Infracrvena spektroskopija kolesterola

Lihtar, Gabriela

Undergraduate thesis / Završni rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:744729

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-14

Repository / Repozitorij:

Repository of Faculty of Science - University of Zagreb
Gabriela Lihtar
Studentica 3. godine Preddiplomskog sveučilišnog studija KEMIJA

INFRACRVENA SPEKTROSKOPIJA KOLESTEROLA

Završni rad
Rad je izrađen u Zavodu za analitičku kemiju

Mentor rada: Izv. prof. dr. sc. Snežana Miljanić

Zagreb, 2017. godina.

Mentor rada: Izv. prof. dr. sc. Snežana Miljanić
Potpis:
Sadržaj

§ SAŽETAK ... VI

§ 1. UVOD .. 1

§ 2. PRIKAZ ODABRANE TEME .. 3

2.1. Infracrvena spektroskopiija .. 3

2.2. Kolesterol ... 4

2.3. Priprava uzorka .. 5

2.4. IR spektar kolesterola .. 6

2.5. Kvantitativno određivanje kolesterola LDL i HDL u serumu IR spektroskopijom ... 8

2.6. Određivanje kolesterola u mliječnim proizvodima IR spektroskopijom 12

§ 3. LITERATURNI IZVORI ... 14
§ Sažetak

Infracrvena (engl. infrared, IR) spektroskopija je metoda koja se koristi za strukturnu analizu spojeva raspoznawanjem skupina atoma u molekuli na temelju njihovih vibracija. Kolesterol je složena organska molekula, čija biološka važnost dolazi do izražaja u regulaciji fluidnosti biomembrana i tvorbi lipoproteinskih čestica. U ovom radu prikazana je IR spektroskopija kolesterolola, koja obuhvaća pripravu uzorka kolesterolola za snimanje IR spektra, asignaciju IR spektra te primjenu IR spektroskopije u analizi uzoraka koji sadrže kolesterol. Detaljno je analiziran IR spektar kolesterolola uz pridruživanje načina vibriranja pojedinim vrpcama u spektru. Potencijalna primjena IR spektroskopije kolesterolola predstavljena je na primjeru kvantitativnog određivanja kolesterolola u serumu i mliječnim proizvodima.
§ 1. UVOD

Infracrveno zračenje obuhvaća dio elektromagnetskog spektra od 1 μm do 1 mm te se njegovom apsorpcijom pobuđuju unutarnja gibanja u molekuli – vibracije. Da bi došlo do pobude vibracije u molekuli mora postojati promjena dipolnog momenta, a broj načina vibriranja molekule ovisi o njenom obliku tj. da li se radi o linearnoj ili nelinearnoj molekuli. Rezultat apsorpcije infracrvenog zračenja neke molekule je IR spektar te se njegovom asignacijom mogu dobiti informacije o strukturi promatrane molekule.

U ovom radu proučavan je IR spektar molekule kolesterola te primjena IR spektroskopije kolesterola. Kolesterol je vrlo važna biomolekula u skupini sterola sa strukturu od četiri sraštena prstena. Zbog svoje struktura ima ulogu regulatora fluidnosti membrane, a većina sinteze kolesterola zbiva se u jetri odakle se u obliku lipoproteinskih čestica prenosi u ostatak organizma. Višak lipoproteinskih čestica poput LDL-a (lipoproteini niske gustoće, engl. low-density lipoproteins) u serumu može biti uzrok nastanka aterosklerotičnih naslaga u krvnim žilama što je vrlo opasno zbog mogućnosti začepljenja krvne žile, dok se povećana količina lipoproteinskih čestica poput HDL-a (lipoproteini visoke gustoće, engl. high-density lipoproteins) povezuje sa smanjenim rizikom od nastanka kardiovaskularnih bolesti.

Primjena IR spektroskopije u određivanju kolesterola je široka, a u ovom radu opisana je potencijalna primjena u kvantitativnom određivanju količine kolesterola LDL i HDL u serumu te određivanju kolesterola u mliječnim proizvodima. Obje primjene koriste statističke i matematičke modele za obradu podataka poput parcijalne metode najmanjih kvadrata (engl. partial least-squares, PLS) i regresije po glavnim komponentama (engl. principal component regression, PCR).
§ 2. PRIKAZ ODABRANE TEME

2.1. Infracrvena spektroskopija

Infracrvena spektroskopija je instrumentna metoda koja se temelji na interakciji infracrvenog zračenja i tvari. Primjenjuje se za strukturnu analizu i identifikaciju spojeva, ali i određivanja kemijskog sastava uzorka.

Područje infracrvenog zračenja obuhvaća dio elektromagnetskog spektra od 1 μm do 1 mm te se dijeli na blisko (0,78–2,50 μm), srednje (2,50–25 μm) i daleko (25–1000 μm) infracrveno područje. U srednjem i dalekom infracrvenom prodručju pobuđuju se osnovne i kombinirane vibracije, dok se u bliskom infracrvenom području uz kombinirane vibracije pobuđuju i viši tonovi. Uvjet koji mora biti zadovoljen da bi došlo do apsorpcije zračenja i pobude vibracijskog gibanja jest da se tijekom vibracije mijenja dipolni moment u molekuli. Broj normalnih načina vibriranja molekule iznosi 3N–5 za linearnu, odnosno 3N–6 za nelinearnu molekulu. Vibracije se dijele na vibracije istezanja veza i vibracije svijanja ili deformacije kuta između veza. Vibracije istezanja veze mogu biti simetrične i antisimetrične. Za troatomne skupine atoma, u kojima su na središnji atom jedne vrste vezana dva atoma druge vrste, vibracije deformacije dijele se na striženje, zibanje, klačenje i uvijanje (slika 1), dok se za složenije skupine atoma razlikuju deformacije u ravnini i izvan ravnine.

Slika 1. Prikaz molekulskih vibracija: a) simetrična vibracija, b) anitsimetrična vibracija, c) srtiženje, d) zibanje, e) klačenje, f) uvijanje (preuzeto i prilagođeno prema ref. 1)
Apsorpcija zračenja i pobuda vibracije u molekuli rezultira nastankom apsorpcijske vrpce, koju karakteriziraju položaj, intenzitet i širina. Prikaz svih apsorpcijskih vrpci nastalih snimanjem jednog uzorka naziva se IR spektar, koji prikazuje ovisnost absorbancije (A) ili transmitancije (T) o valnom broju. Valni broj je veličina koja se koristi u IR spektroskopiji jer je proporcionalna energiji, a definira se kao recipročna vrijednost valne duljine apsorbiranog zračenja. Najčešće promatrano spektalno područje (srednje infracrveno područje) obuhvaćeno je intervalom 4000–400 cm⁻¹ te se dijeli na područje vibracija funkcionalnih skupina (4000–1400 cm⁻¹) i područje „otiska prsta“ (1400–400 cm⁻¹) karakteristično za pojedini spoj.

Priprema uzorka za snimanje općenito ovisi o agregatnom stanju uzorka, a za spojeve kao što su steroli tj. kolesterol, koji je molekula od interesa u ovom radu, snima se spektar uzorka najčešće u čvrstom stanju ili u obliku filmova.

IR spektar se snima pomoću spektrometra čiji su osnovni dijelovi izvor zračenja, spektalni uređaj i detektor, a koji danas postoje u različitim izvedbama. Najčešće se koriste IR spektrometri s Fourierovim transformacijama (FT), koji su zbog većeg odnosa signala prema šumu, veće osjetljivosti i točnosti valnoga broja, pogodni za analizu otopina niskih koncentracija. Kvantitativna analiza otopina pomoću IR spektroskopije moguća je primjenom Beer-Lambertovog zakona, a današnje metode uključuju i primjenu matematičkih i statističkih modela, razvijenih pomoću modela poput parcijalne metode najmanjih kvadrata (PLS) i regresije po glavnim komponentama (PCR).

2.2. Kolesterol

Infracrvena spektroskopija danas je jedna od osnovnih metoda za brzu identifikaciju novih i nepoznatih steroida te kvantitativnu analizu poznatih steroida.

Kolesterol je vrlo važna biomolekula koja se svrstava u skupinu membranskih lipida, a zbog strukture čiju glavninu čine četiri sraštena prstena ugrađuje se u steroide. Zbog svoje rigidne strukture ima ulogu regulatore fluidnosti membrane, pri čemu se fluidnost smanjuje povećanjem količine kolesterola u membrani. Preteča je u sintezi drugih steroidnih molekula, poput steroidnih hormona, žučnih soli i vitamina D. Sintetizira se u svim stanicama sisavaca, a glavnina sinteze odvija se u jetri odakle se krvotokom prenosi u ostatak organizma u obliku lipoproteinskih čestica – hilomikrona, VLDL-a (lipoproteini vrlo niske gustoće, engl. very low density lipoproteins), IDL-a (lipoproteini srednje gustoće, engl. intermediate-density lipoproteins)
§ 2. Prikaz odabrane teme

Lipoproteins), LDL-a i HDL-a. Visoka razina kolesterolola u serumu pogođuje nastanku aterosklerotičnih naslaga u krvnim žilama, što je vrlo opasno po zdravlje. Do nastanka takvih nakupina dovodi povećana razina kolesterolola LDL u serumu, zbog čega se on još naziva „loš kolesterol“, dok HDL služi isključivo prijenosu kolesterolola te se naziva „dobar kolesterol“. Na slici 2 je prikazana struktura molekule kolesterolola, na kojoj je vidljivo da uz četiri sraštena prstena molekula sadrži i tri metilne skupine, hidroksilnu skupinu i razgranati alilni lanac.

Slika 2. Molekulska struktura kolesterolola

2.3. Priprava uzorka

Način priprave uzorka za snimanje IR spektra ovisi o agregatnom stanju uzorka. IR spektar sterola najčešće se snima u čvrstem i tekućem stanju.

Prilikom priprave uzorka kolesterolola u čvrstom stanju koristi se tehnika prešanja KBr pastile. Uzorak mase 1 mg miješa se s kalijevim bromidom u odnosu 1 : 100 i usitnjava u ahatnom tarioniku. KBr propušta IR zračenje do 400 cm⁻¹, što je pogodno jer ne apsorbira zračenje u promatranom području spektra. Usitnjena smjesa preša se pomoću hidrauličke preše u tanku pastilu, koja se zatim u posebnom nosaču stavlja u IR spektrometar. Čvrsti uzorak kolesterolola također je moguće pripraviti u parafinskom ulju Nujolu. Suspenzija u ulju nanosi se između dva prozora od kalijeva bromida, koji se smještaju u nosač i postavljaju u spektrometar na put zračenju. Prilikom snimanja IR spektara bioloških uzoraka, a u svrhu kvantitativnog određivanja kolesterolola, često se koristi tehnika priprave suhih filmova. Pri tome se tekući uzorak izlijeva na prozore propusne za IR zračenjei suši. Sušenjem uzorka izbjegava se interferencija vibracijskih vrpči vode koju biološki uzorci najčešće sadrže.
2.4. **IR spektar kolesterola**

Molekula kolesterola sastoji se od 74 atoma te posjeduje 216 normalnih načina vibriranja, od kojih mnogi nisu vidljivi u IR spektru. Ipak, IR spektar kolesterola je složen, a njegovu asignaciju moguće je provesti bilo korištenjem tablica za asignaciju skupina spojeva i literaturno dostupnih podataka o strukturno sličnim spojevima bilo pomoću računalnih metoda koje računaju vibracijske frekvencije određene molekule i omogućavaju usporedbu s eksperimentalno snimljenim spektrom. U ovom radu navedene vrpce i njima pridružene vibracije skupina atoma preuzete su iz znanstvenog članka u kojem je spektar analiziran primjenom računalnih metoda.

FT-IR spektar kolesterola prikazan je na slici 3, a asignacija opaženih vrpca dana je u tablici 1. Široka vrpca pri 3400 cm\(^{-1}\) odgovara istezanju skupine OH, dok svijanje iste skupine, koje inače rezultira vrpcom u području od 1500–1300 cm\(^{-1}\), nije primjećeno u spektru kolesterola. Vrpce koje se javljuju u području spektra od 3000 do 2800 cm\(^{-1}\) odgovaraju simetričnim i antisimetričnim vibracijama istezanja metilenskih (CH\(_2\)) i metilnih (CH\(_3\)) skupina. Točnije, radi se o vrpcama koje se nalaze pri 2866 cm\(^{-1}\), 2899 cm\(^{-1}\) i 2932 cm\(^{-1}\), a pripadaju redom simetričnom i antisimetričnom istezanju skupina CH\(_2\) i CH\(_3\), simetričnom istezanju skupine CH\(_2\) (oštra vrpca) te antisimetričnom istezanju skupina CH\(_2\) i CH\(_3\). Istezanje dvostruke veze u jednom od sraštenih prstenova kolesterola daje slabu vrpcu pri 1674 cm\(^{-1}\), dok vrpce pri 985, 927 i 674 cm\(^{-1}\) potječu od vibracija svijanja kuta između dvostruke veze C=C i veze kojom je vodikov atoma vezan na dvostruku vezu. Vrpca pri 1464 cm\(^{-1}\) posljedica je antisimetrične deformacije metilne skupine, dok se vrpca pri 1378 cm\(^{-1}\) pripisuje simetričnoj deformaciji metilne skupine i svijanju metilene skupine. Vibracija deformacije prstena u molekuli kolesterola rezultira oštrom vrpcom pri 1055 cm\(^{-1}\), a istezne vibracije veza C–C u prstenovima vrpcom pri 840 cm\(^{-1}\). Sve vrpce u području ispod 900 cm\(^{-1}\) posljedica su vibracija svijanja skupina CH izvan ravnine.

IR spektar kolesterola je jedinstven te je svojevrstan „otisak prsta“ molekule kolesterola. IR spektar bilo kojeg uzorka kolesterola sadržavat će karakteristične vibracijske vrpce. Stoga je analiza i asignacija njegova spektra od velike koristi pri analizi složenih uzoraka koji sadrže colesterol.
Slika 3. IR spektar kolesterol (preuzeto i prilagođeno prema ref. 4)
Tablica 1. Asignacija vibracijskih vrpca u IR spektru kolesterolal

<table>
<thead>
<tr>
<th>Valni broj / cm(^{-1})</th>
<th>Eksperimentalni</th>
<th>Izračunati</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR spektar</td>
<td>IR spektar</td>
<td>Asignacija</td>
</tr>
<tr>
<td>674</td>
<td>713</td>
<td>svijanje izvan ravnine ➞CH</td>
</tr>
<tr>
<td>700</td>
<td>739</td>
<td>svijanje izvan ravnine CH</td>
</tr>
<tr>
<td>739</td>
<td>787</td>
<td>svijanje izvan ravnine CH</td>
</tr>
<tr>
<td>800</td>
<td>801</td>
<td>svijanje izvan ravnine CH</td>
</tr>
<tr>
<td>840</td>
<td>847</td>
<td>istezanje C─C─C</td>
</tr>
<tr>
<td>885</td>
<td>899</td>
<td>svijanje izvan ravnine CH</td>
</tr>
<tr>
<td>927</td>
<td>927</td>
<td>svijanje ➞CH</td>
</tr>
<tr>
<td>985</td>
<td>994</td>
<td>svijanje ➞CH</td>
</tr>
<tr>
<td>1022</td>
<td>1005</td>
<td>svijanje u ravnini CH</td>
</tr>
<tr>
<td>1055</td>
<td>1042</td>
<td>deformacije prstena</td>
</tr>
<tr>
<td>1108</td>
<td>1104</td>
<td>svijanje u ravnini CH</td>
</tr>
<tr>
<td>1131</td>
<td>1136</td>
<td>svijanje u ravnini CH</td>
</tr>
<tr>
<td>1170</td>
<td>1178</td>
<td>svijanje u ravnini CH</td>
</tr>
<tr>
<td>1191</td>
<td>1185</td>
<td>istezanje C─C</td>
</tr>
<tr>
<td>1236</td>
<td>1245</td>
<td>deformacija CH(_2)</td>
</tr>
<tr>
<td>1272</td>
<td>1268</td>
<td>svijanje CH(_2)</td>
</tr>
<tr>
<td>1317</td>
<td>1306</td>
<td>klaćenje CH(_2)</td>
</tr>
<tr>
<td>1331</td>
<td>1331</td>
<td>svijanje CH(_2)</td>
</tr>
<tr>
<td>1378</td>
<td>1382</td>
<td>simetrična deformacija CH(_3) i svijanje CH(_2)</td>
</tr>
<tr>
<td>1438</td>
<td></td>
<td>svijanje CH(_2) i CH(_3)</td>
</tr>
<tr>
<td>1464</td>
<td>1469</td>
<td>antsimetrična deformacija CH(_3)</td>
</tr>
<tr>
<td>1674</td>
<td>1665</td>
<td>istezanje C═C</td>
</tr>
<tr>
<td>2866</td>
<td>2876</td>
<td>simetrično istezanje C─H (CH(_2) i CH(_3))</td>
</tr>
<tr>
<td>2899</td>
<td></td>
<td>simetrično istezanje C─H (CH(_2))</td>
</tr>
<tr>
<td>2932</td>
<td>2957</td>
<td>antsimetrično istezanje C─H (CH(_2) i CH(_3))</td>
</tr>
<tr>
<td>3400</td>
<td></td>
<td>istezanje O─H</td>
</tr>
</tbody>
</table>

2.5. Kvantitativno određivanje kolesterolal LDL i HDL u serumu IR spektroskopijom

Lipoproteini niske gustoće (LDL) i lipoproteini visoke gustoće (HDL) pripadaju skupini lipoproteinskih čestica koje služe za prijenos kolesterolal i triacilglicerola u tjelesnim tekućinama, a glavni su izvor kolesterolal za stanice izvan jetre i crijeva. Povećana razina
 LDL u krvi može uzrokovati zadebljanje krvnih žila i nastanak ateroskleroze, dok se HDL povezuje sa smanjenim rizikom nastanka kardiovaskularnih bolesti. Zbog toga je važno pratiti njihovu količinu u krvi, osobito kod kričnih skupina ljudi. Za određivanje količine kolesterolona trenutno se uz standardne kliničke testove (za određivanje kolesterolona HDL, ukupnog kolesterolona i triglicerida), koristi Friedwaldova formula (za određivanje kolesterolona LDL), koja nije primjenjiva u slučajevima kada su u serumu prisutni hilomikroni te kod pacijenata koji su alkoholičari ili imaju dijabetes tipa 2. Osim navedenih funkcionalnih razlika, LDL i HDL se razlikuju i strukturno (slika 4). LDL se sastoji od 50% kolesterolona i 25% proteina (B100 protein), dok je HDL veći te se sastoji od 20% kolesterolona i 50% proteina (proteini A–1 i A–11).

Na nizu uzoraka seruma istražena je potencijalna primjena infracrvene spektroskopije za određivanje kolesterolona LDL i HDL u serumu. Uzorci za snimanje pripremani su tehnikom filmova, odnosno izlijevanjem otopina na prozore od barijeva fluorida i sušenjem pod sniženim tlakom. Serum je otopina koja uz kolesterol sadrži mnoge tvari poput proteina, triglicerida, uree, glukoze i dr., te je spektar suhog filma pripravljenog iz takve otopine izrazito složen zbog raznih spektralnih doprinosa svake od navedenih molekulskih vrsta.

Zbog sličnog molekulskog sastava u spektrima se mogu opaziti

Slika 4. Struktura HDL i LDL (preuzeto i prilagođeno prema ref. 7)
vrpce koje odgovaraju vibracijama istih molekulskih skupina. Primjerice, uočavaju se vrpce pri 2852 cm\(^{-1}\) i 2926 cm\(^{-1}\) koje potječu od simetričnog i antisimetričnog istezanja metilenske skupine. Zatim slijede vrpce nastale uslijed istezanja skupina C═O iz esterskih veza esterificiranih molekula kolesterol-a pri 1735 cm\(^{-1}\), koja je najintenzivnija u spektru LDL-a. Pri 1655 cm\(^{-1}\) i 1546 cm\(^{-1}\) nalaze se vrpce nastale istezanjem peptidnih skupina u proteinima, prva vrpca (amid I) posljedica je istezanja skupine C═O u peptidnoj vezi, a druga vrpca (amid II) svijanja skupine NH. Strižne vibracije skupine CH\(_2\) opažaju se pri 1467 cm\(^{-1}\), dok se pri 1446 cm\(^{-1}\) i 1378 cm\(^{-1}\) nalaze vrpce koje se pripisuju simetričnom i antisimetričnom svijanju skupina CH\(_3\) u lipidima i proteinima. Posljednje asignirane vrpce u spektru, one koje odgovaraju skupinama PO\(_2^-\) u strukturi lipida, nalaze se pri 1242 cm\(^{-1}\) i 1088 cm\(^{-1}\), dok se vrpce simetričnog i antisimetričnog istezanja esterske skupine C─O─C javljaju pri 1173 cm\(^{-1}\) i 1065 cm\(^{-1}\).

Zahvaljujući svojem sastavu LDL se znatno razlikuje od HDL-a i seruma, ponajprije po visokom udjelu esterificiranog kolesterol-a, pa se u njegovom spektru opažaju vrlo jake apsorpcijske vrpce istezanja C═O veze esterske skupine pri 1735 cm\(^{-1}\) i istezanja CH\(_2\) pri 2852 cm\(^{-1}\) i 2926 cm\(^{-1}\). U spektru HDL-a navedene apsorpcijske vrpce su značajno slabijeg intenziteta zbog veće količine proteina koje te čestice sadrže.

Zatim su pripravljene otopine različitih koncentracija LDL-a i HDL-a (slučajno odabranim uzorcima su dodane poznate količine LDL-a/HDL-a) te je svakoj otopini snimljen IR spektar.
Utvrđeno je da se povećanjem koncentracije LDL-a/HDL-a u otopini intenziteti karakterističnih apsorpcijskih povećavaju, primjerice vrpći pri 1736 cm⁻¹, 2852 cm⁻¹ i 2926 cm⁻¹. Pri tome je primjećena linearna korelacija između koncentracije kolesterolola LDL i kolesterolola HDL u otopini i odgovrajućih apsorbancija tj. pokazano je da vrijedi Beer-Lambertov zakon. Razlika u izgledu spektara i dobra korelacija između apsorbancije i koncentracije omogućuje regresiju PLS i kvantitativno određivanje koncentracije kolesterolola LDL i HDL u istoj otopini. Za izradu PLS modela korištena su različita spektralna područja: 1800–1700 cm⁻¹ i 3000–2800 cm⁻¹ za LDL, a 1500–900 cm⁻¹, 1800–1700 cm⁻¹ i 3500–2800 cm⁻¹ za HDL.

Razvijeni modeli pokazali su vrlo dobro slaganje s koncentracijama izmjerenim klasičnim kliničkim testovima, što je ukazalo na potencijalnu primjenu IR spektroskopije za određivanje kolesterolola HDL i LDL u serumu. Bolje slaganje rezultata IR spektroskopije i rezultata klasičnih kliničkih testova primijećeno je prilikom određivanja kolesterolola LDL, a nešto lošije slaganje kod određivanja kolesterolola HDL. Velika prednost IR spektroskopije u odnosu na rutinski korištene metode je mogućnost istovremenog određivanja kolesterolola LDL, kolesterolola HDL, triglicerida i ukupnog kolesterolola korištenjem samo jedne metode, dok se u sklopu standardne kliničke procedure koristi nekoliko metoda uz Friedwaldovu formulu koju nije moguće primjeniti u svim slučajevima. Također, prilikom određivanja koncentracije kolesterolola u serumu pomoću IR spektroskopije nije potreban nikakav reagens, a pritom se koristi samo mala količina uzorka (5 μL). Ova metoda je i jeftnija u usporedbi s kliničkim metodama. Sve u svemu, istraživanje je pokazalo da IR spektroskopija ima veliki potencijal za primjenu u kliničkom određivanju koncentracije kolesterolola u serumu, samo je potrebno istražiti utjecaj onečišćenja na spektar i osmišliti prilagodbe kako bi bila pogodna za rutinski upotrebu.

Određivanju količine kolesterolola LDL u serumu moguće je i u bliskom infracrvenom području (12800–4000 cm⁻¹). U istraživanju provedenom na ovu temu, isto kao i prilikom određivanja kolesterolola pomoću IR spektroskopije u srednjem infracrvenom području, koristila se metoda parcijalnih najmanjih kvadrata za izradu modela, a za razliku od prethodnog istraživanja snimani su spektri tekućih uzoraka. Iako su rezultati pokazali dobro slaganje prilikom određivanja kolesterolola LDL, triglicerida i ukupnog kolesterolola, ova metoda nije se pokazala pouzdanom za određivanje kolesterolola HDL.
2.6. Određivanje kolesterola u mliječnim proizvodima IR spektroskopijom

Primjena spektroskopskih tehnika u prehrambenoj industriji sve više raste, primjerice u mljekarstvu, gdje omogućuje brzu i jeftinu kvalitativnu i kvantitativnu analizu bez razaranja uzorka, što posljedično olakšava proizvodnju i distribuciju hrane. Infračrvena spektroskopija, kao metoda navedenih karakteristika, odabrana je za određivanje kolesterola u mliječnim proizvodima. Uobičajena metoda određivanja kolesterolja u mliječnim proizvodima uključuje saponifikaciju s metanolnom otopinom kalijeva hidroksida, ekstrakciju nesaponificiranih frakcija s heksanom i daljnju analizu plinskom kromatografijom, u ukupnom trajanju od tridesetak minuta po uzorku. Iako jednostavna, kromatografska metoda neprikladna je za analizu velikog broja uzoraka, spora je i skupa.

Istraživanje provedeno na komercijalnim uzorcima mliječnih proizvoda pokazalo je da se FT-IR spektroskopija može koristiti za određivanje kolesterolja. Za predviđanje količine kolesterolja u uzorcima korišten je model razvijen metodama parcijalnih najmanjih kvadrata i regresije po glavnim komponentama, a rezultati su provjereni pomoću standardne metode određivanja s ftalaldehidom i metodom dodavanja poznate količine analita. Metoda određivanja kolesterolja s ftalaldehidom uključuje uparavanje uzorka nakon ekstrakcije heksanom, dodatak ftalaldehida i sumporne kiseline, te mjerenje apsorbancije proporcionalne koncentraciji kolesterolja u uzorku. Analizirani su uzorci mliječnih proizvoda poput mlijeka, mlijeka u prahu, jogurta, sira i maslaca te je promatrano područje spektra između 3000 i 2800 cm⁻¹, u kojem se opažaju vrpce simetričnog i asimetričnog istezanja metilenskih i metilnih skupina. Rezultati su uspoređeni s rezultatima standardne metode s ftalaldehidom (tablica 2) te su uočena slaganja. Predložena metoda pokazala se jeftinijom i bržom, pri čemu je rezultat dobiven u manje od pet minuta.

Tablica 2. Usporedni prikaz koncentracija kolesterolja određenih standardnom metodom s ftalaldehidom i FT-IR metodom

<table>
<thead>
<tr>
<th>Mliječni proizvod</th>
<th>Koncentracija kolesterolja određena standardnom metodom s ftalaldehidom (mg/100 mL)</th>
<th>Koncentracija kolesterolja određena FT-IR metodom (mg/100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mlijeko</td>
<td>13,067</td>
<td>13,142</td>
</tr>
<tr>
<td>Jogurt</td>
<td>1,956</td>
<td>2,167</td>
</tr>
<tr>
<td>Mlijeko u prahu</td>
<td>19,733</td>
<td></td>
</tr>
<tr>
<td>Sir</td>
<td>77,067</td>
<td>78,425</td>
</tr>
<tr>
<td>Maslac</td>
<td>204</td>
<td>208,059</td>
</tr>
</tbody>
</table>

Gabriela Lihtar
Zaključno, kolesterol je složena biomolekula koja ima vrlo važnu ulogu u regulaciji fluidnosti biomembrana i sastavni dio lipoproteinskih čestica koje prenose kolesterol krvotokom. Njegov IR spektar je složen, iako je moguće većinu vrpco pridružiti određenim načinima vibriranja skupina atoma u molekuli, između kojih se najviše ističu vrpce koje potječu od simetričnog i antisimetričnog istezanja skupina CH₂ i CH₃ te istezanje veza O─H i C═C. Poznavanje spektra kolesterola izuzetno je korisno u slučaju analize složenih realnih uzoraka koji sadrže kolesterol. IR spektroskopija kolesterola pronašla je potencijalnu primjenu u kvantitativnom određivanju kolesterola u serumu i mliječnim proizvodima uz uporabu matematičkih i statističkih modela.
§ 3. LITERATURNI IZVORI

1. https://www.researchgate.net/figure/275583514_fig9_Figure-13-Schematic-representation-of-the-different-molecular-vibration-modes-showing (datum pristupa 4. srpnja 2017.)

