Učestalost polimorfizma 4G/5G u promotorskoj regiji gena za inhibitor plazminogen aktivatora-1 kod bolesnika s astmom

Marunica, Ivona

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:203081

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-04

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb - Diplomski radovi Farmaceutsko-biokemijskog fakulteta
Ivona Marunica

Učestalost polimorfizma 4G/5G u promotorskoj regiji gena za inhibitor plazminogen aktivatora-1 kod bolesnika s astmom

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2015.
Ovaj diplomski rad je prijavljen na kolegiju Klinička biokemija s hematologijom Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen u Hrvatskom zavodu za transfuzijsku medicinu pod stručnim vodstvom izv.prof.dr.sc. Roberte Petlevski i suvodielsjtvom dr.sc. Jasne Bingulac-Popović

Zahvaljujem svojoj mentorici izv.prof.dr.sc. Roberti Petlevski na stručnom vodstvu, suradnji i pomoći pri izradi ovog diplomskog rada.

Posebno zahvaljujem svojoj komentorici, višoj znanstvenoj suradnici dr.sc. Jasni Bingulac-Popović na uloženom trudu, strpljenju, poticaju i savjetima koji su mi bili od neizmjerne važnosti tijekom izrade diplomskog rada.

Zahvaljujem dr. Marini Lampalo na Klinici za plućne bolesti Jordanovac KBC-a Zagreb na suradnji i nesebičnoj pomoći.

Zahvaljujem mr.sc. Ani Hećimović na sversdnoj pomoći i uloženom trudu oko statističke obrade rezultata.

Zahvaljujem svim djelatnicima Odjela za molekularnu dijagnostiku, a posebno Višnjici i Arijani na pristupačnosti, uloženom trudu i pomoći prilikom izvedbe praktičnog dijela rada.

Zahvaljujem i svim ispitnicima koji su sudjelovali u ovom istraživanju.
SADRŽAJ

1. UVOD .. 1
 1.1. Astma ... 1
 1.1.1. Etiologija astme .. 2
 1.1.1.1. Alergijska astma ... 2
 1.1.1.2. Nealergijska astma .. 2
 1.1.2. Patofiziologija astme .. 3
 1.1.3. Klinička slika i simptomi bolesti ... 4
 1.1.4. Dijagnostički postupci .. 5
 1.1.5. Klasifikacija bolesti ... 6
 1.1.6. Liječenje astme .. 7
 1.1.6.1. Simptomatski lijekovi .. 8
 1.1.6.2. Osnovni lijekovi .. 9
 1.2. Inhibitor plazminogen aktivatora-1 (PAI-1) ... 11
 1.2.1. Polimorfizam 4G/5G gena za PAI-1 .. 12
 1.2.2. Literaturni pregled prethodnih spoznaja o utjecaju 4G/5G polimorfizma PAI-1 gena na astmu ... 12

2. OBRAZLOŽENJE TEME ... 14

3. MATERIJALI I METODE ... 15
 3.1. Ispitanici .. 15
 3.2. Izolacija DNA na uređaju QIAcube .. 15
 3.2.1. Postupak automatizirane izolacije DNA .. 16
 3.2.2. Reagensi za izolaciju DNA ... 16
 3.3. Lančana reakcija polimeraze (PCR) .. 16
 3.3.1. Real-time PCR metoda (PCR u „realnom“ vremenu) 18
 3.3.2. Reagensi za izvođenje RT-PCR metode za 4G/5G polimorfizam 19
 3.3.3. Postupak .. 20
 3.3.4. Program real-time umnožavanja SNP ... 20
 3.3.5. Alelna diskriminacija .. 21
 3.4. Statistička analiza ... 21
 3.4.1. Statistička analiza demografskih podataka .. 21
 3.4.2. Statistička analiza rezultata ... 21
4. REZULTATI I RASPRAVA ... 22

4.1. Rezultati ... 22
 4.1.1. Demografske značajke ispitanika .. 22
 4.1.2. Prikaz elferograma DNA nakon izolacije na QIAcube uređaju 22
 4.1.3. Eksperimentalni rezultati real-time PCR SNP analize 23
 4.1.4. Učestalost pojedinih genotipova u skupini oboljelih od astme i zdravim
 kontrolama ... 24

4.2. Statistička obrada rezultata ... 26
 4.2.1. Statistička usporedba učestalosti genotipova 4G/4G, 4G/5G i 5G/5G
 između skupina bolesnika i kontrolne skupine 26
 4.2.2. Statistička usporedba učestalosti alela 4G i 5G između skupina bolesnika
 i kontrolne skupine ... 27

4.3. Rasprava .. 28

5. ZAKLJUČCI .. 31

6. LITERATURA ... 32

7. SAŽETAK .. 35

7. SUMMARY .. 36

8. PRILOZI ... 37

9. TEMELJNA DOKUMENTACIJSKA KARTICA .. 38

9. BASIC DOCUMENTATION CARD .. 39
1. UVOD

1.1. Astma

Astma se definira kao kronična upalna bolest dišnih puteva koju karakterizira pojačano reagiranje dišnih puteva na različite podražaje (bronhalna hiperreaktivnost), što dovodi do bronhoopstrukcije. Upala dišnih puteva je središnji patofiziološki poremećaj u astmi. Upalnu reakciju karakterizira složena interakcija upalnih posrednika, živčanog sustava i efektornih stanica, a posebno mastocita, eozinofila i T-limfocita. Epizode pogoršanja obično se izmjenjuju s razdobljima u kojima je bolesnik bez simptoma. Simptomi bolesti su odnosi tijekom niske razine aktivnosti upale, dok je egzacerbacija astme odraz pojačanog intenziteta upale. Kronična i neliječena upala s vremenom uzrokuje strukturne promjene dišnih puteva (remodeliranje) koje su odgovorne za ubrzano slabljenje plućne funkcije i ireverzibilnost bronhoopstruktivnih tegoba. Upala u osjetljivih osoba uzrokuje recidivirajuće epizode sviranja i pritiska u prsima, gubitak daha i kašalj, osobito tijekom noći i u rano jutro. Simptomi su obično povezani s općim, ali promjenjivim ograničenjem protoka zraka koji je barem djelomično reverzibilan, bilo spontano ili uz liječenje (Pavičić i sur., 2011).

Astma je ozbiljna bolest i rezultat je složenih međudjelovanja višestrukih genskih i okolišnih čimbenika od koje u razvijenim zemljama boluje više od 300 milijuna ljudi, dok više od 200 tisuća ljudi umire. Čak 90% svih slučajeva astme, uključujući astmu u odraslih, potječe iz djetinjstva. Astma u dječjoj dobi pogoda više dječaka nego djevojčice. Incidencija u ženskom spolu počinje rasti u pubertetu i u ranoj odraslosti, kad je prevalencija podjednaka. Do dobi od 40 godina, od astme boluje više žena nego muškaraca. Astma se češće pojavljuje u osoba s drugim atopijskim bolestima, kao što su atopijski dermatitis i alergijski rinitis (Ledić Drvar i Lipovenčić, 2011).

Astma je vodeća kronična dječja bolest u većini razvijenih zemalja, i to s posebno visokom prevalencijom i do 32% u Velikoj Britaniji, Novom Zelandu i Australiji (Gagro, 2011). U Hrvatskoj je utvrđena prevalencija astme u djece i mladeži od 5-7% (ovisno o dobi djece i županiji), pa se može pretpostaviti prevalencija u općoj populaciji od 3-4%. Procjenjuje se da prevalencija astme u svijetu raste prema stopi od 20-50% svakih deset godina. Kao i ostale kronične bolesti, astma uzrokuje velike novčane troškove zdravstvenog sustava, ali i opće
društvene troškove zbog gubitka velikog broja radnih sati (izostanci sa posla ili iz škole) uz značajan utjecaj na obiteljski život (Pavičić i sur., 2011).

1.1.1. Etiologija astme

Najbolje proučeni čimbenici rizika za nastanak astme su: spol, hiperreaktivnost dišnih puteva, atopija (pozitivna obiteljska anamneza za astmu ili druge atopijske bolesti), alergeni (grinje kućne prašine, plijesni, alergeni žohara i životinja), infekcije, dim cigareta, pretilost (Ledić Drvar i Lipozenčić, 2011).

Asthma se dijeli na alergijsku (egzogenu) i nealergijsku (endogenu).

1.1.1.1. Alergijska astma

Atopija, odnosno nasljedna obiteljska sklonost alergijskoj reakciji je najznačajniji poznati čimbenik za nastanak astme. U slučaju da su oba roditelja atopična, rizik da se u djeteta razvije alergijska bolest iznosi 40-60%. Ako su oba roditelja i brat ili sestra atopičari, taj rizik iznosi čak 80%. Unatoč velikom napretku molekularne biologije, s obzirom da je u patologiju astme uključeno puno čimbenika, teško se mogu identificirati geni koji su povezani sa patogenezom atopije i astme. U tom pogledu sve veću pozornost ima lokalizacija gena za IgE-receptor (FceRI) na kromosomu 11q, te citokini pod utjecajem kromosoma 5q i ADAM33 gen na kromosomu 20p13. Bolesnici s alergijskom astmom imaju povišenu razinu IgE-protutijela usmjerenih protiv različitih okolišnih alergena, a u takvih se bolesnika često susreću i druge atopijske bolesti poput alergijskog rinitisa, konjunktivitisa, dermatitisa, urtikarije, alergija na hranu i ubode insekata. Astmatični napadaj nastupa unutar petnaestak minuta nakon udisanja alergena (tip I. imunosne reakcije). Najvažniji inhalacijski alergeni u cjelodobišnjoj astmi su alergeni grinja kuće prašine, perja, životinske dlake i plijesni, dok u sezonskoj astmi prevladava pelud stabala, trava i korova (Pavičić i sur., 2011).

1.1.1.2. Nealergijska astma

Nealergijska astma se obično pojavljuje nakon tridesete godine života u bolesnika bez atopijske sklonosti i s normalnom koncentracijom IgE. Prvi napadaj endogene astme te kasnije egzacerbacije se često povezuju s virusnom infekcijom gornjih dišnih puteva. S obzirom na
specifične mehanizme nastanka, obično se izdvajaju astma uzrokovana lijekovima (npr. aspirinska astma nakon ingestije acetilsalicilne kiseline), astma uzrokovana naporom i profesionalna astma (Pavičić i sur., 2011).

1.1.2. Patofiziologija astme

Manifestacija bolesti je odraz intenziteta upalne aktivnosti. U upalnome procesu najznačajniju ulogu imaju mastociti, eozinofili i limfociti, ali i epitelne stanice dišnih puteva. Sve ove stanice nakon inhaliranog podražaja luče medijatore koji su odgovorni za upalu, bronhokonstrikciju, vazodilataciju, hiperplaziju glatkih mišića i fibrozu dišnih puteva. Hipertrofija glatkih mišića dovodi do sužavanja dišnih puteva, što je glavna patofiziološka značajka astme, a osjetljivost na infekcije, alergene i parasimpatička stimulacija se povećavaju. Dodatni čimbenici koji potpomažu hiperreaktivnost bronha su gubitak inhibitora bronhokonstrikcije (epitelni čimbenik relaksacije, prostaglandin E2) i drugih tvari koje metaboliziraju endogene bronhokonstriktore (endoproteaze) što dovodi do deskvamacije epitela i edema sluznice. U suženim i upalom zahvaćenim dišnim putevima pretjerana je proizvodnja sluzi koja ih još jače sužava i time otežava protok zraka, te se za bolesnike zna reći da osjećaju „glad za zrakom“. Zrak koji je jednom „uhvaćen“ na periferiji biva „zarobljen“ dok god traje spazam bronha. Neliječena upala dugoročno rezultira remodeliranjem dišnih puteva, što dovodi do slabljenja funkcije pluća, a bronhoopstrukcija postaje ireverzibilna pri čemu astma nalikuje kroničnoj opstruktivnoj plućnoj bolesti-KOPB (Bergman Marković i sur., 2012).

Slika 1: Primjer remodeliranja bronha u astmi (preuzeto iz: www.astma.hr)
1.1.3. Klinička slika i simptomi bolesti

Bolesnici s blagom, povremenom ili blagom trajnom astmom su u pravilu bez simptoma između epizoda pogoršanja bolesti. Oni s težom bolesću ili egzacerbacijom tuže se na gušenje, stezanje u prsima, čujno piskanje i kašalj.Auskultacijom se bronhospazmi čuju kao piskanje (engl. wheezing) koje nastaje zbog izmijenjenog načina prolaska zraka (turbulentnog umjesto fiziološki laminarnog) kroz sužene dišne puteve, što je praćeno produljenim i otežanim ekspirijem (Pavičić i sur., 2011).

Kašalj može biti i jedini simptom bolesti, često je neproduktivan, katkad viskozna ili žuto obojena sekreta premda ne postoji bakterijska upala (Bergman Marković i sur., 2012).

Simptomi astme mogu pratiti dnevni ritam, a obično se pogoršaju noću i u ranim jutarnjim satima (često oko 4 sata ujutro). Pogoršanja astme vezana za dnevni ritam objašnjavaju se stupnjem bronhalne reaktivnosti koja ovisi o tonusu nervus Vagus, padu koncentracije endogenog adrenalina i kortizola, povećanom stvaranju i oslobađanju upalnih medijatora i porastu propusnosti mikrokapilarne mreže. Noćna i ranojutarnja hiperreaktivnost dišnih puteva tumači se većom izloženošću alergenima iz posteljine, ležanjem u krevetu i rashlađivanjem dišnih puteva obično uslijed disanja na usta (www.msd-prirucnici.placebo.hr).

Svi simptomi i znakovi astme su nespecifični i reverzibilni ako se pravovremeno poduzme liječenje, a u pravilu ih izaziva izloženost jednom ili većem broju okidača.
1.1.4. Dijagnostički postupci

Nijedan dijagnostički test nije dovoljno osjetljiv i specifičan za dijagnostiku astme. Nužno je rezultate dijagnostičkih testova procjenjivati u odnosu na kliničku sliku i fizikalni nalaz pluća. Uzimanje što detaljnije anamneze važno je u dijagnostici alergije i astme, jer se može utvrditi postoji li povezanost između određenog uzroka i pojave simptoma (npr. pojava otežanog disanja uvijek u isto godišnje doba).

Stupanj eozinofilije često korelira s težinom kliničke slike. Broj eozinofila je povećan u iskašljaju, obrisku nosne služnice (kod pridruženog alergijskog rinitisa) i u perifernoj krvi bolesnika. U identifikaciji alergena primjenjuje se alergološko kožno testiranje na inhalacijske odnosno nutritivne alergene (engl. prick test). U slučaju neslaganja kliničkog nalaza i alergološkog testa, može se odrediti razina ukupnog IgE (engl. radioimmunosorbent test, RIST) i specifičnog IgE (engl. radioallergosorbent test, RAST). U procjeni intenziteta alergijske upale primjenjuje se određivanje serumске razine eozinofilnog kationskog proteina (ECP), te frakcija izdahnutog dušikova monoksidna (FeNO) (Pavičić i sur., 2011).

Točna dijagnoza astme ne može se postaviti bez spirometrije i bronhodilatacijskog testa. Po postotku smanjenja plućne funkcije procjenjuje se stupanj težine astme, a prema stupnju se određuju vrsta i doza lijekova. Spirometrijsko ispitivanje otkriva dva važna parametra, a to su forsirani vitalni kapacitet (FVC) i forsirani ekspiracijski volumen u prvoj sekundi (FEV₁). Forsirani vitalni kapacitet predstavlja maksimalnu količinu zraka koju se može izdahnuti nakon maksimalnog udaha, dok forsirani ekspiracijski volumen u prvoj sekundi predstavlja maksimalnu količinu zraka koja se može izdahnuti u prvoj sekundi nakon maksimalnog udaha. Bronhodilatacijski testovi se najčešće provode kratkodjelujućim bronhodilatatorm, a u nas je u uporabi salbutamol (Ventolin). Nalaz reverzibilne bronhoprostirakcije u velikoj mjeri upućuje na dijagnozu astme. Radi procjene bronhalne hiperreaktivnosti rabe se bronhoprovokacijski testovi, od kojih je najčešći nespecifični test metakolinom. Za dnevni nadzor astme mjeri se vršni (najveći) protok zraka u ekspiriju (engl. peak expiratory flow, PEF) pomoću mjerača PEF-a. Osim apsolutnih vrijednosti vršnoga protoka mjeri se i dnevna varijabilnost PEF-a, odnosno promjene između nižih jutarnjih i viših večernjih vrijednosti, pri čemu je značajna varijabilnost PEF-a veća od 20% (Pavičić i sur., 2011).
1.1.5. Klasifikacija bolesti

Donedavno su se terapijske odluke o liječenju bolesnika s astmom temeljile na klasifikaciji astme prema stupnju težine bolesti, no to je često nepouzdano jer je težina bolesti promjenjiva i mijenja se s liječenjem, pa bolesnik prelazi iz jedne kategorije u drugu. Međutim, klasifikacija prema težini bolesti (Tablica 1) ostaje i dalje za novootkrivene bolesnike kako bi se liječenje započelo ispravnim odabirom lijekova sukladno GINA (engl. Global Initiative for Asthma) smjernicama (Pavičić i sur., 2011).

Tablica 1: Stupnjevi težine astme u novodijagnosticiranih bolesnika prema kliničkim značajkama prije liječenja (Pavičić i sur., 2011)

<table>
<thead>
<tr>
<th>Simptomi</th>
<th>Noćni simptomi</th>
<th>PEF ili FEV₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. stupanj teška trajna</td>
<td>Trajni, česta pogoršanja, ograničena fizička aktivnost</td>
<td>Česti</td>
</tr>
<tr>
<td>3. stupanj umjerena trajna</td>
<td>Dnevni, pogoršanja ometaju aktivnosti, svakodnevno udisanje β₂ – agonista</td>
<td>> 1 x tjedno</td>
</tr>
<tr>
<td>2. stupanj blaga trajna</td>
<td>≥ 1 x tjedno, ali < 1 x dnevno, pogoršanja mogu ometati aktivnosti</td>
<td>> 2 x mjesečno</td>
</tr>
<tr>
<td>1. stupanj povremena</td>
<td>Povremeni < 1 x tjedno, bez simptoma i normalna plućna funkcija između pogoršanja</td>
<td>≤ 2 x mjesečno</td>
</tr>
</tbody>
</table>

Prema revidiranim GINA-smjernicama iz 2009. godine promoviran je novi pristup liječenju astme temeljen na postizanju i održavanju kontrole bolesti (Tablica 2). Cilj je što prije uspostaviti kontrolu astme, a tada smanjiti lijekove na najmanju količinu dostatnu za održavanje kontrole bolesti (Pavičić i sur., 2011).
Tablica 2: Opis kliničkih karakteristika astme te procjena stupnja kontrole astme – prema anamnestičkim podacima i mjerenju plućne funkcije (Pavičić i sur., 2011)

<table>
<thead>
<tr>
<th>Karakteristika astme</th>
<th>Kontrolirana</th>
<th>Djelomično kontrolirana</th>
<th>Nekontrolirana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dnevni simptomi</td>
<td>Nema (ili ≤ 2x/tjedan)</td>
<td>> 2x/tjedan</td>
<td>≥ 3 pokazatelja djelomično kontrolirane astme u bilo kojem tjednu</td>
</tr>
<tr>
<td>Ograničenje aktivnosti</td>
<td>Nema</td>
<td>Bilo kakvo</td>
<td></td>
</tr>
<tr>
<td>Noćni simptomi</td>
<td>Nema</td>
<td>Bilo kakvi</td>
<td></td>
</tr>
<tr>
<td>Potreba za simptomatskim lijekom</td>
<td>Nema (ili ≤ 2x/tjedan)</td>
<td>> 2x/tjedan</td>
<td></td>
</tr>
<tr>
<td>Plućna funkcija (PEF ili FEV₁)</td>
<td>normalna</td>
<td>< 80% očekivanih vrijednosti</td>
<td></td>
</tr>
<tr>
<td>Egzacerbacije</td>
<td>nema</td>
<td>≥ 1/godinu</td>
<td>1 u bilo kojem tjednu</td>
</tr>
</tbody>
</table>

1.1.6. Liječenje astme

U novootkrivenih se bolesnika određuje stupanj težine bolesti i započinje liječenje prema GINA smjernicama. Daljnje praćenje i prilagodba liječenja provode se prema kontroli bolesti. Prema GINA smjernicama, ciljevi liječenja i kontrole astme su: minimalni kronični simptomi (uključujući i noćne), minimalni broj egzacerbacija, minimalni broj hitnih posjeta liječniku, minimalne potrebe za simptomatskim lijekovima i primjena lijekova bez nuspojava (Gagro, 2011). Trajna astma se bolje kontrolira osnovnim lijekovima (suzbijanje upale) nego samo liječenjem akutne bronhokonstrikcije i odgovarajućih simptoma. Protuupalni lijekovi, osobito inhalacijski kortikosteroidi, trenutačno su najučinkovitiji osnovni lijekovi.

Lijekovi za liječenje astme dijele se u dvije skupine: simptomatske (bronhodilatatore) i osnovne (protuupalne) lijekove.
1.1.6.1. Simptomatski lijekovi

Simptomatski su lijekovi bronhodilatatori koji poboljšavaju plućnu funkciju i ublažuju simptome astme. To su β₂-agonisti (kratkodjelujući salbutamol i dugodjelujući salmeterol), metilksantini (teofilin, aminofilin) i antikolinergici (ipratropij, tiotropij).

- **INHALACIJSKI AGONISTI β₂-ADRENORECEPTORA** mogu biti kratkog (salbutamol) i dugog (salmeterol) djelovanja. Ovi lijekovi opuštaju glatke mišiće bronha, smanjuju degranulaciju mastocita i oslobađanje histamina, inhibiraju mikrokrvarenje u dišnim putevima i povećavaju mukocilijarno čišćenje. Brzodjelujući salbutamol se koristi za otklanjanje akutne bronhoopstrukcije jer izaziva bronhodilataciju za nekoliko minuta, a učinak traje 6-8 sati. Povećana ili trajna uporaba salbutamola, više od jedanput tjedno upućuje na lošu kontrolu bolesti i indicirana je promjena osnovne terapije. Učinak dugodjelujućeg salmeterola traje 12 sati pa je pogodniji za bolesnike s pretežno noćnim simptomima, a ima i sinergističko djelovanje s inhalacijskim kortikosteroidima, što omogućava primjenu manjih doza kortikosteroida. Monoterapija salmeterolom je apsolutno kontraindicirana jer može dovesti do slabljenja kontrole astme i egzacerbacija bolesti. Tahikardija i tremor su najčešće akutne nuspojave nakon inhalacije β₂-agonista i ovisne su o dozi (www.msd-prirucnici.placebo.hr).

- **METILKSANTINI** opuštaju glatke mišiće bronha na temelju neselektivne inhibicije fosfodiesteraze, a također inhibiraju unutarstanično oslobađanje kalcija, smanjuju mikrovaskularno krvarenje u sluznici dišnih puteva i sprjećavaju kasni odgovor na alergene. Ovi lijekovi služe za dugotrajnu kontrolu astme kao dodatak β₂-agonistima. Mogu se davati intravenski, intramuskularno ili u obliku tableta. Nuspojave poput glavobolje, poremećaja spavanja, povraćanja, tahikardije i hipotenzije najčešće nastaju kao posljedica predoziranja, što se događa relativno često zbog nijhove uske terapijske širine (www.msd-prirucnici.placebo.hr).

- **ANTIKOLINERGICI** opuštaju glatke mišiće bronha kompetitivnom inhibicijom muskarinskih (M3) kolinergičnih receptora. Ipratropij ima neznatan učinak kao monoterapija, ali se njegov učinak pojačava kad se kombinira s kratkodjeljucim β₂-agonistima. Tiotropij je inhalacijski antikolinergik čiji učinak traje i do 24 sata, ali nije

1.1.6.2. Osnovni lijekovi

Osnovni lijekovi djeluju na upalu kao osnovni patogenetski mehanizam u astmi. Temeljni su protuupalni lijekovi inhalacijski kortikosteroidi (beklometazon, budezonid, flutikazon i ciklezonid), dok se oralni i parenteralni kortikosteroidi primjenjuju samo u teškim egzacerbacijama astme. Još se primjenjuju i leukotrienski antagonisti (montelukast) i kromoni ili stabilizatori mastocita.

- **KORTIKOSTEROIDI** koče upalnu reakciju u dišnim putevima, povećavaju transkripciju gena za β_2-adrenoreceptore, spriječavaju sintezu leukotriena i stvaranje citokina i inhibiraju aktivaciju proteinske adhezije. Također blokiraju kasni odgovor na inhalirane alergene. Primjenjuju se peroralno, intravenski ili inhalacijski. Da bi se postigla brza kontrola bolesti, ponekad je potrebno kratkotrajno liječenje oralnim kortikosteroidima (7-10 dana) na bilo kojem stupnju terapije. Inhalacijski kortikosteroidi su indicirani za dugotrajnu supresiju astme jer spriječavaju razbuktavanje upale i pojavu simptoma, i što je najvažnije, sprječavaju strukturne promjene bronha (remodeliranje). Od lokalnih nuspojava česti su promuklost i oralna kandidijaza pri uzimanju doza viših od 400 µg/dan, koja se može spriječiti ispiranjem usta i ždrijela vodom nakon inhalacije. Sistemske nuspojave ovisne o dozi su: supresija adrenalno-hipofizne osi, osteoporoza, katarakta, poremećen metabolizam glukoze, atrofija kože i sklonost modricama (www.msd-prirucnici.placebo.hr).

- **ANTAGONISTI LEUKOTRIENSKIH RECEPTORA** imaju slabiji protuupalni učinak od inhalacijskih kortikosteroida jer djeluju samo na jednu skupinu čimbenika alergijske upale, leukotriene. Montelukast je jedini lijek na našem tržištu iz te skupine, a indiciran je za profilaksu i trajno liječenje blage i umjerene trajne astme, aspirinske astme i bronhokonstrikcije u naporu. Primjenjuju se oralno, a glavni štetni učinak je porast jetrenih enzima (Bergman Marković i sur., 2012).

- **KROMONI (STABILIZATORI MASTOCITA)** inhibiraju oslobađanje histamina iz mastocita, smanjuju bronhalnu hiperreaktivnost, te spriječavaju ranu i kasnu reakciju na alergene. Primjenjuju se inhalacijski kao profilaksa bolesnicima s astmom koju
provociraju fizički napor i alergeni, no nemaju učinka kad su se simptomi već javili. Najsigurniji su od svih antiastmatika, ali zato imaju najslabiji učinak (www.msd-prirucnici.placebo.hr).

Tablica 3: Stupnjevito liječenje astme prema stupnju kontrole bolesti (priređeno prema smjernicama GINA, revizija 2009. god.). Bijelom bojom istaknut je prvi terapijski odabir.

<table>
<thead>
<tr>
<th>Korak 1</th>
<th>Korak 2</th>
<th>Korak 3</th>
<th>Korak 4</th>
<th>Korak 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edukacija i mjere kontrole okoliša</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABA prema potrebi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odaberi jedan</td>
<td>Odaberi jedan</td>
<td>Dodaj jedan ili više</td>
<td>Dodaj jedan ili oba</td>
<td></td>
</tr>
<tr>
<td>Niske doze ICS-a</td>
<td>Niske doze ICS-a + LABA</td>
<td>Srednje ili visoke doze ICS-a + LABA</td>
<td>OCS (najniže doze)</td>
<td></td>
</tr>
<tr>
<td>Odabir temeljne terapije</td>
<td>LTRA</td>
<td>Srednje ili visoke doze ICS-a</td>
<td>LTRA</td>
<td>Anti IgE</td>
</tr>
<tr>
<td></td>
<td>Niske doze ICS-a</td>
<td>Niske doze ICS-a + LTRA</td>
<td>Dugodjelujući SR teofilin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Niske doze ICS-a + teofilin produktenog djelovanja</td>
<td></td>
<td>SABA</td>
</tr>
</tbody>
</table>
1.2. Inhibitor plazminogen aktivatora-1 (PAI-1)

Inhibitor plazminogen aktivatora-1 (PAI-1) je jednolančani glikoprotein približne molekulske mase 50 kD koji regulira fibrinolitički sustav, prvenstveno inhibirajući tkivni (tPA) i urokinazni (uPA) aktivator plazminogena. Osnovna funkcija PAI-1 je smanjenje fibrinolize što dovodi do akumulacije fibrina, a povišenje u plazmi PAI-1 utječe na normalni degradacijski mehanizam fibrina i potiče trombozu. Prema novijim istraživanjima povišenje koncentracije PAI-1 osim što vodi do hipofibrinolize, smanjuje aktivnost metaloproteinaza matriksa (MMP) i staničnu adheziju, a ima ulogu i u tkivnom remodeliranju (www.medri.uniri.hr).

PAI-1 pripada superporodici inhibitora serin proteaza, a također se naziva i serpin-1 (akronim od SERin Proteaza INhibitori). Aktivno mjesto čine aminokiseline Arg-346 i Met-347 koje čine peptidnu vezu identičnu onoj u supstratu ciljne proteaze. PAI-1 sintetizira mnoštvo različitih tkiva i stanica uključujući žilni endotel, megakariocite, makrofage, humani endometrij, peritoneum, adipozna tkiva i aktivirane mastocite. Kada je sintetiziran, PAI-1 se uglavnom skladišti u trombocitima, iako može biti izlučen i u struju krvi ili deponiran na subendotelnom matriksu. Sintetizira se u aktivnoj formi, ali u in vivo uvjetima je u aktivnoj obliku stabilan oko dva sata. Cirkulirajući PAI-1 je vezan na vitronektin koji ga štiti od inaktivacije i može ga usmjeriti na mjesto vaskularne ozljede (Zorio i sur., 2008).

PAI-1 je zbog svoje uloge u koagulacijskoj kaskadi i upali povezan s razvojem različitih bolesti kao što su: duboka venska tromboza, ateroskleroza, endometrioza, metabolički sindrom, rak dojke itd. što je potaknulo brojna ispitivanja PAI-1 kao dijagnostičkog biljega za brojne bolesti (Zorio i sur., 2008).

Kod astme postoji neravnoteža između metaloproteinaza matriksa i njihovih inhibitora što doprinosi remodeliranju dišnih puteva kao važnom mehanizmu slabljenja plućne funkcije. PAI-1 doprinosi razvoju astme svojom ulogom u remodeliranju dišnih puteva, bronhalnoj hiperreaktivnosti i alergijskoj upali. Aktivirani mastociti su stanice koje predstavljaju važan izvor PAI-1 za tkivno remodeliranje dišnih puteva uzrokovano upalom (Dijkstra i sur., 2011).
1.2.1. Polimorfizam 4G/5G gena za PAI-1

Polimorfizam gena je prisutnost dvaju ili više različitih alela jednog gena u populaciji. Različiti alel mora biti prisutan u više od 1% ljudi u populaciji, inače se smatra mutacijom (www.geneplanet.hr).

U promotorskoj regiji PAI-1 gena koji je smješten na ljudskom kromosomu 7q21.3-q22 utvrđeno je postojanje specifičnog polimorfizma 4G/5G koji utječe na ekspresiju PAI-1. Radi se o polimorfizmu koji uključuje deleciju, odnosno inserciju gvaninske baze na -675 pb od promotora PAI-1 gena. Studije su pokazale da homozigotne osobe s genotipom 4G/4G imaju koncentraciju PAI-1 u plazmi značajno višu nego osobe s genotipom 5G/5G, odnosno da je 5G alel transkripcijski manje aktivan u odnosu na 4G alel. Naime, na oba se alela može vezati aktivator transkripcije, dok se samo na 5G alel može vezati represor transkripcije koji je koči (Madách i sur., 2010).

Slika 2: Modulacija koncentracije PAI-1 u plazmi ovisno o 4G/5G polimorfizmu gena za PAI-1 (prema Zorio i sur., 2008)

1.2.2. Literaturni pregled prethodnih spoznaja o utjecaju 4G/5G polimorfizma PAI-1 gena na astmu

Novije studije su se bavile istraživanjem povezanosti -675 4G/5G polimorfizma u promotorskoj regiji PAI-1 gena s astmom u različitim populacijama (Nie i sur., 2012). Rezultati studija su pokazali da je učestalost 4G/5G polimorfizma PAI-1 gena različita kod pripadnika različitih
rasa i etničkih skupina. Zbog različitog načina života i međudjelovanja gena s čimbenicima okoliša, ne može se zaključiti da je rizik sličan u različitim populacijama (Bučková i sur., 2002).

Prije trinaest godina Bučkova i suradnici proveli su studiju na češkoj populaciji bolesnika s astmom i alergijskim bolestima koja podupire tezu da 4G alel 4G/5G polimorfizma PAI-1 gena može biti čimbenik rizika za nastanak IgE-posredovane astme i alergijskih bolesti (Bučková i sur., 2002). Isti zaključak potvrdilo je istraživanje koje su godinu dana ranije proveli Cho i suradnici u Velikoj Britaniji, sa razlikom da je u britanskoj populaciji učestalost 4G alela bila nešto veća nego u češkoj populaciji (Cho i sur., 2001).

Istraživanje koje su proveli Ozbek i suradnici u Turskoj, a obuhvaćalo je populaciju djece s astmom i ili alergijskim rinitisom, ukazuje na to da je ispitivana populacija imala veću pojavnost 4G alela u usporedbi s njihovim zdravim vršnjacima iz kontrolne skupine (Ozbek i sur., 2009).

Zanimljivo je da su Cosan i suradnici također u Turskoj proveli studiju ispitivanja povezanosti PAI-1 4G/5G polimorfizma s astmom, koja je uključivala odrasle bolesnike, a zaključak je da 4G/5G polimorfizam PAI-1 gena nije statistički značajan čimbenik u razvoju astme (Cosan i sur., 2009).

Dijkstra i suradnici u Nizozemskoj su iz dobivenih rezultata studije zaključili da polimorfizam PAI-1 gena ne utječe na nastanak astme, ali utječe na težinu i progresiju bolesti putem remodeliranja dišnih puteva, kao i na odgovor na terapiju inhalacijskim kortikosteroidima (Dijkstra i sur., 2011).

Uzevši u obzir da su mnoge ranije studije pokazale dosta neuvjerljive ili dvojbe lne rezultate povezanosti PAI-1 4G/5G polimorfizma s astmom, Nie i suradnici su 2012. godine napravili prvu meta-analizu koja je sadržavala osam dotada objavljenih relevantnih studija o utjecaju 4G/5G polimorfizma PAI-1 gena na nastanak i razvoj astme. Rezultati meta analize su pokazali da je 4G/5G polimorfizam PAI-gena rizičan čimbenik za razvoj astme (Nie i sur., 2012).
2. OBRAZLOŽENJE TEME

Broj oboljelih i umrlih od astme stalno se povećava, naročito u razvijenim zemljama. Pojavnost astme, osobito u djece, u cijelom svijetu je u porastu, a jedan od najvećih problema je što astma često ostaje nedijagnosticirana i neodgovarajuće liječena bolest. Razvojem novih metoda za prepoznavanje, dijagnozu, liječenje i kontrolu astme, mogu se umanjiti osobna, socijalna i ekonomska davanja, te poboljšati svakodnevni život oboljelih osoba.

Tijekom proteklog desetljeća, molekularno-genetičko testiranje razvilo se u najbrže rastuće područje laboratorijske medicine. Dosada su provedena brojna istraživanja povezanosti različitih gena s nastankom astme. Astma je složena bolest i rezultat je međudjelovanja između genetičkih i okolišnih čimbenika.

Cilj ovog ispitivanja je utvrditi učestalost polimorfizma 4G/5G u promotorskoj regiji gena za PAI-1 kod bolesnika s astmom te je usporediti s učestalosti kod ispitanika kontrolne skupine koju sačinjavaju osobe bez simptoma astme i alergije. Hipoteza istraživanja je da postoji povezanost polimorfizma 4G/5G s razvojem astme u hrvatskoj populaciji.

Ispitivana skupina su bolesnici s astmom koji se liječe u Klinici za plućne bolesti Jordanovac KBC-a Zagreb. Kontrolnu skupinu čine dobrovoljni davatelji krvi s područja grada Zagreba i Zagrebačke županije i djelatnici Hrvatskog zavoda za transfuzijsku medicinu. Nakon izolacije DNA na QIAcube uređaju slijedi ispitivanje navedenog polimorfizma pomoću polimerazne lančane reakcije u realnom vremenu (engl. real-time PCR) metode i alelnog diskriminiranja. Usporedba i analiza dobivenih rezultata između ispitivanih skupina načinit će se statističkim metodama.
3. MATERIJALI I METODE

3.1. Ispitanici

Studija je provedena u Odjelu za molekularnu dijagnostiku Hrvatskog zavoda za transfuzijsku medicinu na uzorcima 149 bolesnika s astmom i 89 uzoraka zdravih ispitanika bez simptoma bolesti koji su predstavljali kontrolnu skupinu. Astma je dijagnosticirana kod specijalista za plućne bolesti prilikom pregleda na Klinici za plućne bolesti Jordanovac Kliničkog bolničkog centra Zagreb. Dijagnostički parametri bili su: broj eozinofila u sputumu i obrisku nosne sluznice, izmjerena PEF vrijednost te pozitivan bronhodilatacijski test salbutamolom. Zdravi ispitanici su bili dobrog zdravstvenog stanja i imali su uredne spirometrijske nalaze. Živjeli su na istom području kao i bolesnici. Obje skupine nisu bolovale od drugih bolesti. Svim ispitanicima izvađena je puna krv u epruvetu s antikoagulansom K2EDTA i čuvana na -20°C do izolacije DNA.

3.2. Izolacija DNA na uređaju QIAcube

Genomska DNA visokog stupnja čistoće i prinosa je izolirana iz pune krvi na QIAcube uređaju (Qiagen, Njemačka). QIAcube uređaj je robotska radna stanica za automatiziranu izolaciju nukleinskih kiselina i koristi već postojeće standardne QIAGEN kitove za izolaciju nukleinskih kiselina na kolonama (silika gel membrane) i njihove protokole. U ovom ispitivanju korišten je protokol QIAamp DNA Blood Mini Kit (Qiagen, Njemačka) za izolaciju genomske DNA iz pune krvi.

Lizirajući pufer (AL) vrši lizu uzorka pri čemu pH i ionska jakost lizata sprječavaju vezanje interferirajućih tvari na membranu. Enzimskom reakcijom pomoću proteinaze K se uklanjaju stanični proteini i druge makromolekule koje bi mogle inhibirati ili ometati PCR reakciju. DNA iz liziranog uzorka se pomoću apsolutnog etanola adsorbira na QIAamp silika-gel membranu QIAamp spin kolone. Potom se DNA koja je vezana na membranu pročišćava ispiranjem pomoću dva pufera (AW1 i AW2), nakon čega se eluira s membrane puferom za eluciju (AE). Izolirana genomska DNA se može zatim umnažati PCR-reakcijom.
3.2.1. Postupak automatizirane izolacije DNA

Za izolaciju DNA upotrijebljen je volumen EDTA uzorka od 200 µl pomoću komercijalnog kita QIAamp DNA Blood Mini Kit (Qiaqen, Njemačka). Volumen dodane proteinaze K ovisio je o broju uzoraka koji su uključeni u sustav izolacije. Nakon uključenja, QIAcube uređaj provodio je inicijalizacijski test od 30-ak sekundi. Nakon toga je postavljen nosač s reagensima koji sadrži lizirajući pufer, dva pufera za ispiranje, pufer za eluciju i apsolutni etanol. Nosači za nastavke napunjeni su nastavcima s filterom od 1000 µl (sivo obojeni nosač) i 200 µl (plavo obojeni nosač). Na poziciju A postavljena je epruvetica od 1,5 ml s otopinom proteinaze K. Adapteri su prije postavljanja na inkubator s mješalicom pripremljeni na način da je kolona sa silika-gel membranom umetnuta na poziciju L1, a epruveta za eluciju na L3. Uz svaki uzorak umetnut je gumeni čep koji je označavao poziciju uzorka i njegov broj. Biranjem protokola QIAamp DNA Blood Mini Kit na uređaju započeo je proces automatizirane izolacije DNA koji za 12 uzoraka traje 90 minuta.

3.2.2. Reagensi za izolaciju DNA

- Lizirajući pufer AL
- Apsolutni etanol
- Pufer za ispiranje AW1
- Pufer za ispiranje AW2
- Pufer za eluciju AE
- Proteinaza K

3.3. Lančana reakcija polimeraze (PCR)

Lančana reakcija polimeraze (PCR, engl. Polymerase Chain Reaction) je metoda kojom se u in vitro uvjetima relativno kratki dio DNA sekvence umnožava u veliki broj identičnih kopija. Ova metoda je imala presudni utjecaj na razvoj molekularne dijagnostike i na primjenu molekularno-biooloških metoda u znanstvenim istraživanjima, stoga ne čudi da je Kary Mullis za njeno otkriće 1993. godine dobio Nobelovu nagradu za kemiju.

Ne postoji jedinstveni protokol PCR reakcije koji bi bio prikladan za svako umnažanje odsječka DNA, već je potrebno prethodno optimiziranje reakcije. Treba poznavati slijed nukleotida odsječka DNA koji se želi umnožiti kako bi se odabrao odgovarajući par početnica. Početnice
su kratke oligonukleotidne sekvence koje predstavljaju granice odsječka DNA koji se umnaža, odnosno komplementarne su krajevima ulomka ciljne DNA. Jedna početnica je komplementarna 3' kraju odsječka jednog DNA lanca koji se umnaža, a druga početnica je komplementarna 3' kraju drugog DNA lanca. Odabir specifičnih početnica je ključan kriterij za uspješnost PCR reakcije.

PCR reakcija temelji se na djelovanju DNA (Taq) polimeraze, koja na kalupu jednog lanca DNA sintetizira novi komplementarni lanac, pri čemu veličina sintetiziranog ulomka DNA molekule odgovara dužini koju omeđuju izabrane početnice.

Reakcijska smjesa za PCR reakciju sadrži kalup DNA, par specifičnih početnica, odgovarajući pufer, smjesu deoksiribonukleotida (dNTP-a) u jednakom omjeru (dATP, dGTP, dTTP, dCTP), magnezijeve ione i termostabilnu DNA polimerazu.

Osnovni koraci svih PCR protokola su:

1. Denaturacija dvolančane DNA u dva jednolančana lanca na temperaturi 94-96°C tijekom 3-5 minuta
2. Specifično vezanje početnica na komplementarne odjeljke DNA pri temperaturi 50-60°C
3. Sinteza komplementarnog lanca, odnosno produljivanje DNA lanca na 72°C, što je optimalna temperatura za djelovanje termotolerantne DNA (Taq) polimeraze

Kontinuiranim ponavljanjem denaturacije, vezanja početnica na kalup i produljivanja DNA slijeda tijekom 20-40 ciklusa umnožavanja količina umnožene DNA eksponencijalno raste, odnosno od jedne kopije DNA se na kraju reakcije dobije \(2^n\) kopija gdje je "n" broj ciklusa reakcije. Uspješnost reakcije se provjerava elektroforezom produkta reakcije PCR u agaroznom gelu (Katušić Hećimović, 2007).
3.3.1. **Real-time PCR metoda (PCR u „realnom“ vremenu)**

Real-time PCR (RT-PCR) metoda kao inačica klasičnog PCR-a podrazumijeva praćenje PCR umnožavanja tijekom cijele reakcije, što predstavlja veliku prednost u odnosu na tradicionalnu PCR detekciju u završnoj fazi pomoću agaroznih gelova. Veliko tehnološko unaprijedjenje kod real-time PCR metode je upravo uvođenje simultanog sustava za detekciju PCR produkta tijekom vremena (on-line PCR, kinetički PCR), a visoka osjetljivost metode postignuta je pomoću fluorescentnih proba ili početnica.

Jedan od pristupa za detekciju je primjena kemijskog spoja poput SYBR Green-a, koji se može ugraditi između nukleotida dvostrukih uzvojnice (novonastale) DNA i pri tome emitirati fluorescenciju. U slobodnoj formi u fazi denaturacije kad je DNA jednolančana, ovaj spoj ne pokazuje fluorescenciju, pa je taj učinak iskorišten za praćenje porasta fluorescencije u svakom ciklusu PCR-a, što je indirektna mjera za količinu nastalog PCR produkta.

Drugi način detekcije u RT-PCR-u je primjena standardnih početnica obilježenih fluorescentnim spojevima, tako da se umnožavanje DNA prati preko ugradnje obilježenih početnica u PCR produkt, a u biti se generira porast intenziteta fluorescencije (Slade i Bago, 2007).

Real-time TaqMan PCR tehnologija koristi dvostruko označenu fluorescentnu probu. Naime, reporter boja koja emitira fluorescentnu svjetlost vezana je za 5' kraj TaqMan probe, dok je

Slika 4: Real-time TaqMan PCR tehnologija (preuzeto iz: www.gibthai.com)

3.3.2. Reagensi za izvođenje RT-PCR metode za 4G/5G polimorfizam

- 2x Univerzalni Master Mix za SNP genotipizaciju (Applied Biosystems, SAD)
- Custom TaqMan SNP Genotyping Assay, serpine 1 za PAI-1 polimorfizam (Applied Biosystems, SAD)
- Bidestilirana voda
3.3.3. Postupak

U kabinetu za sterilni rad s laminarnim protokom zraka je pripremljena reakcijska smjesa za real-time PCR na uređaju AB 7500 real-time PCR System (Applied Biosystems, SAD). Reakcijska smjesa sadrži:

\[
\begin{align*}
&12,5 \text{ µl } 2x \text{ Univerzalni Master Mix} \\
&0,63 \text{ µl Custom TaqMan SNP Genotyping Assay za PAI-1} \\
&10,87 \text{ µl bidestilirane vode} \\
&24 \text{ µl } + 1 \text{ µl DNA kalupa}
\end{align*}
\]

Svaki uzorak je bio ukupnog volumena 25µl. Napravljena je reakcijska smjesa za 20 uzoraka te se u svaku PCR epruvetu otpipetiralo po 24 µl. Potom je u svaku epruvetu dodano po 1 µl uzorka genomske DNA. U negativnu kontrolu je umjesto genomske DNA dodan 1µl bidestilirane vode. U svakoj seriji od 20 uzoraka bile su po tri pozitivne kontrole u koje je dodano po 1 µl uzorka heterozigota (4G/5G), odnosno 1 µl uzorka homozigota (4G/4G i 5G/5G) za PAI-1 polimorfizam. Epruvete su potom začepljene i stavljene u uređaj za real-time PCR. Odabirom programa definiraju se uvjeti reakcije i započinje umnožavanje uz vidljivi porast fluorescencije u odnosu na broj ciklusa umnožavanja.

3.3.4. Program real-time umnožavanja SNP

Tablica 4: Program real-time umnožavanja SNP

<table>
<thead>
<tr>
<th>Uvjeti reakcije PCR</th>
<th>Temperatura</th>
<th>Vrijeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD-aktivacija enzima AmpErase uracil-N-glycosylase</td>
<td>50°C</td>
<td>2 min</td>
</tr>
<tr>
<td>HOLD-aktivacija AmpliTaq Gold enzima</td>
<td>95°C</td>
<td>10 min</td>
</tr>
<tr>
<td>40 ciklusa umnožavanja:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denaturacija</td>
<td>95°C</td>
<td>15 sek</td>
</tr>
<tr>
<td>Vezanje početnica i ekstenzija lanca</td>
<td>60°C</td>
<td>1 min</td>
</tr>
<tr>
<td>Detekcija fluorescencije</td>
<td>60°C</td>
<td></td>
</tr>
</tbody>
</table>
3.3.5. Alelna diskriminacija

Na temelju umnožavanja, tj. porasta krivulje fluorescencije, real-time PCR produkci razvrstavaju se u grafu automatski na homozigote (4G/4G i 5G/5G za PAI-1 polimorfizam) uzduž horizontalne, odnosno vertikalne osi; heterozigote (4G/5G za PAI-1 polimorfizam) dijagonalno i negativnu kontrolu umnožavanja na dnu lijevog kuta grafa.

3.4. Statistička analiza

3.4.1. Statistička analiza demografskih podataka

Analiza demografskih podataka napravljena je pomoću statističkog programa MedCalc Software version 12. Dob sudionika prikazana je medijanom i rasponom.

3.4.2. Statistička analiza rezultata

Dobiveni rezultati prikazani su apsolutnom i relativnom učestalošću i prikazani su u tablicama. U obradi dobivenih rezultata koristili su se statistički testovi za usporedbu nezavisnih kategoričkih podataka:

- χ^2 test za utvrđivanje razine značajnosti razlike između skupina
- Omjer izgleda, OR uz 95% granice pouzdanosti, za procjenu jačine povezanosti varijabli, odnosno procjenu utjecaja PAI-1 genotipova na razvoj astme

Razina statističke značajnosti je postavljena na 0,05 u svim analizama, odnosno rezultati skupine bolesnika se smatraju statistički značajnima u odnosu na kontrolnu skupinu ako je $P<0,05$. Za analizu je korišten statistički program MedCalc Software version 12.
4. REZULTATI I RASPRAVA

4.1. Rezultati

4.1.1. Demografske značajke ispitanika

U Tablici 5 prikazane su demografske karakteristike ispitanika. Parametri koji su analizirani su spol (M/Ž) i dob prikazana medijanom i rasponom.

Tablica 5: Demografske karakteristike ispitivanih skupina

<table>
<thead>
<tr>
<th></th>
<th>Kontrolna skupina</th>
<th>Skupina bolesnika s astmom</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>89</td>
<td>149</td>
</tr>
<tr>
<td>Spol (M/Ž)</td>
<td>41/48</td>
<td>57/92</td>
</tr>
<tr>
<td>Dob (godine)</td>
<td>41 (23-65)</td>
<td>59,5 (18-88)</td>
</tr>
</tbody>
</table>

Statistička analiza demografskih podataka pokazala je značajnu razliku u dobi i spolu između oboljelih od astme i kontrolne skupine (P<0,0001).

4.1.2. Prikaz elferograma DNA nakon izolacije na QIAcube uređaju

Za 149 uzoraka bolesnika je napravljena automatizirana izolacija DNA na uređaju QIAcube. Na Slici 5 prikazan je elferogram 1µl od 200 µl eluata DNA dobivene automatiziranom izolacijom na uređaju QIAcube iz EDTA uzoraka.

Slika 5: Elfrogram 1µl DNA dobivene izolacijom na QIAcube uređaju
4.1.3. Eksperimentalni rezultati real-time PCR SNP analize

Real-time PCR metodom analizirana je DNA izolirana iz uzoraka 149 bolesnika s astmom i 89 ispitanika kontrolne skupine, i to u približno 12 serija po 20 uzoraka. Na Slici 6 prikazan je graf alelne diskriminacije 4G/5G polimorfizma gena za PAI-1, pri čemu su plavom bojom označeni homozigoti 5G/5G, crvenom bojom homozigoti 4G/4G, te zelenom bojom heterozigot 4G/5G. Crni kvadratić u dnu lijeve strane grafa prikazuje negativnu kontrolu.

Slika 6: Real-time PCR SNP analiza polimorfizma 4G/5G gena za PAI-1
4.1.4. Učestalost pojedinih genotipova u skupini oboljelih od astme i zdravim kontrolama

Tablica 6: Učestalost pojedinih genotipova u skupini oboljelih od astme i zdravim kontrolama

<table>
<thead>
<tr>
<th></th>
<th>4G/4G (N=149)</th>
<th>4G/5G (N=89)</th>
<th>5G/5G (N=89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astma</td>
<td>35 (23,49%)</td>
<td>83 (55,70%)</td>
<td>31 (20,81%)</td>
</tr>
<tr>
<td>Kontrola</td>
<td>26 (29,21%)</td>
<td>39 (43,82%)</td>
<td>24 (26,97%)</td>
</tr>
</tbody>
</table>

Slika 7: Učestalost pojedinih genotipova u skupini zdravih ispitanika izražena postotnim udjelom (%)
Slika 8: Učestalost pojedinih genotipova u skupini oboljelih od astme izražena postotnim udjelom (%)
4.2. Statistička obrada rezultata

4.2.1. Statistička usporedba učestalosti genotipova 4G/4G, 4G/5G i 5G/5G između skupina bolesnika i kontrolne skupine

Tablica 7 prikazuje razdiobu učestalosti genotipova 4G/4G, 4G/5G i 5G/5G između skupina bolesnika i kontrolne skupine.

Izračun omjera izgleda uz 95% interval pouzdanosti (OR 95% CI) za sva tri genotipa ne pokazuje statističku značajnost u usporedbi učestalosti svih genotipova između skupine oboljelih od astme i kontrolne skupine.

Usporedba sve tri grupe genotipova PAI-1 pomoću χ^2 testa uz P>0,05 nije pokazala statističku značajnost.

Tablica 7: Statistička analiza usporedbi genotipova 4G/4G, 4G/5G i 5G/5G u ispitivanim skupinama

<table>
<thead>
<tr>
<th>PAI-1 genotipovi</th>
<th>Skupina oboljelih od astme broj (%) N = 149</th>
<th>Kontrolna skupina broj (%) N = 89</th>
<th>OR (95% CI)</th>
<th>P (χ^2 test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4G/4G</td>
<td>35 (23,49%)</td>
<td>26 (29,21%)</td>
<td>1,58</td>
<td>(0,838-2,981)</td>
</tr>
<tr>
<td>4G/5G</td>
<td>83 (55,70%)</td>
<td>39 (43,82%)</td>
<td>1,65</td>
<td>(0,856-3,171)</td>
</tr>
<tr>
<td>5G/5G</td>
<td>31 (20,81%)</td>
<td>24 (26,97%)</td>
<td>1,04</td>
<td>(0,499-2,175)</td>
</tr>
</tbody>
</table>
4.2.2. Statistička usporedba učestalosti alela 4G i 5G između skupina bolesnika i kontrolne skupine

U Tablici 8 prikazan je izračun učestalosti 4G i 5G alela za svaku ispitivanu skupinu. Kod oboljelih od astme, učestalost 4G alela iznosi 0,513, a kod kontrolne skupine 0,511. Učestalost 5G alela kod oboljelih od astme iznosi 0,487, a kod kontrolne skupine 0,489.

Utvrdjeno je da nema statistički značajne razlike u učestalosti 4G i 5G alela između skupine oboljelih od astme i kontrolne skupine (P=0,9613).

Usporedbu učestalosti alela 4G u odnosu na alel 5G između skupine oboljelih od astme i kontrolne skupine: OR=1,0088, 95% CI (0,696-1,463) i P=0,9632.

Tablica 8: Izračun učestalosti 4G i 5G alela u ispitivanim skupinama

<table>
<thead>
<tr>
<th></th>
<th>Skupina oboljelih od astme</th>
<th>Kontrolna skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frekvencija 4G alela</td>
<td>(35×2 + 83) / (149×2) = 0.513</td>
<td>(26×2 + 39) / (89×2) = 0,511</td>
</tr>
<tr>
<td>Frekvencija 5G alela</td>
<td>(31×2 + 83) / (149×2) = 0,487</td>
<td>(24×2 + 39) / (89×2) = 0,489</td>
</tr>
</tbody>
</table>
4.3. Rasprava

Astma je ozbiljna bolest respiratornog sustava koja nastaje kao rezultat složenih međudjelovanja višestrukih genskih i okolišnih čimbenika. U studijama koje su istraživale povezanost genetičkih čimbenika s rizicima za astmu do sada je utvrđeno nekoliko gena koji bi mogli biti uključeni u patogenezu astme, a jedan od njih je gen za inhibitor plazminogen aktivatora-1 (PAI-1).

Najnoviji radovi na mišjim modelima pokazali su da uslijed tretiranja miševa alergenima dolazi do porasta PAI-1 i Th2 citokina u plućima, uz porast eozinofila u bronhima. Uslijed remodeliranja dišnih puteva dolazi do pojačanog odlaganja subepitelnog kolagena, hipertrofije glatkog mišića i pojačane angiogeneze. To pokazuje da PAI-1 igra ključnu ulogu u upali dišnih puteva i remodeliranja u astmi (Tezuka i sur., 2015). Cho i suradnici ispitivali su interakciju između mastocita i epitelnih stanica u stvaranju PAI-1 te dokazali da humani mastociti sudjeluju u remodeliranju dišnih puteva u astmi i da su izravan izvor PAI-1 te se aktiviranjem bronhijalnih epitelnih stanica stvara dodatni PAI-1 pomoću TGF-β1 posredovane aktivacije (Cho i sur., 2015).

Bitno obilježje astme je kronična upala koja vodi do bronhalne hiperaktivnosti, mukoznih hipereksekcija i remodeliranja dišnih puteva, a upravo PAI-1 kao ključni inhibitor fibrinolize sudjeluje u sve tri navedene komplikacije kronične upale dišnih puteva (Nie i sur., 2012).

S obzirom da je 4G/5G polimorfizam glavna genetska odrednica PAI-1 razine u plazmi, ovo istraživanje je provedeno kako bi se utvrdila povezanost 4G/5G polimorfizma u promotorskoj regiji gena za PAI-1 s nastankom, odnosno razvojem astme u hrvatskoj populaciji.

Statistička analiza demografskih podataka pokazala je značajnu razliku u dobi i spolu između oboljelih od astme i kontrolne skupine (P<0,0001), odnosno među oboljelim od astme je više žena i osoba starije životne dobi nego u kontrolnoj skupini. Od 149 ispitanika oboljelih od astme, 23,49% je imalo PAI-1 genotip 4G/4G, 55,70% genotip 4G/5G, dok ih je 20,81% imalo genotip 5G/5G. Kod kontrolne skupine učestalost genotipa 4G/4G je 29,21%, genotipa 4G/5G je 43,82%, dok učestalost genotipa 5G/5G iznosi 26,97%. Analiza ovih rezultata χ² testom je pokazala da nema statistički značajne razlike u učestalosti PAI-1 4G/5G genotipova između skupine oboljelih od astme i kontrolne skupine (P>0,05).

Ispitivana je i učestalost 4G i 5G alela za obje ispitivane skupine. Kod oboljelih od astme učestalost 4G alela iznosi 51,3%, a kod kontrolne skupine 51,1%. Učestalost 5G alela iznosi...
48,7% kod oboljelih od astme, a 48,9% kod kontrolne skupine. Utvrđeno je da nema statistički značajne razlike u učestalosti 4G i 5G alela između skupine oboljelih od astme i kontrolne skupine (P=0,9613).

Rezultati ranije provedenih studija povezanosti 4G/5G polimorfizma s astmom pokazali su različite rezultate (Bučkova i sur., 2002; Kowal i sur., 2008; Ozbek i sur., 2009; Cosan i sur., 2009; Dijkstra i sur., 2011).

Meta analiza koju su 2012. godine proveli Nie i suradnici imala je za cilj provjeriti utječe li polimorfizam 4G/5G PAI-1 gena kao čimbenik rizika na nastanak astme, a uzimala je u izračun 8 do tada objavljenih case-control studija koje su sveukupno imale 1817 ispitanika oboljelih od astme i 2327 ispitanika kontrolne skupine. Uvrštene studije su bile po mnogočemu različite. Četiri istraživanja rađeno je na populacijama Azijata, četiri na populacijama bijelaca, jedno istraživanje je obuhvaćalo samo djecu, dok su 3 obuhvaćala i odrasle i djecu. Ukupni rezultati meta analize potvrdili su postojanje statistički značajne razlike u učestalosti 4G i 5G alela između skupine oboljelih od astme i kontrolne skupine: 4G vs. 5G (OR = 1.35, 95% CI 1.08-1.68, P = 0.008), a dokazano je i da postoji statistički značajna razlika u učestalosti 4G/4G, 4G/5G i 5G/5G genotipova između skupine oboljelih od astme i kontrolne skupine (P<0,005). Međutim, subgrupna analiza pokazala je da povezanost PAI-1 4G/5G polimorfizma i astme nije dokazana kod testiranih populacija bijelaca, uz OR 1,66 95% CI 0,97-2,86, P=0,07 (Nie i sur., 2012).

Cosan i suradnici su 2009. proveli ispitivanje učestalosti polimorfizma 4G/5G PAI-1 gena u turskoj populaciji. Ispitivanje je provedeno na 98 ispitanika oboljelih od astme i 67 ispitanika kontrolne skupine. Sukladno rezultatima našeg istraživanja, utvrđeno je da nema statistički značajne razlike u učestalosti triju genotipova između skupine oboljelih od astme i kontrolne skupine (P>0,05) (Cosan i sur., 2009).

Provedena je i studija na poljskoj populaciji od strane Kowal i suradnika, koja je uključivala 372 ispitanika oboljelih od astme i 160 ispitanika kontrolne skupine. Rezultati su ukazali na to da postoji statistički značajna povezanost 4G/4G i 4G/5G genotipa PAI-1 gena sa razvojem astme. U usporedbi sa 5G/5G genotipom, OR za 4G/4G genotip iznosio je 3,99 (95% CI, 2.33-6.8), a za 4G/5G genotip OR = 2,6 (95% CI, 1.56-4.49) (Kowal i sur., 2008).

Uzevši u obzir složenu patogenezu nastanka astme, malo je vjerojatno da će polimorfizam u jednoj bazi (SNP) jednog gena predstavljati povećani rizik za razvoj astme bez istovremenog
razmatranja međudjelovanja s ostalim polimorfnim genima suspektnima za astmu (Nie i sur., 2012).

Kako se međudjelovanja genskih i okolišnih čimbenika razlikuju od populacije do populacije, tako se mijenja i utjecaj polimorfizma 4G/5G PAI-1 gena na nastanak i razvoj astme. Štoviše, razlike se mogu javiti i unutar iste populacije, pa je iz tog razloga potrebno provesti daljnje multicentrične studije s većim brojem bolesnika kako bi se dobili što statistički značajniji rezultati (Bora i sur., 2013).

Plazminogen aktivacijski sustav i plazmin, kao i PAI-1 predstavljaju važne fibrinolitičke agense ključne za patogenezu kroničnih respiratornih bolesti kao što je astma, za kronične opstruktivne i intersticijske plućne bolesti, kao i za karcinome (Stewart i sur., 2013). PAI-1 i intersticijski urokinazni plazminogen aktivator (uPAR) su medijatori upalnog procesa i remodeliranja pluća. Stoga postaju sve zanimljiviji ciljevi za terapijsko djelovanje pomoću novih lijekova koji mogu zaustaviti djelovanje PAI-1 u upali i remodeliranju dišnih puteva u astmi (Schuliga i sur., 2013; Lee i sur., 2012).
5. ZAKLJUČCI

1. Cilj ovog ispitivanja bio je utvrditi postoji li povezanost polimorfizma 4G/5G s razvojem astme u hrvatskoj populaciji. Statistička analiza demografskih podataka pokazala je značajnu razliku u dobi i spolu između oboljelih od astme i kontrolne skupine (P < 0,0001). Statistička obrada dobivenih rezultata pokazala je da ne postoji statistički značajna razlika u učestalosti genotipova 4G/4G, 4G/5G i 5G/5G između skupine oboljelih od astme i skupine zdravih ispitanika. Također, nije utvrđeno postojanje statistički značajne razlike u pojavnosti 4G i 5G alela između ove dvije skupine. Drugim riječima, nije potvrđena povezanost 4G/5G polimorfizma u promotorskoj regiji gena za PAI-1 s razvojem astme u ispitivanoj populaciji.

2. Rezultati naše studije u skladu su sa rezultatima dosada malog broja istraživanja koji su obuhvaćali populacije bijelaca i koji također ne pokazuju statistički značajnu povezanost polimorfizma 4G/5G s razvojem astme, iako je dokazano da PAI-1 ima važnu ulogu u patogenezi astme i da je razina PAI-1 povišena kod osoba s genotipom 4G/4G.

3. Potrebne su daljnje studije s većim brojem ispitanika, kao i drugim mogućim genetičkim čimbenicima rizika za razvoj astme uz polimorfizam 4G/5G kako bi se moglo utvrditi postoji li genetička povezanost sa razvojem astme u hrvatskoj populaciji.
6. LITERATURA

7. SAŽETAK

Astma je kronična upalna bolest dišnih puteva koju karakterizira pojačano reagiranje dišnih puteva na različite podražaje (bronhalna hiperreaktivnost), što dovodi do bronhoopstrukcije koja je barem djelomično reverzibilna, bilo spontano ili uz liječenje. Upala dišnih puteva je središnji patofiziološki poremećaj u astmi, a ako se ne liječi s vremenom uzrokuje strukturne promjene dišnih puteva (remodeliranje) koje su odgovorne za ubrzano slabljenje plućne funkcije. Smatra se da astmu uzrokuje kombinacija genskih i okolišnih čimbenika. Astma je vodeća kronična dječja bolest u većini razvijenih zemalja, a trenutno od nje boluje više od 300 milijuna ljudi diljem svijeta.

Inhibitor plazminogen aktivatora-1 (PAI-1) pripada superporodici inhibitora serin proteaza, a također se naziva i serpin-1. Osnovna funkcija PAI-1 je smanjenje fibrinolize, a doprinosi razvoju astme svojom ulogom u remodeliranju dišnih puteva, bronhalnoj hiperreaktivnosti i alergijskoj upali. U promotorskoj regiji gena za PAI-1 pronađen je 4G/5G polimorfizam koji utječe na ekspresiju PAI-1, pri čemu je 4G alel povezan s višom ekspresijom gena.

Ovo istraživanje provedeno je na uzorcima 149 bolesnika s astmom koji su pacijenti Klinike za plućne bolesti Jordanovac KBC-a Zagreb i 89 uzoraka zdravih osoba s ciljem utvrđivanja povezanosti 4G/5G polimorfizma u promotorskoj regiji gena za PAI-1 s razvojem astme u hrvatskoj populaciji. Studija je provedena u Odjelu za molekularnu dijagnostiku Hrvatskog zavoda za transfuzijsku medicinu. Svim ispitanicima uzet je EDTA uzorak pune krvi, nakon čega je uslijedila izolacija DNA na QIAcube uređaju i potom alelna diskriminacija pomoću real-time PCR-a.

Statistička analiza demografskih podataka pokazala je značajnu razliku u dobi i spolu između oboljelih od astme i kontrolne skupine (P<0,0001). Rezultati pokazuju da je najčešći genotip u obje ispitivane skupine 4G/5G (55,70% kod oboljelih od astme; 43,82% u kontrolnoj skupini). Učestalost 4G alela kod oboljelih od astme iznosi 51,3%, a 51,1% kod kontrolne skupine. Učestalost 5G alela iznosi 48,7% kod oboljelih od astme, odnosno 48,9% kod kontrolne skupine. Statistička analiza rezultata nije pokazala povezanost 4G/5G polimorfizma u promotorskoj regiji gena za PAI-1 s razvojem astme u ispitivanoj populaciji.
7. SUMMARY

Asthma is a chronic inflammatory disease of the airways characterized by airway hyper-responsiveness that leads to airflow obstruction and bronchospasm, which is partially reversible with or without treatment. Airway inflammation is a central pathophysiological disorder in asthma, and if not treated in time causes structural changes in the airways (remodeling) that are responsible for the rapid obstruction of lung function. Asthma is thought to be caused by a combination of genetic and environmental factors. Asthma is the most common chronic childhood disease in developed countries. Currently, more than 300 millions of people all over the world suffer from asthma.

Plasminogen activator inhibitor-1 (PAI-1), belongs to the superfamily of the serin protease inhibitor and is also called as serpin-1. PAI-1 has a primary function in the decreasing of fibrinolysis, but could also promote the development of asthma by their role in the remodeling of the airways, bronchial hyperreactivity and allergic inflammation. In the promoter region of PAI-1 gene has been identified 4G/5G polymorphism, which is a major genetic determinant of plasma PAI-1 levels. The presence of 4G allele in this polymorphism is associated with higher levels of PAI-1 gene expression.

The aim of this study was to determine the association between the 4G/5G polymorphism in the promoter region of the PAI-1 gene and development of asthma in Croatian population. The study group included samples of 149 patients with asthma treated at Clinic for lung diseases Jordanovac Clinical Hospital Centre Zagreb and 89 healthy individuals. The study was conducted in the Department of Molecular Diagnostics of the Croatian Institute for Transfusion Medicine. Whole blood EDTA samples were taken from all study subjects, followed by isolation of DNA and allelic discrimination using real-time PCR.

Statistical analysis of demographic data showed a significant difference in age and gender between asthma and control groups (P <0.0001). The results show that the most common genotype in both groups is 4G/5G genotype (55,70% among asthmatic patients; 43,82% in the control group). The frequency of 4G allele was 51,3% among patients and 51,1% in the control group and frequency of 5G allele was 48,7% among patients, and 48,9% in control group. Statistical analysis of the results showed no association between the 4G/5G polymorphism in the promoter region of the PAI-1 gene and the development of asthma in studied population.
8. PRILOZI

Popis kratica

DNA - deoxyribonucleic acid (deoksiribonukleinska kiselina)
FEV₁ - forced expiratory volume in 1 second (forsirani ekspiracijski volumen u prvoj sekundi)
FVC - forced vital capacity (forsirani vitalni kapacitet)
GINA - Global Initiative for Asthma
IgE - immunoglobulin E (imunoglobulin E)
MMP - matrix metalloproteinase (metaloproteinaza matriksa)
PAI-1 - plasminogen activator inhibitor-1 (inhibitor plazminogen aktivatora-1)
PCR - polymerase chain reaction (lančana reakcija polimeraze)
RT-PCR - real-time PCR (lančana reakcija polimeraze u stvarnom vremenu)
SNP - single nucleotide polymorphism (polimorfizam u jednoj bazi)
UČESTALOST POLIMORFIZMA 4G/5G U PROMOTORSKOJ REGIJI GENA ZA INHIBITOR PLAZMINOGEN AKTIVATORA-1 KOD BOLESNIKA S ASTMOM

Ivona Marunica

SAŽETAK

Asthma je kronična upalna bolest dišnih puteva koju karakterizira pojačano reagiranje dišnih puteva (bronhalna hiperreaktivnost), što dovodi do bronhoopstrukcije koja je barem djelomično reverzibilna, bilo spontano ili uz liječenje. Upala dišnih puteva je središnji patofiziološki poremećaj u astmi, a ako se ne liječi s vremenom uzrokuje strukturne promjene dišnih puteva (remodeliranje) koje su odgovorne za slabljenje plućne funkcije. Smatra se da astmu uzrokuje kombinacija genskih i okolišnih čimbenika. Astma je vodeća kronična dječja bolest u većini razvijenih zemalja, a trenutno od nje boluje više od 300 milijuna ljudi diljem svijeta.

Inhibitor plazminogen aktivatora-1 (PAI-1) pripada superporodici inhibitora serin proteaza, a također se naziva i serpin-1. Osnovna funkcija PAI-1 je smanjenje fibrinolize, a doprinosi razvoju astme svojom ulogom u remodeliranju dišnih puteva, bronhalnoj hiperreaktivnosti i alergijskoj upali. U promotorskoj regiji gena za PAI-1 pronađen je 4G/5G polimorfizam koji utječe na ekspresiju PAI-1, pri čemu je 4G alel povezan s višom ekspresijom gena.

Ovo istraživanje provedeno je na uzorcima 149 bolesnika s astmom koji su pacijenti Klinike za plućne bolesti Jordanovac KBC-a Zagreb i 89 uzoraka zdravih osoba s ciljem utvrđivanja povezanosti 4G/5G polimorfizma u promotorskoj regiji gena za PAI-1 s razvojem astme u hrvatskoj populaciji. Studija je provedena u Odjelu za molekularnu dijagnostiku Hrvatskog zavoda za transfuzijsku medicinu. Svim ispitanicima uzEtA uzorak puno krvi, nakon čega je uslijedila izolacija DNA na QIAcube uređaju i potom alelna diskriminacija pomoću real-time PCR-a. Statistička analiza demografskih podataka pokazala je značajnu razliku u dobi i spolu između oboljelih od astme i kontrolne skupine (P<0,0001). Rezultati pokazuju da je najčešći genotip u obje ispitivane skupine 4G/5G (55,70% kod oboljelih od astme; 43,82% u kontrolnoj skupini). Učestalost 4G alela kod oboljelih od astme iznosi 51,3%, a 51,1% kod kontrolne skupine. Učestalost 5G alela iznosi 48,7% kod oboljelih od astme, odnosno 48,9% kod kontrolne skupine. Statistička analiza rezultata nije pokazala povezanost 4G/5G polimorfizma u promotorskoj regiji gena za PAI-1 s razvojem astme u ispitivanoj populaciji.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 39 stranica, 8 grafičkih prikaza, 8 tablica i 29 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: Astma, inhibitor plazminogen aktivatora-1 (PAI-1), 4G/5G polimorfizam

Mentori: Dr. sc. Roberta Petlevski, izvanredni profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta
Dr. sc. Jasna Bingulac- Popović, viši znanstveni suradnik, Hrvatski zavod za transfuzijsku medicinu, Zagreb

Ocjenjivači: Dr. sc. Roberta Petlevski, izvanredni profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta
Dr. sc. Jasna Bingulac- Popović, viši znanstveni suradnik, Hrvatski zavod za transfuzijsku medicinu, Zagreb
Dr. sc. Karmela Barisić, redoviti profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta

Rad prihvaćen: travanj 2015.
FREQUENCY OF 4G/5G POLYMORPHISM IN THE PROMOTER REGION OF THE PLASMINOGEN ACTIVATOR INHIBITOR-1 GENE IN PATIENTS WITH ASTHMA

Ivona Marunica

SUMMARY

Asthma is a chronic inflammatory disease of the airways characterized by airway hyper-responsiveness that leads to airflow obstruction and bronchospasm, which is partially reversible with or without treatment. Airway inflammation is a central pathophysiological disorder in asthma, and if not treated in time causes structural changes in the airways (remodeling) that are responsible for the rapid obstruction of lung function. Asthma is thought to be caused by a combination of genetic and environmental factors. Asthma is the most common chronic childhood disease in developed countries. Currently, more than 300 millions of people all over the world suffer from asthma.

Plasminogen activator inhibitor-1 (PAI-1), belongs to the superfamily of the serin protease inhibitor and is also called as serpin-1. PAI-1 has a primary function in the decreasing of fibrinolysis, but could also promote the development of asthma by their role in the remodeling of the airways, bronchial hyperreactivity and allergic inflammation. In the promoter region of PAI-1 gene has been identified 4G/5G polymorphism, which is a major genetic determinant of plasma PAI-1 levels. The presence of 4G allele in this polymorphism is associated with higher levels of PAI-1 gene expression. The aim of this study was to determine the association between the 4G/5G polymorphism in the promoter region of the PAI-1 gene and development of asthma in Croatian population. The study group included samples of 149 patients with asthma treated at Clinic for lung diseases Jordanovac Clinical Hospital Centre Zagreb and 89 healthy individuals. The study was conducted in the Department of Molecular Diagnostics of the Croatian Institute for Transfusion Medicine. Whole blood EDTA samples were taken from all study subjects, followed by isolation of DNA and allelic discrimination using real-time PCR. Statistical analysis of demographic data showed a significant difference in age and gender between asthma and control groups (P <0.0001). The results show that the most common genotype in both groups is 4G/5G genotype (55,70% among asthmatic patients, 43,82% in the control group). The frequency of 4G allele was 51,3% among patients and 51,1% in the control group and frequency of 5G allele was 48,7% among patients, and 48,9% in control group.

Statistical analysis of the results showed no association between the 4G/5G polymorphism in the promoter region of the PAI-1 gene and the development of asthma in studied population.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 39 pages, 8 figures, 8 tables and 29 references. Original is in Croatian language.

Keywords: Asthma, plasminogen activator inhibitor-1 (PAI-1), 4G/5G polymorphism

Mentor: Roberta Petlevski, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Jasna Bingulac-Popović, Ph.D. Research Scientist, Croatian Institute for Transfusion Medicine, Zagreb

Reviewers: Roberta Petlevski, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Jasna Bingulac-Popović, Ph.D. Research Scientist, Croatian Institute for Transfusion Medicine, Zagreb
Karmela Barišić, Ph.D. Full Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: April 2015.