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In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell
center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not
known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering
by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in
the presence of motors, which we confirmed experimentally in living cells. The model also predicts a
characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where
we displaced the nucleus using optical tweezers.

DOI: 10.1103/PhysRevLett.114.078103 PACS numbers: 87.16.Ka, 87.16.Nn, 87.16.Uv, 87.17.Aa

In interphase fission yeast cells the nucleus is found at
the center of the cell [1]. This central location of the nucleus
ensures symmetric cell division, because the cell divides at
the site where the nucleus is located in early mitosis [2–4].
At the end of mitosis, however, the nucleus is found near
the cell pole and thus must return to the cell center. In
addition, between the two divisions, the nucleus must be
dynamically recentered as the cell grows, because growth
occurs asymmetrically with one pole growing faster than
the other [5,6]. It is important for the cell to be able to move
the nucleus not only for nuclear centering, but also because
chromosomes move as the nucleus moves, which facilitates
relocations of genomics regions [7].
The nucleus is positioned by forces exerted by micro-

tubules (MTs) that push against the cell edge. The MTs are
linked to the nucleus via MT-organizing centers (MTOCs),
one of them being the spindle pole body (SPB). MTs are
typically organized in 3–4 bundles that extend along the
cell axis and consist of two antiparallel MTs with plus ends
oriented towards the cell poles, and several short MTs in
the region close to the nucleus [1,8,9]. MTs grow or shrink,
with the switch from growth to shrinkage termed catastro-
phe. When the nucleus is displaced by optical tweezers [2]
or centrifugation [10], MTs are able to recenter the nucleus,
which is accompanied by longer lasting pushing by shorter
MTs in comparison to longer MTs [10].
Centering by MT pushing has been studied theoretically

by considering a dynamic array of MTs in a confined
geometry [1,11–13]. In particular, centering of the nucleus
in fission yeast has been explored by taking into account
MT dynamics [1], and becomes more efficient if the MT
catastrophe rate increases with MT length [14]. In addition,
in vitro studies have shown that forces exerted by MTs
interacting with a boundary may lead to centering [15–17].

Dynamic properties of MTs, including catastrophe, are
regulated by proteins such as kinesin-8 motors. The effect
of kinesin-8 on MT dynamics has been studied experi-
mentally in vitro [18–24] and in vivo [20,22,25–27] as
well as theoretically [23,24,28–33]. Fission yeast has two
kinesin-8 motors, Klp5 and Klp6, which form a hetero-
dimer [25–27,34,35]. These motors accumulate at the plus
end of the MT in a MT length-dependent manner and
promote catastrophe [25]. However, the role of kinesin-8
motors in nuclear positioning is not known.
In this Letter we explore how kinesin-8 motors affect

nuclear centering. We develop a physical model that
describes pushing forces exerted by MTs on the nucleus,
whereMT catastrophe is regulated by kinesin-8motors. Our
model predicts improved centering in the presence ofmotors
and a characteristic time for the recentering of a displaced
nucleus, which we confirmed experimentally in living cells.
In our one-dimensional model, a cell of length L has N

antiparallel pairs (bundles) of MTs connected to the
nucleus via MTOCs (Fig. 1). The positions of the nucleus
and of the ith MTOC with respect to the cell center are
denoted xnuc and xi, respectively. The movement of the
nucleus at time t is described by

ξ
dxnuc
dt

¼
XN
i¼1

fi: ð1Þ

Here, ξ denotes the drag coefficient of the nucleus while
moving through the cytoplasm and fi ¼ κΔxi is the force
exerted by the ith MTOC. We describe the connection
between the nucleus and a MTOC as a Hookean spring of
stiffness κ, and extension Δxi ¼ xi − xnuc. We calculate the
elastic force of the ith MTOC as fi ¼ fþi þ f−i , where f�i
are forces exerted by MTs pushing against the right (þ)
and left (−) cell edge. MTs that are in contact with the cell
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edge exert a pushing force on the MTOC, which depends
on the MT growth velocity [36]:

f�i ¼ ∓fg;s½1 − ðdL�
i =dtÞ=vg;s�; ð2Þ

where fg and fs denote the force that stalls the MT growth
and shrinkage, respectively. The length of the MTs extend-
ing from the ith MTOC to the left and right is denoted L−

i
and Lþ

i , respectively. We assume that all MTs are rigid and
straight; thus, those in contact with the cell edge grow and
shrink with the velocity of the MTOC movement
dL�

i =dt ¼ ∓dxi=dt (for details on how we calculate

growth and shrinkage velocity of MTs, see Supplemental
Material [37]). An extension of the model, which includes
elastic properties of the MTs, has a minor influence on
results (Fig. S1 in Ref. [37]), and is not considered further.
MTs that are not in contact with the cell edge grow with
velocity υg and shrink with velocity υs in accordance with
our experimental measurements (Fig. S2 in Ref. [37]).
For the MTs extending from the ith MTOC, the rate of

switching from growth to shrinkage, the catastrophe rate
kcat, obeys

k�cati ¼ k0 þ k1Q�
i ; ð3Þ

based on experiments from Ref. [25]. Here, k0 denotes the
catastrophe rate of MTs without motors. The parameter k1
describes the dependence of the catastrophe rate on the
number of kinesin-8 motors at the MT’s plus endQ�

i . Once
the MT starts shrinking, it shrinks completely, which is
followed by a nucleation of a new MT.
To describe kinesin-8 motors, we use a mean field

description by considering a motor density along the
MT ρðu; tÞ, which was formulated in Ref. [43], following
the model introduced in Ref. [44]. For a coordinate system
with the origin at the ith MTOC and positive direction of
the u coordinate in the direction of the plus end (Fig. 1), in
the low-density limit the motor density obeys [28]

∂ρ�i
∂t ¼−∂ðυmρ�i Þ

∂u þkoncΘðL�
i −uÞΘðuÞ−koffρ�i ; ð4Þ

where the motors bind to and unbind from the MTs at rates
kon and koff , respectively. The concentration of motors in
the cytoplasm is denoted c, and the velocity of motors is
denoted υm. The Heaviside step functions ΘðL�

i − uÞ and
ΘðuÞ ensure that the motors bind only along the MT. We
separately describe the number of motors at the plus end
of the MTs extending from the ith MTOC

dQ�
i

dt
¼

�
υm − dL�

i

dt

�
ρ�i ju¼L�

i
− koffQ�

i ; ð5Þ

k
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L

uκυm

k
offQ

i

-
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FIG. 1 (color). The model. Scheme of the cell (top) and of the
model (bottom). The MTs of lengths L�

i (green) extend from the
ith MTOC (magenta) at position xi, toward the cell periphery.
MTs in contact with the cell edge exert a pushing force f−i on the
MTOC. The nucleus [dark gray shape (top), gray circle (bottom)]
is at position xnuc and is connected to the MTOC by a spring of
stiffness κ. Klp5 motors (black pictograms) attach to MTs with a
rate kon, and detach with a rate koff . Klp5 motors walk toward the
MT plus ends with velocity υm and accumulate at the MT plus
end. The number of motors at the MT plus end is denoted Q−

i .
The origin of the coordinate system is in the cell center. The total
length of the cell is denoted L. u denotes positive direction of the
coordinate in the direction of the MT plus end.

TABLE I. Parameters of the model. For measured and optimized parameters, see Ref. [37].

Parameters Description Source

Nuclear movement L ¼ 9 μm Cell length Measured
N ¼ 3 Number of MT bundles Ref. [1]

fg ¼ −fs ¼ 4 pN MT stall force Ref. [36]
υg ¼ 2 μm=min MT growth velocity Measured
υs ¼ 6 μm=min MT shrinkage velocity Measured
κ ¼ 2.5 pN=μm Spring constant Optimized

ξ ¼ 1500 pNs=μm Nuclear friction coefficient Optimized

MT catastrophe υm ¼ 3 μm=min Velocity of motors Measured
With motors Without motors

k0 ¼ 0.04 min−1 0.2 min−1 MT catastrophe rate Ref. [25]
koff ¼ 0.25 min−1 Motor unbinding rate Ref. [25]
K1 ¼ 2.1 μm−1 Increase of catastrophe due to motors Ref. [25]
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based on the experimentally observed accumulation of
kinesin-8 motors at the plus end of growing MTs (Fig. S3
in Ref. [37]).
The parameters of the model, listed in Table I, were

taken from the literature, measured here, or determined as
follows. Parameters k0; koff , and K1 ¼ k1konc=k2off were
obtained by fitting the formula Eq. (S3) in Ref. [37] to the
data in Ref. [25]. Note that parameter k0 has a different
value in the case with and without motors, but using a
unique k0 has a minor influence on results (Fig. S4 in
Ref. [37]); parameters κ and ξ were obtained as a unique
combination for which the model reproduces the standard
deviations of the nucleus and the SPB measured here
[Figs. 2(a)–2(c) and Fig. S5 in Ref. [37]]. Thus, the
distributions of positions of the nucleus and the MTOC
(SPB) calculated by the model reproduce those from the
experiments [Figs. 2(b) and 2(c)]. In addition, with this
choice of parameters, the results of our model are consistent
with experimental data in Refs. [1], [10], [25] (see also
Fig. S6 in Ref. [37]).
By solving the model in the cases with and without

motors, we find that the nucleus is centered better when
motors are present than when they are absent, as shown by
the corresponding distributions of the nuclear position
[Figs. 2(b) and 2(e)]. The MTOC is also centered better
in the presence of motors, but the distribution of the MTOC
position is wider than that of the nucleus, in both the case
with and without motors [Figs. 2(c) and 2(f)]. We also
explored how the centering of the nucleus depends on
the MT number, in the cases with and without motors
[Fig. S7 in Ref. [37]].
To test these theoretical predictions, we measured the

movements of the nucleus and of the SPB in a klp5Δ strain,
which lacks the kinesin-8 motor Klp5 [Fig. 2(d)]. We
observed that the nucleus is typically found farther away
from the cell center in klp5Δ than in wild-type cells,
as shown by the 1.7-fold larger standard deviation of the
distribution of the nuclear position in klp5Δ cells, which
is consistent with the prediction of the model [Figs. 2(b)
and 2(e)]. Similarly, the division plane was positioned more
asymmetrically in klp5Δ cells than in wild-type cells
[Fig. 2(g)]. The SPB was also typically found farther away
from the cell center inklp5Δ cells than inwild-type cells, and
the distribution of the SPB positionwaswider than that of the
nucleus, as predicted by the model [Figs. 2(c) and 2(f)].
In the case where a single MT touches the cell edge,

our theory provides a simple formula describing how the
velocity of the nucleus increases with the distance between
the MTOC and the nucleus dxnuc=dt ¼ ðκ=ξÞðxi − xnucÞ
[Fig. 2(h)]. On the contrary, as the distance between the
MTOC and the nucleus increases, the velocity of theMTOC
decreases: dxi=dt ¼ υg½1 − κðxi − xnucÞ=f0� [Fig. 2(h)].
Note that the same formulas hold in the casewithout motors.
To compare the results of the model with the experi-

ments, we measured the velocity of the nucleus and of the
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FIG. 2 (color). Centering of the nucleus and of the SPB in wild-
type and klp5Δ cells. Time-lapse images of wild-type (WT)
(a) and of klp5Δ (d) cells. Time between images is 30 s. Schemes
corresponding to the first images are shown on the left. (b),
(e) Histograms of the nuclear positions, theory (black) and
experiment (green). (c),(f) Histograms of the MTOC (theory,
black) and of the SPB (experiment, magenta) positions. Results
(b),(c) with and (e),(f) without kinesin-8 motors (for experimental
procedure, see Ref. [37]). The number of events is normalized,
error bars represent SEM. (g) Histograms of the position of the
division plane in wild-type (black) and klp5Δ (magenta) cells.
Fitting the histogram of the length difference of the two sibling
cells, jLcell1 − Lcell2j, with a Gaussian gives a value of 0.50�
0.02 μm for wild-type cells and 1.03� 0.11 μm for klp5Δ cells.
(h) Theoretical results for the velocity of the nucleus (lower line)
and of a MTOC (upper line) as a function of their distance when
a single MT pushes against the cell edge. (i) Experimental
results for the velocity of the nucleus (lower lines) and of the
SPB (upper lines) as a function of their distance, for wild-type
(black) and klp5Δ (magenta) cells, when only one MT is in
contact with the cell edge. The parameters for the model are
given in Table I.
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SPB in the cases when only one MT was interacting with
the cell edge. As predicted by the model, the experimen-
tally measured velocity of the nucleus increased and the
velocity of the SPB decreased with the increasing distance
between the SPB and the nucleus, in wild-type cells and in
those lacking kinesin-8 motors [Fig. 2(i)]. The disagree-
ment in the shape between the theoretical and experimental
curves is most likely due to the assumption in the model
that the nucleus and the MTOC are connected by a
Hookean spring (a nonlinear connection is discussed in
Fig. S8 of Ref. [37]).
Our model predicts that if the nucleus is displaced away

from the cell center, it returns to the center obeying
an exponential law with a characteristic time of 24 min
[Fig. 3(a)], which is similar in the case without motors
(Fig. S9 in Ref. [37]). To test the prediction for the
characteristic time, we used optical tweezers to displace
the nucleus away from the cell center in wild-type cells
[2,45,46] [Fig. 3(b), see also Ref. [37]). Afterwards,
we observed that the displaced nucleus returned to the
cell center with a characteristic time of 22� 1 min

(mean� standard error of the mean, n ¼ 6; Fig. 3c).
These experimental results are consistent with the predic-
tion from the model. The model also predicts, for the case
of a displaced nucleus, a higher catastrophe rate of the MT
growing towards the distal cell edge when the MT in the
same bundle is in contact with the proximal cell edge in
comparison with the situation of no contact (Fig. S10 in
Ref. [37]). This result is in qualitative agreement with the
measurements from Ref. [10].
In conclusion, we have developed a physical model that

describes nuclear centering by MT pushing forces, where
MT catastrophe is regulated by kinesin-8 motors, and tested
it experimentally. It has been shown in vitro that the growth
velocity of a pushing MT decreases as the force on the MT
increases, when the MT grows against an obstacle [36]. Our
work suggests that such a force-velocity relationship holds
also in vivo: when a MT was in contact with the cell edge
and thus pushed on the SPB, we observed a decrease in the
velocity of the SPB as it stretched the nucleus [Fig. 2(h)].
A similar conclusion could also be inferred from the angle
dependence of MT growth velocities measured in vivo in
Ref. [25]. Our result may be relevant for the spindle,
because the MT arrangement in the spindle is analogous to
the arrangement studied here turned inside out. Indeed,
kinesin-8 motors help chromosome positioning on the
spindle during metaphase [26,35,47], but the mechanism
is not known. The mechanism of centering shown here
may also drive the positioning of the chromosomes on the
mitotic spindle.
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