Iva Hlapčić

Predanalitički čimbenici u analizi cfDNA

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2018.
Ovaj diplomski rad je prijavljen na kolegiju Suvremene biokemijske tehnike Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen na Zavodu za biokemiju i molekularnu biologiju pod stručnim vodstvom doc. dr. sc. Sandre Šuprahe Gorete.

Zahvaljujem se svojoj mentorici doc. dr. sc. Sandri Šuprahi Goreti na podarenom vremenu i trudu, nesebičnom vođenju kroz cijeli proces i velikodušnom dijeljenju stečenog znanja, a ponajviše na profesionalizmu s prijateljskom dozom koja uvelike olakšava poteškoće i uveliča male uspjehe.

Posebno se zahvaljujem svojim roditeljima na bezuvjetnoj podršci u svim trenucima, na pruženoj slobodi pri donošenju vlastitih odluka, beskrajnoj ljubavi i vjeri u moje sposobnosti bez obzira na sve. Također, veliko hvala kolegicama Isabelli Zolić i Ani Cvetko, dvjema životnim prijateljicama koje su me učile ustrajnosti, hrabrosti i ljubavi kroz sve trenutke studija.
SADRŽAJ

1. Uvod ... 1

1.1. Karcinogeneza .. 2

1.2. Karcinom dojke ... 3

1.2.1. Dijagnostika karcinom dojke .. 3

1.3. Slobodna cirkulirajuća DNA ... 5

1.3.1. Biološka uloga cfDNA .. 6

1.3.2. Potencijalna uloga cfDNA u dijagnostici karcinoma 7

1.3.2.1. Predanalitika ... 10

1.3.2.2. Metode detekcije i kvantifikacije cfDNA ... 10

1.3.3. Povezanost cfDNA s drugim dijagnostičkim parametrima 12

2. Obrazloženje teme .. 13

3. Materijali i metode .. 15

3.1. Ispitanici .. 16

3.1.1. Uzorkovanje .. 16

3.2. Materijali .. 17

3.2.1. Proizvođači korištenih materijala i kemikalija .. 17

3.2.2. Standardne kemikalije .. 17

3.2.3. Uredaji i pribor .. 18

3.2.4. Boje ... 18

3.2.5. Standardni pripravci .. 18

3.2.6. Komercijalni kompletni pripravci – kitovi .. 18

3.2.7. Priprema pufera i otopina ... 18

3.2.8. Gel za elektroforezu .. 19
3.3. Metode ... 20

3.3.1. Izolacija DNA QIAamp® DNA Mini Kit-om ... 20

3.3.2. Izolacija slobodne cirkulirajuće DNA Norgen Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit-om ... 21

3.3.3. Agarozna elektroforeza ... 22

3.3.4. Spektrofotometrijsko određivanje koncentracije DNA 23

4. Rezultati i rasprava ... 26

4.1. Agarozna elektroforeza DNA izolirane QIAamp® DNA Mini Kit-om iz uzoraka seruma i plazme ... 27

4.2. Agarozna elektroforeza izolata DNA dobivenih QIAamp DNA Mini Kit-om iz uzoraka kojima je dodana unutarnja kontrola .. 29

4.3. Agarozna elektroforeza izolirane DNA iz uzastopno zamrzavanih i odmrzavanih uzoraka .. 31

4.4. Agarozna elektroforeza slobodne cirkulirajuće DNA izolirane iz uzoraka Norgen Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit- om .. 33

4.5. Spektrofotometrijsko određivanje koncentracije DNA na aparatu Nanodrop 8000, Thermo Fischer Scientific ... 34

5. Zaključci ... 38

6. Literatura ... 40

7. Sažetak/Summary .. 43

8. Temeljna dokumentacijska kartica/ Basic documentation card 46
1. Uvod
1.1. Karcinogeneza

inaktivacije jer tako nestaju inhibitorni signali proliferacije, povećava im se mogućnost preživljenja ili izbjegavaju aktivacijske signale za puteve apoptoze. (Cooper GM, 2004.)

1.2. Karcinom dojke

Karcinom dojke vodeći je uzrok smrti žena u Europi kada se govori o malignim oboljenjima. 90% karcinoma dojke nastaje u mlječnim kanalićima te takav oblik karcinoma nosi naziv duktalni karcinom dojke i najčešće je lokaliziran na određeni dio dojke. Rizični čimbenici za karcinom dojke su genetska predispozicija, izloženost estrogenima, ionizacijsko zračenje, atipične hiperplazije stanica, kao i suvremeni način života, pretistolost, pretjerana konzumacija alkoholnih pića. Većina pacijentica bolest razvije nakon 50. godine života, dok je stopa oboljelih u ranijoj životnoj dobi, prije 35. godine, tek < 5 %. U Republici Hrvatskoj, prema podacima iz 2013. godine, na prvom je mjestu prema učestalosti kod žena. Preporučena metoda pretraživanja je mamografija i trebala bi se obavljati svake dvije godine u populaciji žena od 50 do 69 godina. U kombinaciji s edukacijskim programima za širu populaciju i poboljšanim terapijskim metodama, postiže se smanjena stopa smrtnosti. (Šekerija M et al, 2016.)

1.2.1. Dijagnostika karcinoma dojke

Pacijentice je potrebno edukacijskim metodama potaknuti na jednomjesečni samopregled dojki, pazušnih jama i vrata. Također, pri pojavu simptoma poput opipljivih masa u području dojki, limfnih čvorova vrata, lokalizirane koštane boli, umora, gubitka apetita i tjelesne mase, otežanog disanja, potrebno je obratiti se liječniku. Posebna pozornost treba se obratiti na pacijentice u čijim obiteljima postoji povijest karcinoma dojke te se, u takvim slučajevima, preporuča magnetska rezonanca svakih 6 mjeseci počevši od dobi koja je 10 godina manja od najmlađeg obiteljskog slučaja. (Šekerija M et al, 2016.)

Nadalje, one koje su preživjele karcinom dojke, trebaju obavljati mamografiju jednom godišnje kako bi se na vrijeme otkrila druga tumorska masa. Laboratorijski testovi provode se uglavnom tek nakon utvrđivanja dijagnoze, dok se tip, faza i proširenost karcinoma određuje nakon biopsije tkiva i histopatološkom analizom istog. Zbog kvalitativnih i kvantitativnih promjena u tjelesnim tekućinama i tkivima, koje nastaju u procesu karcinogeneze, pojedini analiti iskorišteni su kao tumorski biljezi. Osim specifičnih sastavnica povezanih s malignim procesima, u serumu se mogu uočiti povećane koncentracije reaktanata akutne faze budući da je karcinogeneza upalni proces. Tako se povećavaju koncentracije CRP-a, α2-globulina, bakra, povećana je sedimentacija eritrocita, aktivnost alkalne fosfataze, dok padaju
1.3. Slobodna cirkulirajuća DNA

Prisutnost slobodne cirkulirajuće DNA (eng. cell-free DNA, cfDNA) u krvnoj plazmi otkrili su Mandel i Metais 1948. godine. Slobodna cirkulirajuća DNA dvostruko je lančana i visokofragmentirana molekula pri čemu je njena veličina oko 150 bp što odgovara osnovnoj organizacijskoj jedinici DNA molekule u jezgri, nukleosomu, odnosno veličini fragmenata otpuštenih iz stanica nakon apoptoze pa cfDNA na elektroforezi pokazuje ljestvičastu distribuciju. (Volik S, 2016.)

cfDNA otpušta se u cirkulaciju iz apoptotičnih, nekrotičnih i živih tumorskih stanica te je njena koncentracija povišena kod tumorskih pacijenata. Osim slobodne cirkulirajuće DNA, u perifernoj cirkulaciji pacijenata s malignim oboljenjima mogu se detektirati i slobodne cirkulirajuće tumorske stanice (CTC, eng. circulating tumor cells). (Slika1.)

Slika 1. Slobodna cirkulirajuća tumorska DNA i cirkulirajuće tumorske stanice u perifernoj cirkulaciji, preuzeto i prilagođeno iz: https://cdn.intechopen.com/pdfs-wm/38575.pdf
Cirkulirajuće tumorske stanice otpuštaju se iz primarnih tumora u krv te mogu doći do udaljenih organa poput jetre, kostiju, pluća ili mozga. Takve tumorske stanice mogu se, kao i slobodna cirkulirajuća DNA, iskoristiti u dijagnostici tumora, međutim ovim radom fokusirat ćemo se primarno na cfDNA kao potencijalni marker tumorskih oboljenja. Detekcija i sekvenciranje cfDNA ovisi o frakciji slobodne cirkulirajuće tumorske DNA (ctDNA, eng. circulating tumor derived DNA) koja je u većem udjelu (>5-10%) kod pacijenata s napredovalom bolešću, nego kod pacijenata u ranijim stadijima bolesti (<1%). (Pantel K, 2016.)

Slobodna cirkulirajuća tumorska DNA otpušta se iz tumorskih stanica u krv i sa sobom nosi mutacije karakteristične za tumor, poput promjene jednog nukleotida, promjene u metilaciji ili tumor-specifične sljedove nukleotida. Ono što je još uvijek nerazriješeno je odakle ctDNA dolazi u cirkulaciju. Postoje tri teorije – da ctDNA dolazi iz apoptotičnih ili nekrotičnih tumorskih stanica, živih tumorskih stanica ili cirkulirajućih tumorskih stanica, a u konačnici tvrdi se da je porijeklo ctDNA iz svih navedenih izvora. Uočeno je da pacijenti u kasnijim stadijima tumorog oboljenja imaju veće koncentracije tumorske DNA što se čini logičnim ako se razmišlja o preopterećenju fagocitnog sustava koji ne može ukloniti povećani broj nekrotičnih tumorskih stanica. Međutim, i pacijenti u ranijim stadijima bolesti sadrže ctDNA u plazmi pa tu leži objašnjenje zašto apoptotične i nekrotične stanice nisu jedini izvor tumorske DNA. Što je veći broj tumorskih stanica, koncentracija ctDNA se povećava što znači da dio takve DNA dolazi i iz živućih tumorskih stanica. Konačno, u krvnim uzorcima koji sadrže CTC (eng. circulating tumor cells), nalazi se i tumorska ctDNA te su genetičke mutacije jednake u obje sastavnice. CTC mogu lako izbjeći makrofage i tako doći u cirkulaciju odakle se mogu detektirati. Postoje pretpostavke da ctDNA može utjecati na zdrave stanice i tako imati ulogu u procesu metastaziranja. (Cheng F et al, 2016.)

Kada se govori o integritetu takve molekule, mišljenja su podvojena. Neki autori tvrde da je smanjen integritet cfDNA povezan s učestalijim apoptozama, a da to vodi ka većoj tumorskoj proliferaciji. (Volik S, 2016.)

1.3.1. Biološka uloga cfDNA

Prisutnost tumorske cfDNA u serumu ili plazmi pacijenata s tumorom potaknula je na istraživanje dijagnostičkog i prognostičkog potencijala cirkulirajuće DNA. Ovakva DNA visoko je fragmentirana i često se gubi tijekom procesa DNA izolacije. Upravo zbog nedostatka standardizacije metode za takve slučajeve, koja bi trebala biti usmjerena na ovakvu
specifičnu vrstu DNA, uzrok je nedovoljnog znanja o koncentraciji i integritetu slobodne cirkulirajuće tumorske DNA molekule. (Fong SL et al, 2009.)

Ona ima različite biološke uloge od kojih brojne još uvijek nisu do kraja objašnjene. Jedna od poznatih je da je cfDNA dio izvanstanične mreže neutrofila koja se formira kao odgovor na bakterijsku infekciju. Otpuštanje DNA iz neutrofila događa se procesom sličnim staničnoj smrti, a naziva se NETozna. (eng. NET, neutrophil extracellular traps). Razlika od klasične apoptoze je u tome što ne dolazi do fagocitima posredovanih aktivacijskih signala pa neutrofili, koji ulaze u proces NETozne, na kraju ne bivaju fagocitirani iz cirkulacije. Alternativno objašnjenje polazi od DNA/serin nukleaze u intaktnim neutrofilima i da je NETozna, kao proces, posljedica autofagije. Ono što je vrlo bitno jest da cfDNA, kao dio NET, potiče koagulacijske mehanizme što ostavlja prostor za istraživanje promjena u hemostazi koje bi mogle ukazivati na maligne procese u organizmu. (Volik S, 2016.)

1.3.2. Potencijalna uloga cfDNA u dijagnostici karcinoma
Trenutna dijagnostika tumora temelji se na metodama koje koriste tkivnu biopsiju kao zlatni standard, a ona ima svoja ograničenja. Detekcija tumora u ranom stadiju nije zadovoljavajuća, a primjena u kontekstu uspješne terapije i prognoze bolesti ima svoje granice. (Cheng F et al, 2016.)

Stopa preživljenja tumorskih bolesnika povećava se ukoliko je točna dijagnoza, kao i odgovarajuća terapija, uspostavljena u što ranijem stadiju. Većina današnjih metoda oslanja se na biokemijske markere (CA-125 za maligna oboljenja jajnika, PSA za prostatu, AFP za jetru, NSE za karcinom malih plućnih stanica,…) što vrlo često daje lažno pozitivne rezultate i kasnije dovodi do invazivnih i neugodnih terapijskih postupaka poput radijacije ili tkivne biopsije. (Čepelak I, Čvorišćec D, 2009.)

Tumorski biljezi su tvari povezane s malignim procesom koje su detektabilne u tjelesnim tekućinama i tkivima. Koriste se u procjeni rizika za nastanak karcinoma, probiranju šire populacije, dijagnostici, praćenju terapije, procjeni ishoda bolesti i pojavi recidiva. Idealan tumorski biljeg trebao bi biti visoke dijagnostičke specifičnosti što znači da se njegovim korištenjem dobiva velik broj ispravnih negativnih nalaza kod zdravih osoba, visoke dijagnostičke osjetljivosti kako bi se dobio velik broj zaista oboljelih osoba s pozitivnim testom, mora korelirati s tumorskom masom, biti pouzdan i reproducibilan, širokog analitičkog raspona, primjerene cijene optimalne pozitivne i negativne prediktivne vrijednosti. Sve su to zahtjevi na koje teško odgovaraju trenutno korišteni tumorski biljezi pa postoji stalna potraga za novim i boljim rješenjima. (Čepelak I, Čvorišćec D, 2009.)

Analiza cirkulirajuće DNA (cfDNA) ili cirkulirajućih tumorskih stanica (CTC) naziva se tekućinska biopsija. Prednosti tekućinske biopsije su neinvazivnost, uvid u trenutni molekularni status, a to vodi ka kreiranju personaliziranog pristupa, boljem praćenju statusa bolesti i terapije. (KLG Spindler, 2017.)

cfDNA nameće se kao alternativni biomarker za detekciju malignih bolesti koji bi pospješio preživljenje i kvalitetu života pacijenata s malignim oboljenjima. Vrijeme poluživota cfDNA je manje od dva sata, dok je vrijeme poluživota proteinskih biomarkera nekoliko tjedana što znači da se cfDNA konstantno i brzo otpušta u perifernu cirkulaciju, brzo se degradira i filtrira pa točnije opisuje trenutno stanje i tako je pogodnija za praćenje pacijenata na terapiji. Dio cfDNA čini nukleosome što može dati informaciju o porijeklu DNA molekule zbog tkivno-specifičnih obilježja. Nadalje, ukoliko se promatraju koncentracije cfDNA kod pacijenata s različitim stadijima bolesti, vidljivo je da se koncentracija cfDNA povećava u kasnijim stadijima. Konačno, promatrana je koncentracija cfDNA kod pacijenata kojima se bolest vratila i kod onih kod kojih se nije pojavilo ponovno maligno oboljenje. Uočeno je da se cfDNA može koristiti za praćenje relapsa, odnosno evaluaciju tumorske progresije i prognoze bolesti. Sve su to dovoljno dobri razlozi da se cfDNA sve više kreće koristiti kao biomarker u dijagnostici i prognozi tumorskih oboljenja. Da bi se kompletna dijagnostika tumora poboljšala, posebice za pacijente u ranim stadijima bolesti, potrebno je kombinirati znanja iz različitih područja te se tako, ujedinjavanjem poznatih činjenica o promjenama na egzosomima, slobodnoj cirkulirajućoj microRNA i trombocitima, dobiva širi uvid u patofiziološke procese čime se povećava mogućnost za što ranijim i točnijim definiranjem tumorskog stadija. Zasada je prepoznat potencijal otkrivanja promjena u cfDNA specifičnih za tumorska oboljenja, međutim metode nisu dovoljno točne iako su visokospecifične i
visokoosjetljive. Ono što je potrebno jest svako maligno oboljenje kod svakog pojedinačnog pacijenta tretirati kao zaseban patološki proces u kontekstu da se rade profili mutacija kod svakog pacijenta što, gledajući s druge strane, ne ostavlja prostor za iskorištavanje ctDNA u svrhu metode probiranja kod široke populacije, a jedan je od zahtjeva tumorskih biljega. Također, dodatni problem je što se udio ctDNA u cjelokupnoj cfDNA u ranijim stadijima bolesti vrlo malen. U ranijim stadijima bolesti potreban je veći volumen uzorka jer je koncentracija ctDNA toliko niska da odgovara jednom genomskom ekvivalentu u 5 mL krvi. Zbog dosadašnjih malih postotaka pacijenata kod kojih je detektirana ctDNA, ova metoda nije ušla u kliničku praksu radi potencijalno velikog broja lažno negativnih rezultata. (Pantel K, 2016.)

Da bi se ctDNA mogla koristiti kao dijagnostički marker, potrebno je bolje razumjeti biološke karakteristike ctDNA molekule, njenu veličinu, konformacije, načine i izvore dolaska u perifernu cirkulaciju. Što se metoda tiče, neizbježna je njihova analitička i klinička validacija kao i odluka jesu li one dovoljno osjetljive kako bi bile primjenjive u uzorcima s vrlo malenom količinom ctDNA. (Cheng F et al, 2016.)

Kako je cirkulirajuća tumorska DNA (ctDNA) „razrijeđena“ unutar cjelokupne cirkulirajuće slobodne DNA (cfDNA), metode sekvenciranja poput Sangerove nisu dovoljno osjetljive za detekciju mutiranih DNA molekula. Zbog toga je PCR ciljanog specifičnog fragmenta bila jedina metoda tijekom 1990-ih koja je mogla detektirati slabi tumorski signal. Posljedično, otkriveno su i druge tumorske specifične promjene poput onih povezanih s mikrosatelitnim regijama, amplifikacije gena, prisutnosti onkogenih virusnih DNA, hipermetilacije promotorskih regija tumor-supresorskih gena. Različite metode su primijenjene da bi se spoznao potencijal cfDNA – kvantitativna mjerenja ukupne cfDNA, detekcija tumor specifičnih promjena u ctDNA, kvantifikacija promijenjenih alela u uzorku. Zasada, cfDNA u klinici pronašla je mjesto u prenatalnoj dijagnostici. Fetalna cfDNA može biti detektirana u krvnom uzorku majke što se može iskoristiti za prenatalna genetička ispitivanja. Druga korisna upotreba dolazi u obliku praćenja statusa nakon transplantacije organskog. Kako je DNA otpuštena u cirkulaciju nakon smrti stanice, razina DNA donora u krvi primatelja organskog može biti iskorištena kao marker za prognozu odbijanja transplantiranog organskog. Također, zbog poznatog podrijetla i načina dolaska cfDNA u cirkulaciju, zamijećena je mogućnost iskorištavanja istog u svrhu prediktivnog biomarkera kod sepse, septičkog šoka, infarkta miokarda, generalno svih stanja u kojima dolazi do smrti i razaranja velikog broja stanica,
posebno ako ostale metode poput npr. slikovnih tehnika dijagnostički nisu korisne. (Volik S, 2016.)

1.3.2.1. Predanalitika

Uspoređivanje podataka i uvodenje tekućinske biopsije u kliničku praksu zahtijeva standardizaciju, a veliku ulogu, osim analitičkih metoda, u tome ima predanalitika. Uočeno je da je doprinos DNA bolji iz uzorka plazme, nego iz uzorka seruma. Prilikom skupljanja uzorka krvi, pozornost je potrebno obratiti na što manji udio lize stanica i kontaminacije s DNA iz normalnih krvnih stanica. Značajne greške u kvantifikaciji događaju se ako, osim kontaminacije s DNA drugih krvnih stanica, dođe do gubitka DNA molekula tijekom predanalitičkih postupaka. (KLG Spindler, 2017.)

1.3.2.2. Metode detekcije i kvantifikacije cfDNA

Metode za detekciju tumorskih aberacija dijele se u dvije kategorije – jedna skupina metoda cilja na specifične promjene, dok je druga skupina usmjerena na sve moguće promjene DNA. Primarna svrha tehnologije korištene u području onkologije jest mogućnost detekcije klinički značajnih tumorskih promjena. Pritom se prednost daje onim metodama koje uključuju jednostavno uzorkovanje, minimalnu invazivnost, nisku cijenu i koje obraćaju pozornost na tumorsku heterogenost kako bi se za svakog pacijenta mogao napraviti profil tumorske cfDNA. Tumorska promijenjena DNA je mali dio u sveukupnoj cfDNA pa je mogućnost detekcije specifičnih tumorskih promjena ključna. Problem je što su moguće promjene raznolike pa bi metoda morala biti izrazito precizna kako bi u velikom opsegu sveukupnih genomskih promjena prepoznala onu koju je specifična za tumore. (Volik S, 2016.)

Kvantitativni PCR u stvarnom vremenu mjeri signale označenih proba tijekom amplifikacije ciljanih gena. Metoda je jednostavna i reproducilbila te se može unaprijediti do visokoosjetljive verzije. Ono što je nedostatak jest potreba za velikim brojem odvojenih testova da bi se pokrio rastući broj relevantnih mutacija. Digitalni droplet PCR, ddPCR, koristi DNA razrijeđenu u izolirane pojedinačne molekule te je svaka molekula analizirana prema ciljanim genima. Može se detektirati više mutacija iz istog uzorka. Metoda je visokoosjetljiva. NGS (eng. next generation sequencing) temelji se na paralelnom sekvenciranju što omogućuje pretraživanje cijelog genoma. Metodom se mogu prepozнатi nepoznate mutacije u specifičnim genima ili se fokus usmjerava na ciljanu poznatu mutaciju. (KLG Spindler, 2017.)
Napredak NGS tehnologije donio je nove efektivne i ugodnije alternativne mogućnosti, jedna od takvih jest BEAMing (eng. beads, emulsion, amplification, magnetics). Izvodi se tako da se određeni segment DNA umnoži pomoću početnica s poznatim sekvencama i kovalentno povezanim na magnetske kuglice. U konačnici se koristi protočna citometrija kako bi se selektivno odvojili fragmenti s promatranom mutacijom. Također, razvijena je i kvantitativna metoda, CAPP-seq (eng. cancer personalized profiling by deep sequencing) u kojoj se koristi panel proba s biotiniliranim DNA oligonukleotidima koji ciljaju mutirane regije. Nove tehnologije koje omogućavaju napredak kvalitativnih i kvantitativnih analitičkih metoda, doprinose u povećanju osjetljivosti prilikom detekcije ctDNA. Međutim, i dalje je potrebno unapređenje novih metoda kako bi se postigla što veća osjetljivost detekcije u najranijim stadijima bolesti. Praktična negativna strana novih tehnologija zasigurno jest njihova visoka cijena što otežava upotrebu u svakodnevnoj kliničkoj praksi. Nadalje, zbog interindividuelnih razlika u koncentraciji ukupne cfDNA, uzorci se ne mogu smatrati ekvivalentnima, a uz različite predanalitičke utjecaje, varijabilnost se samo povećava. Različiti doprinosi iz izolacije DNA polaze i od odbire izolacijske metode. Ono što je nužno jest standardizacija kako bi krajnji rezultati bili usporedivi i reproducibilni u analitičkom i kliničkom kontekstu. Kada se uspoređuju doprinosi iz različitih vrsti uzorka, vidljivo je da je doprinos cfDNA iz seruma veći, međutim na kvalitetu izolirane cfDNA utječe liza monocita. Plazma je uzorak koji će manje biti onečišćen s DNA iz krvnih stanica što posljedično dolazi i od vremena proteklog od uzorkovanja do centrifugiranja. Pažnju je potrebno usmjeriti i na aditive, odnosno antikoagulanse u epruvetama u kojima se uzorci skupljaju. Heparin, primjerice, nije poželjan zbog interferencije s aktivnošću polimeraze što posljedično utječe na osjetljivost metode. Većina tumora praćena je različitim subklonalnim populacijama s različitim promjenama u genomskoj poruci stanica što svakako predstavlja veliki izazov u kreiranju osjetljive i precizne detekcije tumorske DNA. Genotipizacijom određuje se genotip što kasnije omogućava uspostavljanje precizne imunoterapije tako da se pretražuju potencijalni antigeni koji bi potaknuli jaki imunosni odgovor i čime bi T-limfociti mogli usmjereno reagirati. Tako se ostvaruje personalizirana terapija. Trenutno se u kliničkoj praksi genotipizacija radi iz uzorka dobivenih tkivnom biopsijom, no tako se dobiva informacija o lokalnom i statičkom tumoru pa je nemoguće dobiti uvid u stanje u stvarnom vremenu budući da je tumorsko tkivo vrlo heterogeno i promjenjivo. Koristeći ctDNA, s druge strane, rješavaju se navedeni problemi jer se dobiva informacija o genetičkim mutacijama cijelog tumorskog tkiva. Dodatna prednost je u tome što se ctDNA istih pacijenata u različitim stadijima bolesti može koristiti za praćenje genetičkih mutacija tijekom progresije tumora. U
konačnici, tekućinska biopsija temeljena na analizi ctDNA mogla bi poboljšati genotipizaciju tumora i usmjerenu terapiju što bi uvelike doprinijelo napretku personalizirane medicine. (Cheng F et al, 2016.)

1.3.3. Povezanost cfDNA s drugim dijagnostičkim parametrima

Smatra se da koncentracija ctDNA korelira s tumorskim volumenom. Kako tumor, što je veći i invazivniji, narušava homeostatski sastav tjelesnih tkiva i tekućina, nameće se pretpostavka da bi mogli postojati neki drugi analiti čija bi se koncentracija, sukladno tumorskom rastu, mijenjala. Poseban fokus stavlja se na već poznate tumorske biomarkere. U tom području treba provesti još mnogobrojna ispitivanja kako bi se došlo do konačnog zaključka, međutim zasad se uvida na mogućnost povezivanja ctDNA s drugim tumorskim biomarkerima u kontekstu boljih prognostičkih informacija o tumorskim bolestima. Standardni laboratorijski parametri, poput laktat dehidrogenaze, broja trombocita i broja neutrofila, opisuju aktivnu bolest bez prognostičkih informacija, a dosadašnji pokušaji povezivanja spomenutih parametara s ctDNA ne upućuju na značajnu povezanost koja bi bila iskoristiva u kliničke svrhe. (KLG Spindler, 2017.)
2. Obrazloženje teme
Kako je slobodna cirkulirajuća DNA, cfDNA, istih karakteristika kao i tkivo iz kojeg dolazi u perifernu cirkulaciju, iznimno je pogodan materijal za neinvazivne procedure i rješava probleme tkivne biopsije. Problematika, trenutno primjenjivane, tkivne biopsije svakako jest nemogućnost učestalog uzorkovanja zbog invazivnosti metode pa se tekućinska biopsija nameće kao pogodniji alternativni izbor koji omogućava praćenje uspješnosti terapije i progresije tumorskog rasta. cfDNA ima veliki klinički potencijal ukoliko se metode izolacije DNA, detekcije i kvantifikacije standardiziraju. Ovim radom prikazuje se način izolacije i pročišćavanja takve DNA molekule, ispituje se razlika prilikom izolacije različitim metodama, obrazac ponašanja molekule na elektroforeznom gelu i kvantifikacija izoliranog materijala.
3. Materijali i metode
3.1. Ispitanici

3.1.1. Uzorkovanje

Korišteni uzorci su serum i plazma.

Serum se dobio tako što se puna krv uzimala venepunkcijom i sakupljala u epruvetu bez antikoagulansa (Vacutainer, Becton Dickinson). Tako prikupljena krv spontano se zgrušava stajanjem. Ugrušak se odvaja od supernatanta postupkom centrifugiranja (2500 g, 10 min). Dobiveni supernatant je serum što znači da ne sadržava krvne stanice, faktore zgrušavanja i fibrinogen jer navedene sastavnice zaostaju u ugrušku. Dobiveni serum je krvna tekućina u kojoj se nalaze ioni, biološke makromolekule i ostale organske tvari.

Plazma je drugi tip krvne tekućine koji se dobiva centrifugiranjem pune krv uzete venepunkcijom u epruvetu s antikoagulansom (Vacutainer, Becton Dickinson). U zatvorenom sustavu epruvete korišteni antikoagulans je EDTA. Sakupljeni uzorak centrifugira se (1400 g, 10 min), a dobiveni supernatant, plazma, prenosi se u novu sterilnu epruvetu. Plazma je ponovno centrifugirana (4500 g, 10 min) kako bi se osiguralo odvajanje potencijalno prisutnih artefakata. Novdobiveni supernatant odvaja se u sterilnu epruvetu i spreman je za daljnje korištenje.

Uzorci seruma i plazme čuvani su na -20°C prije i poslije izolacije DNA.
3.2. Materijali

3.2.1. Proizvođači korištenih materijala i kemikalija

Amersham Bioscience (Cardiff, Velika Britanija)
Fermentas (Vilnius, Litva)
Invitrogen (Carlsbad, CA, SAD)
Kemika (Zagreb, Hrvatska)
Norgen (Thorold, ON, Kanada)
Qiagen (Valencia, CA, SAD)
Roth (Karlsruhe, Njemačka)
Sigma (St. Louis, MO, SAD)
ThermoFischer Scientific (Waltham, MA, SAD)

3.2.2. Standardne kemikalije

<table>
<thead>
<tr>
<th>Kemikalijski proizvod</th>
<th>Prodvođač</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaroza</td>
<td>Sigma</td>
</tr>
<tr>
<td>EDTA</td>
<td>Roth</td>
</tr>
<tr>
<td>Etanol (96%)</td>
<td>Kemika</td>
</tr>
<tr>
<td>Glacijalna octena kiselina</td>
<td>Sigma</td>
</tr>
<tr>
<td>Glicerol</td>
<td>Kemika</td>
</tr>
<tr>
<td>H$_3$BO$_3$</td>
<td>Roth</td>
</tr>
<tr>
<td>HCl (36%)</td>
<td>Kemika</td>
</tr>
<tr>
<td>KCl</td>
<td>Kemika</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sigma</td>
</tr>
<tr>
<td>Octena kiselina</td>
<td>Kemika</td>
</tr>
<tr>
<td>Proteinaza K</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Tris (tris[hidroksimetil]aminometan) – Trizma baze$^\circledast$</td>
<td>Sigma</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma</td>
</tr>
</tbody>
</table>
3.2.3. Uredaji i pribor

Imager
Amersham Bioscience
Nanodrop 8000
ThermoFischer Scientific

3.2.4. Boje

Bromfenol plavo
Sigma

3.2.5. Standardni pripravci

Smjesa fragmenata DNA (standard 100 pb i standard 1kb)
Invitrogen

3.2.6. Komercijalni kompletni pripravci – kitovi

QIAamp® DNA Mini Kit
Qiagen
Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit
Norgen Biotek

3.2.7. Priprema pufera i otopina

TE pufer za Proteinazu K (za 1000 mL)
Tris 6,1 g
EDTA 0,37 g
Triton X-100 5 mL
u destiliranoj vodi

Otopina Proteinaze K (za 20 mL)
Proteinaza K 8mg
TE pufer za Proteinazu K 10 mL
Glicerol (50%) 10 mL
TBE pufer (5X) pH 8,3

Tris HCl 54 g
H$_3$BO$_3$ 27,5 g
EDTA (0,5mM) 20 mL
Destilirana voda 800 mL

TAE pufer (50X) pH 8,3 (za 1000 mL)

Tris 242 g
Octena kiselina 57,1 mL
EDTA (0,5mM) 10 mL
u destiliranoj vodi

Otopina za fiksiranje

Metanol 50%
Octena kiselina 10%
u destiliranoj vodi

Otopina za ispiranje

Etanol 10%
Octena kiselina 7%
u destiliranoj vodi

3.2.8. Gel za elektroforezu

Za elektroforezu izolirane DNA iz uzoraka seruma i plazme korišten je pripravljen 1,5%-tni agarozni gel.
3.3. Metode

3.3.1. Izolacija DNA QIAamp® DNA Mini Kit-om

Načelo
QIAamp® DNA Mini Kit služi za brzu i jednostavnu izolaciju DNA koja se kasnije može koristiti u drugim metodama poput lančane reakcije polimerazom ili Southern blot-a. Ukupna DNA može se izolirati iz pune krvi, plazme, seruma, buffy coat-a, koštane srži, limfocita, tkiva, … Metoda je pogodna za izvođenje iz svježeg ili zamrznutog uzorka krvi uzetog u epruvetu s citratom, heparinom ili EDTA. Krajnji produkt je izolirana i pročišćena DNA bez proteina, nukleaza ili ostalih kontaminanata i inhibitora. Dobiveni fragmenti najvećim udjelom su veličine 20-30 kb. QIAamp® DNA Mini Kit dizajniran je za brzu izolaciju, u prosjeku, 6 µg ukupne DNA iz uzorka pune krvi volumena 200 µL.

Princip metode jest da se DNA specifično veže na silikagelnu membranu QIAamp-a dok ostale sastavnice prolaze kroz membranu. Bivalentni kationi i proteini uklanjaju se dvostrukim ispiranjem s dva različita pufera, AW1 i AW2. Izolirana DNA eluira se u puferu za eluiranje, AE, ili vodi. Izvori DNA u radu bili su serum i plazma.

Postupak
Prije početka uzorci se inkubiraju 30 minuta na sobnoj temperaturi. Prvi korak cjelokupne reakcije je liza s Proteinazom K. Proteinaza se alikvotira na 500 µL i sprema u zamrzivač na -20°C. U epruvetu za mikrocentrifugiranje od 1,5 mL pipetira se 20 µL Proteinaze K pa se dodaje 200 µL uzorka. Nakon toga se dodaje AL pufer i miješa na miješalici kako bi se osigurala homogenost nastale otopine i tako ostvarila potpuna liza. Inkubira se u vođenoj kuplji na 56°C 10 minuta jer takvi uvjeti omogućuju veći doprinos DNA. Kratko se centrifugira kako bi se odstranile kapljice s unutrašnjeg dijela poklopa. Dodaje se 200 µL 96%-tnog etanola i ponovno centrifugira kako bi se opet uklonile kapljice s unutrašnjeg dijela poklopa. Nastala smjesa se na QIAamp Spin Column (epruveta za sakupljanje od 2 mL), zatvori poklopcem i centrifugira na 6000 x g (8000 rpm) 1 minuti. QIAamp Spin Column stavlja se u čistu epruvetu za sakupljanje od 2 mL, a epruveta s filtratom se baca. Svaka kolonica se zatvara da bi se izbjeglo stvaranje aerosola tijekom centrifugiranja. U daljnjim koracima koriste se AW1 i AW2 puferi koje je potrebno pomiješati s 96%-nim etanolom prema uputama proizvođača budući da su puferi koncentrati. Optimizirani puferi liziraju
uzorke, stabiliziraju nukleinske kiseline i povećavaju selektivnu DNA adsorpciju na QIAamp membranu. QIAamp Spin Column se oprezno otvara, dodaje se 500 µL AW1 pufera. Zatvori se poklopcem i centrifugira na 6000 x g (8000 rpm) 1 minutu. QIAamp Spin Column premješta se u čistu epruvetu za sakupljanje od 2 mL. Dodaje se 500 µL AW2 pufera, centrifugira na 20000 x g (14000 rpm) 3 minute. QIAamp Spin Column premješta se u čistu epruvetu za mikrocentrifugiranje od 1,5 mL. U kolonu se dodaje 200 µL AE pufera ili destilirane vode, inkubira se na sobnoj temperaturi (15-25 °C) par minuta i centrifugira 1 minutu na 6000 x g (8000 rpm). Inkubacija kolone sa AE puferom ili vodom na sobnoj temperaturi prije centrifugiranja generalno povećava DNA doprinos. Pufer za ispiranje miče nečistoće kako bi pročišćena DNA, eluirana u vodi ili puferu s malim udjelom soli, bila sprema za daljnju upotrebu. Dobiva se DNA veličine 200 bp – 50 kb što ovisi o starosti i uvjetima čuvanja uzorka. Izolirana DNA sada je sprema za obradu i može se pohraniti na -20°C. (QIAGEN, 2012.)

3.3.2. Izolacija slobodne cirkulirajuće DNA Norgen Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit-om

Načelo
Izolacija slobodne cirkulirajuće DNA iz plazme ili seruma Norgen Mini Kit-om je brza, pouzdana i jednostavna metoda kojom se može izolirati cfDNA iz uzoraka plazme ili seruma u volumnom rasponu od 10 µL do 10 mL. Izolacija i pročišćavanje temelji se na kolonskoj kromatografiji gdje se koristi selektivna matrica za razdvajanje komponenata uzorka. Mini Kit je dizajniran tako da se može izolirati cfDNA iz svježih ili smrznutih uzoraka plazme i seruma. Pročišćeni eluirani produkt može se koristiti za daljnju obradu poput PCR-a, qPCR-a, Southern blot, NGS.

Postupak
Započinje se pipetiranjem 500 µL uzorka u epruvetu od 2 mL, dodaje se 12 µL Proteinaze K, dobro homogenizira na miješalicu pa inkubira u vodenoj kupelji 10 minuta na 55°C. Potom se dodaje 1 mL Binding Buffer 2 pa ponovno stavlja na miješalicu. 800 µL smjese prebacit će u Mini Spin kolonu zajedno s epruvetom za sakupljanje, centrifugira se na 3300 x g (6000 rpm) 2 minute. Filtrat se baci, a kolona se stavi u čistu epruvetu za sakupljanje. Centrifugiranje i prebacivanje kolone u čistu epruvetu za sakupljanje se ponovi. Dodaje se 600 µL otopine za ispiranje A, centrifugira 1 minutu na 3300 x g (6000 rpm). Odbaci se filtrat i kolona se stavi u
čistu epruvetu za sakupljanje. Ispiranje se ponovi, centrifugira se 2 minute na 13000 x g (14000 rpm). Epruveta za sakupljanje se baca. Kolona se stavlja u čistu epruvetu za ispiranje od 1,7 mL, dodaje se 50 µL pufera za ispiranje B i ostavlja 2 minute na sobnoj temperaturi. Centrifugira se 1 minutu na 400 x g (2000 rpm) pa nakon toga 2 minute na 5800 x g (8000 rpm). Eluirani pufer prebacuje se natrag na kolonu i tako ostavlja 2 minute na sobnoj temperaturi. Centrifugira se 1 minutu na 400 x g (2000 rpm) pa 2 minute na 5800 x g (8000 rpm)

3.3.3. Agarozna elektroforeza

Načelo
Postupak

U ovom radu korišten je 1,5 % agarozni gel. U 30 mL 1x TBE pufera zagrijavanjem se otopi 0,45 g agaroze. Da bi se formirao gel, otopina se hladi do 56°C i izlije u elektroforsku kadicu gdje će se odvijati proces razdvajanja. Češljicem za formiranje jažica u gelu naprave se jažice u koje se stavljaju produkti izolacije dobiveni QIAGEN Mini Kit-om i Norgen Biotek Mini Kit-om pomiješani s bojom bromfenol plavom. U posljednju jažicu stavlja se standard. Elektroforeza se radi u TBE puferu. Električno polje je jakosti 5-7 V/cm. Elektroforezu zaustavljamo kad uzorci prijeđu otprilike 2/3 duljine pute u gelu. Dobiveni rezultati vizualiziraju se na aparatu Imager (Amersham Imager 600, GE Healthcare Life Science).

3.3.4. Spektrofotometrijsko određivanje koncentracije DNA

Načelo

Spektrofotometrijsko određivanje koncentracije DNA temelji se na principu pobuđivanja elektrona između različitih razina energije koji odgovaraju molekulskim orbitalama u
organskim strukturama u UV području (200-400 nm). U strukturi nukleinskih kiselina UV apsorpcija dolazi od purinskih i pirimidinskih baza, a u strukturi proteina najvećim dijelom od aminokiselina triptofan, fenilalanin, tirozin i histidin. Ono što se mjeri naziva se apsorbancija i proporcionalna je s koncentracijom nukleinskih kiselina u uzorku. Zakon koji to opisuje naziva se Beer-Lambert-ov zakon, \(A = \varepsilon \cdot b \cdot c \), gdje je A apsorbancija, \(\varepsilon \) ekstinkcijski koeficijent određen valnom duljinom, b duljina puta zrake svjetlosti, a c koncentracija. Nukleinske kiseline i proteini imaju svoj apsorpcijski maksimum na 260 nm, odnosno 280 nm. Omjerom izmjerenih vrijednosti apsorbancija na navedenim valnim duljinama dobiva se čistoća izolata. Ukoliko omjer \(A_{260}/A_{280} \) iznosi 1,8-2,0, može se zaključiti da je izolacija uspješno provedena i da je izolat DNA prikladan za daljnje korištenje ako je potrebno. Omjer, koji je izvan navedene granice, obično označava kontaminaciju proteinima ili nekim od reagensa, npr. fenolom. (Slika 3.) Također, može upućivati i na pogrešno izveden postupak tijekom procesa, odnosno premalu koncentraciju izolirane DNA. Nadalje, potrebno je imati na umu da omjer može odgovarati poželjnom intervalu, ali da postoji neki drugi problem s uzorkom. Protokol korištenog mjernog aparata preporuča mjerenje apsorbancije na 230 nm koja se stavlja u omjer s izmjerenom apsorbancijom na 260 nm, \(A_{260}/A_{230} \). Ovaj omjer opisuje sekundardna onečišćenja i obično je veći od omjera \(A_{260}/A_{280} \) pa iznosi 1,8-2,2 (Slika 3). Ukoliko eksperimentalno omjer ispadne drugačiji, to nas upućuje na prisutnost onečišćenja.
Što je veća koncentracija DNA, to će biti veći pik, odnosno površina ispod grafa, izmjeren na valnoj duljini 260 nm. Spektrofotometrijska metoda je pogodna za određivanje koncentracije DNA jer ne uništava uzorak te se on može koristiti za daljnje analize.

Postupak

ThermoFischer Scientific Nanodrop 8000 je instrument koji se koristio za mjerenje koncentracije izolirane DNA. Aparat ima mogućnost mjerenja koncentracije DNA iz jednog uzorka ili paralelno iz 8 različitih uzoraka. Na podnožje instrumenta, koje je predviđeno za nanašanje uzoraka, pipetiraju se izolirane DNA tako da se izolati ne izlijevaju i ne raspršuju izvan predviđenog područja. Dio s izolatima se zatvori, a u operativnom sustavu na računalu aparata pokreće se mjerenje apsorbancije koja će, prema Beer-Lambertovom zakonu, služiti za izračun koncentracije DNA. Ukoliko se koncentracija mjeri iz više uzoraka malog volumena (1 µL), preporuča se korištenje 8-kanalnog modula kako bi se izbjeglo isparavanje i gubitak uzoraka tijekom njihovog pojedinačnog nanašenja. (ThermoFischer Scientific, 2017).
4. Rezultati i rasprava
4.1. Agarozna elektroforeza DNA izolirane QIAamp® DNA Mini Kit-om iz uzoraka seruma i plazme

Kod pacijentica s dijagnosticiranim karcinomom dojke, povećana je koncentracija slobodne cirkulirajuće DNA pa se pretpostavlja da bi u izolatima takvih uzoraka, nakon izvršene elektroforeze, trebali biti vidljivi fragmenti slobodne cirkulirajuće DNA, posebno ako su prisutne metastaze. Prvotno je pokušana izolacija s QIAamp® DNA Mini Kit-om.

Nakon izolacije, provedena je agarozna elektroforeza dobivenih izolata DNA na 1,5%-tnom agaroznom gelu i vizualizacija upotrebom programa na Amersham Imager-u (Slika 4). Korišten je standard molekulskih masa DNA (1kbp).

Izolati označeni brojevima 1-3 pripadaju izolatima iz uzoraka seruma pacijentica s karcinomom dojke, brojevi 4-6 označavaju izolate dobivene iz plazme pacijentica s karcinomom dojke, 7 je izolat iz serumskog uzorka pacijentice s metastatskim karcinomom dojke, dok su 8 i 9 izolati iz plazmatskih uzoraka zdravih pacijentica. 10 je standard molekulskih masa DNA (1 kbp DNA).
Analizom provedene agarozne elektroforeze vidljiva je genomska DNA iz uzoraka seruma pacijentica s karcinomom dojke ili fragmenti (približno 12000 i 7000 bp). Nadalje, iz plazmatskih uzoraka pacijentica s karcinomom dojke nije vidljiva DNA što predstavlja problematiku u izboru pogodnog uzorka za izolaciju DNA i daljnju manipulaciju dobivenim izolatima. U oba slučaja, bilo da se radi o serumu ili plazmi, nisu vidljivi fragmenti manje veličine koji bi pripadali slobodnoj cirkulirajućoj DNA. Nameće se pretpostavka da genomska DNA može ometati izolaciju slobodne cirkulirajuće DNA ili da koncentracija slobodne cirkulirajuće DNA nije dovoljna da bi se izolirala odabranom metodom. Međutim, svakako bi spomenutu problematiku trebalo provjeriti i testirati na puno osjetljivijim kolonama za izolaciju koje omogućuju izolaciju specifično malenih fragmenata DNA. Prema dobivenom i prikazanom, kao što je već spomenuto, jedna od mogućnosti je da je granica detekcije u uzorcima ispod detektibilne razine pa zbog toga slobodna cirkulirajuća DNA nije vidljiva što se, s druge strane, može obrazložiti mogućom slabom i sporom progresijom bolesti. Izolat pod brojem 7 predstavlja uzorak seruma pacijentice s metastazama te nisu vidljivi ni genomska DNA ni slobodna cirkulirajuća DNA jednako kao kod plazmatskih uzoraka pacijentica s karcinomom dojke bez metastaza. Dalo bi se naslutiti da ne postoji razlika u obrascu ponašanja DNA kod oboljelih s metastazama i oboljelih s metastazama, ali u obzir se mora uzeti činjenica da su uzorci nekoliko puta zamrzavani i odmrzavani što značajno utječe na DNA i, posljedično, dobivene rezultate. Predanalitika predstavlja veliki izazov koji se mora savladati i standardizirati kako bi krajnji rezultati bili reprezentativni i klinički primjenjivi. Kod zdravih pacijentica, u uzorcima 8 i 9, nisu vidljivi nikakvi tragovi DNA što znači da koncentracija DNA nije iznad detektibilne razine koju bi programski sustav Amersham Imager-a mogao vizualizirati. Uporabom osjetljivijih metoda, poput apsolutne kvantifikacije digitalnim PCR-om mogli bi sa pouzdanosti tvrditi o prisutnosti ili odsutnosti određenih ciljanih fragmenata cfDNA te točno kvantificirati cfDNA. Potrebna je i specifičnija izolacija DNA na kolonama koje omogućuju izolaciju malih fragmenata DNA za koje se pretpostavlja da ovom metodom izolacije nisu vidljivi. Razlika u obrascu ponašanja DNA svakako je rezultat predanalitičkog postupanja s uzorcima kao i činjenice da su maligna oboljenja vrlo kompleksni patofiziološki procesi koji se značajno razlikuju od čovjeka do čovjeka iako se radi o dijagnostici iste bolesti. Dodatna stavka na koju treba obratiti pozornost je odabir vrste uzorka za izolaciju kako bi doprinos izolirane DNA bio što veći i kako bi genomska DNA što manje ometala izolaciju slobodne cirkulirajuće DNA.
Nadalje, ne treba zaboraviti problematiku integriteta slobodne cirkulirajuće DNA u različitim fazama bolesti što svakako otežava i dodatno komplicira proces izolacije.

4.2. Agarozna elektroforeza izolata DNA dobivenih QIAamp DNA Mini Kit-om iz uzoraka kojima je dodana unutarnja kontrola

Kako bi se provjerila uspješnost izolacije malih fragmenata navedenim kitom, svim uzorcima je dodan određen volumen unutarnje kontrole (spike in kontrola) te ponovljena izolacija. Elektroforeza izolirane DNA iz uzorka plazme pacijentice s karcinomom dojke i iz tri plazmatska uzorka zdravih osoba je provedena na 1,5%-nom agaroznom gelu (Slika 5). Korištena unutarnja kontrola bio je fragment DNA molekulske mase 220 pb. Standardi molekulskih masa DNA su od 100 pb i 1kbp. Vizualizacija je provedena programskim sustavom Amersham Gel Imager-a.

Slika 5. 1,5%-na agarozna elektroforeza izoliranih DNA iz uzoraka s dodanim fragmentom molekulske mase 220 pb kao unutarnjom kontrolom. Uzorak broj 1: izolat iz uzorka plazme pacijentice s metastatskim karcinomom dojke, 2-4: izolati iz uzoraka zdravih osoba, 5: standard molekulskih masa DNA 100 pb; 6: standard molekulskih masa 1kbp
Iz uzorka plazme bolesnice s karcinomom dojke vidi se frakcija genomske DNA, dok dodana unutarnja kontrola molekulskih masa 220 bp nije vidljiva. Agaroznom elektroforezom izolirane DNA iz uzoraka zdravih osoba pod brojevima 3 i 4 naziru se vrpce koje bi odgovarale dodanoj unutarnjoj kontroli, međutim one su izuzetno slabo vidljive (isključivo na Gel Imager-u), što upućuje na problem izolacija na Qiagen DNA kolonama s obzirom na doprinos manjih fragmenata.

Na mjestima označenim s 1 i 2 volumen dodane unutarnje kontrole bio je 1µL, na broju 3 dodana su 2 µL unutarnje kontrole, a na broju 4 3 µL. Obrazloženje nevidljivih vrpci unutarnje kontrole u prva dva slučaja leži u mogućnosti da je količina unutarnje kontrole nedovoljna da bi prošla kroz kolonu za izolaciju, dok je u preostala dva slučaja količina unutarnje kontrole nešto veća pa se tek nazire na agaroznom gelu, međutim ni to nije dovoljno da bi vrpce bile jasno vidljive. Slika 6. prikazuje ponovljenu elektroforezu izolata DNA pacijentica.

Slika 6. Agarozna elektroforeza DNA izolirane iz uzoraka plazme nakon izolacije provedene QIAamp® DNA Mini Kit-om. Uzorcima su dodani fragmenti unutarnje kontrole molekulskih masa 220 bp. Mjesto broj 1 prikazuje standard molekulskih masa DNA 1kbp. Pod brojem 2 nalazi se uzorak zdrave osobe, a svi ostali (3-8) pripadaju pacijenticama s metastatskim karcinomom dojke. Kod svih uzoraka vidi se razvučena vrpca manje molekulske mase, a kod uzoraka 3,5 i 7 prisutna je dodatna vrpca veće molekulske mase koja odgovara genomskoj DNA.
Ponovljena agarozna elektroforeza, s uzorcima kojima je dodana unutarnja kontrola, dala je vidljivije fragmente, no ti razmazi ipak nisu jasno vidljivi i ne označavaju jedan fragment specifične molekulske mase koji bi odgovarao unutarnjoj kontroli. Može se pretpostaviti da, ono što je vidljivo, odgovara i unutarnjoj kontroli i slobodnoj cirkulirajućoj DNA. Ukoliko razmaz na gelu uključuje i slobodnu cirkulirajuću DNA, postavlja se pitanje zašto se pojavljuje kod uzorka zdrave osobe označenog brojem 2. Zbog različitih fizioloških procesa, postoji mogućnost povećanja koncentracije slobodne cirkulirajuće DNA u perifernoj cirkulaciji što predstavlja problematiku u razlikovanju zdravih od bolesnih. Kod uzoraka 3, 5 i 7 vidi se još jedan fragment DNA veće molekulske mase te su ti fragmenti međusobno različiti po intenzitetu od uzorka do uzorka. Ponovno se uočavaju različiti obrasci ponašanja izolirane DNA što potvrđuje potrebu za specifičnom genskom analizom. Također, izolaciju DNA potrebno je provesti s većim volumenima unutarnje kontrole.

4.3. Agarozna elektroforeza izolirane DNA iz uzastopno zamrzavanih i odmrzavanih uzoraka

Izolacija DNA provedena je QIAamp® DNA Mini Kit protokolom iz uzoraka pacijentica s karcinomom dojke koji su uzastopno zamrzavani na -20°C i potom odmrzavani. Izolirane DNA nanešene su na agarozni gel zajedno sa standardom molekulskih masa DNA 100 bp nakon čega je provedeno elektroforetsko razdvajanje. Uzorci 2 i 4 odmrznuti su samo jednom, a uzorci 3 i 5 tri puta su zamrzavani i odmrzavani za daljnje analize. Korištenjem uzoraka, koji su odmrzavani i zamrzavani, ispituje se predanalitički postupak budući da je čuvanje i način transportiranja uzoraka problem svakodnevne prakse. Svi uzorci su analizirani, a na Slici 7. dan je prikaz vidljive DNA degradacije nakon uzastopnog odmrzavanja.
Dobiveni rezultati ukazuju na problem u fazi predanalitike, a to je samo postupanje s uzorcima. Svi korišteni uzorci pripadaju pacijentica sa karcinomom dojke, a izolirana DNA daje različite vrpce na gelu, bilo da se radi o kvaliteti ili kvantiteti prisutnih vrpce. Uzorak broj 2 daje dva fragmenta različitih molekulskih masa i pritom su oni različitog intenziteta. U uzorcima broj 3 i 5 došlo je narušavanja integriteta izoliranog genetičkog materijala što se vidi pojavom široke i nejasne frakcije na gelu. Uzorci 4 i 5 pokazuju slično ponašanje na gelu, samo što je kod uzorka 5 intenzitet vrpca puno slabiji.

Dobra postupanje s biološkim materijalom svakako narušava pouzdanost analitičkih rezultata. Uzastopno zamrzavanje i odmrzavanje uzoraka utjecalo je na doprinos DNA i posljedično na njenu kvalitetu.
4.4. Agarozna elektroforeza slobodne cirkulirajuće DNA izolirane iz uzoraka Norgen Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit-om

Izolacija slobodne cirkulirajuće DNA provedena je sukladno protokolu propisanom za Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit tvrtke Norgen. Upotrebom navedenog paketa, može se specifično izolirati slobodna cirkulirajuća DNA za koju se pretpostavlja da će biti vidljiva na agaroznom gelu nakon elektroforeze. Vizualizacija izolata provedena je na Amersham Gel Imager-u. Koristili su se standardi molekulskih masa DNA 100 pb i 1 kpb.

Slika 8. Agarozna elektroforeza slobodne cirkulirajuće DNA izolirane prema protokolu Norgen Mini Kit-a za izolaciju. Korišteni standardi su molekulskih masa DNA 100 pb (broj 1) i 1 kbp (broj 12). Uzorci 2-9; uzorci pacijentica s metastatskim karcinomom dojke; uzorci 10 i 11; zdrave kontrole. Crvenim pravokutnicima su označeni dobiveni fragmenti iz izolata DNA bolesnika s karcinomom dojke, a plavim pravokutnikom prikazani su izolati DNA zdravih ispitanica.
Dobivene vrpce na gelu pripadaju fragmentima slobodne cirkulirajuće DNA koja je izolirana na kolonama Norgen Biotek Mini Kit-a. Korišteni uzorci su plazme bolesnica s metastatskim karcinomom dojke. Vrpce su jakog inteziteta i ne označavaju jasno jedan specifični fragment DNA određene molekulske mase, ali je vidljivo da su to fragmenti manje molekulske mase koji bi odgovarali slobodnoj cirkulirajućoj DNA. Uzorci pod brojevima 5, 7 i 9 imaju drugačiji obrazac ponašanja jer je vidljiva dodatna vrpca nešto veće molekulske mase DNA (približno 250 pb). Vidljiva dodatna vrpca te prisutni veliki fragmenti DNA u uzorcima bolesnica s metastazama pokazuju specifični obrazac koji se pojavljuje u novijoj literaturi (prisutnost velikih fragmenta ovisno o stadiju bolesti).

Razlike u obrascima ponašanja izolirane DNA na gelu upućuju na potrebu za dodatnim specifičnim analizama DNA kao i detaljnu podjelu po stadijima bolesti i priljenoj terapiji. Fragmenti DNA duljine približno 100-150 pb vidljivi su i kod uzoraka pod brojevima 10 i 11 koji pripadaju izolatima zdravih ispitanika. Dobiveni rezultat upućuje na eventualnu pojavu povećane koncentracije slobodne cirkulirajuće DNA u nekim fiziološkim stanjima ili mogućoj DNA razgradnji.

4.5. Spektrofotometrijsko određivanje koncentracije DNA na aparatu Nanodrop 8000, Thermo Fischer Scientific

Apsorbancija cfDNA izolata mjerena je na 260 nm u 10 uzoraka plazme i 10 uzoraka seruma pacijentica s karcinomom dojke te u dva kontrolna uzorka koji pripadaju zdravim osobama. U svim uzorcima mjerenje je apsorbancija na 280 nm i 230 nm kako bi se dobili pripadajući omjeri, A_{260}/A_{280} i A_{260}/A_{230}, kao mjere onečišćenja. Dobiveni rezultati prikazani su u Tablici 1.
Tablica 1. Spektrofotometrijsko određivanje koncentracije DNA na aparatu Nanodrop 8000, Thermo Fischer Scientific. Koncentracija je određena u 10 uzoraka plazme (P-1-P-11) i 10 uzoraka seruma (S-21-S-31) te u dva kontrolna uzorka koji pripadaju zdravim osobama (Z-41 i Z-42). Izolacija slobodne cirkulirajuće DNA provedena je prema Plasma/Serum Cell-Free Circulating DNA Purification Mini Kit protokolu.

<table>
<thead>
<tr>
<th>Oznaka uzorka u istraživanju</th>
<th>Koncentracija DNA (ng/µL)</th>
<th>A_{260}/A_{280}</th>
<th>A_{260}/A_{230}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>13,24</td>
<td>0,96</td>
<td>0,16</td>
</tr>
<tr>
<td>P-2</td>
<td>10,57</td>
<td>1,10</td>
<td>0,20</td>
</tr>
<tr>
<td>P-3</td>
<td>10,23</td>
<td>1,20</td>
<td>0,21</td>
</tr>
<tr>
<td>P-4</td>
<td>14,45</td>
<td>0,99</td>
<td>0,16</td>
</tr>
<tr>
<td>P-5</td>
<td>7,16</td>
<td>1,09</td>
<td>0,16</td>
</tr>
<tr>
<td>P-6</td>
<td>8,09</td>
<td>1,02</td>
<td>0,15</td>
</tr>
<tr>
<td>P-7</td>
<td>71,4</td>
<td>0,89</td>
<td>0,17</td>
</tr>
<tr>
<td>P-8</td>
<td>9,59</td>
<td>0,96</td>
<td>0,16</td>
</tr>
<tr>
<td>P-9</td>
<td>7,95</td>
<td>1,03</td>
<td>0,16</td>
</tr>
<tr>
<td>P-10</td>
<td>16,95</td>
<td>1,06</td>
<td>0,20</td>
</tr>
<tr>
<td>P-11</td>
<td>9,38</td>
<td>0,86</td>
<td>0,14</td>
</tr>
<tr>
<td>Srednja vrijednost</td>
<td>16,27</td>
<td>1,01</td>
<td>0,17</td>
</tr>
<tr>
<td>Standardna devijacija</td>
<td>17,67</td>
<td>0,09</td>
<td>0,02</td>
</tr>
<tr>
<td>S-21</td>
<td>16,32</td>
<td>0,94</td>
<td>0,16</td>
</tr>
<tr>
<td>S-22</td>
<td>13,27</td>
<td>0,98</td>
<td>0,16</td>
</tr>
<tr>
<td>S-23</td>
<td>11,89</td>
<td>1,00</td>
<td>0,19</td>
</tr>
<tr>
<td>S-24</td>
<td>14,70</td>
<td>1,01</td>
<td>0,18</td>
</tr>
<tr>
<td>S-25</td>
<td>10,51</td>
<td>1,04</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>S-26</td>
<td>S-27</td>
<td>S-28</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>13,54</td>
<td>9,72</td>
<td>9,80</td>
</tr>
<tr>
<td></td>
<td>0,96</td>
<td>1,09</td>
<td>0,93</td>
</tr>
<tr>
<td></td>
<td>0,17</td>
<td>0,24</td>
<td>0,16</td>
</tr>
</tbody>
</table>

| Srednja vrijednost | 12,59 | 0,99 | 0,18 |
| Standardna devijacija | 2,18 | 0,04 | 0,02 |

<table>
<thead>
<tr>
<th>Z-41</th>
<th>Z-42</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,07</td>
<td>19,27</td>
</tr>
<tr>
<td>1,25</td>
<td>1,13</td>
</tr>
<tr>
<td>0,29</td>
<td>0,25</td>
</tr>
</tbody>
</table>

| Srednja vrijednost | 16,67 | 1,19 | 0,27 |

Srednja vrijednost koncentracije slobodne cirkulirajuće DNA u plazmatskim uzorcima iznosi 16,27 ng/µL, a u serumskim uzorcima 12,59 ng/µL, dok kod kontrolnih uzoraka ona iznosi 16,67 ng/µL. Od 10 plazmatskih uzoraka vidljivo je odstupanje koncentracije u uzorku oznake P-7 što treba uzeti u obzir jer doprinosi standardnoj devijaciji koja iznosi čak više od izračunate prosječne vrijednosti koncentracije. Kad bi se računala srednja vrijednost bez spomenutog uzorka, ona bi iznosila 10,76 ng/µL. Nadalje, koncentracija slobodne cirkulirajuće DNA kod zdravih osoba skoro je ista ili veća od koncentracije kod oboljelih pacijentica. Dobiveni rezultati dovode do objašnjenja da je povišena koncentracija kod zdravih pojedinaca moguća zbog nekih uobičajenih fizioloških procesa ili da je neki od predanalitičkih čimbenika uvelike utjecao na krajnji analitički rezultat.

Omjeri A$_{260}$/A$_{280}$ i A$_{260}$/A$_{230}$ su ispod vrijednosti koje bi trebale biti kako bi se sa sigurnošću reklo da je izolirana DNA visoke čistoće i s minimalnim onečišćenjima. Prema tehničkim specifikacijama korištenog mjernog instrumenta Nanodrop 8000, postoji mogućnost odstupanja do 0,5. Međutim, mjera sekundardnog onečišćenja, A$_{260}$/A$_{230}$, trebala bi biti veća od omjera A$_{260}$/A$_{280}$. Kako su dobiveni rezultati drugačiji, primjetno je da su prisutna
onečišćenja te da izolirani materijal nije u potpunosti samo slobodna cirkulirajuća DNA. Dodatno se može vidjeti da je stopa onečišćenja kod plazme i seruma podjednaka.

Sukladno dobivenom, zaključuje se da je izolacija pročišćene slobodne cirkulirajuće DNA vrlo složen proces koji zahtijeva standardizirane predanalitičke postupke kako bi se osigurali točni, precizni i reprezentativni rezultati koji bi mogli biti klinički primjenjivi.
5. Zaključci
• Način postupanja s uzorkom u predanalitičkoj fazi utječe na kvalitetu i doprinos izoliranog materijala. Od posebne je važnosti standardizacija tih postupaka kako bi se u svim laboratorijima osigurali istovjetni i pouzdani rezultati koji mogu biti klinički primjenjivi za dobrobit pacijenta.
• Izolacija slobodne cirkulirajuće DNA trebala bi biti izvedena na kolonama za specifičnu izolaciju željene vrste genetičkog materijala jer genomska DNA utječe na doprinos izolirane slobodne cirkulirajuće DNA.
• Doprinos izolirane slobodne cirkulirajuće DNA veći je na specifičnim kolonama tvrtke Norgen koje su posebno namijenjene za izolaciju slobodne cirkulirajuće DNA.
• Za jasno razlikovanje zdravih od oboljelih, potrebno je točno ispitati koji su fiziološki procesi koji utječu na pojavu povećane koncentracije slobodne cirkulirajuće DNA kako bi se zdravi kontrolni uzorci uistinu razlikovali od oboljelih. Takav pristup ujedno olakšava proces dijagnostike jer upozorava na stanja koja mogu biti rezultirati povećanom koncentracijom slobodne cirkulirajuće DNA, a da nisu povezana s karcinomskim bolestima.
• Karcinogeneza je složen patofiziološki proces koji se uvelike razlikuje od pacijenta do pacijenta iako se radi o dijagnozi iste bolesti. Uzevši to u obzir, mijenja se i integritet slobodne cirkulirajuće DNA u različitim fazama bolesti kod različitih pacijenata. To dodatno otežava izolaciju i kvantifikaciju izoliranog materijala što upućuje na potrebu za otkrivanjem što specifičnijih i osjetljivijih metoda kao i individualiziranim pristupom svakom pacijentu.
6. Literatura

Šekerija M et al. Incidencija raka u Hrvatskoj, Hrvatski zavod za javno zdravstvo, 2016, 39, 1-44.

7. Sažetak/Summary
Karcinom dojke najučestalije je maligno oboljenje u Hrvatskoj, a dijagnoza se vrlo često postavlja kasno što utječe na daljnji tijek bolesti. Važno je poboljšati laboratorijsku dijagnostiku da bi se otkrile i standardizirale metode koje bi omogućile specifično i rano postavljanje dijagnoze. Biomarkeri, koji se danas koriste, naišli su na svoja ograničenja, stoga se želi unaprijediti laboratorijski proces u ranom otkrivanju karcinoma dojke kao i svih ostalih malignih bolesti.

Slobodna cirkulirajuća DNA, cfDNA, potencijalni je biomarker karcinoma budući da se velikim dijelom u cirkulaciju otušta iz tumorskog tkiva. Prednosti, u odnosu na trenutno poznate biomarkere, su u tome što je metoda neivazivna jer je potreban samo uzorak krvi, daje uvid u trenutni molekularni status što omogućuje personalizirani pristup, bolje praćenje statusa bolesti i terapije.

Ovim radom željelo se ispitati kako predanalitička faza utječe na kvalitetu i kvantitetu cfDNA. Koristili su se uzorci plazme i seruma pacijentica s karcinomom dojke sa i bez metastaza te kontrolni zdravi uzorci. Uzastopnim odmrzavanjem i zamrzavanjem uzoraka vidjelo se da se time narušava integritet DNA pa i kvaliteta i kvantiteta izoliranog materijala. Primjenom dviju vrsta kolona za izolaciju, ustanovljeno je da je za izolaciju slobodne cirkulirajuće DNA potrebno koristiti specifične kolone namijenjene za cfDNA da bi doprinos bio veći jer genomska DNA nepovoljno utječe na izolaciju cfDNA. Nadalje, različiti stadiji bolesti utječu na integritet cfDNA što otežava izolaciju. Dodatno se javlja problem povećane koncentracije cfDNA kod zdravih pojedinaca što znači da postoje fiziološka stanja popraćena povećanjem koncentracijom cfDNA. Svi navedeni rezultati ukazuju na potrebu za specifičnim genetičkim analizama.
Breast cancer is the most common malignant disease in Croatia and it is often diagnosed too late which affects the course of disease. It is important to improve laboratory diagnostics to detect and standardize methods that would allow a specific and early diagnosis. The biomarkers, that are used nowadays, have their limitations, so there is an urge in advancing the laboratory process of early detection of breast cancer as well as other malignant diseases.

Free circulating DNA, cfDNA, is a potential cancer biomarker since it is released into the circulation from tumor tissue. The advantages over the currently-known biomarkers are that the method is non invasive because only blood sample is needed, it provides an insight into the molecular status at the particular moment and enables personalized medicine, better monitoring of disease progression and therapy.

This research investigated how the pre-analytical phase affects the quality and quantity of cfDNA. Samples of plasma and serum from breast cancer patients with and without metastases were used as the samples from healthy controls. Several freezing and defrosting affected in a way that the quality and quantity of DNA were poor. Two different columns for isolation were used. It was found that isolation of cfDNA requires specific columns intended for specific isolation of cfDNA so that DNA yield would be bigger and more stable despite the presence of genomic DNA. Moreover, different stages of the disease affect DNA integrity which makes isolation more difficult. In addition, there is a problem of increased cfDNA concentration in healthy individuals which means there are some physiological states with elevated cfDNA concentration. All these results suggest specific genetic analysis.
8. Temeljna dokumentacijska kartica/
Basic documentation card
Predanalitički čimbenici u analizi cfDNA

Iva Hlapčić

SAŽETAK

Karcinom dojke najučestalije je maligno oboljenje u Hrvatskoj, a dijagnoza se vrlo često postavlja kasno što utječe na daljnji tijek bolesti. Važno je poboljšati laboratorijsku dijagnostiku da bi se otkrile i standardizirale metode koje bi omogućile specifično i rano postavljanje dijagnoze. Biomarkeri, koji se danas koriste, naišli su na svoja ograničenja, stoga se želi unaprijediti laboratorijski proces u ranom otkrivanju karcinoma dojke kao i svih ostalih malignih bolesti.

Slobodna cirkulirajuća DNA, cfDNA, potencijalni je biomarker karcinoma budući da se velikim dijelom u cirkulaciju otpušta iz tumorskog tkiva. Prednosti, u odnosu na trenutno poznate biomarkerere, su u tome što je metoda neivazivna jer je potreban samo uzorak krvi, daje uvid u trenutni molekularni status što omogućuje personaliziran pristup, bolje praćenje statusa bolesti i terapije.

Ovim radom željelo se ispitati kako predanalitička faza utječe na kvalitetu i kvantitetu cf DNA. Koristili su se uzorci plazme i seruma pacijentica s karcinomom dojke sa i bez metastaza te kontrolni zdravi uzorci. Uzastopnim odmrzavanjem i zamrzavanjem uzoraka vidjelo se da se time narušava integritet DNA pa tako i kvaliteta te kvantiteta izoliranog materijala. Primjenom dviju vrsta kolona za izolaciju, ustanovljeno je da je za izolaciju cf DNA potrebno koristiti specifične kolone namijenjene za cfDNA da bi doprinos bio veći jer genomska DNA nepovoljno utječe na izolaciju cfDNA. Nadalje, različiti stadiji bolesti utječu na integritet cfDNA što otežava izolaciju. Dodatno se javlja problem povećane koncentracije cfDNA kod zdravih pojedinaca što znači da postoje fiziološka stanja popraćena povećanom koncentracijom cfDNA. Svi navedeni rezultati ukazuju na potrebu za specifičnim genetičkim analizama.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 46 stranica, 8 grafičkih prikaza, 1 tablicu i 18 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: slobodna cirkulirajuća DNA, cfDNA, predanalitički čimbenici

Mentor: Dr. sc. Sandra Šupraha Goreta, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocenjivači: Dr. sc. Sandra Šupraha Goreta, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Dr. sc. Olga Gornik, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Dr. sc. Nada Vrkić, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad prihvaćen: veljača 2018.
Preanalytical factors in cfDNA analysis

Iva Hlapčić

SUMMARY

Breast cancer is the most common malignant disease in Croatia and it is often diagnosed too late which affects the course of disease. It is important to improve laboratory diagnostics to detect and standardize methods that would allow a specific and early diagnosis. The biomarkers, that are used nowadays, have their limitations, so there is an urge in advancing the laboratory process of early detection of breast cancer as well as other malignant diseases.

Free circulating DNA, cfDNA, is a potential cancer biomarker since it is released into the circulation from tumor tissue. The advantages over the currently-known biomarkers are that the method is non invasive because only blood sample is needed, it provides an insight into the molecular status at the particular moment and enables personalized medicine, better monitoring of disease progression and therapy.

This research investigated how the pre-analytical phase affects the quality and quantity of cfDNA. Samples of plasma and serum from breast cancer patients with and without metastases were used as samples from healthy controls. Several freezing and defrosting affected in a way that the quality and quantity of DNA were poor. Two different columns for isolation were used. It was found that isolation of cfDNA requires specific columns intended for specific isolation of cfDNA so that DNA yield would be bigger and more stable despite the presence of genomic DNA. Moreover, different stages of the disease affect DNA integrity which makes isolation more difficult. In addition, there is a problem of increased cfDNA concentration in healthy individuals which means there are some physiological states with elevated cfDNA concentration. All these results suggest specific genetic analysis.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 46 pages, 8 figures, 1 table and 18 references. Original is in Croatian language.

Keywords: cell-free DNA, cfDNA, preanalytical factors

Mentor: Dr. sc. Sandra Šupraha Goreta, Ph.D., Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Dr. sc. Sandra Šupraha Goreta, Ph.D., Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Dr. sc. Olga Gornik, Ph.D., Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Dr. sc. Nada Vrkić, Ph.D., Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: February 2018.