TONČI UROŠEVIĆ

KEMIJSKA I TOKSIKOLOŠKA KARAKTERIZACIJA FILTRATA TLA IZ OKOLICE TE PLOMIN

Diplomski rad
predložen Geološkom odsjeku
Prirodoslovno - matematičkog fakulteta
Sveučilišta u Zagrebu
radi stjecanja akademskog stupnja
magistra geologije zaštite okoliša

Zagreb, 2015.
ZAHLVALA

Zahvaljujem mentorici dr. sc. Gordani Medunić što mi je omogućila rad na ovoj zanimljivoj temi i na svim korisnim savjetima koje mi je pružala tijekom studija.

Posebnu zahvalu upućujem komentorici doc. dr. sc. Sandri Radić Brkanac na ukazanom povjerenju, savjetima i svestranoj pomoći prilikom izrade i pisanja rada. Također joj veliko hvala na strpljenju i vremenu koje je izdvajala kako bi mi bila na raspolaganju u svakome trenutku.

Veliko hvala tehničarki Valeriji Vujčić na nesebičnom trudu, susretljivosti i pomoći pri izradi eksperimentalnog dijela.

Također zahvaljujem svim djelatnicima Laboratorija za fiziologiju bilja te djelatnicima u laboratoriju Mineraloško-petrografijskog zavoda koji su mi ustupili instrumente i pomogli u realizaciji rada.

Zahvaljujem doc. dr. sc. Viboru Roji na pomoći pri izradi analize teških metala i savjetima pri radu na ICP-u.

Posebno zahvaljujem svojim roditeljima i bratu na razumijevanju, savjetima i nesebičnoj potpori tijekom studija.

Veliko hvala svim dragim prijateljima i kolegama na njihovoj potpri i razumijevanju, posebno Kati i Nikoli, bez kojih studij ne bi prošao tako zabavno!

Rad posvećujem borbi za bolje sutra.
SADRŽAJ

TEMELJNA DOKUMENTACIJSKA KARTICA ... V
BASIC DOCUMENTATION CARD .. VI
POPIS SLIKA .. VII
POPIS TABLICA ... VIII
POPIS PRILOGA ... VIII
POPIS KRATICA .. IX
1. UVOD .. 1
2. LITERATURNI PREGLED ... 3
 2.1. Termoelektrane na ugljen .. 3
 2.1.1. Ugljen ... 3
 2.1.2. Energetska postrojenja na ugljen i njihov utjecaj na okoliš 4
 2.1.3. Smještaj i karakteristike TE Plomin .. 7
 2.2. Testovi toksičnosti .. 9
 2.2.1. Lemna-test ... 10
 2.2.2. Biokemijski pokazatelji .. 12
 2.2.3. OtrovnKi kisikovi spojevi i radikali ... 12
 2.2.4. Lipidna peroksidacija .. 13
 2.2.5. Antioksidansi ... 14
 2.2.6. Karotenoidi ... 14
 2.2.7. Glutation .. 15
 2.2.8. Peroksidaze i katalaza .. 15
 2.3. Pregled dosadašnjih istraživanja ... 16
3. OBLJEŽJA ISTRE I ISTRAŽIVANOG PODRUČJA ... 19
 3.1. Geografski položaj i klimatska obilježja Istre 19
 3.2. Geologija Istre ... 20
 3.2.1. Regionalna podjela ... 20
 3.2.2. Stratigrafske značajke ... 21
 3.3. Geologija istraživanog područja ... 24
 3.3.1. Interpretacija Osnovne geološke karte – list Labin 24
 3.3.2. Tektonsko – geomorfološke značajke 25
 3.3.3. Hidrogeološke karakteristike .. 26
 3.4. Tla istraživanog područja .. 28
 3.4.1. Postanak i klasifikacija tala ... 28
 3.4.2. Tla istraživanog područja ... 29
4. METODE ISTRAŽIVANJA ... 31
 4.1. Terensko istraživanje .. 31
 4.2. Priprema filtrata tla ... 32
 4.3. Kemijska analiza .. 33
 4.3.1. Priprema filtrata tla i biljnog materijala za određivanje
 sadržaja elemenata tehnikom ICP-AES 33
 4.3.2. Određivanje sadržaja metala tehnikom ICP-AES 33
4.3.3. Određivanje sadržaja kationa i aniona ionskom kromatografijom 35
4.4. Kultura vodene leće (Lemna minor L.) u uvjetima in vitro 35
4.5. Lemna-test i biokemijski pokazatelji u vodenoj leći 37
 4.5.1. Lemna-test (ISO 20079) – stopa rasta vodene leće 37
 4.5.2. Određivanje sadržaja pigmenata u vodenoj leći 38
 4.5.3. Određivanje sadržaja malondialdehida u vodenoj leći 38
 4.5.4. Određivanje sadržaja neproteinskih tiola 39
 4.5.5. Ekstrakcija topivih proteina i aktivnost katalaze i peroksidaza u
 vodenoj leći .. 39
4.6. Statistička obrada podataka .. 40
5. REZULTATI ... 41
 5.1. Kemijska analiza filtrata tla i biljnog materijala 41
 5.1.1. Sadržaj metala u filtratima tla i laboratorijskoj kontroli 41
 5.1.2. Sadržaj metala u biljnom materijalu 42
 5.1.3. Sadržaj kationa i aniona u filtratima tla i laboratorijskoj kontroli .. 43
 5.2. Makroskopske promjene .. 44
 5.2.1. Stopa rasta biljaka ... 44
 5.2.2. Sadržaj klorofil a i karotenoida .. 46
 5.2.3. Sadržaj neproteinskih tiola ... 47
 5.2.4. Sadržaj malondialdehida (MDA) .. 48
 5.2.5. Sadržaj ukupnih proteina ... 49
 5.2.6. Aktivnost askorbat peroksidaze .. 50
 5.2.7. Aktivnost katalaze .. 51
6. RASPRAVA ... 52
7. ZAKLJUČAK ... 58
8. LITERATURA .. 60
9. PRILOZI ... 70
TEMELJNA DOKUMENTACIJSKA KARTICA

Sveučilište u Zagrebu Diplomski rad
Prirodoslovno - matematički fakultet
Geološki odsjek

KEMIJSKA I TOKSIKOLOŠKA KARAKTERIZACIJA FILTRATA TLA
IZ OKOLICE TE PLOMIN

TONČI UROŠEVIĆ

Rad je izrađen na Mineraloško-petrografskom zavodu Prirodoslovno-matematičkog fakulteta, Sveučilište u Zagrebu, Horvatovac 95, 10 000 Zagreb, Republika Hrvatska, te na Botaničkom zavodu Biološkog odsjeka Prirodoslovno-matematičkog fakulteta, Sveučilište u Zagrebu, Roosveltov trg 6, 10 000 Zagreb, Republika Hrvatska

Sažetak: Cilj ovog rada bio je kemijska i toksikološka karakterizacija vodenih filtrata tla iz bliže okolice TE Plomin pomoću biotesta na vodenoj leći (Lemna minor L.). Kemijska analiza vodenih ekstrakata i biljnog materijala obavljena je emisijskom spektrometrijom (ICP) i ionskom kromatografijom, a analizirani parametri bili su pojedini metali, sulfati i drugi ioni. Toksikološka analiza napravljena je Lemna-testom (test inhibicije rasta) te su kao indikatori toksičnosti mjereni pojedini biokemijski pokazatelji - sadržaj klorofilona i carotenoida, sadržaj malondialehida, sadržaj glutationa, sadržaj ukupnih proteina i aktivnost antioksidacijskih enzima (katalaza i askorbat peroksidaza). Shema uzorkovanja sastojala se od zrakasto položenog profila dugog 800 m, položenog u smjeru jugozapada (JZ) sukladno smjeru prevladavajućeg zračnog strujanja gdje je prikupljeno 20 uzoraka na udaljenostima 200, 300, 400 i 800 m od glavnog dimnjaka TE Plomin. Rezultati istraživanja pokazali su povišene koncentracije pojedinih teških metala u usporedbi s laboratorijском i terenskom kontrolom, međutim povezanost između distribucije ispitivanih parametara i udaljenosti od izvora onečišćenja nije jasno dokazana. Svi parametri fitotoksičnosti, izuzev malondialdehida, pokazali su statistički značajnu razliku u odnosu na laboratorijku i terensku kontrolu. Rezultati biokemijskih pokazatelja toksičnosti ukazuju na relativno nepovoljan utjecaj TE Plomin na okolni ekosustav.

Ključne riječi: termoelektrana Plomin (TEP), tlo, ugljen, Lemna minor, toksičnost, ICP, biokemijski pokazatelji

Rad sadrži: IX+73 stranice, 18 slika, 7 tablica, 81 literaturni navod

Jezik izvornika: hrvatski

Rad je pohranjen u: Središnjoj geološkoj knjižnici Prirodoslovno-matematičkog fakulteta, Sveučilište u Zagrebu, Horvatovac 102a, 10 000 Zagreb, Republika Hrvatska

Mentori: dr. sc. Gordana Medunić, izvanredni profesor
dr. sc. Sandra Radić Brkanac, docentica

Ocjenjivači: dr. sc. Gordana Medunić, izvanredni profesor
dr. sc. Sandra Radić Brkanac, docentica
dr. sc. Damir Bucković, izvanredni profesor

Rad prihvaćen: 09. siječnja 2015.
CHEMICAL AND TOXICOLOGICAL CHARACTERIZATION OF SOIL WATER EXTRACTS FROM THERMAL POWER PLANT PLOMIN AREA

TONĆI UROŠEVIĆ

Abstract: The aim of this thesis was chemical and toxicological characterization of soil water extracts around thermal power plant Plomin (TPP) using duckweed (Lemna minor L.) bioassay method. Chemical analysis of soil water extracts and plant material was determined by measuring different parameters such as heavy metals, sulphates and other ions using atomic emission spectrometry (ICP) and ionic chromatography. L. minor growth inhibition test was used in toxicology analysis. The chlorophylls and carotenoids, malondialdehyde, glutathione and protein contents as well as ascorbate peroxidase and catalase activity were monitored as phytotoxic parameters in duckweed. Sampling scheme consisted of radially directed profile of 800 m in the southwest (SW) direction, selected in accordance with the prevailing wind where 20 samples of soil were taken at a distance of 200, 300, 400 and 800 m from thermal power plant Plomin. The results showed elevated levels of certain heavy metal concentrations compared to the laboratory and field controls, but the connection between distribution of analysed contaminants and the vicinity of the TPP was not clearly established. The results of phytotoxic indicators showed relatively negative influence of TPP Plomin on the environment since all parameters except malondialdehyde were statistically significant compared to laboratory and field controls.

Key words: Thermal power plant, soil, coal, Lemna minor, toxicity, ICP, biomarkers

Thesis contains: IX+73 pages, 18 figures, 7 tables, 81 references

Original in: Croatian

Thesis deposited in: Central geological library, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia

Supervisors: Gordana Medunić, PhD, Associate Professor
Sandra Radić Brkanac, PhD, Assistant Professor

Reviewers: Gordana Medunić, PhD, Associate Professor
Sandra Radić Brkanac, PhD, Assistant Professor
Damir Bucković, PhD, Associate Professor

Thesis accepted: January 9, 2015
POPIS SLIKA

Slika 1. Geografski prikaz lokacije TE Plomin... 7
Slika 2. Odlagalište pepela i šljake iz TE Plomin.. 8
Slika 3. *Lemna minor* L... 11
Slika 4. Shematski prikaz kolonije i dijelova vodene leće (*Lemna minor* L.).......... 12
Slika 5. Geomorfološka podjela Istre... 21
Slika 6. Površinska rasprostranjenost izdvojenih megasekvencija u Istri........... 22
Slika 7. Profil tla.. 28
Slika 8a. Prikaz lokacije uzorkovanja kontrolnog tla (Mošćenička draga)............ 31
Slika 8b. Prikaz točaka uzorkovanja na profilu 800 m od TE Plomin.................. 32
Slika 9. Shematski prikaz uzorkovanja.. 32
Slika 10. Makroskopske promjene u vodenoj leći.. 44
Slika 11. Stopa rasta broja biljaka, mase svježe tvari (FW) i mase suhe tvari (DW) vodene leće ... 45
Slika 12. Sadržaj klorofila *a* i *b* te ukupnih karotenoida u vodenoj leći 46
Slika 13. Sadržaj tiola u vodenoj leći.. 47
Slika 14. Sadržaj malondialdehida u vodenoj leći ... 48
Slika 15. Sadržaj ukupnih proteina u vodenoj leći ... 49
Slika 16. Aktivnost askorbat peroksidaze u vodenoj leći 50
Slika 17. Aktivnost katalaze u vodenoj leći... 51
POPIS TABLICA

Tablica 1. GPS lokacije uzorkovanja ... 31
Tablica 2. Parametri instrumentalne analize za ICP-OES.................................... 34
Tablica 3. Parametri instrumentalne analize za ionsku kromatografiju. 35
Tablica 4. Sastav hranjih podloga po Pirsonu i Seidelu (1950)
 i Steinbergu (1946) ... 36
Tablica 5. Sadržaj metala u filtratima tla .. 41
Tablica 6. Sadržaj metala u vodenoj leći.. 42
Tablica 7. Sadržaj kationa i aniona u filtratima tla. ... 43

POPIS PRILOGA

Prilog 1. Karakteristike različitih vrsta ugljena
Prilog 2. Karakteristike uvoznog kamenoj ugljena
Prilog 3. Osnovna geološka karta SFRJ - List Labin (L 33-101)
Prilog 4. Pregledna hidrogeološka kompilacijska karta.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>atomska emisija spektrometrija</td>
</tr>
<tr>
<td>CFC</td>
<td>klorofluorougljici (eng. chlorofluorocarbon compounds)</td>
</tr>
<tr>
<td>DW</td>
<td>masa suhe tvari (eng. Dry weight)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FGC</td>
<td>Flue gas conditioning</td>
</tr>
<tr>
<td>FW</td>
<td>masa svježe tvari (eng. Fresh weight)</td>
</tr>
<tr>
<td>ICP</td>
<td>induktivno spregnuta plazma (eng. Inductively coupled plasma)</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
</tr>
<tr>
<td>KAT</td>
<td>katalaza</td>
</tr>
<tr>
<td>LK</td>
<td>laboratorijska kontrola</td>
</tr>
<tr>
<td>MDA</td>
<td>malondialdehid</td>
</tr>
<tr>
<td>OGK</td>
<td>Osnovna geološka karta</td>
</tr>
<tr>
<td>PAH</td>
<td>policiklički aromatski ugljikovodici (eng. Polycyclic aromatic hydrocarbons)</td>
</tr>
<tr>
<td>ROS</td>
<td>reaktivni kiskovi oblici (eng. Reactive oxygen species)</td>
</tr>
<tr>
<td>TE</td>
<td>termoelektrana</td>
</tr>
<tr>
<td>TK</td>
<td>terenska kontrola</td>
</tr>
<tr>
<td>TPP</td>
<td>Thermal Power Plant</td>
</tr>
<tr>
<td>XRD</td>
<td>rentgenska difrakcija</td>
</tr>
</tbody>
</table>
1. UVOD

Ljudska populacija stoljećima koristi ugljen kao izvor topline. Nastankom modernog društva i razvojem gospodarstva, ugljen je dobio novu primjenu - u proizvodnji električne energije. Izgradnja energetskih tvornica koje sagorijevanjem ugljena proizvode dovoljne količine električne energije kako bi se zadovoljile potrebe današnjeg društva, izazvala je veliko opterećenje za okoliš. Sagorijevanjem ugljena u okoliš se ispuštaju različite vrste potencijalno toksičnih organskih i anorganskih tvari u obliku heterogene smjese stakleničkih plinova, šljake i pepela. Jedan dio tih tvari raspršuje se direktno u atmosferu kao lebdeći pepeo, dok dio zaostaje kao teški talog na dnu peća. Potencijalno toksični elementi samo djelomično su vezani za ove čestice pa se pod utjecajem atmosferilija lako mobiliziraju u tlo, površinske i podzemne vode, dok štetni plinovi poput CO$_2$, SO$_x$, NO$_x$ i druge opasne hlapljive tvari dospijevaju u atmosferu gdje se uz pomoć vjetrova lako prenose u udaljenija područja. Jedna od takvih elektrana koja kao gorivo koristi kameni ugljen je i termoelektrana Plomin (TE Plomin) koja se nalazi nedaleko od mjesta Plomin na jugoistočnom dijelu Istarskog poluotoka. Posljednjih pedesetak godina je ova elektrana svojim radom bitno utjecala na lokalni ekosustav.

Cilj ovog rada je kemijska i toksikološka karakterizacija vodenih filtrata tla koje je bilo pod utjecajem lebdećeg pepela i šljake nastalih izgaranjem kamenog ugljena kao energenta u TE Plomin. Interpretacijom dobivenih podataka utvrdio bi se utjecaj prevladavajućih zračnih strujanja na raspodjelu analiziranih onečišćujućih tvari. Usporedbom s kontrolnim tlim bit će procijenjen utjecaj geološke podloge na kemizam istraživanog tla.

Shema uzorkovanja sastojala se od zrakasto položenog profila dugog 1000 m, položenog u smjeru jugozapada sukladno smjeru prevladavajućeg zračnog strujanja. Uzorci tla pripremljeni su za obradu u laboratoriju Mineraloško-petrografskog zavoda Geološkog odsjeka Prirodoslovno – matematičkog fakulteta. U Laboratoriju za fiziologiju bilja Biološkog odsjeka Prirodoslovno – matematičkog fakulteta pripremljene su vodene otopine tla za potrebe određivanja toksikološkog potencijala putem Lemna testa (test inhibicije rasta). Izuzev Lemna testa, mjereni su i biokemijski pokazatelji koji se koriste kao indikatori toksičnosti: sadržaj klorofila i karotenoida, sadržaj malondialdehida (indikator oštećenja biomembrana), sadržaj neproteinskih
tiola (reducirani glutation), sadržaj ukupnih proteina te aktivnost antioksidacijskih enzima (katalaza i askorbat peroksidaza). Kemijska analiza vodenih ekstrakata i biljnog materijala obavljena je metodom emisijske spektrometrije (ICP) u laboratoriju Zavoda za ekologiju i uzgajanje šuma pri Šumarskom fakultetu te metodom ionske kromatografije u Glavnom vodnogospodarskom laboratoriju Hrvatskih voda.

Dobiveni podaci uspoređeni su sa kontrolnim vrijednostima (laboratorijska (LK) i terenska kontrola (TK)) te podacima iz literature. Rezultati analize obrađeni su pomoću statističkog računalnog programa Statistica radi utvrđivanja odnosa među ispitivanim uzorcima i mjerenim parametrima, te radi procjene utjecaja vodenih ekstrakata na modelne organizme kako bi se potvrdio eventualni utjecaj produkata sagorijevanja ugljena TE Plomin na okolno tlo.
2. LITERATURNI PREGLEDI

2.1. Termoelektrane na ugljen

2.1.1. Ugljen

Ugljen je sedimentna, biogena stijena koja u svom sastavu sadrži najviše ugljika, kisika i vodika. Nastao je procesima pougljenjivanja, odnosno karbonizacije, fosiliziranih biljnih ostataka koje su milijunima godina bile izložene visokim tlakovima i temperaturama. Formiranjem ugljena, u njegovu kristalnu rešetku ugrađuju se i različite onečišćujuće tvari iz okolnih stijena i sedimenata, uključujući sumpor, živu, arsen, olovko, nikal i druge potencijalno štetne elemente u tragovima (EH&E, 2011). Procesom sagorijevanja ugljena dolazi do oslobađanja ovih elemenata i njihova ispusta u okoliš što predstavlja veliku opasnost za zdravlje živih organizama i prirodnu ravnotežu općenito.

Obzirom na kvalitetu (toplinsku moć) te sadržaj vlage i pepela ugljen se može podijeliti u četiri kategorije: (1) antracit; (2) bituminozni ugljen; (3) subbituminozni ugljen i (4) lignit. Antracit ima najkvalitetnije karakteristike i najveću toplinsku vrijednost, dok je lignit najmanje kvalitetan (EH&E, 2011). Bituminozni i subbituminozni ugljeni najčešće se koriste u termoelektrananama za dobivanje električne energije. Bituminozni ugljeni sadrže mineral pirit, bogat željezom i sumporom, koji uz sebe primarno veže arsen i živu. S druge strane, subbituminozni ugljeni imaju manji udio sumpora pa se stoga češće koriste u termoelektrananama kako bi se smanjila emisija sumporova dioksida u atmosferu. Usporedbom srednjih vrijednosti koncentracija HAP-ova (eng. Hazardous air pollutants) u ove dvije vrste ugljena, može se primjetiti da bituminozni ugljeni sadrže dva do tri puta više onečišćivača, ali im je toplinska moć veća (Prilog 1). Sukladno tome, potrebna je veća količina subbituminoznog ugljena kako bi se proizvela jednaka količina električne energije što zbog žive nije povoljno za okoliš (EH&E, 2011).

1 Pojmom elementi u tragovima opisuje se skupina elemenata čija ukupna zastupljenost u okolišu iznosi manje od 1% (npr. B, Cl, Co, Cr, Cu, F, I, Mn, Mo, Se, Zn, Sr itd.) (Nalbandian, 2012).
2.1.2. Energetska postrojenja na ugljen i njihov utjecaj na okoliš

Termoelektrane na ugljen su energetska postrojenja koja energiju za proizvodnju električne energije dobivaju sagorjevanjem ugljena. U najširem smislu, njihova uloga je proizvodnja i transformacija primarnih oblika energije u koristan rad koji se potom koristi za dobivanje električne energije. Jedan od najvećih problema ovakvih energetskih tvornica je ispust produkata sagorjevanja ugljena u okoliš, kako u atmosferu, tako i u tlo te površinske i podzemne vode. Međutim, unos štetnih tvari u okoliš događa se i tijekom rudarenja, čišćenja i transporta ugljena, a ugljeni pepeo koji ostane nakon spaljivanja odlaže se kao kruti otpad u kojem još uvijek postoji određeni udio raznih onečišćivača (Keating, 2001).

Sagorjevanjem ugljena u termoelektranama, u atmosferu se direktno emitiraju štetni staklenički plinovi poput ugljikova dioksida (CO₂), dušikovih oksida (NOₓ), sumporovih oksida (SOₓ), klorofluorougljičnih plinova (CFC spojevi) i metana (CH₄) koji doprinose efektu staklenika na globalnoj razini i stvaranju fotokemijskog smoga. Emisijom dušikovih oksida raste koncentracija prizemnog ozona koji nastaje spajanjem NOₓ i volatilnih organskih spojeva iz atmosfere uz prisustvo sunčeva zračenja. Ovaj tip ozona štetan je za udisanje jer umanjuje plućni kapacitet, usporava rast usjeva i inhibira procese stvaranja i pohranjivanja energije u biljaka zbog čega postaju osjetljive na bolesti, nametnike i druga onečišćenja. Dio dušikovih spojeva se istaloži zbog čega može doći do eutrofikacije u morskim i jezerskim okolišima, a dio odlazi u atmosferu gdje zajedno sa sumporovim oksidima sudjeluje u reakcijama zakiseljavanja zbog čega nastaju kisele kiše. Upravo je iz navedenih razloga na snagu stupio Protokol iz Kyota kojim je dogovoreno izbacivanje termoelektrana iz upotrebe do kraja 2020. godine (Keating, 2001).

Veliki problem za okoliš predstavljaju i anorganske čestice koje u termoelektranama nastaju kao produkt izgaranja ugljena, a mogu se podijeliti na lebdeći pepeo (eng. fly ash) koji je izgrađen od čestica vrlo malih dimenzija (0,5 – 100 µm) i teški pepeo (eng. bottom ash) koji nakon sagorjevanja ostaje na dnu peći, pa se njegovo odlaganje može kontrolirati. Čestice pepela po sastavu su alumosilikati koji sadrže okside Si, Al, Fe i Ca sa manjim udjelom Mg, Na, K, Zn i S, te razne elemente u tragovima (Singh, 2013). Njihove koncentracije variraju ovisno o tome da li su elementi vezani procesima adsorpcije na površinu čestice pepela ili su ugrađeni u matriks. Posljednja istraživanja znanstvenika u Indiji pokazuju da je sastav
lebdećeg i teškog pepela primarno uvjetovan temperaturom pri kojoj dolazi do isparavanja elemenata u tragovima. Heterogen smjesa plinova i pepela hladi se izlaskom iz spalionice prilikom čega dolazi do kondenzacije i adsorpcije elemenata u tragovima na čestice pepela. Na taj način se potencijalno toksični elementi u tragovima, koji uključuju i neke teške metale, distribuiraju direktno u okoliš.

Obzirom na temperaturu isparavanja navedeni elementi mogu se podijeliti u tri skupine (Singh, 2013):

(1) elementi čija je temperatura isparavanja veća od temperature sagorijevanja ugljena, pa ostaju u čvrstom stanju (Al, Ba, Ca, Ce, Co, Fe, Hf, K, La, Mg, Mn, Ni, Rb, Se, Si, Sm, Sr, Th, Ta i Ti). Ovi elementi pronađeni su u lebdećem i teškom pepelu u sličnim koncentracijama;

(2) elementi koji isparavaju pri temperaturama nižim od temperature sagorijevanja ugljena, ali se prilikom hlađenja plina apsorbiraju na površinu čestica lebdećeg pepela. Elementi ove skupine su As, Cd, Ga, Mo, Pb, Sb, Se i Zn;

(3) elementi koji imaju niske temperature isparavanja, stoga su tijekom čitavog procesa sagorijevanja ugljena u plinovitom stanju (Hg, Cl i Br). Navedeni elementi ne apsorbiraju se na čestice pepela, već odlaze direktno u atmosferu.

Smanjenjem promjera čestica pepela raste koncentracija adsorbiranih elemenata, a njihova mobilnost u okolišu ovisi o geologiji, klimatskim uvjetima, karakteristikama tla i vegetaciji (Singh, 2013).

Teški metali u tlu su nerazgradivi i akumuliraju se vezanjem s organskim i mineralnim tvarima iz tla. Tvore kompleksne spojeve koji nerijetko imaju izraženi štetni učinak. Visoka razina biološke dostupnosti omogućuje im ulazak u hranidbeni lanac pa se pojedini povezuju s akutno toksičnim (As, Ba, Cr, Hg, Ni, Pb, Sn), karcinogenim (As, Co, Cr, Ni, Pt), imunogenim (Au, Co, Cr, Ni, Pt), teratogenim (Hg), spermiotoksičnim (Cd, Hg, Ni, Pb, Ti) nefrotoksičnim (Cd, U), neurotoksičnim (Al, Hg, Mg, Mn, Pb, Sn, Ti), genotoksičnim (Co, Cr) i alergogenim (Cr, Ni, Pt, Pd) učincima (WHO, 2006).

--

2 Naziv teški metali koristi se za elemente koji imaju relativnu atomsku gustoću veću od 5 g/cm³ (Nalbandian, 2012).
Američno Nacionalno vijeće za istraživanja (US National Research Council – NRC) predložilo je klasifikaciju elemenata u tragovima koji se raspršuju u okoliš ili zaostaju kao produkt sagorijevanja ugljena u termoelektranama (Nalbandian, 2012). Obzirom na stupanj rizika kojeg oni predstavljaju po okoliš i zdravlje živih bića, mogu se podijeliti na elemente:

(1) Visokog rizika: As, B, Cd, Pb, Hg, Mo i Se. Arsen, kadmij, olovo i živa predstavljaju visoko toksične elemente za većinu bioloških sustava pri koncentracijama većim od dozvoljenih. Selen je esencijalni element svih organizama, ali je također vrlo toksičan u povišenim koncentracijama, dok molibden i bor predstavljaju problem zbog njihove bioakumulacije u živim organizmima, zbog čega izazivaju fitotoksičnost i pretjeranu laktaciju kod krava.

(2) Umjerenog rizika: Cr, V, Cu, Zn, Ni i F. Navedeni elementi potencijalno su toksični pri koncentracijama većim od dozvoljenih. Analizom različitih vrsta tla u bližoj okolini termoelektrana na ugljen dokazane su povišene koncentracije ovih elemenata umjerenog rizika. Velik problem predstavlja i već spomenuta bioakumulacija, koja u slučaju fluora predstavlja problem za zdravlje životinja, a naposljetku i ljudi.

(3) Srednjeg rizika: Ba, Sr, Na, Mn, Co, Sb, Li, Cl, Br i Ge. Ovi elementi predstavljaju nizak toksični učinak za okoliš, međutim svrstani su u ovu kategoriju jer njihove koncentracije u pravilu prelaze maksimalne dopuštene vrijednosti, a posljedica su izgaranja ugljena u termoelektranama.

(4) Niskog rizika: Be, Tl, Ag i Te. Elementi niskog rizika dokazano imaju negativan utjecaj na zdravlje, ali su u okolišima blizu termoelektrana na ugljen prisutni u jako niskim koncentracijama, stoga je njihov utjecaj zanemariv.

(5) Radioaktivne elemente: U i Th. Uran i torij radioaktivni su elementi, a produkti njihova raspada, radij, polonij i radon, nazivaju se radionuklidi i prirodno su prisutni u okolišu. Radij i polonij su alfa emiteri i imaju dugo vrijeme poluraspada zbog čega ne predstavljaju velik problem u okolišu. Međutim, radon je plin koji ima kratko vrijeme poluraspada pa predstavlja velik rizik u smislu njegova nakupljanja u rudnicima ugljena.

Utjecaj produkata izgaranja ugljena na okoliš u blizini termoelektrane znatno ovisi o geologiji, demografiji i klimi (Nalbandian, 2012).
2.1.3. Smještaj i karakteristike TE Plomin

TE Plomin nalazi se na jugoistočnoj obali istarskog poluostrva na samom kraju Plominskog zaljeva (Slika 1). Područje elektrane obuhvaća površinu od oko 54 ha i u vlasništvu je Hrvatske elektroprivrede (HEP), a za prihvat i transport ugljena koristi se još 3 ha pomorskog dobra za koje je diobivena koncesija. Prostor većim dijelom pripada općini Kršan, a obalni rub Plominskog zaljeva gradu Labinu. Uže područje lokacije obuhvaća naselja Plomin Luka i Plomin s ukupno 328 stanovnika. Prema regionalno – geološkoj podjeli područje TE Plomin pripada paleogenskom flišnom bazenu, odnosno „Sivoj Istri“, koje je obilježeno snažnom morfološkom dinamikom (flišni humci i udoline) te većim brojem stalnih i povremenih vodotoka (EKONERG, 2011).

Slika 1. Geografski prikaz lokacije TE Plomin
Postrojenje TE Plomin sastoji se od dva termoenergetska bloka: TE Plomin 1 koja je u komercijalnom pogonu od 1970. godine i TE Plomin 2 koja je u pogonu od 2000. godine. Ukupno postrojenje proizvodi 2 187 GWh električne energije, što zadovoljava otprilike 10% potreba za ovom vrstom energije u RH. Neposredno uza samu termoelektranu smješteno je odlagalište pepela i šljake (Slika 2). Danas je na površini od približno 120.000 m² akumulirano oko milijun tona šljake i pepela (Marović i sur., 2006).

Slika 2. Odlagalište pepela i šljake iz TE Plomin (izvor: Google Earth Pro – probna inačica programa).

U sklopu postrojenja TE Plomin planiran je zahvat koji podrazumijeva modernizaciju i povećanje kapaciteta rekonstrukcijom i/ili zatvaranjem postojećih objekata i izgradnjom novog energetskog bloka – Plomin C. Novi pogon trebao bi biti izgrađen prema konceptu suvremenih termoelektrana čiste tehnologije na ugljen s ciljem poboljšanja stanja s gledišta utjecaja na okoliš po nizu aspekata. Primjenom suvremene tehnologije superkritičnih parametara pare, Plomin C trebao bi povećati stupanj korisnog djelovanja na 45%, što je znatno više u usporedbi s današnjim klasičnim elektranama koje imaju stupanj pretvorbe od 32 do 37%. Po pitanju opterećenja okoliša, prema okvirnoj kategorizaciji koju koristi Institut za istraživanje ugljena Međunarodne agencije za energiju ova elektrana može se svrstati u tzv. elektrane 'blizu nulte emisije'. Ugradnjom novih sustava za pročišćavanje dimnih
plinova (FGC, eng. Flue Gas Conditioning) koji se sastoje od uređaja za smanjenje dušikovih oksida na bazi vodene otpine uree i elektrofiltera za uklanjanje krutih čestica, smanjila bi se emisija NO\textsubscript{x} za 25%, a emisija krutih čestica za 13%. Kao metoda odsumporavanja odabran je mokri postupak s vapnencem koji bi trebao smanjiti emisiju SO\textsubscript{2} za 54% (EKONERG, 2011). Konačni produkt ovog procesa je gips koji se koristi u građevinarstvu pa se direktno smanjuje količina otpada. Rezultat primijenjenih FGC tehnologija su manje emisije u atmosferu koje su znatno ispod važećih EU ograničenja.

Za proizvodnju električne energije termoelektrana je do početka devedesetih godina prošloga stoljeća rabila domaće ugljene - antracit iz Istre, lignit i smeđi ugljen s Dinarida s visokim postotkom sumpora (10 do 14%) i povišenom prirodnom radioaktivnosti. Budući da su domaći ugljenokopi zatvoreni, posljednjih se desetak godina za rad termoelektrane rabe samo kameni ugljeni iz uvoza (ugljeni iz Jugoistočne Azije, Indonezije, Kolumbije i Južne Afrike). Ovi ugljeni imaju veću toplinsku moć (26,3 MJ/kg) te manji udio sumpora (1%), pepela (11,7%) i drugih onečišćujućih tvari (Prilog 2) (EKONERG, 2011; Marović i sur., 2006).

U razdoblju uporabe domaćih ugljena sav se otpad nakon izgaranja odlagao na odlagalište. Veliki problem na odlagalištu bio je utjecaj vjetra i posljedično rasipanje i raspršivanje pepela i šljake te njihovo raznošenje oborinama. Sredinom 1980-ih počelo je prekrivanje dijelova odlagališta zemljom (oko 60 cm zemlje i više) i ti se dijelovi odlagališta više nisu nasipavali pepelom. Krajem 1990-ih počela je stručna sanacija koja se sastojala od nanošenja zaštitne folije ispod i iznad otpadne šljake i pepela, od prekrivanja zemljom i sustavne izgradnje rubnih kanala i kolektora za odvod oborinskih voda (Marović i sur., 2006).

2.2. Testovi toksičnosti

Istraživanje toksičnosti putem biotestova, zajedno s kemijskim istraživanjem, esencijalna je komponenta djelotvornog monitoringa i predstavlja osnovu za predviđanje mogućeg antropogenog utjecaja na ekološki sustav (Blaise, 2000). Izvođenje biotestova podrazumijeva izlaganje testnog organizma, izoliranog organa ili stanice u kulturi određenoj tvari, odnosno fizičkom ili kemijskom čimbeniku ili kombinaciji više njih, te promatranje nastalog učinka. Kao krajnji cilj ističe se otkrivanje djelovanja testne tvari na promatrani organizam, odnosno koju staničnu
strukturu, tkivo ili organ najviše pogađa, te na kraju tu promjenu kvalitativno i kvantitativno prikazati. Izuzev bakterija i životinja, danas se kao testni organizmi sve više koriste biljke koju su ne samo proizvođači kisika već i početni organizmi svakog prehrambenog lanca. Iako su biljke filogenetski udaljene od čovjeka i životinja zbog sličnosti strukture i funkcije biljnih i životinjskih stanica moguće je na temelju rezultata dobivenih u biljnim biotestovima predvidjeti štetno djelovanje testirane tvari na druge organizme uključujući i čovjeka. U početku se smatralo da biljke nisu dovoljno osjetljive, no razvojem sve većeg broja biotestova, pokazalo se da biljke svojom osjetljivošću mogu biti uspoređne i s animalnim testovima, kao i testovima na eukariotskim stanicama u kulturi in vitro (Fiskesjö, 1985; Wang, 1991). Testovi na vodenim i kopnenim biljkama mogu se provoditi in situ, znači i na terenu, ali i ex situ, dakle u laboratorijskim uvjetima. Neki makrofiti imaju svojstva koja ih čine pogodnima za toksikološka istraživanja, a među njima je većina vrsta iz porodice Lemnaceae. Zahvaljujući brzom razmnožavanju u kratkom vremenu se mogu dobiti genetički jednake biljke (klonovi). Prednost vodenih makrofita je i činjenica da oni nisu toksikantu izloženi samo preko korijena, već i većim dijelom ili čak čitavom svojom površinom (plutajući makrofiti).

2.2.1. Lemna-test

Biljke iz porodice Lemnaceae široko su rasprostranjene od tropskog do umjerenog klimatskog područja. U porodicu Lemnaceae spadaju četiri roda: *Lemna*, *Spirodela*, *Wolfia* i *Wolffiella*. Vodena leća (*Lemna minor* L.) već se niz godina koristi u biljnoj biologiji i toksikologiji za procjenu učinka otopina čistih kemikalija i smjesa tvari (Slike 3 i 4) (Wang, 1990). Ona je široko rasprostranjena, slobodnoplutajuća slatkovodna jednosupnica koja u prirodnim uvjetima obitava u vodama stajaćima i rukavcima vodotokova s niskom brzinom strujanja vode. Vodena leća ima niz svojstava koja ju čine prikladnom za laboratorijska istraživanja: (1) vrlo je osjetljiva na nazočnost različitih tvari u hranjivoj podlozi; (2) malih je dimenzija; (3) jednostavne je građe; (4) brzo se razmnožava; (5) razmnožavanje je vegetativno, što osigurava genetičku homogenost; (6) nema potrebe za velikim prostorom tijekom uzgoja i izvođenja pokusa i (7) hranjiva podloga je jednostavna i jeftina. Osim što je porodica Lemnaceae zbog svojih karakteristika vrlo pogodna za izvođenje biotestova, ona je zbog visoke produktivnosti i sadržaja proteina i izvor hrane (Landolt, 1986).
Slika 3. *Lemna minor* L. (Izvor: www.mobot.org)

Slika 4. Shematski prikaz kolonije i dijelova vodene leće (*Lemna minor* L.)
 (Izvor: www.mobot.org)

2.2.2. Biokemijski pokazatelji

U kulturi vodene leće in vitro mogu se, osim pokazatelja rasta, mjeriti i biokemijski pokazatelji toksičnosti koji se često javljaju prije vidljivih posljedica te ukazuju na mehanizam djelovanja istraživane tvari ili stresnog čimbenika. Biokemijski pokazatelji mogu se mjeriti u određenim vremenskim razmacima tijekom pokusa ili samo na kraju pokusa.

U ovom istraživanju su kao biokemijski pokazatelji mjereni sadržaj klorofila i karotenoida, sadržaj malondialdehida (pokazatelj oksidacijskog oštećenja lipidne komponente stanične membrae), sadržaj neproteinskih tiola (procjena reduciranog glutatciona) te aktivnost antioksidacijskih enzima katalaze i askorbat peroksidaze.

2.2.3. Otrovnki kisikovi spojevi i radikali

Slobodni radikali definiraju se kao molekule koje imaju nesparen elektron i stoga su izuzetno reaktivne. U živom organizmu proizvode se pri normalnim fiziološkim procesima te imaju vrlo važnu ulogu u odvijanju brojnih funkcija, osobito u međustaničnoj komunikaciji, gdje uvelike potpomažu u obrani od bakterija i drugih štetnih agensa. Kad se nađu u suvišku, narušavaju stabilnost drugih molekula u okolini da bi postigli vlastitu ravnotežu, pokreću nepoželjne lančane reakcije koje dovode do oksidativnog stresa, zbog čega nastaju oksidativna oštećenja.
biomolekula, oštećenja tkiva, smrt stanica i različite bolesti. Radikali se obično stabiliziraju delokalizacijom elektrona, stvaranjem intramolekularnih vodikovih veza ili daljnjom reakcijom s drugim lipidnim radikalom (Arora i sur., 2002).

2.2.4. Lipidna peroksidacija

Lipidna peroksidacija je sekundarna reakcija na stres koja ukazuje na indukciju oksidacijskog stresa u biljnom organizmu, a izazivaju je primarni proizvodi stresa, radikali kisika i otrovn spojevi kisika (Jinmin i Huang, 2002). Višestruko nezasićene masne kiseline često su meta stvorenih slobodnih radikala, što posljeduje lipidnom peroksidacijom. Lipidnu peroksidaciju najčešće uzrokuje hidroksilni radikal, međutim i pojedini drugi radikali mogu pokrenuti proces peroksidacije. U lipidnim sustavima započinjanje niza peroksidacijskih reakcija odnosi se na napad ROS-a sposobnog da izdvoji atom vodika iz metilenske skupine. Tako iz nezasićenih masnih kiselina nastaju slobodni lipidni radikali. Prisutnost dvostrukih veza u masnim kiselinama oslabljuje C-H veze na atomu ugljika u blizini dvostrukih veze, te tako premještanjem vodika čini lakšim. Uglikovi radikali nastoje se stabilizirati reorganizacijom molekula, oblikujući konjugirane diene. U aerobnim uvjetima dieni se mogu spajati s kisikom te stvarati peroksidne radikale koji dalje mogu eliminirati vodik iz druge organske molekule, uključujući višestruko nezasićene masne kiseline, pri čemu dolazi do
oblikovanja lipidnih hidroperoksida, te reaktivnih ugljikovih radikala. Djelovanjem iona željeza ili bakra, lipidni peroksid stvaraju mnogobrojne razgradne produkte između ostalih i malondialdehid (MDA) koji se koristi kao pokazatelj peroksidacije lipida.

2.2.5. Antioksidansi

Antioksidansi su kemijske tvari koje sprečavaju oksidaciju spojeva podložnih oksidaciji, a u biološkim sustavima onemogućuju djelovanje slobodnih radikala (oksidansa) kad su oni u štetnom suvišku tj. kad je koncentracija slobodnih radikala veća nego što je potrebno za odvijanje normalnih fizioloških procesa. Antioksidansi inaktiviraju djelovanje slobodnih radikala pa tako zaustavljaju lančanu reakciju stvaranja novih radikala i sprjećavaju njihovo štetno djelovanje. Stanica se za razgradnju reaktivnih oblika kisika osim neenzimskih mehanizama koristi i enzimima stresa ili antioksidacijskim enzimima (Arora i sur., 2002).

2.2.6. Karotenoidi

2.2.7. Glutation

U reduciranom obliku, glutation (GSH) je tripeptid (γ-glutamil-cisteil-glicin) sa slobodnom sulfhidrilnom (tiolnom) grupom (-SH) koja potječe od cisteinskog ostatka. Upravo je slobodna –SH skupina redoks-aktivna te je odgovorna za antioksidacijska svojstva glutationa (može se reverzibilno oksidirati i reducirati). Osim što sudjeluje u uklanjanju slobodnih radikala, glutation može konjugirati ksenobiotike te na taj način potpomože njihovo uklanjanje. U stanicama se taj antioksidans održava u reduciranom stanju pomoću enzima glutation reduktaze, a sam zauzvrat reducira ostale metabolite i enzime npr. askorbat (vitamin C) u glutation-askorbatnom ciklusu, glutation peroksidazu, glutaredoksine ili direktno oksidanse (ROS). Pri tim reakcijama glutation se oksidira i nastaje glutation disulfid (GSSG). Zbog visoke stanične koncentracije te uloge u održavanju redoks stanja stanic, glutation je jedan od najvažnijih antioksidansa posebice u animalnim stanicama. Naime u biljnim stanicama, askorbat je kvantitativno dominantan antioksidans.

Reducirani glutation je najzastupljeniji neproteinski tiol u biljnoj stanici i čini preko 90 % sadržaja neproteinskih tiola, dok se ostatak od 10 % odnosi na ostale tiolne spojeve niske molekularne mase kao što su cistein, metionin, fitohelatini, metalotioneini, defenzini i sl. (Mulier i sur., 1998). Spoj 5,5-ditio-bis-nitrobenzojeva kiselina (DTNB) koji služi kao glavni reagens u metodi za dokazivanje neproteinskih tiola primijenjenoj u ovom radu vezuje se ne samo na –SH skupinu reduciranog glutationa, već i na one cistena glutamil cisteina i drugih neproteinskih tiola, no zna se da većina detektiranih sulfhidrilnih grupa potječe od GSH (Liszewska i sur., 2001).

2.2.8. Peroksidaze i katalaza

suberina, razgradnje auksina, zaraštavanje rana, obrane od patogena i uklanjanje toksičnih spojeva peroksida (Hiraga i sur., 2001). Druga skupina su peroksidaze kojima je glavna uloga uklanjanje vodikovog peroksida i organskog peroksida, a među kojima su askorbat i glutation peroksidaza. Za redukciju toksičnog vodikovog peroksida potreban je reducirajući supstrat koji je uglavnom askorbat. Askorbat peroksidaza se većinom nalazi u kloroplastima, a rjeđe u citosolu i glikosismima.

Katalaza (KAT) je enzim pronađen u biljkama, životinjama i aerobnim mikroorganizmima gdje katalizira brzu razgradnju vodikova peroksida na vodu i kisik. Unutar stanice prisutna je u peroksisomima (nije nađena u kloroplastima) i katalitički je vrlo aktivna (Noctor i Foyer, 1998). Biljne su katalaze tetramerni enzimi, molekulske mase od 54 do 59 kDa te sadrže hem kao prostetičku skupinu. Velika važnost brze katalize vodikova peroksida potrebna je stoga jer je on snažan i jako reaktivna molekula koji može oštetiti biološke molekule i time uzrokovati metaboličke poremećaje. Vodikov peroksid nastaje kao produkt u procesu fotosinteze, fotorespiracije i staničnog disanja, a javlja se i kao produkt djelovanja oksidaza. Katalaza ima veliku katalitičku aktivnost ali slabu supstratnu specifičnost jer treba dvije molekule vodikovog peroksida u aktivnom mjestu.

2.3. Pregled dosadašnjih istraživanja

Valković i sur. (1984) analizirali su sastav ugljena koji se koristi za dobivanje električne energije i produkta njegova izgaranja. Elementni sastav, analiziran metodom rentgenske difrakcije (XRD), pokazao je prisutnost potencijalno toksičnih elemenata - Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Pb, Sr, Y i U. Njihove koncentracije kvantitativno su određene uz pomoć protonskih snopova i pokazuju nekoliko puta veće vrijednosti u otpadnom pepelu nego u ugljenu. Komlenović i sur. (1990) mjerili su koncentracije sumpora, olova i cinka u tlu i njihov utjecaj na kulturu crnog bora na području lstarskog poluotoka. Rezultati analize tla pokazali su povišene koncentracije mjerenih elemenata u okolici TE Plomin, dok je biljni materijal na istom području pokazao simptome karakteristične za trovanje sumporom (prijevremeno otpadanje iglica, nekroza i sušenje stabala). Prohić i Miko (1998) ispitali su koncentracije pojedinih metala u površinskom horizontu tala u radijusu od 1,5 km od izvora emisije u TE Plomin kako bi ih usporedili sa koncentracijama iz tala NP-a Risnjak, za koja se smatralo da su pod utjecajem industrijske zone iz okolice grada Rijeke. Dobivene su
sljedeće srednje vrijednosti za tla (frakcija < 63 µm) u blizini TE Plomin: Se (5,64 mg/kg), As (10,3 mg/kg), V (166 mg/kg), Cr (145 mg/kg), Ni (80 mg/kg), Zn (143 mg/kg) i Pb (143 mg/kg). Srednje vrijednosti tala na Risnjaku: Se (84 mg/kg), As (18,5 mg/kg), V (123 mg/kg), Cr (66 mg/kg), Ni (49 mg/kg), Zn (114 mg/kg) i Pb (65 mg/kg). Izuzet arsena, rezultati su pokazali puno veći stupanj onečišćenja u tlima iz okolice TE Plomin. Miko i sur. (2003) su u svom istraživanju opisali raspodjelu i mobilnost teških metala u krškim tlima Hrvatske i Slovenije. U sklopu istraživanja uzorkovana su tla u okolici TE Plomin (frakcija < 2 mm), te je utvrđen iznimno visok sadržaj manganovih okshidoxida, a zabilježene su i povišene koncentracije Mo, Cd, Co, Cr, Cu i V. Oreščanin i sur. (2009) objavili su rezultate granulometrijske i kemijske analize sedimenata Plominskog zaljeva. Svrha rada bila je utvrditi rizike remobilizacije potencijalno opasnih vrsta teških metala (Ti, V, Cr, Mn, Ni, Cu, Zn, Pb i U) iz sedimenta u vodeni stup. Granulometrijskom analizom utvrđeno je da u svim uzorcima prevladava sitnozrnata frakcija (< 63 µm). Rezultati analize pokazali su da sedimenti taloženi prije i za vrijeme rada TE Plomin imaju gotovo isti kemijski sastav, odnosno da sedimenti Plominskog zaljeva predstavljaju nizak rizik za okoliš. U kontaktu s morskom vodom moguća je remobilizacija samo 0,29 mg kg⁻¹ V, 0,04 mg kg⁻¹ Cr, 0,07 mg kg⁻¹ Ni, 0,33 mg kg⁻¹ Cu, 0,67 mg kg⁻¹ Zn i 0,06 mg kg⁻¹ Pb iz sedimenta u stupac morske vode. Međutim, ove vrijednosti su tri do deset puta povećane u slučaju izluživanja organskim kiselinama. Pongrac (2013) je istraživao tehnogena i smeđa tla u okolici TE plomin te šljaku s otvorenog odlagališta koja predstavlja otpadni neizgoreni materijal iz termoelektrane. Analizom su utvrđene slijedeće srednje vrijednosti koncentracija elemenata u smeđim tlima: As (18,5 mg/kg), Se (1,9 mg/kg), U (4,8 mg/kg), Sr (mg/kg), Y (59,6 mg/kg), Cr (244,8 mg/kg), Cu (47,7 mg/kg), Co (26,5 mg/kg), Mn (1731 mg/kg), V (340,3 mg/kg), Ni (78,4 mg/kg), Zn (88,7 mg/kg) i Sc (16,6 mg/kg). Ovim istraživanjem dokazan je negativan utjecaj termoelektrane na okoliš obzirom da su elementi As, Cd, Cr, Se i U dominantno antropogenog podrijetla. Elementi Mn, Sr, V i Y dijelom su antropogenog a djelom geogenog podrijetla, dok su Ba i Ni dominantno geogenog podrijetla. Posljednja istraživanja utjecaja rada TE Plomin na okoliš obavljena su u sklopu izrade diplomskih radova Velić (2014), Ernečić (2014) i Bertović (2014). Velić (2014) je istraživanjem geokemijskih karakteristika tala u okolici TE Plomin zaključila da su u radijusu od 1 km od izvora emisije vrijednosti koncentracija istraživanih elemenata značajno povišene u odnosu na zakonski propisane vrijednosti te stoga predstavljaju
opasnost i rizik za ljudsko zdravlje i okoliš. U radovima Ernečić i sur. (2014) i Ernečić (2014) utvrđene su povišene masene aktivnosti 226Ra unutar radijusa od 1 km od TE Plomin. Rezultati ovog istraživanja pokazali su i znatan utjecaj zračnih strujanja, koja dominiraju u smjeru Z-JZ, na distribuciju 226Ra u tlu. U radu Medunić i sur. (2014) obuhvaćeni su rezultati pojedinih diplomskih radova (Velić, 2014; Erenčić, 2014) u svrhu procjene rizika na okoliš zbog emisije sumpora i lebdećeg pepela sagorijevanjem ugljena u TE Plomin. Osnovni statistički parametri (aritmetička sredina, medijan, min, max, i SD) izračunati za S u uzorcima JZ profila iznose redom (%): 0,88, 0,40, 0,12, 3,28, i 0,98. Statistički značajni Kendallovi tau koeficijenti korelacije parova udaljenost od TE – OT, udaljenost od TE - S, udaljenost od TE - Cu, S - OT i S - Cu bili su kako slijedi: -0,51, -0,73, -0,60, 0,60, i 0,69. Ovi rezultati ukazuju na jak trend smanjenja onečišćenja s udaljenošću od TE. Bertović (2014) je u svom diplomskom radu istraživala raspodjelu onečišćujućih tvari, kao što su sumpor i policiklički aromatski ugljikovodici (PAH-ovi) u tlu oko TE Plomin. Rezultati istraživanja pokazali su povišene koncentracije oba tipa zagađivaša u blizini TE te u segmentu koji se poklapa sa smjerom dominantnih vjetrova. Koncentracije zagađivaša se smanjuju s udaljavanjem od TE Plomin, ukazujući na znatan utjecaj obližnjeg odlagališta ugljena na njihovu razinu u tlu te na ulogu transporta zrakom na raspodjelu potencijalno toksičnih sastojaka u blizini TE.
3. OBILJEŽJA ISTRE I ISTRAŽIVANOG PODRUČJA

3.1. Geografski položaj i klimatska obilježja Istre

Osnovna značajka podneblju istarskoga poluotoka daje sredozemna klima. Sredozemna klima duž obale postupno se mijenja prema unutrašnjosti i prelazi u kontinentalnu zbog hladna zraka koji struji s planina i zbog blizine Alpa. Ipak, najveći dio Istre je pod utjecajem umjereno tople klimе. Sjeveroistočni dijelovi poprimaju obilježja gorskih klimatskih uvjeta, dok južni obalni pojas ima najveće temperature i najmanju količinu padalina. Istočna strana Istarskog poluotoka ima toplu vlažnu klimu s vrućim ljetima, dok je u unutrašnjosti klima umjerenija s toplim ljetima (Filipčić, 1992).

(cura), i jugoistoka (jugo). Bura je najčešća po zimi, jer je Jadran u to godišnje doba često u područjima niskog zračnog tlaka.

Općenito govoreći, Istru karakteriziraju toplija i sušnija ljeta i hladnija i vlažnija zimska razdoblja stoga se, prema Köppen-ovoj klasifikaciji, može svrstati u blaga mediteranska, odnosno submediteranska podneblja (Filipčić, 1992; Roglić, 1981).

3.2. Geologija Istre

3.2.1. Regionalna podjela

Geološki gledano Istra se može podijeliti na tri najvažnija područja (prema Velić i sur., 1995):

1. Jursko – kredno – eocensko karbonatno i klastično područje južne i jugozapadne Istre;
2. Kredno – eocensko karbonatno i klastično područje obilježeno navlačnim strukturama na istočnom i sjeveroistočnom dijelu poluostrva;
3. Eocenski bazen s flišom u središnjoj Istri.

Različita geološka građa uvjetovala je i nastanak različitih vrsta tala na području Istre (Slika 5). Stoga se, obzirom na vrste tla, Istra može podijeliti na: (1) gorsku Istru (tzv. Bijela Istra) smještenu na sjeveru, sjeveroistoku i istoku (Učka i Ćićarija), obilježenu okršenim vapnencima; (2) istrasko pobrđe (tzv. Siva Istra) koju povezuju s flišom, smješteno na sjeverozapadnom i središnjem dijelu; (3) karbonatna zaravan (tzv. Crvena Istra) koja se prostire u zapadnom i jugozapadnom dijelu Istre, nazvana prema zemlji crvenici (terra rossa) koja se razvila na karbonatnoj podlozi; i (4) naplavne ravnice rijeka (Raša, Mirna, Draganja) (Velić i sur., 1995).

Wladimir P. Köppen (1846-1940): klasifikacija se temelji na konceptu ovisnosti klime i vegetacije, gdje je vegetacija direkton izražaj karakteristika klime. Tip klime spaja prosječne godišnje i mjesečnim temperature i oborine sa vrstama vegetacije.
3.2.2. Stratigrafske značajke

Istarski poluotok paleogeografski pripada sjeverozapadnom dijelu Jadranske karbonatne platforme (Vlahović i sur., 1995). Izgrađen je pretežito od plitkomorskih karbonata stratigrafskog raspona od dogera do srednjeg eocena, dok se u manjoj mjeri mogu pronaći siliciklastične naslage, fliš i vapnenačke breče srednje eocenske starosti, te crvenica i les kvararme starosti. S obzirom na uvjete koji su dominirali prilikom taloženja naslaga u Istri, razlikujemo četiri jedinice taloženja (megasekvencije) (Slika 6) međusobno odijeljene plohama diskontinuiteta (emerzijskim površinama):

1. bat – donji kimeridž,
2. gornji titon – gornji apt,
3. gornji alb – donji kampan,
4. paleocen – eocen.

Završetak svake megasekvencije karakteriziran je diskontinuitetima koji predstavljaju emerzijske površine različitog trajanja tijekom kojih je vladala kontinentalna faza.
Slika 6. Površinska rasprostranjenost izdvojenih megasekvencija u Istri:
I – bat-donji kimeridž; II – gornji titon-gornji apt; III – gornji alb-donji kampan; IV – paleocen-eocen: a) foraminiferski vapnenci, b) flis i prijelazne naslage (Velić i dr., 1995).

Prva, regresivna, megasekvencija obuhvaća najstarije naslage Istre, odnosno jezgru zapadnoistarske antiklinale taložene od bata do oksforda. Tijekom ovog razdoblja prevladavaju okoliši izoliranih plićaka u plitkom subtajdalu i lagunama, gdje se talože debeli slojevi madstona i fosilifernih vekstona (Velić i sur., 2002, 2003). Srednje- do kasnooksfsordske naslage taložene su na rubovima laguna u okolišima visoke energije u obliku pješanih prudova koji predstavljaju nakupine ooida i skeletnih ostataka. Trend oplićavanja nastavlja se do kraja oksforda i tijekom ranog kimeridža, omogućujući taloženje regresivnih breća, tzv. Rovinj breća. Tijekom kopnene faze stijene su izložene okršavanju, a u dubljim dijelovima tako nastalog reljefa taložen je ishodišni materijal za postanak boksita. U razdoblju od titona do apta postepeno se uspostavlja morski režim, pa nastaje plitkomorski carbonatni okoliš. U peritajdalnom slijedu naslaga taložili su se stromatoliti i peloidni vapnenci, dok su nešto rjeđe
emerzijske breće te rano do kasno dijagenetski dolomiti. O jako plitkim morskim taložnim okolišima svjedočte brojne desikacijske pukotine, otisci tragova stopala dinosaura na gornjim slojnim plohama, te dobro očuvani ranodijagenetski dolomiti, tzv. Fantazija dolomiti (Velić i sur., 1995). Izrazito plitkomorski taložni uvjeti nastavljaju se i tijekom neokoma i barema. Regionalna emerzija u kasnom aptu izazvala je eroziju sedimenata barema i apta. Kopnenu fazu karkateriziraju emerzijske breće, konglomerati koji sadrže karakteristične crne valutice (tzv. Black-pebbles breće) nastali u močvarnim okolišima, boksiti i kvarci dijagenetski sedimenti nastali donosom vulkanskog pepela iz udaljenih područja (Velić i sur., 2003). Tijekom cenomana dolazi do diferencijacije postojećih okoliša, te se javlaju taložni sustavi peritajdala, plitkovodnog pješčanog pruda i blago položene carbonatne rampe. Uglavnom se talože madstone, peloidni vekstoni i pekstoni s brojnom zajednicom rudista i foraminifera, a javljaju se i stromatoliti. Krajem cenomana i početkom turona dolazi do potapanja plitkomorskog područja južne Istre, pa se talože vapnenci s pelagičkim organizmima, dok su na sjevernom dijelu i dalje plitkomorski carbonatni okoliši. Taloženje paleogenskih naslaga započelo je postupnim preplavljanjem tektonske deformiranog, okršenog i reljefno raznolikog kopna. Transgresija je uzrokovala i podizanje razine podzemne vode, pa su u najnižim dijelovima reljefa postupno nastali močvmani okoliši, u kojima je između carbonatnih sedimenata taložen i ishodišni materijal za debele naslage ugljena (područje Labina). Daljim porastom morske razine uspostavljaju se plitkomorski uvjeti na sve većem području Istre i talože se sedimenti koji sadrže velike količine ljušturice foraminifera. Obzirom na regionalne tektonske događaje i globalne varijacije u razinama morske vode, na području Istre su u ovom razdoblju nastale četiri značajnije vrste naslaga: (1) Liburnijske naslage; (2) foraminiferski vapnenci; (3) prijelazne naslage i (4) flis. Liburnijske naslage su paleocenske starosti, a obilježavaju period u kojem se odvijala slatkovodna do brakična carbonatna sedimentacija. Izgrađeni su od tamnih i smeđih vapnenaca s ugljenom koji sadrže slatkovodne puževe roda Stomatopsis i Cosinia te alge iz skupine Charophyta. Debljina ovih naslaga varira od nekoliko metara do debeleih naslaga u Labinskom i Plominskom bazenu (više od 100 m). Foraminiferski vapnenci stratigrafskij pripradaju kraju paleocena i početku eocena, a sastoji se pretežito od skelata bentoskih foraminifera (miliolide, alveoline, numuliti i diskocikline). Prijelazne naslage obilježavaju tranziciju iz plitkomorskih carbonatnih okoliša u bazenske okoliše u kojima se talože klastični sedimenti. Litološki su to
laporoviti vapnenci s glaukonitima u kojima su, uz ostatke diskociklina, brojne kućice planktonskih foraminifera. Fliš u najnižem dijelu sadrži lapore, a zatim pravilnu izmjenu lapora i vapnenačkih pješčenjaka.

Nakon taloženja fliša, kao najmlađih paleogenskih naslaga, područje današnje Istre je okopnjelo. Tijekom dugog kopnenog razdoblja sve četiri taložne cjeline izložene su površinskom trošenju, okršavanju i eroziji, a dijelom su prekrivene najmlađim sedimentima – crvenicom (terra rosa), eolskim materijalom (les), kvartarnim brečama i močvarnim sedimentima (Velić i sur., 1995).

3.3. Geologija istraživanog područja

3.3.1. Interpretacija Osnovne geološke karte – list Labin

U prilogu 3. nalazi se dio Osnovne geološke karte SFRJ (Šikić i sur., 1973) u mjerilu 1:100 000, koji prikazuje detaljnu geološku građu istraživanog područja. List Labin obuhvaća područje istočne Istre i Hrvatskog primorja s djelovima otoka Krka i Cresa. Nalazi se između 14°00' i 14°30' istočne dužine i 45°00' i 45°20' sjeverne širine.

Istraživano područje, odnosno uža okolica TE Plomin nalazi se na geološkoj podlozi paleogenske starosti za koju su karakteristični foraminiferski vapnenci. Iako su paleogenske naslage dosta rasprostranjene na istarskom poluotoku (padine Učke i Ćićarije, područje između Pićana i Pazina, te unutar Labinskog bazena) nisu razvijene u potpunosti. Nedostatak pojedinih članova uvjetovan je izmjenom transgresivnih i regresivnih faza koje su postepeno zahvatile područja gornjokredne i paleogenske starosti, stoga na mnogim lokalitetima nedostaju jedan ili više članova transgresivne, odnosno regresivne serije. Tako na području TE Plomin, prema interpretaciji OGK, nisu pronađene Liburnijske naslage koje označavaju početak paleocena. Najstarije pronađene naslage su miliolidni vapnenci koji označavaju prijelaz iz paleocena u eocen. Ova formacija nalazi se uvijek u bazi foraminiferskih vapnenaca. Površinski su najrasprostranjeniji u južnom dijelu Labinskog bazena. U ostalim područjima pojavljuju se kao uske trake uz obode bazena s ostalim paleogenskim naslagama. Miliolidni vapnenci taloženi su u zaštićenim, vjerovatno i hipsalnim platformnim okolišnim uvjetima, stoga su dobro uslojeni i karakteristične su svijetlo smeđe do sive boje. Na miliolidne vapnence nastavljaju se alveolinski
vapnenci donjoeocenske starosti. Ove naslage dobro su otkrivene i nalaze se duž svih rubova Labinskog i Pazinskog bazena. Uglavnom su smeđi do bijele boje, nepravilnog loma i brašnaste teksture, a slojevitost im je slaba. Numulitni vapnenci javljaju se na prijelazu iz donjeg u srednji eocen. Prostiru se na istim područjima gdje i alveolinski vapnenci iz kojih se postepeno razvijaju. To je pretežito smeđi, rijeđe žućkasti i sivi, a u gornjem dijelu obično brečasti vapnenci, uvijek nepravilnog loma. Stijene numulitnih vapnenaca su homogenije i kompaktnije od alveolinskih vapnenaca i sa slabom, potpuno nejasnom uslojenošću. S numulitnim vapnencima prestaje vapnena sedimentacija paleogena.

Na području Plominskog zaljeva pronađene su i prijelazne naslage srednje- do gornjoeocenske starosti. Ove naslage karakterizira vertikalna i lateralna izmjena lapora, pješčenjaka sa slojevima konglomerata, breča, numulitnih breča i rijeđe vapnenaca (flišolike naslage). Flišolika serija razvijena je na čitavom području tercijarnog bazena i njegovim rubovima – Učka, Ćićarija, te u Labinskom i Plominskom bazenu, zatim u području Rijeke, Krka i na Cresu. Paleogenski sedimenti mjestimično su prekriveni naslagama pijeska, šljunka, te sivim i crnim tlima holocenske starosti, kako je opisano u OGK. Paleogenske naslage u okolici TE Plomin omeđene su gornjokrednim vapnencima. Općenito, ove naslage počinju skoro neposredno iznad naslaga donje krede. Sjeverno prevladavaju sivi i smeđi homogeni pločasti do škriljavi vapnenci, dok su oni u smjeru juga bolje uslojeni s lećama bijelih vapnenaca. To su svjetlosivi, bjeličasti do smeđi, dobro uslojeni laporoviti vapnenci, unutar kojih se nalaze ulošci bijelih do ružičastih vapnenaca. Nekad su to breće od sitnog kršja, rudista, ježinaca ili pak konglomerati koji sadrže valutice i fragmenata ljuštura školjkaša. Idući od Plomina prema istočnoj obali istarskog poluotoka, uz navedene dobro uslojene vapnence javljaju se i breće s rudistima koje se sastoje od zaobljenog kršja vapnenaca i ljuštura rudista.

3.3.2. Tektonska – geomorfološka značajke

Tektonski gledano Istarski poluotok se može podijeliti na dvije glavne tektonske jedinice. Prvoj pripada područje jugozapadne istre (tzv. stabilna Istra) okarakterizirana superpozicijskim slijedom naslaga i odsutstvom intenzivnjih tektonskih pokreta. Područje druge tektonske jedinice nalazi se na sjeveroistočnom dijelu poluotoka, a karakteriziraju je intenzivna tektonska gibanja koja su uzrokovala
nastanak reversnih rasjeda i ljuskave građe. Navlačenjem su zahvaćeni kredni i foraminiferski vapnenci, koji su najčešće tektonski dovedeni u položaj da leže na različitim članovima paleogena, osobito na eocenskom flišu. Granica između ova dva prostora je rasjed Ćićarija – Raša koji je regionalnog značaja.

Tri su dominantne strukturne jedinice. Stabilnom Istrom dominira zapadnoeuropska antikлинаl, smjera pružanja SI – JZ, sa srednje- do gornjejurskim naslagama u jezgri, odnosno krednim i eocenskim karbonatima u lijevom krilu, dok je desno prekrivenom morem. Druga jedinica je Pazinski fliški bazen, kojeg izgrađuju foraminiferski vapnenci i fliš, a pruža se središnjim dijelom poluotoka u smjeru SZ – JI. Treća cjelina uključuje ljuskave strukture Ćićarije i navlaku Učke, izgrađene od gornjokrednih vapnenaca, eocenskih karbonata i fliša.

Tektonska građa užeg područja istraživanja (Šikići sur., 1973) podijeljena je na nekoliko jedinica: nizinski sliv rijeke Raše, brdovito sjeverozapadno područje, te prostor Labinskog bazena, Učke i Ćićarije. Slojevi koji su pod utjecajem tektonskog sklopa rijeke Raše slabije su poremećeni i relativno slabije nagnuti, a sličan odnos slojeva primjećuje se i u Pazinskom bazenu. Labinski bazen, Učka i Ćićarija imaju izrazito složenu građu koja je posljedica jakih tektonskih zbivanja. Zbog toga se pojedini stratografski članovi kredne i paleogenske starosti na ovim područjima ne pojavljuju na površini u prvotnoj vezi, nego su odvojeni tektonskim poremećajima, a među njima postoji oštro zabilježen prekid sedimentacije (Šikići i sur., 1973).

Tektonski gledano, TE Plomin nalazi se na kompleksnoj podlozi, odnosno na presjecištu intenzivnih kompresijskih struktarnih formi Učka – Rabac – Koromačno, međusobno odijeljene reversnim rasjedima, Istarske mikroploče i fliškog bazena. Dio lokacije izgrađen je od naslaga fliša (klastiti tercijara), dio od vapnenaca ljuskave strukture Učke, a dio bi se mogao pripisati Istarskoj mikroploči. Lokaciju presjeca reversni rasjed koji odvaja foraminiferske vapnence od fliša, a slična je situacija s odnosom fliša i vapnenaca koji su dio Istarske mikroploče (EKONERG, 2011).

3.3.3. Hidrogeološke karakteristike

Hidrogeološke karakteristike šireg područja TE Plomin (Šikići i sur., 1973) uvjetovane su litofizičkim obilježjima stijenskog kompleksa, tektonskoj oštećenosti i stupnjem deformacije, kao i podložnosti korozijkim i erozijskim procesima. Obzirom
na litološki sastav razmatranog područja, opisanog u prethodnim poglavljima, izdvojene su tri osnovne grupe stijena različitih hidrogeoloških značajki:

(1) dobro vodopropusne karbonatne naslage;
(2) srednje vodopropusne klastične naslage;
(3) slabo vodopropusne klastične naslage, promjenjive propusnosti zbog različite intergranularne i sekundarne poroznosti.

Skupini dobro vodopropusnih karbonatnih naslaga pripadaju gornjokredni vapnenci, te miliolidni, alveolinski i numulitni vapnenci. Odlikuju se sekundarnom pukotinsko-kavernoznom poroznošću, koja je posljedica tektonskih aktivnosti, kao i erozijskog i kemijskog djelovanja vode. Skupini srednje vodopropusnih naslaga pripadaju vapnenačke breće i konglomerati, povoljnije vodopropusnosti ovisno o veličini međuzrnske poroznosti. Slabo vodopropusnim naslagama smatraju se prijelazne naslage (lapor, glinoviti vapnenci); fišne naslage (lapor, pješčenjaci, breće, konglomerati) i kvartarne naslage (gline s malo ili dosta kršja i odlomaka) (EKONERG, 2011).

Slivno područje Plomina iznosi cca 230 km², a obuhvaća zapadnu Učku i Ćićariju do Lupoglava, paleogenski bazen i dio područja između Labina i Plomina. Hidrografska mreža unutar paleogenskog bazena je normalna, dok ostala područja imaju karakteristike krškog hidrografskog sustava. Važniji površinski tok je Boljunšćica, a u široj okolici nalazi se jedno od najvećih slivnih područja u Istri - rijeka Raša (Šikić i sur., 1973).

Općenito, smjer kretanja podzemnih voda na sjevernom i sjeveroistočnom dijelu istraživanog područja je u pravcu juga, a potom u pravcu jugozapada (južni dio istraživanog područja) (Prilog 4). Velik utjecaj na smjer toka podzemnih voda imaju rasjedni sistemi pružanja sjevera, pruža podnožje Učke, kao i rasjedni sistemi pružanja sjeveroistoka. Relativne barijere podzemnim vodama čini nepropusni kompleks naslaga fliša, klastičnih naslaga kvartara i more (EKONERG, 2011).
3.4. Tla istraživanog područja
3.4.1. Postanak i klasifikacija tala

Tlo je prirodno tijelo nastalo iz rastresite stijene ili na trošini čvrste stijene pod utjecajem čimbenika pedogeneze i kao rezultat djelovanja pedogenetskih procesa (Škorić, 1986). Pedogenetski čimbenici su faktori tvorbe i razvoja tla, a čine ih matični supstrat, klima, flora i fauna, reljef i vrijeme. Pedogenetski procesi uzrokuju trošenje matične stijene i primarnih minerala fizičkim i kemijskim agensima, sintezu sekundarnih minerala, stvaranje i razgradnju organske tvari, nastanak humusa i različite oblike migracije u tlu (Škorić, 1986).

Profil tla sastoji se od specifično raspoređenih horizonata koji se međusobno razlikuju po karakteristikama i sastavu, a uvjetovani su vertikalnim i lateralnim kretanjem otopina i suspenzija (Slika 7). Weaver (1989) je definirao šest osnovnih horizonata tla: O, A, E, B, C i R.

Slika 7. Profil tla (izvor: www.uvm.edu)

Organski površinski horizont (O) leži iznad mineralnog dijela tla u pretežno aerobnim uvjetima i sadrži uglavnom organski materijal koji je dijelom raspadnut.

3.4.2. Tla istraživanog područja

Smeđe tlo na vapnencu i dolomitu razvijeno je na mezozojskim vapnencima i dolomitima i tercijarnim vapnencima. Općenito, to su heterogena tla po dubini i po skeletnosti, a građa profila uključuje horizonte A – B. Udio skeletnih čestica (granulometrijska frakcija tla promjera > 2 mm) ovisi o intenzitetu okršenosti vapnenaca. Zbog izrazite kamenitosti ovih tala smanjena je njihova fiziološki aktivna dubina.

Vapnenčko dolomitna crnica je plitko tlo A – C građe profila do 20-ak cm humusnog horizonta koji direktno ili preko regolita leži na vapnencu ili dolomitu. Sporo trošenje podloge i propadanje sitnice kroz pukotine uvjetuje postanak pretežito plitkih tala. Ovaj tip tla u prostoru dolazi zajedno sa već spomenutim smeđim tlo
vapnencu i dolomitu. Dobra propusnost i mali kapacitet tla za vodu uvjetuju da su ova tla suha do vrlo suha. Većina segmenta tla ove jedinice često je ispresjecana visokom slojevitošću.

Rendzino tlo je humusno akumulativno tlo A – C tipa građe profila koje je na ovome području razvijeno na supstratima kao što su lapor, fliš, meki vapnenci i dolomiti. Ovaj tip tla najčešće je žučkastosmeđe boje zbog velike prisutnosti minerala goethita (FeO(OH)).

Rigolano tlo (*Rigosol*) je antropogeno tlo u kojem je zbog obrade došlo do miješanja dva ili više horizonata tla sa slojevima lapora, fliša, vapnenaca ili dolomita do dubine od najmanje 60 cm. Tako je nastao antropogeni horizont P, pa je građa profila ovog tla P – C. Ova tla su pogona za biljnu proizvodnju, posebice rigolana tla na zaravnjenim dijelovima terena.

Uz opisane tipove tala koje prevaldavaju na ovom području, u manjoj mjeri zastupljene su i sljedeće vrste tla: *kamenjar, sirozem, lesivirano tlo, močvarno glejno tlo i rudničke jalovine s deposolima* (*EKONERG, 2011*).
4. METODE ISTRAŽIVANJA

Izrada diplomskog rada sastojala se od terenskog i laboratorijskog istraživanja te interpretacije dobivenih rezultata.

Terensko istraživanje

Uzorkovanje je obavljeno u ožujku 2014. godine. Uzorci tla sakupljeni su na određenim udaljenostima od izvora onečišćenja u TE Plomin (200, 300, 400 i 800 m) linearno u smjeru prevladavajućeg smjera vjetra (SZ – JI), te u Mošćeničkoj dragi koja je odabrana kao kontrolna lokacija (referentno tlo, nadalje u tekstu terenska kontrola, TK) (Slike 8a, 8b i 9). Na svakoj od lokacija prikupljeno je po pet uzoraka tla, a udaljenost između uzorkovanja je iznosila oko jedan metar. Lokacije uzorkovanja s GPS koordinatama prikazane su u Tablici 1.

Tablica 1. GPS lokacije uzorkovanja

<table>
<thead>
<tr>
<th>Uzorak</th>
<th>S.Z.Š.</th>
<th>I.Z.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200m</td>
<td>45°08'08"</td>
<td>14°09'37"</td>
</tr>
<tr>
<td>300m</td>
<td>45°08'05"</td>
<td>14°09'33"</td>
</tr>
<tr>
<td>400m</td>
<td>45°08'03"</td>
<td>14°09'29"</td>
</tr>
<tr>
<td>800m</td>
<td>45°08'55"</td>
<td>14°09'15"</td>
</tr>
</tbody>
</table>

Slika 8a. Prikaz lokacije uzorkovanja kontrolnog tla (Mošćenička draga) (Izvor: Google Earth Pro – probna inačica programa).
Slika 8b. Prikaz točaka uzorkovanja na profilu 800 m od TE Plomin (izvor: Google Earth Pro – probna inačica programa).

Priprema filtrata tla

Sakupljeni uzorci tla (po pet uzoraka sa svake lokacije), usitnjeni su i prosijani kroz sito 2 mm. Za izradu filtrata, odvagano je po 50 g uzoraka tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK). Uzorcima tla dodano je po 500 ml dH₂O (omjer 1:10) te su dobivene suspenzije stavljene na magnetsku miješalicu tijekom jednog sata, nakon
čega je slijedila sedimentacija (jedan sat). Dobivene otopine su prvo filtrirane putem filter papira a zatim centrifugirane (13 000×g, 10 min) te je u daljnjem pokusu korišten dobiveni supernatant.

Kemijska analiza

4.3.1. Priprema filtrata tla i biljnog materijala za određivanje sadržaja elemenata tehnikom ICP-AES

Svaki uzorak filtrata tla zakiseljen je s dušičnom kiselinom (HNO₃, p.a., 1% v/v, „Carlo Erba“, Italija) te su tako pripremljene otopine analizirane tehnikom atomske emisijske spektrometrije uz induktivno spregnutu plazmu (ICP-AES). Prije digestije, uzorci biljnog materijala su posušeni na 60 °C do konstantne mase (24h). Svaki uzorak (~0,1 g) biljnog materijala je razoren metodom mokre digestije u 6 mL koncentrirane dušične kiseline (HNO₃, p.a., „Carlo Erba“, Italija) u mikrovalnom sustavu za razaranje uzoraka Anton Paar Multiwave 3000 opremljenom rotorom XFS-100 i teflonskim posudama volumena 100 mL.

Parametri digestije primijenjeni na mikrovalnom sustavu bili su: $P_{\text{max}} = 1200$ W, $t_{\text{max}} = 200$ °C, $p_{\text{max}} = 60$ bar; τ(postupno zagrijavanje) = 10 min, τ(zagrijavanje pri maksimalnim t, p) = 15 min, τ(hlađenje) = 20 min. Nakon provedene digestije, dobivene otopine su u polipropilenskim odmjernim tikvicama od 100 mL („Nalgene“) razrijeđene ultračistom vodom. Takve otopine su analizirane tehnikom ICP-AES. Zajedno sa serijom od 6 uzoraka, tretirane su po dvije slijepe probe (dušična kiselina).

4.3.2. Određivanje sadržaja metala tehnikom ICP-AES

Uređaj je podešen na stabilne uvjete rada te je obavljena vanjska kalibracija serijom standardnih otopina priređenih razrjeđivanjem komercijalnog multielementnog standarda (Multi-element ICP-Standard-Solution ROTI®STAR, ROTH, Carl Roth GmbH & Co., Karlsruhe, Deutchland). Sve standardne otopine i slijepe proba zakiseljene su dušičnom kiselinom (HNO₃, 1 %, v/v).

Uzorak se u plazmu injektira u obliku aerosola u uski prolaz unutar cirkularne struje plazme argona pri čemu argon služi i kao nosač uzorka. Ovakav način unosa osigurava optički vrlo tanak izvor emisije, te kemijski inertnu atmosferu. Atomizacija elemenata u uzorku postiže se na temperaturama od 5500 do 8000 K. Ovako visoke
temperature osim što minimaliziraju kemijske interakcije u uzorku dodatno ioniziraju argon koji je prethodno preveden u plazmu strujanjem kroz radiofrekvencijsko polje. U Tablici 2 opisani su važni parametri instrumentalne analize.

Tablica 2. Parametri instrumentalne analize za ICP-OES.

<table>
<thead>
<tr>
<th>Parametar</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Thermo Fischer iCAP6300 Duo</td>
</tr>
<tr>
<td>Snaga RF-a</td>
<td>1150 W</td>
</tr>
<tr>
<td>Protok rashladnog plina</td>
<td>12 L/min</td>
</tr>
<tr>
<td>Protok plina za uzorak</td>
<td>0,65 L/min</td>
</tr>
<tr>
<td>Protok pomoćnog plina</td>
<td>0,5 L/min</td>
</tr>
<tr>
<td>Sustav za uvođenje uzorka</td>
<td>-automatski uzorkivač CETAC ASX-260</td>
</tr>
<tr>
<td></td>
<td>-koncentrični raspršivač s vrtložnom komorom za raspršivanje</td>
</tr>
<tr>
<td>Brzina peristaltičke pumpe</td>
<td>45 okr/min</td>
</tr>
<tr>
<td>Cijevčice peristaltičke pumpe</td>
<td>-uzorak: narančasto-bijela</td>
</tr>
<tr>
<td></td>
<td>-ispiranje: bijelo-bijela</td>
</tr>
<tr>
<td>Vrijeme uvođenja uzorka</td>
<td>45 s</td>
</tr>
<tr>
<td>Vrijeme ispiranja</td>
<td>60 s</td>
</tr>
<tr>
<td>Analiza plazme (Plasma view)</td>
<td>Automatska (Auto View)</td>
</tr>
<tr>
<td>Maksimalno vrijeme mjerenja</td>
<td>-niske valne duljine (160-230 nm): 15 s</td>
</tr>
<tr>
<td></td>
<td>-visoke valne duljine (230-847 nm): 5 s</td>
</tr>
<tr>
<td>Mjereni elementi i valne duljine (nm)</td>
<td></td>
</tr>
<tr>
<td>Al – 167,079</td>
<td>Co – 228,616</td>
</tr>
<tr>
<td>As – 193,759</td>
<td>Cr – 267,716</td>
</tr>
<tr>
<td>Ba – 455,403</td>
<td>Cu – 327,396</td>
</tr>
<tr>
<td>Cd – 214,438</td>
<td>Fe – 259,837</td>
</tr>
<tr>
<td></td>
<td>Mn – 257,610</td>
</tr>
<tr>
<td></td>
<td>Ni – 231,604</td>
</tr>
<tr>
<td></td>
<td>Sr – 407,771</td>
</tr>
<tr>
<td></td>
<td>Zn – 206,200</td>
</tr>
<tr>
<td>Kalibracijske otopine</td>
<td>- 0 μg L⁻¹ (svi elementi)</td>
</tr>
<tr>
<td></td>
<td>- 1 μg L⁻¹ (svi elementi)</td>
</tr>
<tr>
<td></td>
<td>- 10 μg L⁻¹ (svi elementi)</td>
</tr>
<tr>
<td></td>
<td>- 100 μg L⁻¹ (svi elementi)</td>
</tr>
<tr>
<td>Otopina za ispiranje sustava</td>
<td>Dušična kiselina, HNO₃, supra pur, 1 % (v/v)</td>
</tr>
</tbody>
</table>
4.3.3. Određivanje sadržaja kationa i aniona ionskom kromatografijom

Tablica 3. Parametri instrumentalne analize za ionsku kromatografiju.

<table>
<thead>
<tr>
<th>Parametar</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>ICS-3000 Ion Chromatography System Dionex</td>
</tr>
<tr>
<td>Kationski eluens i kolona</td>
<td>otopina metansulfonske kiseline, IonPac® CS16 5x250 mm)</td>
</tr>
<tr>
<td>Anionski eluens i kolona</td>
<td>otopina kalijeva hidroksida, IonPac® AS18 4x250 mm)</td>
</tr>
<tr>
<td>Ispiranje kolone eluensom</td>
<td>30 min</td>
</tr>
<tr>
<td>Sustav za uvođenje uzorka</td>
<td>automatski uzorkivač namješten na volumen 25 µL</td>
</tr>
<tr>
<td>Protok izokratne pumpe</td>
<td>1mL/min (min. tlak 200 psi, max.tlak 3000 psi)</td>
</tr>
<tr>
<td>Sakupljanje podataka</td>
<td>5 Hz, svakih 0,5 s</td>
</tr>
<tr>
<td>Vrijeme uvođenja uzorka</td>
<td>45 s</td>
</tr>
</tbody>
</table>

Kultura vodene leće (Lemna minor L.) u uvjetima in vitro

dalje uzgajane u akseničnim uvjetima. Za dugotrajnu kultivaciju vodene leće korištena je modificirana Pirson-Seidel (PS) hranjiva podloga (Pirson i Seidel, 1950), a za eksperimentalnu analizu hranjiva podloga po Steinbergu (1946) koje su sterilizirane autoklaviranjem pri temperaturi od 120 °C i tlaku od 0,15 MPa u trajanju od 20 minuta. Sastav hranjivih podloga prikazan je u Tablici 4.

Tablica 4. Sastav hranjivih podloga po Pirsonu i Seidelu (1950) i Steinbergu (1946).

<table>
<thead>
<tr>
<th>MAKROELEMENTI</th>
<th>Pirson i Seidel</th>
<th>Steinberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO₃</td>
<td>400 mg/L, 3,95 mmol/L</td>
<td>350 mg/L, 3,46 mmol/L</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>200 mg/L, 1,47 mmol/L</td>
<td>90 mg/L, 0,66 mmol/L</td>
</tr>
<tr>
<td>MgSO₄ x 7H₂O</td>
<td>300 mg/L, 1,21 mmol/L</td>
<td>100 mg/L, 0,41 mmol/L</td>
</tr>
<tr>
<td>CaCl₂ x 2H₂O</td>
<td>804 mg/L, 5,46 mmol/L</td>
<td>295 mg/L, 1,25 mmol/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIKROELEMENTI</th>
<th>Pirson i Seidel</th>
<th>Steinberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnCl₂ x 4H₂O</td>
<td>300 mg/L, 1,5 mmol/L</td>
<td>180 mg/L, 0,91 mmol/L</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>500 mg/L, 8,1 mmol/L</td>
<td>120 mg/L, 1,94 mmol/L</td>
</tr>
<tr>
<td>Na₂ – EDTA x 2H₂O</td>
<td>1860 mg/L, 4,99 mmol/L</td>
<td>1500 mg/L, 4,03 mmol/L</td>
</tr>
<tr>
<td>Željezni citrat</td>
<td>5000 mg/L, 20 mmol/L</td>
<td>760 mg/L, 2,81 mmol/L</td>
</tr>
<tr>
<td>Na₂MoO₄ x 2H₂O</td>
<td>44 mg/L, 0,18 mmol/L</td>
<td></td>
</tr>
<tr>
<td>ZnSO₄ x 7H₂O</td>
<td>180 mg/L, 0,63 mmol/L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORGANSKI DODACI</th>
<th>g/L</th>
<th>mmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saharoza</td>
<td>10</td>
<td>29,2</td>
</tr>
<tr>
<td>Asparagin</td>
<td>0,1</td>
<td>0,66</td>
</tr>
</tbody>
</table>

Za priređivanje testnih podloga korištene su dobivene otopine uzoraka tla kojima su dodani makro- i mikroelementi po Steinbergu, no također je priređena i laboratorijska kontrola (LK) koja je umjesto otopina uzoraka tla priređena s destiliranom vodom. Prije nasadivanja biljaka, sve priređene podloge su sterilizirane hladnom filtracijom korištenjem celuloza-nitratnih membrana "Whatman" (veličine pora 0,45 μm, promjera 47 mm). pH vrijednost filtrirane laboratorijske kontrole iznosila je 5,94 a terenske kontrole 6,37-6,72. pH vrijednost filtrata tla sakupljenih blizu izvora onečišćenja bila je vrlo slična pH vrijednostima terenske kontrole i
iznosila je 6,45–6,85 za filtrate tla sakupljene 200 m od izvora onečišćenja, 6,87–7,00 za filtrate tla sakupljene 300 m od izvora onečišćenja, 6,57–6,95 za filtrate tla sakupljene 400 m od izvora onečišćenja te 6,72–6,96 za filtrate tla sakupljene 800 m od izvora onečišćenja.

Prije samog eksperimenta, biljke vodene leće su uzgajane tijekom sedam dana na sterilnoj Steinbergovoj podlozi kako bi se biljke prilagodile na spomenutu podlogu, koja za razliku od PS podloge, ne sadrži saharozu.

Nakon sedam dana rasta, pojedinačne zdrave kolonije s 2–3 listića (ukupno 10 listića) su nasadene u Erlenmeyerove tikvice od 100 mL koje su sadržavale po 50 mL uzorka filtriranih testnih voda uzoraka tla (te su tikvice korištene za praćenje rasta), a po desetak kolonija u tikvice od 300 mL (iz tih se tikvice uzimao materijal za određivanje biokemijskih parametara) koje su sadržavale po 130 mL uzoraka testnih voda.

Biljke su tijekom dugotrajne kultivacije uzgajane u uvjetima dugog dana (16 sati osvjetljenja i 8 sati tame) na temperaturi 24±1 °C uz rasvjetu bijelih fluorescentnih svjetiljki (90 μEm⁻²s⁻¹) u klima–komori. Tijekom sedam dan prilagodbe na Steinbergovu podlogu te sedam dana pokusa, biljke su uzgajane u uvjetima kontinuiranog svjetla iste jakosti i temperature kao i u slučaju dugotrajne kultivacije. Uzorci biljnog tkiva za pokuse uzimani su iz svih tikvica nakon sedam dana pokusa.

Lemna-test i biokemijski pokazatelji u vodenoj leći

4.5.1. Lemna-test (ISO 20079) – stopa rasta vodene leće

Rast biljaka praćen je određivanjem broja frondova tj. listića, mase svježe (FW) i suhe tvari (DW) tijekom sedam dana izlaganja uzorcima testnih voda. Pri tome je brojena svaka pa i najmanja biljka vidljiva golim okom. Dobiveni podaci uvrštavani su u sljedeći izraz:

$$\text{Stopa rasta} = \frac{\ln t2 - \ln t1}{t2 - t1}$$

$x t1$ – vrijednost broja listića ili mase svježe ili mase suhe tvari u vremenu $t1$ (dani)
$x t2$ – vrijednost broja listića u vremenu $t2$ (dani)
$t2 - t1$ – vremenski period između dana uzimanja uzorka i početnog dana
Rezultati su prikazani kao srednja vrijednost stope rasta broja biljaka u pet Erlenmeyerovih tikvica ± standardna devijacija.

4.5.2. Određivanje sadržaja pigmenata u vodenoj leći

Sadržaj pigmenata određen je spektrofotometrijski (UV/VIS spektrofotometar Specord, Analytik Jena). Uzorci svježeg tkiva (30 mg) ekstrahirani su u 80%-tnom hladnom acetonu (1,5 mL) i centrifugirani (5000 g / 10 min) u rotoru 12154H visokookretajne centrifuge (Sigma 3K18) pri temperaturi +4 °C. Mjeren je cijeli spektar apsorbancije za svaki uzorak te su zatim očitavani podaci na tri valne duljine: 663, 646 i 470 nm (Arnon, 1949). Sadržaj fotosintetskih pigmenata određen je prema Lichtenhaleru (1987).

Rezultati su prikazani kao srednja vrijednost pet replika ± standardna devijacija i izraženi u odnosu na kontrolu.

4.5.3. Određivanje sadržaja malondialdehida u vodenoj leći

Kako bi se odredio sadržaj malondialdehida (MDA) krajnjeg produkta lipidne peroksidacije, pomiješano je 200 µL uzorka s 800 µL reakcijske smjese (0,25% tiobarbiturna kiselina otopljena u 10%-tnoj trikloroctenoj kiselinii). Kao slijepa proba korištena je reakcijska smjesa. Uzorci i slijepa proba preliveni su u staklene semimikroepuvete te zagrijavani u sušioniku 30 min na 95 °C. Nakon toga uzorci su naglo ohlađeni na ledu te centrifugirani 10 min na 10 000 g. Nakon toga slijedilo je očitavanje apsorbancije na 532 te na 600 nm zbog korekcije na nespecifično zamućenje (Heath i Packer, 1968). Tijekom zagrijavanja reakcijske smjese niske pH vrijednosti dolazi do raspadanja lipidnih peroksida nastalih kao posljedica stresa pri čemu nastaje malondialdehid. Jedna molekula MDA reagira s dvije molekule TBA, a time se stvara crvenkasti kromogen kojemu se mjeri apsorbancija. Koncentracija lipidnih peroksida izražena je kao MDA u jedinicama nmol/g sv. t uz ekstinkcijski koeficijent ε_{532} = 155 mM^{-1}cm^{-1}. Rezultati su prikazani kao srednja vrijednost pet replika ± standardna devijacija.
4.5.4. Određivanje sadržaja neproteinskih tiola

Uzorci vodene leće mase 250 mg homogenizirani su u 1,0 ml 6,67% sulfosalicalne kiseline te centrifugirani 10 minuta na 13 000 g u rotoru 12154H visokookretajne centrifuge (Sigma 3K18) pri temperaturi +4 °C. Kako bi se odredio sadržaj neproteinskih tiola, 900 μl Ellmanovog reagensa (120 mM Na-fosfatni pufer pH 7,5 koji sadrži 5mM EDTA i 0,6 mM 5,5-ditio-bis-nitrobenzojevu kiselinu (DTNB)) pomiješano je sa 100 μl supernatanta. Kao slijepa prova korišten je alikvot istog uzorka (100 μl) pomiješan s 900 μl 120 mM Na-fosfatnog pufera pH 7,5 koji sadrži 5mM EDTA. Kao korekciju za apsorbanciju reakcijske smjese bez supernatanta korišteno je 100 μl 6,67% sulfosalicalne kiseline pomiješano s 900 μl Ellmanovog reagensa. Pripremljeni uzorci su inkubirani 15 min na sobnoj temperaturi. Nakon inkubacije je slijedilo mjerenje sadržaja neproteinskih tiola uz reducirani glutation kao standard. Sadržaj neproteinskih tiola koji se temelji na reakciji tiolnih skupina s DTNB, određen je spektrofotometrijskim mjerenjem otopljenih uzoraka na valnoj duljini 412 nm (Ellman, 1959). Količina nastalih tiola izražena je u nmol po gramu svježe tvari uz ekstinkcijski koeficijent ε₄₁₂ = 14,53 mM⁻¹cm⁻¹.

Rezultati su prikazani kao srednju vrijednost pet replika ± standardna devijacija i izraženi u odnosu na kontrolu.

4.5.5. Ekstrakcija topivih proteina i aktivnost katalaze i peroksidaza u vodenoj leći

Nakon sedam dana izlaganja testnim vodama, uzorci vodene leće (150 mg) homogenizirani su u 50 mM kalij fosfatnom puferu (pH 7,0) uz dodatak 0,1 mM EDTA i netopivog polivinilpolipirolidona te su zatim centrifugirani (29000 g / 30 minuta) u rotoru 12154H visokookretajne centrifuge (Sigma 3K18) pri temperaturi +4 °C. Dio dobivenog supernatanta iskorišten je za određivanje koncentracije proteina metodom Bradforda (1976), dio za određivanje aktivnosti enzyma, a dio za određivanje lipidne peroksidacije. Bradfordova metoda temelji se na mjerenju apsorbancije smjese proteinskog ekstrakta i reagensa pri valnoj duljini 595 nm. Koncentracija proteina u pojedinim uzorcima određena je očitavanjem baždarne krivulje dobivene mjerenjem apsorbancije otopina serumskog albumina iz goveda poznatih koncentracija (od 0,1 mg/mL do 0,8 mg/mL).
Reakcijska otopina za određivanje aktivnosti askorbat peroksidaze sadržavala je 50 mM kalij fosfatnog pufera (pH7), 0.2 mM askorbinske kiseline, 0,1 mM EDTA, 12 mM H₂O₂ (Nakano i Asada, 1981) i supernatant (120 μL). Vodikov peroksid (10 μL) dodan je u reakcijsku smjesu neposredno prije mjerenja te je praćen pad absorbancije zbog oksidacije askorbinske kiseline svaku sekundu tijekom 15 sekundi. Aktivnost APOD je izračunata na isti način kao i aktivnost GPOD, no uz odgovarajući ekstinkcijski koeficijent (ε₂₉₀ = 2,8 mM⁻¹cm⁻¹).

Reakcijska otopina za katalazu (KAT) sadržavala je 50 mM kalij fosfatnog pufera (pH 7), 10 mM H₂O₂ (Aebi, 1984) i uzorak (30 µL supernatanta vodene leće) i mjeren je pad absorbancije (zbog razgradnje vodikovog peroksid) svaki 10 sekundi tijekom 2 minute pri valnoj duljini od 240 nm. Aktivnost KAT izražena je kao količina potrošenog H₂O₂ u µmolu po minuti po miligramu proteina, a izračunata je uz korištenje odgovarajućeg ekstinkcijskog koeficijenta (ε₂₄₀= 40 mM⁻¹cm⁻¹).

Rezultati su prikazani kao srednja vrijednost pet replika ± standardna devijacija i izraženi u odnosu na kontrolu.

Statistička obrada podataka

Svaki brojčani podatak prikazan grafikonom ili tablicom aritmetička je sredina određenog broja replika.

Usporedba kontrole i tretmana (pojedinačno i međusobno) provedena je pomoću jednosmjerne analize varijance (ANOVA) te primjenom „Duncan’s New Multiple Range Test“ tj. post hoc testa višestrukih usporedbi (Duncan, 1955). Statistički značajnim smatrani su rezultati koji su se razlikovali na razini p ≤ 0,05. Pri statističkoj obradi podataka korišten je računalni program STATISTICA 12.0 (Stat Soft Inc., SAD).
5. REZULTATI

5.1. Kemijska analiza filtrata tla i biljnog materijala

5.1.1. Sadržaj metala u filtratima tla i laboratorijskoj kontroli

U Tablici 5. prikazan je sadržaj metala u filtratima tla (kontrolni filtrat, TK i filtrati blizu izvora onečišćenja) te u laboratorijskoj kontroli (LK). Najveći sadržaj Al, Ba, Co, Cu i Ni izmjerjen je u filtratu tla po udaljenosti najbližeg izvoru onečišćenja TE Plomin. U usporedbi s LK i TK, povećani sadržaj Cd zabilježen je u svim filtratima tla blizu TE Plomin, no najveći sadržaj tog metala izmjerjen je u filtratu tla udaljenog 400 m od TE Plomin. Također, sadržaj Sr, Ni i Zn bio je povećan u filtratima tla blizu TE Plomin u odnosu na LK i TK. Najveće vrijednosti Fe zabilježene su u filtratu kontrolnog tla. Najniže vrijednosti svih metala, izuzev Mn, izmjerene su u LK. Vrijednosti Cr i As u svim su uzorcima bili ispod granice detekcije.

Tablica 5. Sadržaj metala u filtratima tla sakupljenih na određenim udaljenostima od izvora onečišćenja TE Plomin te u laboratorijskoj (LK) i terenskoj kontroli (TK).

<table>
<thead>
<tr>
<th>Element</th>
<th>µg/L</th>
<th>LK</th>
<th>TK</th>
<th>200 m</th>
<th>300 m</th>
<th>400 m</th>
<th>800 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>5,45</td>
<td>28,85</td>
<td>109,6</td>
<td>30,85</td>
<td>28,53</td>
<td>43,97</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>2,49</td>
<td>9,17</td>
<td>18,50</td>
<td>16,84</td>
<td>14,75</td>
<td>9,88</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td><0,03</td>
<td>0,09</td>
<td>0,16</td>
<td>0,21</td>
<td>0,29</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td><0,008</td>
<td><0,008</td>
<td>3,55</td>
<td>2,27</td>
<td>2,04</td>
<td>1,31</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td><0,03</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td><1,0</td>
<td><1,0</td>
<td>17,41</td>
<td>2,46</td>
<td>2,21</td>
<td>11,57</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td><0,03</td>
<td>35,24</td>
<td>9,41</td>
<td><0,03</td>
<td><0,03</td>
<td>8,55</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>6,51</td>
<td>7,72</td>
<td>5,26</td>
<td>6,51</td>
<td>5,41</td>
<td>3,36</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0,09</td>
<td>0,14</td>
<td>0,97</td>
<td>0,69</td>
<td>0,56</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>6,13</td>
<td>16,64</td>
<td>76,13</td>
<td>79,21</td>
<td>76,31</td>
<td>77,85</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>12,74</td>
<td>17,16</td>
<td>38,27</td>
<td>40,57</td>
<td>34,69</td>
<td>43,21</td>
<td></td>
</tr>
</tbody>
</table>

Brojevi u Tablici predstavljaju srednju vrijednost dvije replike.
5.1.2. Sadržaj metala u biljnom materijalu

U Tablici 6. prikazan je sadržaj metala u vodenoj leći uzgojenoj na uzorcima filtrata tla (kontrolni filtrat, TK i filtrati blizu izvora onečišćenja) te u laboratorijskoj kontroli (LK). U usporedbi s LK i TK, povećani sadržaj Al, Cd i Sr zabilježen je u biljkama izloženim filtratima tla iz okolice TE Plomin (neovisno o udaljenosti). U vodenoj leći izloženoj filtratima tla udaljenim 300, 400 i 800 m od izvora onečišćenja zabilježen je povećani sadržaj Ba u odnosu na TK. Najveći sadržaj Co i Ni, u usporedbi s TK, zabilježen je u vodenoj leći uzgojenoj na filtratu tla najbližem TE Plomin. Cr je detektiran samo u biljkama raslim na filtratima tla udaljenim 200 i 300 m od TE Plomin. Vrijednosti As u svim su uzorcima bili ispod granice detekcije.

Tablica 6. Sadržaj metala u vodenoj leći nakon sedam dana izlaganja filtratima tla i podlozi Steinberg (laboratorijska kontrola, LK).

<table>
<thead>
<tr>
<th>Element</th>
<th>µg/g</th>
<th>LK</th>
<th>TK</th>
<th>Plomin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>200 m</td>
<td>300 m</td>
<td>400 m</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>7,2 (1,5)</td>
<td>104,0 (17,1)</td>
<td>125,3 (27,5)</td>
<td>89,6 (6,9)</td>
</tr>
<tr>
<td>c</td>
<td>51,7 (3,9)</td>
<td>ab</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ba</td>
<td>4,6 (0,9)</td>
<td>13,2 (1,7)</td>
<td>14,8 (1,4)</td>
<td>17,1 (1,2)</td>
</tr>
<tr>
<td>d</td>
<td>10,9 (1,0)</td>
<td>bc</td>
<td>ab</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0,01 (0,002)</td>
<td>0,05 (0,01)</td>
<td>0,05 (0,008)</td>
<td>0,06 (0,01)</td>
</tr>
<tr>
<td>b</td>
<td>0,02 (0,001)</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td>0,16 (0,07)</td>
<td>0,14 (0,03)</td>
<td>0,07 (0,01)</td>
</tr>
<tr>
<td>bc</td>
<td>0,07 (0,02)</td>
<td>ab</td>
<td>bc</td>
<td>c</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td>0,94 (0,03)</td>
<td>1,6 (0,3)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
<td>a</td>
<td>ND</td>
</tr>
<tr>
<td>Cu</td>
<td>3,4 (1,00)</td>
<td>7,1 (1,9)</td>
<td>4,9 (0,4)</td>
<td>4,3 (0,9)</td>
</tr>
<tr>
<td>b</td>
<td>3,9 (0,8)</td>
<td>a</td>
<td>ab</td>
<td>a</td>
</tr>
<tr>
<td>Fe</td>
<td>167 (60,1)</td>
<td>188 (39,6)</td>
<td>205 (36,2)</td>
<td>149 (16,2)</td>
</tr>
<tr>
<td>b</td>
<td>282 (39,1)</td>
<td>a</td>
<td>ab</td>
<td>a</td>
</tr>
<tr>
<td>Mn</td>
<td>201 (34,4)</td>
<td>173 (41,8)</td>
<td>145 (17,3)</td>
<td>143 (11,3)</td>
</tr>
<tr>
<td>a</td>
<td>157 (6,7)</td>
<td>ab</td>
<td>ab</td>
<td>b</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
<td>1,99 (0,4)</td>
<td>1,43 (0,2)</td>
<td>1,09 (0,2)</td>
</tr>
<tr>
<td>b</td>
<td>0,99 (0,05)</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>Sr</td>
<td>2,1 (0,17)</td>
<td>19,1 (0,5)</td>
<td>36,4 (0,4)</td>
<td>24,1 (1,2)</td>
</tr>
<tr>
<td>f</td>
<td>5,9 (0,11)</td>
<td>19,1 (0,5)</td>
<td>36,4 (0,4)</td>
<td>24,1 (1,2)</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>37,6 (5,3)</td>
<td>37,3 (4,9)</td>
<td>39,2 (3,1)</td>
<td>38,7 (3,2)</td>
</tr>
<tr>
<td>34,6 (1,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brojevi predstavljaju srednju vrijednost tri replike, a brojevi u zagradi standardnu devijaciju. Brojevi u pojedinom redu označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).
5.1.3. Sadržaj kationa i aniona u filtratima tla i laboratorijskoj kontroli

U Tablici 7. prikazan je sadržaj kationa i aniona u filtratima tla (kontrolni filtrat, TK i filtrati blizu izvora onečišćenja) te u laboratorijskoj kontroli (LK). Vidljivo je da vrijednosti kationa i aniona u filtratima tla sakupljenih u okolici TE Plomin nisu bitno odstupale od vrijednosti zabilježenih u TK. Općenito, sadržaj kationa i aniona u filtratima tla i LK bio je međusobno sličan, izuzev u slučaju Na^+, Cl^- i NO_2^- čiji je sadržaj bio veći u filtratima tla u usporedbi s LK.

Tablica 7. Sadržaj kationa i aniona u filtratima tla sakupljenih na određenim udaljenostima od izvora onečišćenja TE Plomin te u laboratorijskoj (LK) i terenskoj kontroli (TK).

<table>
<thead>
<tr>
<th>Element</th>
<th>LK</th>
<th>TK</th>
<th>Plomin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca^{2+}</td>
<td>57,8</td>
<td>91,9</td>
<td>109,7</td>
</tr>
<tr>
<td>K^+</td>
<td>199, 6</td>
<td>270,6</td>
<td>218,5</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>12,4</td>
<td>15,7</td>
<td>13,1</td>
</tr>
<tr>
<td>Na^+</td>
<td>2,50</td>
<td>5,97</td>
<td>4,46</td>
</tr>
<tr>
<td>NH_4^+</td>
<td>0,85</td>
<td>0,91</td>
<td>0,72</td>
</tr>
<tr>
<td>F^-</td>
<td>0,06</td>
<td>0,04</td>
<td>0,08</td>
</tr>
<tr>
<td>Cl^-</td>
<td>1,09</td>
<td>7,73</td>
<td>6,41</td>
</tr>
<tr>
<td>NO_2^-</td>
<td>0,08</td>
<td>0,12</td>
<td>0,17</td>
</tr>
<tr>
<td>NO_3^-</td>
<td>109,8</td>
<td>154,0</td>
<td>140,3</td>
</tr>
<tr>
<td>SO_4^{2-}</td>
<td>58,3</td>
<td>65,1</td>
<td>58,6</td>
</tr>
</tbody>
</table>

Brojevi u Tablici predstavljaju srednju vrijednost dvije replike
5.2. Makroskopske promjene

Tijekom sedmodnevnog izlaganja biljaka (*Lemna minor* L.) filtratima tla (200, 300, 400 i 800 m), te filtratu kontrolnog tla (TK) uočene su promjene vanjskog izgleda biljaka u odnosu na laboratorijsku kontrolu (LK). Najintenzivnije morfološke promjene uočene su petog dana izlaganja kad je kloroza listova bila vidljiva u biljkama izloženim uzorcima filtrata tla iz blizine TE Plomin i filtratu kontrolnog tla, u odnosu na laboratorijsku kontrolu (Slika 10).

![Slika 10. Makroskopske promjene u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK).](image)

5.2.1. Stopa rasta biljaka

Stopa rasta izražena po broju biljaka, po masi svježe tvari (FW) i masi suhe tvari (DW) biljaka nakon sedam dana rasta na uzorcima filtrata tla (200, 300, 400 i 800 m), filtratu kontrolnog tla (TK) i na podlozi bez filtrata tla (LK) prikazana je na Slici 11. Uzorci filtrata tla uzeti u okolici TE Plomin (200, 300, 400 i 800 m) nisu uzrokovali statistički značajna odstupanja u stopi rasta izraženoj po broju listića u odnosu na laboratorijsku kontrolu (LK), dok je filtrat kontrolnog tla (TK) pokazao...
stimulativno djelovanje na biljke, odnosno značajan porast stope rasta izraženog po broju listića. Vrijednosti stope rasta mase svježe tvari i mase suhe tvari biljaka više su varirale u odnosu na stopu rasta broja biljaka. Uzorci filtrata tla – 200, 300 i 800 m, kao i filtrat kontrolnog tla (TK) uzrokovali su statistički značajan porast stope rasta izražen po masi svježe tvari dok je stopa rastavodene leće uzgojene na uzorku 400 m bila slična laboratorijskoj kontroli (LK). Također, svi uzorci filtrata tla iz okolice TE Plomin kao i filtrat kontrolnog tla (TK) izazvali su statistički značajno povećanje stope rasta vodene leće izražene po masi suhe tvari.

Slika 11. Stopa rasta broja biljaka, mase svježe tvari (FW) i mase suhe tvari (DW) vodene leće nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtra tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).
5.2.2. Sadržaj klorofila i karotenoida

Svi uzorci filtrata tla iz okolice TE Plomin (200, 300, 400 i 800 m) uzrokovali su statistički značajno smanjenje (između 15 i 23%) sadržaja klorofila \(a \) i \(b \) vodene leće nakon sedam dana pokusa u odnosu na obje kontrole, TK i LK (Slika 12).

Sadržaj ukupnih karotenoida u vodenoj leći nakon sedam dana pokusa pratio je trend promjene klorofila. Svi uzorci filtrata tla iz okolice TE Plomin, u usporedbi s objema kontrolama, uzrokovali su smanjenje sadržaja karotenoida u vodenoj leći.

Također, sadržaj karotenoida u biljkama raslim na terenskoj kontroli bio je statistički značajno smanjen u odnosu sadržaj tih pigmenata izmjeren u biljkama uzgojenim na laboratorijskoj kontroli.

\[\text{Slika 12. Sadržaj klorofila } a \text{ i } b \text{ te ukupnih karotenoida (mg / g svježe tvari) u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).}\]
5.2.3. Sadržaj neproteinskih tiola

Na Slici 13. prikazan je sadržaj neproteinskih tiola koji su u biljnoj stanici najviše zastupljeni u obliku reduciranog glutationa.

Sadržaj neproteinskih tiola u vodenoj leći nakon sedam dana pokusa bio je statistički značajno povećan (između 10 i 13%) u odnosu na vrijednosti laboratorijske kontrole (LK) i terenske kontrole (TK).

Slika 13. Sadržaj tiola (μmol / g svježe tvari) u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokalizaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).
5.2.4. Sadržaj malondialdehida (MDA)

Opseg lipidne peroksidacije tj. stupanj oštećenja lipidne komponente stanične membrane procijenjen je pomoću sadržaja malondialdehida (MDA) jednog od krajnjih produkata tog procesa.

U vodenoj leći uzgojenoj na uzorcima filtrata tla iz okolice TE Plomin su nakon sedam dana pokusa izmjerene vrijednosti sadržaja MDA slične onima u vodenoj leći uzgojenoj na kontrolama (TK i LK) (Slika 14). Uzorak filtrata tla uzetog na 400 m udaljenosti od emisije u TE Plomin pokazuje blago, ali ne i statistički značajno, povećanje vrijednosti sadržaja MDA.

Slika 14. Sadržaj malondialdehida (nmol / g svježe tvari) u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenoj na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).
5.2.5. Sadržaj ukupnih proteina

U usporedbi s laboratorijskom kontrolom (LK), svi uzorci iz okolice TE Plomin (200, 300, 400 i 800 m), ali i terenska kontrola, uzrokovali su statistički značajno smanjenje sadržaja ukupnih proteina (između 12 i 21%) u biljkama vodene leće (Slika 15).

Najveći pad u sadržaju proteina vidljiv je u biljkama uzgojenim na filtratu tla koji je sakupljen najbliže izvoru onečišćenja u TE Plomin (200 m – 21, 42%), dok se sadržaj ukupnih proteina u vodenoj leći postepeno povećava udaljavanjem od izvora onečišćenja (800 m – 12, 03%).

Slika 15. Sadržaj ukupnih proteina (mg/ g svježe tvari) u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).
5.2.6. Aktivnost askorbat peroksidaze

Aktivnost askorbat peroksidaze u vodenoj leći izloženoj sedam dana uzorcima filtrata tla udaljenim 200, 300 i 400 m od izvora emisije u TE Plomin bila je značajno smanjena u odnosu na kontrolne biljke (LK i TK) (Slika 16) pri čemu je smanjenje aktivnosti tog enzima u vodenoj leći bilo proporcionalno udaljenosti tla od izvora onečišćenja u TE Plomin; aktivnost askorbat peroksidaze u biljkama raslim na podlozi koja je sadržavala filtrat tla udaljen 200 i 300 m od izvora emisije bila je smanjena za 36%, a u onima koje su rasle na podlozi koja je sadržavala filtrat tla udaljen 400 m od izvora emisije 23% u odnosu na kontrole. Aktivnost askorbat peroksidaze u biljkama raslim na podlozi koja je sadržavala filtrat tla udaljen 800 m od izvora emisije nije se statistički značajno razlikovala od vrijednosti izmjereneh u kontrolama.

![Diagram](image)

Slika 16. Aktivnost askorbat peroksidaze (μmol / min mg proteina) u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).
5.2.7. Aktivnost katalaze

Aktivnost katalaze u vodenoj leći nakon sedam dana rasta bila je statistički značajno smanjena (između 34 i 40 %) na svim podlogama koje su sadržavale filtrate tla (200, 300, 400 i 800 m) iz okolice TE Plomin u usporedbi s kontrolnim uzorcima (LK i TK) (Slika 17). Svi uzorci filtrata tla izazvali su podjednako smanjenje vrijednosti aktivnosti tog antioksidacijskog enzima.

[Slika 17. Aktivnost katalaze (μmol / min mg proteina) u vodenoj leći nakon sedam dana rasta na podlozi koja je sadržavala filtrate tla sakupljenog na određenim udaljenostima od izvora onečišćenja u TE Plomin te na kontrolnoj lokaciji (terenska kontrola, TK) ili na podlozi bez filtrata tla – laboratorijska kontrola (LK). Na stupcima je označena standardna devijacija. Stupci označeni različitim slovima međusobno se statistički značajno razlikuju (p < 0,05).]
6. RASPRAVA

Najveći dio tvari koje se smatraju onečišćivačima prirodni su sastojci tla, premda često samo u tragovima. Određivanje ukupnog sadržaja teških metala u tlu osnovni je pokazatelj za određivanje stupnja onečišćenosti, premda dugoročne procjene rizika i izravni učinci onečišćenja počivaju na njihovoj bioprístupičnosti i/ili mobilnosti (Salomons, 1995). Poznato je da su termoelektrane na ugljen, kao najzastupljeniji način proizvodnje električne energije osobito u gospodarski manje razvijenim zemljama, jedan od najvažnijih izvora onečišćenja i generatora potencijalno opasnog otpada. Za proizvodnju električne energije TE Plomin je do početka devedesetih godina prošloga stoljeća rabila domaće ugljene (antracit iz Istre, lignit i smeđi ugljen s Dinarida) koji sadrže 10-15% nesagorivog ostatka (Valković i sur., 1984; Oreščanin i sur., 2009). Izgaranjem ugljena u termoelektranama teški metali koji su u njemu prirodno vezani koncentriraju se u ostacima izgaranja, odnosno šljaci i pepelu, dok se manji dio smjese hlapljivih metala i drugih izgorjelih tvari ispušta kroz dimnjak.

Teški metali imaju kumulativan učinak koji dovodi do kontinuiranog narušavanja osjetljivih staničnih biomembrana (DNA, proteini, lipidi) i stanja kronične toksičnosti. Fizikalne i analitičke metode koje se redovito rabe za određivanje prisutnosti i koncentracije kemijskih tvari u okolišu ne daju podatke o potencijalnom učinku tih tvari na živi svijet. To vrijedi pogotovo u slučaju kada je u ekosustav uneseno više različitih kemikalija, pa su moguće njihove međusobne interakcije, te interakcije s uobičajenim tvarima u ekosustavu. Najbolji pristup u procjeni toksičnosti odnosno genotoksičnosti takvih tvari je upotreba bioloških testnih sustava na živim stanicama ili organizmima koje daju opći odgovor na smjesu zagađivača prisutnih u uzorku. Krajnji cilj je otkriti utječe li primijenjeni čimbenik na testni organizam, staničnu strukturu, tkivo ili organ i na kraju uočenu promjenu kvalitativno i kvantitativno izraziti (Vidaković-Cifrek, 1999).

Vodena leća (*Lemna minor L.*) se do sada pokazala kao dobar testni organizam za ispitivanje utjecaja teških metala na organizme (Wang, 1990). U ovom radu je na temelju Lemna testa te pojedinih biokemijskih pokazatelja procijenjena kvaliteta odnosno stupanj onečišćenja tla u čijoj se blizini nalazi TE Plomin. Procjena je napravljena usporedbom rezultata laboratorijske kontrole na modelnom organizmu (vodena leća) koji nije sadržavao filtrat ispitivanog tla i terenske kontrole koja se sastojala od filtrata referentnog tla uzetog u Mošćeničkoj dragi, s uzorcima filtrata tala uzetih u okolici TE Plomin na udaljenostima 200 m, 300 m, 400 m i 800 m u smjeru dominantnih zračnih strujanja. U ovom radu mjerio sam sadržaja metala u filtratima tla sakupljenim na određenim udaljenostima od izvora onečišćenja TE Plomin te u biljnom materijalu uzgojenom u otopinama kako bi utvrdio njihov utjecaj na modelne organizme putem biokemijskih pokazatelja toksičnosti.

U usporedbi s LK i TK najveći sadržaj Al, Ba, Co, Cu i Ni izmjeren je u filtratu tla po udaljenosti najbližeg izvoru onečišćenja TE Plomin (Tablica 5). Povećani sadržaj Cd zabilježen je u svim filtratima tla blizu TE Plomin, no najveći sadržaj tog metala izmjeren je u filtratu tla udaljenog 400 m od TE Plomin. Također, sadržaj Sr, Ni i Zn bio je povećan u filtratima tla blizu TE Plomin u odnosu na LK i TK. Najniže vrijednosti svih metala, izuzev Mn, izmjerene su u LK. Vrijednosti Cr i As u svim su uzorcima bili ispod granice detekcije. U usporedbi s dosadašnjim istraživanjima sadržaja metala u tlu u bližoj okolici TE Plomin (Valković i sur., 1984; Komlenović i sur., 1990; Prohić i Miko, 1998; Oreščanin i sur., 2009; Pongrac, 2013) rezultati mojeg istraživanja pokazuju puno manje vrijednosti sadržaja ispitivanih metala, što se može objasniti činjenicom da se radi o vodenoj otopini tla velikog razrjeđenja (1:10). Također, mora se uzeti u obzir gubitak određene količine metala zbog postupka pripreme otopina tla (filtracija i centrifugiranje). Rezultati sadržaja metala u vodenoj leći uzgojenoj na uzorcima filtrata tla pokazali su povećani sadržaj Al, Cd i Sr (neovisno o udaljenosti) u usporedbi s LK i TK (Tablica 6). U vodenoj leći izloženoj filtratima tla udaljenim 300, 400 i 800 m od izvora onečišćenja zabilježen je povećani sadržaj Ba u odnosu na TK. Najveći sadržaj Co i Ni, u usporedbi s TK, zabilježen je u vodenoj leći uzgojenoj na filtratu tla najbližem TE Plomin. Cr je detektiran samo u biljkama raslim na filtratima tla udaljenim 200 i 300 m od TE Plomin, dok su vrijednosti As u svim su uzorcima bili ispod granice detekcije.
U ovom istraživanju mjerio sam i sadržaj kationa i aniona u filtratima tla (kontrolni filtrat, TK i filtračni blizu izvora onečišćenja) te u laboratorijskoj kontroli (LK) (Tablica 7). Vidljivo je da vrijednosti kationa i aniona u filtratima tla sakupljenih u okolici TE Plomin nisu bitno odstupale od vrijednosti zabilježenih u TK. Općenito, sadržaj kationa i aniona u filtratima tla i LK bio je međusobno sličan, izuzev u slučaju Na\(^+\), Cl\(^-\) i NO\(_2^-\) čiji je sadržaj bio veći u filtratima tla u usporedbi s LK.

Fitotoksčnost otopina tla iz okolice TE Plomin bila je vidljiva petog dana izlaganja testnog organizma u vidu morfoloških promjena, odnosno kloroze. Znakove kloroze pokazali su svi ispitivani uzorci, uključujući i otopinu kontrolnog tla, međutim najveće promjene primjećene su kod uzorka (200 m) koji se nalazio najbliže izvoru emisije (Slika 3). Nepovoljni učinci teških metala na biljke najčešće su vidljivi kao smanjenje stope rasta, gubitak biomase, kloroza, nekroza, otpadanje listova, promjena boje i izgleda korijena. U ovom istraživanju, izuzev kloroze, nisu uočene druge morfološke promjene.

Promatrina je stopa rasta izražena po broju biljaka, masi svježe tvari i masi suhe tvari nakon sedam dana rasta na uzorcima filtrata tla (200, 300, 400 i 800 m), filtratu kontrolnog tla (TK) i na podlozi bez filtrata tla (LK). Što se tiče stope rasta izražene po broju listića niti jedan uzorak filtrata tla nije pokazao statistički značajnije odstupanje u odnosu na laboratorijsku kontrolu (LK). Vrijednosti stope rasta mase svježe tvari i mase suhe tvari biljaka više su varirale u odnosu na stopu rasta broja biljaka. Uzorci filtrata tla – 200, 300 i 800 m, kao i filtrat kontrolnog tla (TK) uzrokovali su statistički značajan porast stope rasta izražen po masi svježe tvari. Ovo stimulativno djelovanje na porast biljne mase može se objasniti činjenicom da su biljke iz porodice Lemnaceae (Lemna minor) poznate po preferiranju NH\(_4^+\) kao izvora dušika (Porath i Pollock, 1982; Cedergreen & Madsen, 2002; Cindrić, 2010), a izmjerene vrijednosti ovog parametra povećavaju se udaljavanjem od izvora onečišćenja (Tablica 7). Isto tako, poznato je da teški metali u niskim koncentracijama pokazuju povoljan utjecaj na rast biljaka a u većim nepovoljan odnosno toksičan učinak (hormeza) (Poschenrieder i sur., 2013). Za razliku od stope rasta izražene po masi svježe tvari, svi uzorci filtrata tla iz okolice TE Plomin kao i filtrat kontrolnog tla (TK) izazvali su statistički značajno povećanje stope rasta vodene leće izražene po masi suhe tvari. To se može objasniti činjenicama da su uzorci koji su odstupali sadržavali veće koncentracije toksičnih i hranjivih tvari obzirom da je analiza kationa i aniona u otopinama tla pokazala blago povećanje
koncentracija ispitivanih parametara udaljavanjem od TE Plomin (Tablica 7) te da vodena leća ima veliki potencijal njihova nakupljanja (Rahmani i Sternberg, 1999; Miretzky, 2004).

U ovom radu sam također pokušao procijeniti utjecaj otopine tla, potencijalno onečišćenog produktima sagorijevanja ugljena iz TE Plomin, uz pomoć nestandardiziranih biokemijskih pokazatelja toksičnosti – sadržaj klorofila i karotenoida, malondialdehida, neproteinskih tiola (glutationa), ukupnih proteina te aktivnost peroksidaze i katalaze.

Fotosintetski pigmenti klorofili, karotenoidi i fikobilini imaju primarnu ulogu u procesu fotosinteze. Teški metali utječu prvotno na sintezu fotosintetskih pigmentata budući da su kloroza i smetnje pri rastu prvi simptomi toksičnosti teških metala i odličan su pokazatelj u procjeni ukupne toksičnosti takvih smjesa (Mysliwa-Kurdziel i sur., 2002). Svi uzorci filtrata tla iz okolice TE Plomin (200, 300, 400 i 800 m) uzrokovali su smanjenje sadržaja klorofila a i b vodene leće između 15 i 23% nakon sedam dana pokusa u odnosu na obje kontrole (LK i TK) neovisno o udaljenosti (Slika 5). Supstitucija Mg²⁺ iona u molekuli klorofila metalnim ionima Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Pb²⁺ ili Ni²⁺ uzrokuje oštećenja koja sprječavaju proces fotosinteze što je vjerojatno uzrok uočenog smanjenja sadržaja pigmenta (Küpper i sur., 1998). Ovu tvrdnju podržava i moje istraživanje obzirom da su analize sadržaja metala u vodenoj leći uzgojenoj na uzorcima filtrata tla pokazali povišene koncentracije analiziranih parametara (Cu²⁺, Zn²⁺, Cd²⁺ i Ni²⁺) u usporedbi s laboratorijskom i terenskom kontrolom. Utjecaj ispitivane otopine tla na sadržaj karotenoida bio je vrlo sličan utjecaju te otopine na klorofil a i b, odnosno došlo je do statistički značajnog smanjenja ovog pigmenta u vodenoj leći u odnosu na laboratorijski (LK) i terensku kontrolu (TK) bez obzira na udaljenost od TE Plomin. Karotenoidi imaju važnu ulogu pomoćnih pigmenata u fotosintezi, a istovremeno služe i kao vrlo važni antioksidansi koji neutraliziraju slobodne radikale i smanjuju oštećenja stanične membrane i DNA.

Neproteinski tioli su u biljkama uglavnom zastupljeni u obliku reduciranog glutationa koji kao važan antioksidans sudjeluje u odgovoru biljke na različite stresne uvjete. Brojnim istraživanjima uočeno je da njihova koncentracija raste u uvjetima slabog stresa, dok u uvjetima jačeg stresa njihova koncentracija pada (Tausz i sur., 2004). U ovom istraživanju sadržaj neproteinskih tiola u vodenoj leći nakon sedam dana pokusa bio je povećan u svim modelnim organizmima između 10 i 13% u
odnosu na vrijednosti kontrola (LK i TK). Porast sadržaja glutationa u određenoj mjeri upućuje na negativni utjecaj TE Plomin na okolni ekosustav.

Djelovanjem brojnih stresnih čimbenika uključujući i teške metale povećava se stvaranje kisikovih radikala i molekula koje su oštećene radikalima a također se potiče ekspresija gena za antioksidacijske mehanizme što podiže razinu antioksidansa koji uklanjaju radikale. Malondialdehid (MDA) nastaje kao produkt raspada nezasićenih masnih kiselina u biomembranama, zbog čega se koristi kao pokazatelj oštećenja nastalih lipidnom perokсидacijom (Blokhina i sur., 2003).

U ovom radu sam mjerio sadržaj MDA kao pokazatelja opsega peroksidacije lipida. Lipidna peroksidacija ukazuje na indukciju oksidacijskog stresa u biljnom organizmu do kojeg dolazi ukoliko stvaranje otrovnih spojeva kisika premaši mogućnosti mehanizma za uklanjanje tih otrova (Jinmin i Huang, 2002). Povećanje opsega lipidne peroksidacije objašnjava se djelovanjem iona željeza i bakra koji sudjeluju u redoks ciklusu i kataliziraju nastanak hidroksilnih radikala i drugih toksičnih oblika kisika (Arora i sur., 2002). Suprotno tim redoks aktivnim metalima, metali poput cinka, nikla, kroma i olova ne stvaraju direktno kisikove radikale, ali povećavaju oksidacijski stres sprječavajući antioksidacijske obrambene mehanizme biljke (Aravind i Prasad, 2003) pa na taj način doprinose povećanju MDA. Rezultati ovog istraživanja nisu pokazali statistički značajnija odstupanja u sadržaju MDA u ispitivanim uzorcima obzirom na LK i TK, što bi značilo da blago povećanje sadržaja metala mjerenih u vodenoj leći (Tablica 6) nije uzrokovalo oštećenja biomembrana na modelnim organizmima. Uzorak filtrata tla uzetog na 400 m udaljenosti od emisije u TE Plomin pokazuje blago, ali ne i statistički značajno, povećanje vrijednosti sadržaja MDA (Slika 7).

Rezultati analize ukupnog sadržaja proteina u vodenoj leći koja je bila izložena filtratima tla iz okolice TE Plomin pokazuju negativan trend u odnosu na laboratorijsku kontrolu (LK). Najveći pad u sadržaju proteina vidljiv je u biljkama uzgojenim na filtratu tla koji je sakupljen najbliže izvoru onečišćenja u TE Plomin (200 m - 21, 42%), dok se sadržaj ukupnih proteina u vodenoj leći postepeno povećava udaljavanjem od izvora onečišćenja (800 m - 12, 03%). Rezultati sadržaja ukupnih proteina ukazuju na blagi oksidativni stres koji se može povezati s blagim povećanjem koncentracija teških metala izmjerenim u biljnom materijalu (Tablica 6).

Česta metabolička promjena u stresnim uvjetima je povećanje aktivnosti antioksidacijskih enzima. Povećan sadržaj ovih enzima utvrđen je u odgovoru biljaka na različite stresne faktore kao što su teški metali, ranjavanje, povišena temperatura, smrzavanje i suša (Gosset i sur., 1994). U ovom istraživanju sam pokušao utvrditi utjecaj otopina potencijalno onečišćenih tala iz okolice TE Plomin na vodenu leću mjerenjem aktivnosti antioksidacijskih enzima – askorbat peroksidaze i katalaze koje razgrađuju vodikov peroksid. Rezultati istraživanja pokazali su da je aktivnost askorbat peroksidaze u vodenoj leći izloženoj sedam dana uzorcima filtrata tla bila je značajno smanjena kod uzoraka najbližih TE Plomin (200 m – 36%, 300 m – 36% i 400 m - 23%) u odnosu na kontrolne biljke (LK i TK), dok najudaljeniji uzorak (800m) nije pokazao značajniju promjenu. Poznato je da esencijalni teški metali (cink, bakar, nikal) u niskim koncentracijama induciražu aktivnost peroksidaza dok u višim dolazi do inhibicije tih enzima (Srivastava i sur., 2006). Do toksičnosti kojoj su uzrok neesencijalni metali dolazi nakon zamjene esencijanog metala neesencijalnim unutar aktivnog mjesta enzima. Ioni Hg²⁺, Cd²⁺ i Ag²⁺ teže vezivanju za sulfhidrilne skupine, što dovodi do inaktivacije različitih enzima neophodnih za normalno funkcioniranje metabolizma biljke (Šarec, 2012). Slične trendove pokazuje i aktivnost katalaze u vodenoj leći. Nanakon sedam dana rasta aktivnost ovog enzima bila je statistički značajno smanjena (između 34 i 40%) na svim podlogama koje su sadržavale filtrate tla (200, 300, 400 i 800 m) iz okolice TE Plomin u usporedbi s kontrolnim uzorcima (LK i TK). Svi uzorci filtrata tla izazvali su podjednako smanjenje vrijednosti aktivnosti tog antioksidacijskog enzima bez obzira na udaljenost od potencijalnog izvora onečišćenja.
7. ZAKLJUČAK

U ovom radu analizirana su kemijska svojstva i toksični potencijal otopine tla koje je bilo pod utjecajem lebdećeg pepela i šljake nastalih izgaranjem ugljena kao energenta u TE Plomin, s ciljem utvrđivanja njenog utjecaja na okoliš. Usporedbom dobivenih rezultata s laboratorijskom i terenskom kontrolom te dostupnom literaturom utvrđeno je da su koncentracije analiziranih teških metala u otopinama tla kao i u biljnem materijalu povišene. To se može protumačiti činjenicom da je TE Plomin dugi niz godina koristila sirovi raški ugljen niske kvalitete kao izvor energenta. Shodno tome, uočene su morfološke promjene u obliku kloroze listova na vodenoj leći (Lemna minor L.) što je prvi pokazatelj fitotokičnog učinka otopine uzorkovanih tala potencijalno induciranih povišenim koncentracijama teških metala. Stopa rasta izražena po broju listića nije pokazala statistički značajnija odstupanja u odnosu na laboratorijsku kontrolu, međutim stopa rasta izražena po masi suhe i svježe tvari bila je povećana što ukazuje na utjecaj povećanog sadržaja teških metala obzirom da biljke iz skupine Lemnaceae imaju veliki potencijal njihova akumuliranja. Rezultati analize klorofil a i b te karotenoida u vodenoj leći pokazali su smanjenje sadržaja teških metala do 23% nakon sedam dana pokusa u odnosu na obje kontrole (LK i TK) što dokazuje da su se dogodila oštećenja u molekuli klorofil a izazvane metalnim ionima poput Cu^{2+}, Zn^{2+}, Cd^{2+} ili Ni^{2+} čije su vrijednosti također povišene u odnosu na obje kontrole. Sadržaj neproteinskih tiola bio je povećan u svim modelnim organizmima između 10 i 13% u odnosu na vrijednosti kontrola čime je potvrđeno stanje stresa u biljkama izloženim filtratima tla i blizine TE Plomin. Ovo stanje blagog oksidativnog stresa u vodenoj leći potvrđuju i rezultati analize sadržaja ukočenih proteina koji bilježe pad do 21% kod uzorka koji je najmanje udaljen od TE Plomin (200 m). Sadržaj malondialdehida u vodenoj leći nije pokazao statistički značajnije promjene. Nepovoljan utjecaj otopina tla iz okolice TE Plomin na modelni organizam pokazuju i aktivnosti enzima askorbate peroksidaze i katalaze. Rezultati analize askorbate peroksidaze pokazuju značajan pad aktivnosti ovog enzima (200 m – 36%, 300 m – 36% i 400 m - 23%) u odnosu na kontrolne biljke, a glavni inhibitori najčešće su Zn, Cu i Ni koji su također pokazali povišen sadržaj u odnosu na kontrolu. Slične trendove pokazuje i aktivnost katalaze koja je smanjena između 34 i 40% u svim uzorcima bez obzira na udaljenost od potencijalnog izvora oštećenja. Usporedba rezultata dobivenih u ovom radu s kontrolnim uzorcima i dostupnom
Literaturom ukazuje na nepovoljan utjecaj TE Plomin na okoliš, osobito na kvalitetu tla i živi svijet u blizini postrojenja, a najveći problem leži u sagorijevanju ugljena relativno loše kvalitete i nepravilnom skladištenju ostataka sagorijevanja.
8. LITERATURA

Internetski izvori:

www.istra.lzmk.hr [27.12.2014.]

Google Earth Pro – probna inačica programa [Modificirano: 14. 01.2015.]
9. PRILOZI

Prilog 1. Karakteristike različitih vrsta ugljena (Izvor: EH&E, 2011).

<table>
<thead>
<tr>
<th>KARAKTERISTIKE</th>
<th>ANTRACIT</th>
<th>BITUMINOZNI UGLJEN</th>
<th>SUBBITUMINOZNI UGLJEN</th>
<th>LIGNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toplinska vrijednost (BTU/lb)</td>
<td>15</td>
<td>11 - 15</td>
<td>8 – 13</td>
<td>4 – 8</td>
</tr>
<tr>
<td>S (%)</td>
<td>< 1</td>
<td>3 – 10</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Ar (lb/10⁹ BTU)</td>
<td>N</td>
<td>0,500</td>
<td>0,100</td>
<td>0,300</td>
</tr>
<tr>
<td>Be (lb/10⁹ BTU)</td>
<td>N</td>
<td>0,110</td>
<td>0,030</td>
<td>0,200</td>
</tr>
<tr>
<td>Cd (lb/10⁹ BTU)</td>
<td>N</td>
<td>0,030</td>
<td>0,010</td>
<td>0,060</td>
</tr>
<tr>
<td>Cl (lb/10⁹ BTU)</td>
<td>N</td>
<td>35,000</td>
<td>2,700</td>
<td>24,000</td>
</tr>
<tr>
<td>Cr (lb/10⁹ BTU)</td>
<td>N</td>
<td>1,100</td>
<td>0,400</td>
<td>2,200</td>
</tr>
<tr>
<td>Pb (lb/10⁹ BTU)</td>
<td>N</td>
<td>0,600</td>
<td>0,200</td>
<td>1,000</td>
</tr>
<tr>
<td>Ma (lb/10⁹ BTU)</td>
<td>N</td>
<td>1,800</td>
<td>1,300</td>
<td>20,000</td>
</tr>
<tr>
<td>Hg (lb/10⁹ BTU)</td>
<td>N</td>
<td>0,007</td>
<td>0,006</td>
<td>0,030</td>
</tr>
<tr>
<td>Ni (lb/10⁹ BTU)</td>
<td>N</td>
<td>0,900</td>
<td>0,400</td>
<td>1,200</td>
</tr>
</tbody>
</table>

BTU/lb – mjerna jedinica za kalorijsku vrijednost ugljena (*British Thermal Units per pound of coal*); N – vrijednosti nisu zabilježene
Prilog 2. Karakteristike uvoznog kamenog ugljena (Izvor: EKONERG, 2011)

<table>
<thead>
<tr>
<th>VELIČINA</th>
<th>JEDINICA</th>
<th>UGLJEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Najlošiji</td>
</tr>
<tr>
<td>H₄</td>
<td>MJ/kg</td>
<td>24,000</td>
</tr>
<tr>
<td>Ugljik</td>
<td>% mase</td>
<td>59,750</td>
</tr>
<tr>
<td>Sumpor</td>
<td>% mase</td>
<td>1,500</td>
</tr>
<tr>
<td>Dušik</td>
<td>% mase</td>
<td>1,400</td>
</tr>
<tr>
<td>Klor</td>
<td>% mase</td>
<td>0,071</td>
</tr>
<tr>
<td>Vlaga</td>
<td>% mase</td>
<td>12,000</td>
</tr>
<tr>
<td>Pepeo</td>
<td>% mase</td>
<td>15,000</td>
</tr>
</tbody>
</table>
Prilog 3. Osnovna geološka karta SFRJ - List Labin (L 33-101)