encefalopatije temelji se na nalazu aEEG-a (snimanje najmanje 20 minuta) |
| Obrazac patološkog aEEG-a koji upućuje na umereni/teški stupanj encefalopatije: |
| o Umjereni poremećaj: gornji rub zapisa > 10 µV i donji rub < 5 µV |
| o Značajan poremećaj: gornji rub zapisa < 10 µV |
| o Registriraju se konvulzije |
| • Opaska: u slučaju normalnog fizikalnog nalaza nije potrebno snimati aEEG |

Kriteriji isključenja za terapijsku hipotermiju, bilo što od navedenog:

| Kromosomske anomalije nespojive sa životom (npr. trisomija 13 ili 18) |
| Značajne prirodene malformacije (npr. složena cijanotična prirodna srčana greška, malformacije središnjeg živčanog sustava) |
| Simptomatske sistemne prirodene virusne i bakterijske infekcije (npr. hepatosplenomegalija, mikrocefalija, meningitis, diseminirana intravaskularna koagulopatija) |
| Izražena hemoragijska dijateza |
| Opsežno intrakranijsko krvarenje |

HLAĐENJE U POSEBNIM OKOLNOSTIMA

U sljedećim situacijama moguće je razmotriti terapiju pothlađivanjem:

- Gestacijska dob 34 – 36 tjedana: procjena na temelju stupnja nedonošenosti, porođajne mase, rizika krvarenja itd.
- Dob > 6 sati: razmotriti početak hlađenja do 9. pa čak i 12. sata života
- Zbivanje koje je dovelo do hipoksično-ishemične ozljede nakon rođenja (npr. “near-SIDS”, ALTE)
- Nedostatak informacija, npr. o Apgar zbroju prilikom porođaja kod kuće: razmotriti započinjanje hipotermije ukoliko su zadovoljeni ostali kriteriji
- Granično zadovoljeni kriteriji uključenja ili blaga encefalopatija; opcija ranijeg početka ugrijavanja ukoliko je klinički tijek povoljan
- Neonatalni cerebrovaskularni inzult: započeti hipotermijom u novorođenčadi koja je preživjela perinatalnu asfiksiju i trombotički ili embolijski cerebrovaskularni inzult (hipotermija je kontraindicirana kod značajnog hemoragijskog moždanog udara)
- Aspiracija mekonija: sedativi i mišićni relaksansi mogu maskirati kliničke znakove encefalopatije, te će za procjenu biti potreban zapis aEEG-a (Boston Children's Hospital, 2015).
3.2.2. METODE POTHLAĐIVANJA

Normalna tjelesna temperatura (TT) u novorođenčadi mjerena aksilarno iznosi između 36.5 °C i 37.4 °C (AAP 2010). Za svaki 1°C snižavanja TT, metabolizam u mozgu smanjuje se za oko 5% (Ma et al. 2012). Kako bi se postigao optimalan neuroprotektivan učinak tijekom terapijske hipotermije, TT potrebno je održavati između 33 i 34 °C rektalno (prihvatljiv raspon 32,5-34,5 °C) (Silveira & Procianoy 2015). Temperature niže od 32 °C djeluju manje neuroprotektivno i češće dovode do komplikacija poput srčanih aritmija (Kelly & Nolan 2010), a pri TT nižim od 30 °C zabilježene su ozbiljne sustemske nuspojave i viši mortalitet (Silveira & Procianoy 2015).

U kliničkoj praksi razlikujemo površinske metode hlađenja i endovaskularnu metodu hlađenja pomoću intravenskog katetera koja se najčešće koristi u odraslih nakon izvanbolničkog kardiorespiratornog aresta (Song & Lyden 2012). Kod novorođenčadi s HIE primjenjujemo dvije površinske metode terapijskog pothlađivanja: metodu hlađenja cijelog tijela (eng. whole-body cooling, WBC) i metodu selektivnog hlađenje glave s blagom sistemnom hipotermijom (eng. selective head cooling, SHC) (Allen 2014). Prema rezultatima dosadašnjih istraživanja između dviju metoda ne postoje značajne razlike u preživljenju, pojavi neželjenih reakcija i neurološkim ishodima u dobi nakon godine dana (Allen 2014).

HLAĐENJE CIJELOG TIJELA

Metodom pothlađivanja cijelog tijela (eng. whole body cooling – WBC) započinje se unutar prvih 6 sati života i nastavlja kroz 72 sata. Ciljna temperatura tijela novorođenčeta za vrijeme trajanja sustemske hipotermije trebala bi iznositi 33,5°C rektalno (prihvatljivo 32,5-34,5 °C). TT kontinuirano se prati mjerenjem na površini tijela (koža abdomena) te rektalnom ili ezofagealnom sondom (Mosalli 2012; Shankaran et al. 2005). U literaturi su opisane različite metode pothlađivanja cijelog tijela. Isključivanje inkubatora/grijača te izlaganje novorođenčeta temperaturi okoline pasivna je metoda hlađenja, koja se najčešće koristi u kombinaciji s drugim metodama. Od metoda aktivnog hlađenja, razlikujemo manualno kontrolirane metode (korištenje hladnih gel-paketa, madraca ili pokrivača za hlađenje) te servo-kontrolirane sustave hlađenja.
(Buchiboyina et al. 2017). Azzopardi i suradnici koriste kombinaciju isključivanja inkubatora i uporabu pokrivača za hlađenje ispunjenih tekućinom, čija se temperatura može regulirati pomoću termostata (Azzopardi et al. 2009), a Mosalli koristi kombinaciju isključivanja grijača i hladnih paketa. Prije aplikacije, hladni paketi trebaju biti omotani u tkaninu, a mogu se postavljati ispod ramena/gornjeg dijela leđa, ispod glave i/ili preko tijela. Za vrijeme aktivnog hlađenja, svakih 6 sati potrebno je promijeniti položaj tijela (supinacijski, lijevi i desni bočni) kako ne bi nastali dekubiti (Mosalli 2012).

Nakon završetka trodnevog perioda hlađenja provodi se utopljavanje tijela do ciljne temperature od 36,5 do 37 ºC rektalno. Postupak utopljavanja provodi se postupno, uz kontinuiran nadzor tjelesne temperature. Trajanje utopljavanja novorođenčeta nije jasno definiran, no najčešće korištena brzina utopljavanja iznosi 0,25 ºC/sat (Peliowski-Davidovich & CPS 2012). Temperatura novorođenčeta ne bi smjela rasti brzinom većom od 0,5 ºC/sat. Utopljavanje se provodi zaustavljanjem aktivnog hlađenja te povišenjem temperature inkubatora (Mosalli 2012).

SELEKTIVNO HLADENJE GLAVE

Krajem dvadesetog stoljeća, predložena je selektivna metoda hlađenja glave uz blagu sistemski hipotermiju s pretpostavkom da bi takav način pothlađivanja mogao dovesti do boljih neuroloških ishoda te istovremeno smanjiti pojavnost neželjenih reakcija (Gunn et al. 1998). Metoda se pokazala kao sigurna, no do sada nije nađeno bitnih razlika u ishodima s obzirom na izbor metode pothlađivanja (Allen 2014.).

Pri selektivnom hlađenju glave, na glavu novorođenčeta postavi se uređaj (kapa, engl. cooling cap) za hlađenje kroz koji cirkulira voda. Na uređaju se nalazi termostat pomoću kojeg je moguće regulirati temperaturu vode. Početna temperatura vode u uređaju za pothlađivanje iznosi između 8 i 12 ºC. Na samom početku, kako bi se ubrzao proces hlađenja, isključuju se servo kontrolirani grijaci postavljeni iznad glave djeteta te se ponovno uključuju kada rektalna temperatura padne ispod 35,5 ºC (Gluckman et al. 2005). Temperatura na površini tijela, iznad fontanele treba biti ispod 30 ºC, a rektalna temperatura se održava između 34 i 35 ºC. Moguće je mjeriti i nazofaringealnu temperaturu (Peliowski-Davidovich & CPS 2012). Početak i trajanje pothlađivanja, kao i njezin svršetak ne razlikuje se od sistemnog pothlađivanja.
PASIVNO HLADENJE TIJEKOM TRANSPORTA

Veliki broj novorođenčadi s HIE rađa se u manjim bolnicama i rodilištima u kojima ne postoji mogućnost liječenja hipotermijom. Takvu je novorođenčad potrebno premjestiti u tercijarnu zdravstvenu ustanovu koja ima razvijenu infrastrukturu za pružanje terapijske hipotermije. Ovisno o udaljenosti tercijarnog centra, transport može trajati i nekoliko sati.

Da se neuroprotektivno liječenje ne bi odgađalo, odmah se započinje s pasivnim pothlađivanjem koje se nastavlja tijekom transporta u tercijarnu ustanovu. Rektalna temperatura se održava između 35 i 36 °C. Metode koje se koriste pri pasivnom pothlađivanju novorođenčadi su: razodijevanje djeteta, isključivanje grijaca i vanjskih izvora topline te otvaranje vrata inkubatora (Sellam et al. 2017).

3.2.4. NEŽELJeni UČINCI TERAPIJSKE HIPOTERMIJE

Iako je terapijska hipotermija sigurna i dobro podnošljiva metoda liječenja novorođenčadi s HIE, pothlađivanje tijela može imati i određene neželjene reakcije. Najčešće zabilježene nuspojave povezane s terapijskom hipotermijom su trombocitopenija i srčane aritmije (Zhang et al. 2017). Hipotermija dovodi i do nastanka sinus bradikardije, ali bez zatajenja srčane funkcije. Pri tjelesnoj temperaturi od 33,5 °C frekvencija srca iznosi u prosjeku od 80 do 100 otkucaja u minuti (Mosalli 2012).

Budući je terapijska hipotermija postala standardom liječenja termske novorođenčadi s umjerom i teškom HIE, etički razlozi ne dopuštaju istraživanje kojim bi se preciznije razdvojile nuspojave nastale pothlađivanjem od onih nastalih zbog osnovne bolesti.
4. NOVI TERAPIJSKI PRISTUPI U LIJEČENJU HIE

Usprkos značajnom poboljšanju ishoda novorođenčadi s HIE, smrtnost i pobol nakon perinatalne ozljede mozga i dalje je neprihvatljivo visok zbog čega se u posljednje vrijeme provode brojna istraživanja s ciljem pronalaska dodatnih neuroprotektivnih modaliteta liječenja (Hobson et al. 2013). Osobita pozornost usmjerena je na pronalazak učinkovite medikamentne neuroprotekcije kako bi se djelovanjem na različite mehanizme moždanog oštećenja postigao zadovoljavajući terapijski učinak (Dixon et al. 2015). Određene tvari, poput eritropoetina, uskoro bi mogle postati općeprihvaćena adjuvantna neuroprotektivna sredstva u liječenju novorođenčke HIE.

4.1. ERITROPOETIN

Eritropoetin je glikoprotein koji se najvećim dijelom stvara u peritubularnim stanicama bubrega, a u fetalnom i perinatalnom razdoblju u jetri. U koštanoj srži eritropoetin stimulira proizvodnju hematopoetskih matičnih stanica te potiče proliferaciju, diferencijaciju i sazrijevanje nezrelih stanica eritrocitnog reda (Lv et al. 2017). U normalnim okolnostima svega 1 do 2 % cirkulirajućeg eritropoetina prelazi krvno-moždanu barijeru, uglavnom pasivnom difuzijom. Međutim, u stanjima hipoksije-ishemije povećana permeabilnost krvno-moždane barijere olakšava prolazak eritropoetina u cerebrospinalnu tekućinu (Mal et al. 2017).

U brojnim istraživanjima proučavan je neuroprotektivni učinak eritropoetina i eritroproteinskih receptora (Xiong et al. 2010). Prema rezultatima nekih istraživanja, eritropoetin smanjuje rizik smrtnog ishoda i umjerene/teške invalidnosti te doprinosi boljim neurološkim ishodima u dobi od 6 mjeseci (Elmahdy et al. 2010; Zhu et al. 2009). Mulkey i suradnici također izvješćuju o pozitivnim neuroprotektivnim učincima eritropoetina. Prema njihovom istraživanju volumen moždane ozljede bio je manji i neurorazvojno oštećenje blaže u novorođenčadi koja je uz terapiju pothlađivanjem liječena u visokim dozama eritropoetina u odnosu na kontrolnu skupinu liječenu isključivo hipotermijom (Mulkey et al. 2017).

Jednake rezultate objavljuju Wu i suradnici; novorođenčad s umjerenom do teškom HIE koja je uz terapijsku hipotermiju primila visoke doze eritropoetina (1000 i.j./ kg) prvog, drugog, trećeg, petog te sedmog dana života, imala je manji opseg oštećenja mozga na magnetskoj
rezonanciji u odnosu na kontrolnu skupinu liječenu terapijskom hipotermijom bez eritropoetina. Navedeno poboljšanje je bilo najizraženije u subkortikalnom području mozga (bazalni gangliji, talamus i unutrašnja kapsula) koje je posebno osjetljivo na hipoksiyu-ishemiju u terminske novorođenčadi. Nadalje, djeca koja su primala eritropoetin imala su značajno bolje motoričke ishode u dobi od 6 i 12 mjeseci u odnosu na kontrolnu skupinu (Wu et al. 2016).

Učinak kombinirane terapije hipotermijom i rekombinantnim eritropoetinom na serumske razine tau proteina te neurorazvojne ishode u dobi od 9 mjeseci života objavio je Lv sa suradnicima. Bolesnicima su primjenjivali 200 i.j./kg rekombinantnog eritropoetina jednom dnevno, deset dana za redom te mjerili serumske razine tau proteina (Lv et al. 2017). Tau protein se normalno nalazi u aksonima neurona gdje se veže za mikrotubule i potiče stabilnost citoskeleta, a u stanjima ozljede mozga dolazi do porasta njegove koncentracije u serumu (Bulut et al. 2006). Tau protein služi kao specifični biomarker neurona središnjeg živčanog sustava, budući da vrijednosti serumskog tau proteina dobro koreliraju s težinom moždanog oštećenja. (Liliang et al. 2010; Bitsch et al. 2002). Rezultati Lv i suradnika pokazali su značajan pad koncentracije serumskog tau proteina 8. do 12. dana u novorođenčadi koja je liječena eritropoetinom u odnosu na kontrolnu skupinu. Međutim, rezultati ispitivanja neurorazvojnih ishoda pomoću NBNA (Neonatal behavioral neurological assessment) i GDS (Gesell development scale) u dobi od devet mjeseci nisu pokazali značajnije razlike između skupina (Lv et al. 2017).

Malla i suradnici ispitali su učinak monoterapije eritropoetinom kao mogućeg alternativnog oblika liječenja u situacijama kada je terapija pothlađivanjem nedostupna. Prema njihovim rezultatima, primjena eritropoetina u dozi od 500 i.j./kg svakog drugog dana tijekom 5 dana značajno je smanjila rizik od smrti i neuroloških oštećenja u bolesnika s umjerenom do teškom HIE-om. Preživljenje bez neuroloških poteškoća nakon 19 mjeseci u skupini liječenoj eritropoetinom iznosilo je 71%, a u kontrolnoj skupini svega 30% (Malla et al. 2017).

Primjena eritropoetina u dosadašnjim istraživanjima nije zabilježila neželjenih učinaka poput policitemije, tromboze i hipertenzije, koji se inače učestalo javljaju u odraslih bolesnika liječenih eritropoetinom (Rangarajan & Juul 2014). Samo su u jednom istraživanju zabilježene povišene vrijednosti hemoglobina, broja eritrocita te retikulocita deseti dan nakon primjene eritropoetina, no krajem prvog mjeseca vrijednosti su se normalizirale te nije došlo do razvoja komplikacija poput hipertenzije, policitemije ili tromboze (Malla et al. 2017).
4.2. LIJEČENJE MATIČNIM STANICAMA IZ PUPKOVINE

Terapija matičnim stanicama obećavajuća je neuroprotektivna i neuroregenerativna strategija u liječenju HIE budući da matične stanice posjeduju sposobnost diferencijacije u različite tipove stanica, uključujući neurone, astrocite i oligodendrocite (Dixon et al. 2015, Ma et al. 2011). Krv iz pupkovine bogat je izvor različitih vrsta matičnih stanica poput hematopoetskih, mezenhimalnih, endotelnih progenitorskih stanica, matičnih stanica po svojim svojstvima sličnih embrijskim i neograničenih somatskih stanica (Matsumoto i Mugishima, 2009). Prikupljanje krvi iz pupkovine je jednostavna, neinvazivna i bezbolna metoda koja ne šteti ni novorođenčetu niti majci (Dixon et al. 2015). Metoda je postala široko prihvaćena nakon prve uspješne transplantacije krvi iz pupkovine 1988. godine u dječaka oboljelog od Fanconijeve anemije (Hunt 2011).

Nedavna istraživanja na životinjskim modelima pokazala su neuroprotektivan učinak matičnih stanica u stanjima hipoksije-ishemije, djelujući pretežito na ublažavanje upale, apoptoze i oksidativnog stresa ali i na poticanje regeneracije u procesu oporavka nakon ozljede mozga (Nabetani et al. 2018).

Liječenje humanim mezenhimalnim matičnim stanicama pupkovine kao dodatak terapijskoj hipotermiji posjeduje veći neuroprotektivni učinak od učinka svake pojedine metode zasebno (Park et al. 2015).

Od 2008. god. u Sveučilištu Duke provodi se kliničko ispitivanje učinkovitosti i sigurnosti terapije matičnim stanicama iz krvi pupkovine u novorođenčadi s umjerenom i teškom HIE. Uz standardnu terapiju hipotermijom, novorođenčad koja zadovoljava kriterije primit će intravenski do 4 doze autolognih stanica krvi iz pupkovine, ovisno o količini dostupnih stanica. Prema prvim rezultatima, metoda se opisuje kao sigurna, budući da nisu zabilježene značajnije neželjene reakcije (Cotten et al. 2014). Nabetani i njegovi suradnici, istraživali su učinak primjene autolognih matičnih stanica pupkovine u 5 pacijenata s umjerenom i teškom HIE. Također nisu primijetili nikakve značajnije nuspojave liječenja matičnim stanicama (Nabetani et al. 2018). Metoda se pokazala sigurnom i u djece s cerebralnom paralizom (Li et al. 2014).

Dosadašnji rezultati pokazuju obećavajuće rezultate, no potrebna su daljnja istraživanja kako bi se ocjenila optimalna doza, način i vremenski okvir primjene matičnih stanica u svrhu smanjenja moždanog oštećenja u asfiktične novorođenčadi (Dixon et al. 2015).
4.3. MELATONIN

Melatonin (N-acetil-5-metoksitriptamin) je neurohormon koji se većinom sintetizira u epifizi iz prekursora triptofana. Osim djelovanja na cirkadijnal ritam, melatonin se u djece pokazao sigurnim u liječenju poremećaja pažnje s hiperaktivnošću, kronične nesanice (Hoebert et al. 2009), izrazitih poteškoća pri učenju (Gordon 2000) te u terapiji septične novorođenčadi (Chen et al. 2012).

Melatonin pokazuje izrazita protuupalna, antiapoptotična i antioksidativna svojstva u hipoksično-ishemičnoj ozljedi mozga (Zhao et al. 2016). Do sada je provedeno nekoliko kliničkih istraživanja o neuroprotektivnom djelovanju melatonina na mozak novorođenčadi. Fulia i suradnici izvješćuju o pozitivnim učincima melatonina u asfktične novorođenčadi. Skupina koja je primala melatonin u ukupnoj dozi od 80 mg (8 doza od 10 mg svaka 2 sata) unutar prvih 6 sati života imala je značajno niže razine nitrita/nirata i malondialdehida, produkta lipidne peroksidacije, u odnosu na kontrolnu skupinu. Također, u prva 72 sata, u kontrolnoj skupini umrlo je troje od desetero asfktične novorođenčadi, dok u skupini liječenoj melatoninom nije bilo smrtnih ishoda. Rezultati ovog istraživanja govore u prilog antioksidativnim svojstvima melatonina i njegovom zaštitnom djelovanju kod asfktične ozljede (Fulia et al. 2001). Prema rezultatima istraživanja iz 2015. godine liječenje melatoninom uz terapijsku hipotermiju smanjilo je incidenciju konvulzija, a na slikovnom prikazu mozga magnetskom rezonanconom bilo je manje oštećenja bijele tvari u onih liječenih melatoninom u odnosu na novorođenčad liječenu isključivo hipotermijom. Također, u dobi od 6 mjeseci zabilježena je veća stopa preživljenja bez neurorazvojnih poremećaja u skupini koja je uz hipotermiju primala i melatonin (Aly et al. 2015).

U dosadašnjim kliničkim istraživanjima nisu zabilježene ozbiljnije nuspojave melatonina čak niti nakon primjene visokih doza (Hendaus et al. 2016).

Melatonin slobodno prolazi krvno-moždanu i placentarnu barijeru što ga čini još atraktivnijim potencijalnim lijekom u liječenju HIE. Buduća istraživanja trebala bi ocijeniti da li bi profilaktička primjena melatonina tijekom trudnoće bila sigurna i učinkovita (McAdams & Juul 2016).
4.4. KSENON

Potrebna su daljnja, randomizirana i kontrolirana klinička istraživanja kako bi se utvrdila potencijalna korist ksenona u liječenju HIE te njegov sigurnosni profil u liječenju pedijatijske populacije (Devroe et al. 2015). Glavni nedostaci terapije ksenonom su njegova visoka cijena te komplicirana upotreba uz pomoć zatvorenog kružnog ventilacijskog sustava (Rüegger et al. 2017).

4.5. MAGNEZIJEV SULFAT (MgSO4)

Magnezij je četvrti najzastupljeniji kation u ljudskom organizmu. Sudjeluje u mnogim fiziološkim procesima, kofaktor je u više od 300 enzimatskih reakcija te sudjeluje u procesu proizvodnje i iskorištavanja energije. Važan je u prijenosu živčanih signala, mišićnoj kontrakciji te funkciji srca i regulaciji vaskularnog tonusa. U središnjem živčanom sustavu magnezij se najvećim dijelom nalazi vezan za spojeve poput adenozin trifosfata te djeluje kao nekompetitivni antagonist NMDA glutamatnih receptora regulirajući protok kalcija. Magnezijev sulfat se koristi u liječenju prijevremenog porođaja (tokolitik), te u prevenciji i liječenju konvulzija u trudnica s preeklampsijom i eklampsijom (Chollat et al. 2018).

Magnezij djeluje neuroprotektivno, vjerojatno prevencijom ekscitotoksične ozljede i apoptoze te smanjenja oksidativnog stresa (Chollat et al. 2018). Rezultati kliničkih studija pokazuju kako magnezijev sulfat djeluje povoljno na kratkoročne ishode (manje konvulzija, bolji rezultati EEG-a i CT-a glave) u novorođenčadi s HIE, ali bez učinka na smanjenje mortaliteta (Hobson et al. 2013). Primjena magnezijevog sulfata u trudnica s prijevremenim
porođajem nije utjecala na preživljenje novorođenčadi, no zabilježen je smanjeni rizik za razvoj umjerene ili teške cerebralne paralize (Rouse et al. 2008). U Danskoj se trenutno provodi istraživanje za koje se očekuje da će razjasniti neuroprotektivno djelovanje magnezija (Wolf et al. 2015).

S obzirom da ne izaziva nuspojave, Svjetska zdravstvena organizacija i brojna pedijatrijska i opstetrička društva savjetuju primjenu magnezijevog sulfata, posebice u trudnica s visokim rizikom od prijevremenog poroda (Chollat et al. 2018).

4.6. ALOPURINOL

Alopurinol, inhibitor ksantin oksidaze, primjenjuje se u liječenju hiperuricemije u bolesnika s gihtom i neoplazmama (Dixon et al. 2015). Početkom 90-ih godina prošlog stoljeća objavljeni su prvi radovi koji govore o neuroprotektivnom djelovanju alopurinola (Rodríguez-Fanjul et al. 2017). Alopurinol posjeduje svojstvo hvatanja slobodnih radikala te pomaže u smanjenju moždanog edema i neuroloških oštećenja nastalih uslijed hipoksično-ishemične ozljede, no dosadašnja istraživanja o učinku alopurinola u novorođenčadi s HIE ne daju jednoznačne rezultate te su potrebna daljnja istraživanja koja će bolje razjasniti neuroprotektivan učinak alopurinola, posebice u kombinaciji s terapijskom hipotermijom (Annink et al. 2017). Sveučilišna bolnica u Tübingenu pokrenula je 2017. godine ALBINO studiju (eng. Study Effect of Allopurinol in addition to hypothermia for hypoxic-ischemic Brain Injury on Neurocognitive Outcome), multicentrično, randomizirano, dvostruko slijepo, placebom nadzirano ispitivanje kako bi ocijenila učinak alopurinola u liječenju HIE. U istraživanje su uključeni sudionici ukupno 11 europskih zemalja, a rezultati se očekuju krajem 2020. godine (Juul & Ferriero 2014).

Alopurinol slobodno prolazi placentarnu barijeru. Posljednje vrijeme, u središtu interesa istraživanja je prenatalna primjena alopurinola s ciljem neuroprotektivnog djelovanja na fetus. Dosadašnji rezultati pokazali su da alopurinol primijenjen tijekom trudnoće smanjuje stvaranje superoksidnih radikala za vrijeme intermitentne okluzije pupkovine te opseg moždanog oštećenja uslijed asfiksije (Muller & Marks, 2014).
5. PROGNOZA

Dugoročna prognoza bolesnika ovisi o težini (stupnju) HIE. Smrtnost iznosi oko 20%, a oko trećina preživjelih pokazuje kansije neurorazvojno zaostajanje. Učestalost loših neurorazvojnih ishoda, uključujući kognitivne poremećaje, senzomotorne poremećaje i smrt, u djece s umjerenim HIE iznosi oko 30%, a u djece s teškim oblikom HIE je gotovo 100%-tna. Većina djece s blagim stupnjem HIE preživi bez neuroloških poteškoća. Postotak onih koji razviju cerebralnu paralizu kreće se od 3% do 50%, ovisno o istraživanju. Zastupljenost HIE u cjelokupnoj kohorti onih s cerebralnom paralizom iznosi 10% (Antonucci et al. 2014).

Prognoza HIE u istraživanjima je analizirana putem primarnih i sekundarnih ishoda. Primarni ishod je definiran kao kombinacija smrtnog ishoda i teškog neurorazvojnog oštećenja u dobi od 18 mjeseci. U sekundarnim ishodima pojedinačno su definirani: mortalitet, cerebralna paraliza, sljepoća, oštećenje sluha i intelektualni zastoj (Edwards et al. 2010). Terapijska hipotermija smanjuje kombinirani smrtni ishod i razvoj teških neurorazvojnih oštećenja, ali i smrtnost pojedinačno kao sekundarni ishod. Također, smanjuje pojavnost cerebralne paralize te dovodi do boljih psihomotornih i kognitivnih ishoda (Jacobs & Tarnow-Mordi 2010). Potencijalne aditivne neuroprotektivne metode uz hipotermiju trebale bi dovesti do boljih dugoročnih ishoda u novorođenčadi s HIE.

Dijagnostički testovi koji se uobičajeno koriste u dijagnostici i praćenju djece s HIE, poput aEEG-a, elektroencefalograma i magnetske rezonancije, imaju visoku prognoštičku vrijednost za neurološki ishod. Također, hiperglikemija u prvih 12 sati života povezana je s lošijim neurološkim ishodom. Somatosenzorni i vidni evocirani potencijali su potencijalni prediktivni testovi koji bi se mogli koristiti u budućnosti (Antonucci et al. 2014).
ZAKLJUČAK

Iako terapijska hipotermija kao neuroprotektivna intervencija u novorođenčadi s HIE smanjuje smrtnost i neurološki morbiditet, u značajnog broja asfiktične novorođenčadi s teškim i umjerenim stupnjem stupnjem HIE ostju trajne neurološke posljedice, a neprihvatljiv broj ih i umire. Za sada je dvojbenica učinkovitost terapijske hipotermije ukoliko se započne u poodmaklom stadiju mohdanog oštećenja (dob veća od 6 sati), te se stoga razmatraju i razvijaju novi modaliteti liječenja s ciljem uspješnije neuroprotekcije i bolje dugoročne prognoze.

Eritropoetin, matične stanice iz krvi pupkovine, melatonin, magnezijev sulfate, ksenon i alopurinol neki su od spojeva s dokazanim neuroprotektivnim učinkom čija bi primjena uz terapijsku hipotermiju uskoro mogla postati standard u liječenju HIE, ne samo u bolesnika u kasnoj fazi HIE (dob veća od 6 sati) već i preventivno.
ZAHVALE

Željela bih se zahvaliti svojoj mentorici doc. dr. sc. Ruži Grizelj na stručnom vodstvu, susretljivosti i pomoći tijekom izrade ovog diplomskog rada.

Zahvaljujem se najbližim prijateljima i kolegama za podršku i motivaciju, zbog kojih će mi studentski dani ostati u lijepom sjećanju.

I na kraju, neizmjereno hvala mojim roditeljima i sestri na velikoj podršci i pruženoj bezuvjetnoj ljubavi tokom cijelog školovanja.
LITERATURA

57. Mardešić D i sur. (2016) Pedijatrija, Zagreb, Školska knjiga

79. Shankaran S, Laptook AR, Ehrencranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotton CM,

ŽIVOTOPIS