Thiadiazoles. III*. Some 5-substituted derivatives of 2-amino-1,3,4-thiadiazoles and some mesoionic 1,3,4-thiadiazoles

Kuftinec, J.; Kolbah, D.

Source / Izvornik: Croatica Chemica Acta, 1971, 43, 73 - 78

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:198006

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-01-10

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb - Diplomski radovi Farmaceutsko-biokemijskog fakulteta
Thiadiazoles. III*. Some 5-Substituted Derivatives of 2-Amino-1,3,4-Thiadiazoles and Some Mesoionic 1,3,4-Thiadiazoles

J. Kuftinec** and D. Kolbah

Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia, Yugoslavia

Received January 29, 1970

New derivatives of 1,3,4-thiadiazoles with potential phytohormonic (compds. I—V) and antibacterial (compds. VI—IX) activity have been prepared. Mesoionic structure of the compounds VI—IX is indicated by their IR and UV spectra.

Continuing work on the synthesis of mercaptothiadiazoles, compounds with potential phytohormonic activity1,2, some new 5-substituted derivatives of 2-amino-1,3,4-thiadiazoles have been prepared (compounds I—V, Table I). Potassium salts of 2-amino-5-mercapto-1,3,4-thiadiazole (X), have served as starting materials for I and II. Acid hydrolysis of I gave rise for III, and hydrogen peroxide oxidation of X led to IV and, after neutralization, to the diethylammonium salt V.

The IR spectra of the compounds I—V showed three significant bands, in the region 1430—1440 cm⁻¹, 1330—1350 cm⁻¹, and 1170 ± 90 cm⁻¹, respectively, characterizing the thiadiazolic ring3. Additionally, compound II showed characteristic bands at 1709 cm⁻¹ (ester-carbonyl), 3311 cm⁻¹, 3226 cm⁻¹ (primary amine), and 1680 cm⁻¹, 1538 cm⁻¹ (amide I and II band, respectively). Compound IV showed two characteristic bands between 2650—2950 cm⁻¹ for the sulphonic acid, along with some other characteristic bands at 1050 cm⁻¹, and 1200—1300 cm⁻¹. A broad band with a maximum at 2445 cm⁻¹ characterized ammonium group in the compound V in connection with other characteristic bands at 1210—1235 cm⁻¹, and 1020 cm⁻¹.

Ultraviolet spectra of the compounds I—V in 95% ethanol exhibited absorption maxima at 260—290 nm, with corresponding ε values in the range of 4800—9000.

New mesoionic 1,3,4-thiadiazoles6 VI—IX (Table II) have been prepared following the procedure described by Kier et al.5,6 because of interesting biological properties of this group of compounds5.

The preparations of these compounds, analogs of sydnones7,8, started from the corresponding acid chlorides and potassium phenylthiocarbazinate according to the reaction scheme:

* The paper cited under 2. should be referred to as part II of this series.
** Present address: Institute for the Control of Drugs, Zagreb, Yugoslavia.
Infrared absorption bands of the compounds VI—IX at 1500—1508 cm⁻¹ and 1445—1465 cm⁻¹ can be assigned⁹ to >N—C=S, and —N=C—S— group, respectively. Other very strong absorption bands had been repeatedly found in the range 1315—1350 cm⁻¹ and 1030—1050 cm⁻¹, respectively. Several authors⁶,¹⁰ made a frequency assignment of 1395—1338 cm⁻¹ for the C=S linkage. Other investigators, however¹¹,¹²,¹³, assigned the band of strong intensity in the region 1200—1050 cm⁻¹ to the C=S grouping, and the band in the 1350—1300 cm⁻¹ region to CN vibration.

The ultraviolet spectra of the compounds VI—IX exhibited characteristic features as described by Stewart and Kier⁶.

EXPERIMENTAL

All melting points are determined on Boëtius Mikroheiztisch and are uncorrected. Infrared spectra were run on a Unicam SP 200 and Perkin Elmer M-137 apparatus, the ultraviolet spectra were obtained on a Zeiss PMQ II spectrophotometer.

2-Amino-5-mercaptoethylacetate-1,3,4-thiadiazole (I)

To the solution of 3.7 g. of KOH in 66 ml. of EtOH 6.6 g. (0.049 mole) of 2-amino-5-mercaptan-1,3,4-thiadiazole were added. After the dissolution was complete 6.2 g. (0.05 mole) of ethylchloroacetate were added and the solution heated under reflux for 2 hrs. The deposited potassium chloride was then filtered off, the filtrate evaporated to dryness, and the residue recrystallized from EtOH. 8.3 g. (74.60/o) of I was obtained, m.p. 96—98° C. IR spectrum (KBr); vNH 3311 and 3226 cm⁻¹; vCO 1709 cm⁻¹; vC≡N 1608 cm⁻¹; vCS 1443 cm⁻¹. UV spectrum λmax 287 nm (ε 7700).

2-Acetylamino-5-mercaptoethylacetate-1,3,4-thiadiazole (II)

2-Acetyl derivative of X 8.74 g. (0.05 mole) was dissolved in ethanolic KOH as described for I. After the complete dissolution, 6.2 g. (0.05 mole) of ethylchloroacetate were added and the reaction mixture refluxed for 2 hrs. The inorganic precipitate was filtered off and the crude product, obtained after evaporation of the solvent, was recrystallized from EtOH. Yield 7.5 g. (58.6/o) m.p. 168—169° C. IR spectrum (KBr); vNH 3125 cm⁻¹; vCO 1739 cm⁻¹; vCS 1680 cm⁻¹ and 1538 cm⁻¹; vC≡N 1600 cm⁻¹; vCS 1439 cm⁻¹. UV spectrum; λmax 281 nm (ε 8100).

2-Amino-5-mercaptoacetic acid-1,3,4-thiadiazole (III)

Compound I, 9.0 g. (0.041 mole) was heated in 90 ml of 10/o HCl for 0.5 hr at 70—80° C (steambath). Thereafter, the reaction mixture was neutralized with 10/o NH₄OH to pH 4.5. On standing, white needle-shaped crystals were deposited, which were suctioned off and dried. The yield on the recrystallized product (EtOH) was 4.7 g. (57.5/o), m.p. 230° C. IR spectrum (KBr); vNH 3335 and 3205 cm⁻¹; vCOOH 3000—2500 cm⁻¹ (broad); vCO 1620 cm⁻¹; vC≡N 1615 cm⁻¹; vCS 1410 cm⁻¹. UV spectrum; λmax 282 nm (ε 7800).
TABLE I

5-Substituted Derivatives of 2-Amino-1,3,4-thiadiazole

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R₁</th>
<th>R₂</th>
<th>Formula</th>
<th>M. w.</th>
<th>M. p. °C</th>
<th>Calc'd</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% C</td>
<td>% H</td>
</tr>
<tr>
<td>I</td>
<td>SCH₂COOEt</td>
<td>H</td>
<td>C₆H₉N₃O₃S₂</td>
<td>219.28</td>
<td>96—98</td>
<td>32.87</td>
<td>4.13</td>
</tr>
<tr>
<td>II</td>
<td>SCH₂COOEt</td>
<td>CH₃CO</td>
<td>C₈H₁₁N₃O₄S₂</td>
<td>261.28</td>
<td>168—9</td>
<td>36.77</td>
<td>4.24</td>
</tr>
<tr>
<td>III</td>
<td>SCH₂COOH</td>
<td>H</td>
<td>C₄H₇N₃O₃S₂</td>
<td>191.23</td>
<td>230</td>
<td>25.14</td>
<td>2.64</td>
</tr>
<tr>
<td>IV</td>
<td>SO₃H</td>
<td>H</td>
<td>C₄H₇N₃O₃S₂</td>
<td>181.00</td>
<td>> 300 decomp.</td>
<td>13.25</td>
<td>1.88</td>
</tr>
<tr>
<td>V</td>
<td>SO₃⁺NH₂(Et)₂</td>
<td>H</td>
<td>C₄H₁₄N₄O₅S₂</td>
<td>254.10</td>
<td>161</td>
<td>28.35</td>
<td>5.51</td>
</tr>
<tr>
<td>Comp.</td>
<td>Formula</td>
<td>Yield</td>
<td>M. w.</td>
<td>M. p. °C</td>
<td>Absorption maximum in UV spectrum</td>
<td>Calc'd</td>
<td>Found</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>λ_{max}</td>
<td>$% \text{C}$</td>
<td>$% \text{H}$</td>
</tr>
<tr>
<td>VI</td>
<td>$\text{C}{13}H{14}N_{2}S_{2}$</td>
<td>17.8</td>
<td>278.63</td>
<td>199-200</td>
<td>nm</td>
<td>262</td>
<td>364</td>
</tr>
<tr>
<td>VII</td>
<td>$\text{C}{12}H{9}N_{3}S_{2}$</td>
<td>21.5</td>
<td>275.21</td>
<td>225</td>
<td>273</td>
<td>427</td>
<td>11800</td>
</tr>
<tr>
<td>VIII</td>
<td>$\text{C}{13}H{18}N_{2}S_{2}$</td>
<td>9.5</td>
<td>326.43</td>
<td>223-4</td>
<td>269</td>
<td>368</td>
<td>12200</td>
</tr>
<tr>
<td>IX</td>
<td>$\text{C}{15}H{16}N_{2}S_{2}$</td>
<td>12.5</td>
<td>312.33</td>
<td>175-6</td>
<td>263</td>
<td>368</td>
<td>11900</td>
</tr>
</tbody>
</table>
2-Amino-5-sulphonic acid-1,3,4-thiadiazole (IV)

2-Amino-5-mercaptop-1,3,4-thiadiazole 2.6 g. (0.02 mole) and 7 ml. of 30% H₂O₂ were placed in an Erlenmeyer flask and 25 ml. of water were added. The reaction mixture was heated under reflux and stirred (magnetic stirrer) until all was dissolved. The solution was then cooled, evaporated to dryness and the residue recrystallized from water. The yield was 2.2 g. (60.7%); the substance decomposed above 300°C. IR spectrum (KBr); ν_NH, 3380 and 3280 cm⁻¹; ν_SOH, 1300-1200 cm⁻¹ and 1050 cm⁻¹, ν_C=N 1625 cm⁻¹; ν_C=S 1430 cm⁻¹. UV spectrum: λ_max 272 nm (ε 4800).

2-Amino-5-diethylammonium sulphonate-1,3,4-thiadiazole (V)

Compound IV 1.0 g. (0.0055 mole) was dissolved in 4 ml. of water under gentle heating (steambath) and then diethylamine was gradually added until the solution was alkaline (0.64 g, 0.0064 mole). Thereafter 15 ml. of EtOH were added and the resultant mixture evaporated to dryness. This procedure was repeated until no water could be indicated in the distillate. The residue was dissolved in the minimum amount of EtOH and then an equal quantity of ether was added. On standing, a white needle-shaped substance crystallized; yield 1.1 g. (78.40%); m.p. 160--161°C. IR spectrum (KBr); ν_NH, 3300 and 3075 cm⁻¹; ν_NH, 2445 cm⁻¹; ν_SO₂H 1210-1235 cm⁻¹ and 1020 cm⁻¹, ν_C=N 1590 cm⁻¹; ν_C=S 1440 cm⁻¹; UV spectrum λ_max 268 nm (ε 6900).

General Procedure for the Preparation of Mesoionic Derivatives of 1,3,4-thiadiazole VI—IX (Table II)

To the solution of 8.0 g. (0.044 mole) potassiumphenyldithiocarbazinate (prepared as described in ref. 6) in 500 ml. of toluene heated to 50°C, 0.05 mole of the corresponding acid chloride was added (dropwise, during 5 min) dissolved in 10 ml. of toluene. (All the acid chlorides have been prepared using SOCl₂ as chlorinating agent and prolonged heating under reflux - 12 to 24 hrs — and subsequent evaporation of the excess of SOCl₂ with benzene). The reaction mixture was stirred overnight at room temperature during which time the reaction product separated. The crude product was filtered off and recrystallized from abs. EtOH. Yields and mps. of the recrystallized products are listed in Table II.

Acknowledgement. The authors are indebted to Dr. V. Šunjić for helpful discussion, and Mrs. M. Galonja of Department of Chemistry for microanalyses.

REFERENCES

4. M. Busch, Ber. 28 (1895) 2835.
IZVOD

Tiadiazoli III*. Neki 5-supstituirani derivati 2-amino-1,3,4-tiadiazola i mezoionski 1,3,4-tiadiazoli

J. Kuftinec i D. Kolbah

Pripravljeni su novi derivati 1,3,4-tiadiazola s potencijalnim fitohormonskim (spojevi I—V) i antibakterijskim (spojevi VI—IX) djelovanjem. Mezoionska struktura spojeva VI—IX u skladu je s njihovim IR i UV spektrima.

FARMACEUTSKO-BIOKEMIJSKI FAKULTET
SVEUČILIŠTE U ZAGREBU

ZAGREB