Mineraloške, petrološke i geokemijske analize kamenih artefakata s područja Stari Perkovci-Debela šuma

Antolin, Suzana

Master's thesis / Diplomski rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:941781

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-24

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Geološki odsjek

Suzana Antolin

MINERALOŠKE, PETROLOŠKE I GEOKEMIJSKE ANALIZE KAMENIH ARTEFAKATA S PODRUČJA STARI PERKOVCI-DEBELA ŠUMA

Diplomski rad

Zagreb, 2019.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK

Suzana Antolin

MINERALOŠKE, PETROLOŠKE I GEOKEMIJSKE ANALIZE KAMENIH ARTEFAKATA S PODRUČJA STARI PERKOVCI-DEBELA ŠUMA

Diplomski rad predložen Geološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog stupnja magistra geologije

> Mentor: Dr. sc.Darko Tibljaš

> > Zagreb, 2019.

TEMELJNA DOKUMENTACIJSKA KARTICA

Sveučilište u Zagrebu

Prirodoslovno-matematički fakultet

Geološki odsjek

Diplomski rad

MINERALOŠKE, PETROLOŠKE I GEOKEMIJSKE ANALIZE KAMENIH ARTEFAKATA S PODRUČJA STARI PERKOVCI- DEBELA ŠUMA

SUZANA ANTOLIN

Rad je izrađen na Mineraloško-petrografskom zavodu Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Horvatovac 95, 10000 Zagreb, Republika Hrvatska

Sažetak: Za vrijeme arheoloških iskapanja 2006. godine na lokalitetu Debela šuma (Stari Perkovci) pronađeno je približno 190 kamenih artefakata. Devet uzoraka odabrano je za detaljne analize koje su uključivale klasičnu rendgensku difrafrakciju na prahu, mikroskopsku analizu polarizirajućim petrografskim mikroskopom i cijelostijensku kemijsku analizu sastava ICP-ES/MS metodama. Uzorci koji su određeni pripadaju skupini stijena koje su često korištene za izradu kamenih artefakata, a to su hornfels, čert, tufit, metadijabaz i amfibolski škriljavac. Jedan uzorak se ipak ističe kao posebno vrijedan nalaz, a to je nefrit. Nefrit je bio vrlo vrijedan materijal za obradu i korištenje tijekom razdoblja neolitika zbog izrazite žilavosti i relativno niske tvrdoće. Unatoč relativno maloj bazi podataka o nefritnim artefaktima, bilo je moguće odrediti nefrit iz Debele Šume kao S-tip nefrita.

Ključne riječi: Geoarheologija, kameni artefakti, neolitik, nefrit, Stari Perkovci-Debela šuma,

Rad sadrži: 124 stranice, 94 Slike, 53 tablice, 23 literaturna navoda

Jezik izvornika: hrvatski

Rad je pohranjen u Središnjoj geološkoj knjižnici Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Horvatovac 102a, 10 000 Zagreb, Republika Hrvatska.

Mentor: Dr. sc.Darko Tibljaš, red. prof.

Ocjenjivači: Dr. sc.Darko Tibljaš, red. prof.

Dr. sc Dražen Balen, red. prof.

Dr. sc.Borna Lužar-Oberiter, doc.

Datum diplomskog ispita: 26.09.2019.

BASIC DOCUMENTATION CARD

University of Zagreb Faculty os Science

Division of Geology

Graduation Thesis

MINERALOGICAL-PETROLOGICAL ANALYSIS OF LITHIC ARTEFACTS FROM ARCHAEOLOGICAL LOCALITY STARI PERKOVCI-DEBELA ŠUMA

SUZANA ANTOLIN

Thesis completed at the Institute of Mineralogy and Petrology, Faculty of Science, University of Zagreb, Horvatovac 95, 10 000 Zagreb, Croatia.

Abstract: During archaeological excavations in 2006 at the Debela šuma locality (Stari Perkovci) approximately 190 lithic artefacts were found. Nine of those were chosen for more detailed analyses that included classic X-ray powder diffraction, polarized light microscopy and whole rock chemical composition characterization by ICP-MS/ICP-ES methods. The determined rock types were commonly used for stone tools, those being hornfels, chert, tuffite, metadiabase and amphibole-bearing schist. One stone tool finding stands out, it was determined to be nephrite. Nephrite was a valued material during the Neolithic because of its extreme toughness and relatively low hardness. In spite of a relatively small available research database for nephrite artefacts it was possible to classify the nephrite from Debela šuma as a serpentinite-related nephrite.

Keywords: geoarchaeology, lithic artefacts, Neolithic, nephrite, Stari Perkovci- Debela šuma

Thesis contains: 124 pages, 94 figures, 53 tables, 23 references

Original in: Croatian

Thesis deposited in the Central geological library, Faculty of Science, University f Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia.

Supervisor: Dr. sc.Darko Tibljaš, Prof.

Reviewers: Dr. sc.Darko Tibljaš, Prof.

Dr. sc Dražen Balen, Prof.

Dr. sc.Borna Lužar-Oberiter, Doc.

Date of final exam: 26.09.2019.

ZAHVALE

Prije svega bih se htjela zahvaliti svom mentoru, prof. dr. sc. Darku Tibljašu, na ukazanom povjerenju, strpljenju, vodstvu i pomoći pri izradi diplomskog rada.

Zahvaljujem se i docentici dr. sc. Zorici Petrinec koja je spremno odgovarala na sva moja pitanja.

Veliko hvala na pomoći i trudu profesoru dr. sc. Draženu Balenu.

Posebno mi je drago što se mogu zahvaliti svojoj kolegici, asistentici mag. geol. Petri Schneider ne samo na pomoći pri izradi rada već i na emocionalnoj potpori i motivaciji.

Hvala svim kolegama i prijateljima što su bili uz mene na ovom putu, iako to nekada nije bilo baš lagano.

Na kraju zahvaljujem cijeloj svojoj obitelji, a posebno svojoj majci koja me podržavala i poticala da uvijek budem bolja.

SADRŽAJ

1.UVOD	1			
2.PREGLED DOSADAŠNJIH ISTRAŽIVANJA	2			
2.1 Arheometrija i arheologija	2			
2.2. Nefrit	3			
3. MATERIJALI I METODE	7			
3.1. Izbor uzoraka	7			
3.2. Воја	7			
3.3. Gustoća	8			
3.4. Rendgenska difrakcija na polikristalnim uzorcima (eng. X-ray diffraction, XRD)	8			
3.4.1. Metoda snimanja površine uzorka	10			
3.4.2. Metoda snimanja presjeka uzorka	10			
3.4.3. Metoda snimanja praha uzorka	10			
3.5. Mikrofiziografske analize	11			
3.6. Kemijske analize	11			
4. REZULTATI	13			
4.1. Gustoća i boja	13			
4.2. XRD analiza polikristalnih uzoraka	18			
4.2.1. XRD analiza 9 polikristalinih uzoraka izabranih za destruktivne analize	18			
4.2.2. XRD analiza površine polikristalnih uzoraka	48			
4.3. Makroskopski opis uzoraka i mikrofiziografske analize	68			
4.4. Kemijske analize	89			
5. DISKUSIJA	93			
5.1. XRD analize uzoraka	93			
5.1.1. Mineraloško petrografske karakteristike odabranih uzoraka	94			
5.2. Ostali uzorci	108			
5.3. Nefrit (uzorak L-4866)	109			
6. ZAKLJUČAK	115			
7. LITERATURA	116			
7.1. Publicirani radovi	116			
7.2. Internetski izvori	119			
8. Popis slika				
9. Popis tablica				
10. Korištene kratice				

1. UVOD

Tijekom arheoloških iskapanja 2006. godine na lokalitetu Debela šuma pronađeno je približno 190 kamenih artefakata (RAJKOVIĆ, 2019). Arheološki lokalitet Debela šuma nalazi se sjeveroistočno od sela Stari Perkovci na dionici autoceste Đakovo-Sredanci. Svi pronađeni artefakti na tom području korišteni su u razdoblju neolitika. Većina uzoraka pripada sopotskoj, a 5 nalaza pripada starčevačkoj kulturi.

Zbog potrebe za njihovom geološkom odredbom dr. sc. Dragana Rajković iz Arheološkog muzeja u Osijeku dostavila je uzorke u Mineraloško - petrografski zavod Prirodoslovno-matematičkog fakulteta u Zagrebu. Glavni cilj ovog rada je odrediti mineraloške i petrološke karakteristike kamenih artefakata. Te karakteristike su ključ za utvrđivanje geološkog podrijetla sirovina korištenih za izradu artefakata. Razumijevanje podrijetla korisno je za arheološke studije kulturnih interakcija i općih smjerova kretanja neolitičke populacije. Budući da se radi o vrijednim arheološkim nalazima, od iznimne je važnosti da se minimalna količina materijala iskoristi za potrebe analiza koje su destruktivne prirode. Stoga se preliminarna analiza mora sastojati od efektivnih neinvazivnih metoda kao što su makroskopsko određivanje boje, teksture i mjerenje gustoće uzoraka. Nažalost, makroskopski izgled nekih potpuno nepovezanih kamena alata je izrazito sličan i samo se detaljnom analizom može razlikovati. Osim toga makroskopske teksture i boje mogu biti vrlo različiti od stvarnih unutarnjih boja i tekstura. Preliminarno grupiranje i razdvajanje uzoraka temelji se na izmjerenoj gustoći uzoraka. Nadalje, 44 uzorka odabrano je za nedestruktivnu faznu analizu metodom difrakcije rendgenskih zrakana površini uzorka. No samo 9 uzoraka odabrano je za detaljnije, destruktivne, analize koje su uključivale klasičnu rendgensku difrafrakciju na prahu za koju je uzorak potrebno usitniti, mikroskopsku analizu polarizirajućim petrografskim mikroskopom i cijelostijensku kemijsku analizu sastava ICP-ES/MS metodama.

Drugi cilj ovog rada je usporediti rezultate XRD analiza dobivene snimanjem površine uzorka odnosno praha kako bi se ustvrdilo da li snimanje površine daje zadovoljavajuće rezultate ili postoji opravdana potreba za destruktivnim analizama u slučaju rendgenske difrakcije.

2. PREGLED DOSADAŠNJIH ISTRAŽIVANJA

2.1 Arheometrija i arheologija

U ovom radu opisane su provedene metode i rezultati analiza arheoloških materijala. U drugoj polovici dvadesetog stoljeća razvija se svijest o potrebi stručnih analiza arheoloških materijala kako bi oni bili što točnije opisani i stavljeni u kontekst. Zbog te potrebe javlja se nova znanstvena disciplina, arheometrija. Arheometrija podrazumijeva interpretaciju arheoloških podataka pomoću metodologije tehničkih i prirodnih znanosti (ARTIOLI 2010). Razvojem arheometrije povećava se baza dostupnih podataka o raznim materijalima što znači da se materijali mogu detaljnije i točnije interpretirati u arheološkom kontekstu. Neke od znanstvenih disciplina koje su ključne za arheometrijska istraživanja su kemija, fizika, biologija, mineralogija, petrologija i znanost o materijalima. Odabir znanstvene discipline naravno ovisi o vrsti materijala (npr. stijene, keramika, tlo i pigmenti) i cilju istraživanja (definiranje materijala, očuvanje materijala ili autentičnosti).

Doktorski rad D. RAJKOVIĆ pod nazivom *Glačane kamene izrađevine u životu starčevačke i sopotske populacije na prostoru istočne Hrvatske* pružio je arheološki kontekst uzoraka koji su analizirani i opisani u ovom radu. Ona navodi da su ovi uzorci, točnije kamene glačane izrađevine, korištene za vrijeme starčevačke i sopotske kulture na području arheološkog nalazišta Debela šuma (Slika 1.). Starčevačka kultura za promatrano područje traje od oko 6100. do 5300. god. pr.Kr., a sopotska od otprilike 5300. do 4300. god. pr. Kr. (RAJKOVIĆ, 2019). Razdoblje starčevačke kulture pripada razdoblju ranog neolitika, a sopotska kasnom neolitiku i ranom eneolitiku. Za vrijeme starčevačke kulture na ovom području pojavljuje se sjedilački načina života, a kamene glačane izrađevine usko su povezane s tim načinom života.

Slika 1. Položaj nalazišta Stari Perkovci-Debela šuma (RAJKOVIĆ, 2019)

2.2. Nefrit

Materijali korišteni za izradu kamenih glačanih izrađevina uglavnom su lako dostupni i uobičajeni materijali. Među takvim običnim uzorcima, bilo je pravo iznenađenje pronaći nefritnu teslu. Tesle su kamene glačane izrađevine asimetričnog profila, a koristile su se za dubljenje drveta. Artefakti načinjeni od nefrita smatraju se visoko kvalitetnim i cijenjenim nalazima.

Nefrit je masivan, čvrst i kompaktan finozrnati agregat minerala grupe kalcijskih amfibola iz niza tremolit – fero-aktinolit . Taj niz obuhvaća tremolit s formulom $\Box Ca_2Mg_5[Si_8O_{22}](OH)_2$, aktinolit - $\Box Ca_2(Mg,Fe^{2+})_5[Si_8O_{22}](OH,F)_2$ i fero-aktinolit - $\Box Ca_2Fe^{2+}_5[Si_8O_{22}](OH,F)_2$ (LEAKE et al., 1997) .Srednji član niza, aktinolit, zadržao se iz starije klasifikacije u nomenklaturi isključivo zbog toga što je vrlo koristan u petrologiji iako mineraloški on nije potreban kao zasebni član.

Nefrit se uvrštava u skupinu žada u kojoj se uz nefrit nalazi i žadeit. Nefrit i žadeit bili su vrlo popularni materijali za izradu raznih artefakata u prapovijesti zbog atraktivnih boja i povoljne tvrdoće i čvrstoće. Nefrit i žadeit razlikuju se primarno po mineralnom sastavu. Žadeit (jadeit) je mineral (NaAl[Si₂O₆]) grupe alkalijskih piroksena i kristalizira u monoklinskom sustavu, a javlja se u vlaknastim i prutićastim agregatima. Nefrit je stijena koja je dobila ime po grčkoj riječi *nephros*, što znači *bubrežni kamen* jer se vjerovalo da nefrit može liječiti bolesti bubrega. Zbog izrazite žilavosti i relativno niske tvrdoće (5 1/2 - 6 1/2 po Mohsovoj ljestvici) nefrit je u razdoblju ranog neolitika bio vrlo vrijedan materijal za obradu i korištenje (GIL et al., 2015a).

Postoje dvije vrste nefrita, a to su paranefrit i ortonefrit. Obje vrste nefrita nastaju metasomatizmom na kontaktu magnezijem bogatih stijena kao što su serpentiniti, peridotiti, dolomiti i dolomitni mramori i silicijem zasićenih stijena kao što su granodioriti, plagiograniti, granitne intruzije i metasedimenti (GIL et al., 2015a; GIL et al., 2015b) . Razlika između paranefrita i ortonefrita je u tipu magnezijem bogatih stijena koje dolaze u kontakt sa silicijem zasićenom stijenom. Paranefrit (D-tip) je nefrit koji nastaje na račun dolomitnih stijena, a ortonefrit (S-tip) se veže uz serpentinitne stijene (GIL et al., 2015a).

Ortonefrit nastaje na kontaktu serpentinita ili peridotita sa stijenama koje imaju veći udio silicija (uglavnom su to granitne intruzije, plagiograniti ili metasedimenti) (GIL et al., 2015b). Pojednostavljeni slučaj nastanka nefrita prikazan je kemijskom jednadžbom (SIQIN et al. 2012):

$$\begin{array}{ll} 5(Mg,\,Fe)_{3}Si_{2}O_{5}(OH)_{4}+14SiO_{2}+6CaO \rightarrow 3Ca_{2}(Mg,Fe)_{5}[Si_{8}O_{22}](OH)_{2} \ +7H_{2}O\\ serpentin & nefrit \end{array}$$

Paranefriti nastaju na kontaktu dolomitnih mramora i granitnih intruzija. Kemijska reakcija nastanka nefrita prikazana je kemijskom jednadžbom (SIQIN et al. 2012):

$$5Ca(Mg,Fe)(CO_3)_2 + 8SiO_2 + H_2O \rightarrow Ca_2(Mg,Fe)_5[Si_8O_{22}](OH)_2 + 3CaCO_3 + 7CO_2$$

dolomitni mramor nefrit kalcit

Paranefriti s područja Kine ukazuju na drugi način nastanka paranefrita koji se sastoji od dvije faze. Prva faza je zamjena dolomitnog mramora diopsidom, a druga faza je zamjena diopsida tremolitom (LIU et al., 2011):

 $\begin{array}{ll} \text{Ca}(\text{Mg},\text{Fe}) \ (\text{CO}_3)_2 + 2\text{SiO}_2{}^{\text{aq}} & \rightarrow \text{Ca}\text{Mg}(\text{Si}_2\text{O}_6) + 2\text{CO}_2{}^{\text{aq}} \\ \\ & \text{dolomitni mramor} & \text{diopsid} \end{array}$

$$\label{eq:caMg} \begin{split} CaMg(Si_2O_6) + H_2O &\rightarrow Ca_2Mg_5[Si_8O_{22}](OH)_2 + 3Ca^{2+} + 6SiO_2 \\ diopsid & tremolit \end{split}$$

Neka od značajnijih svjetskih nalazišta nefrita nalaze se u Britanskoj Kolumbiji, Sibiru, Kini, Koreji, Australiji i Novom Zelandu. U Europi postoje manja nalazišta nefrita u Finskoj, Švicarskoj, Italiji, Njemačkoj i dva značajna nalazišta u Poljskoj u Złoty Stoku i Jordanówu (KORYBSKA-SADŁO et al., 2018).

Na području Poljske pronađeni su i paranefriti i ortonefriti. GIL et al. (2015a) u svom radu opisuje paranefrit (D-tip) iz rudnika zlata u Złoty Stoku (Donja Šleska, Poljska). U rudniku zlata prisutna je Au-As mineralizacija, a te naslage su stijene domaćini za čak dva tipa paranefrita. Tip 1 je sivo zelene do svijetlo zelene boje i sadrži aktinolit i obilje loellingita (FeAs₂). Nefriti tipa 2 su intenzivno zelene boje i sadrže tremolit i aktinolit, te u manjem udjelu loellingit i arsenopirit (FeAsS). Oba tipa nefrita nastala su metasomatskom zamjenom dolomitnog mramora. Razlike u ova dva tipa paranefrita ukazuju da je bilo minimalno dva različita događaja koji su uzrokovali nastanak nefrita. Determinacija načina nastanka nefrita se može napraviti na temelju kemijskih podataka (izotopni sastav, udio kobalta, mangana, kroma, nikla itd.), a novija istraživanja pokazuju kako bi se mogla koristiti i katodoluminiscencija.

Nefrit s područja Jordanowa GIL (2013) određuje kao ortonefrit koji sadrži tremolit, diopsid i klorite (pennantit, klinoklor i diabantit) uz sporedne minerale grosular, prehnit, opaki spinel i akcesorne minerale antigorit, hidrogrosular, titanit, cirkon, apatit i monacit. Boje ovih ortonefrita su bijela, zeleno-plava, te najčešće svijetlo zelena do tamno zelena. U uzorku su vidljiva vlakna tremolita (10-60 mikrometara), ali i porfiroblasti istog sastava veličine do 600 mikrometara (GIL et al., 2015b). S i D tip nefrita razlikuju se na temelju koncentracija elemenata Cr, Ni, Co, te omjeru željeza i magnezija (Fe/(Fe + Mg)). To se odnosi na koncentracije u petrogenim mineralima i na koncentracije u cijelostijenskim analizama. Prema Petardi et al. (2014), razlika između S i D tipa nefrita može se dobro uočiti na R*/SiO₂ dijagramu. Vrijednost R* predstavlja omjer magnezija i željeza (Mg²⁺/(Mg²⁺+Fe²⁺⁽³⁺⁾)). Iznosi R* za D-tip nefrita nalaze se u rasponu 0,930-1, a za S-tip 0,860-0,930.

Udio elemenata Cr, Ni i Co veći je kod ortonefrita (SIQIN et al., 2012; GIL et al., 2015a, 2015b; KORYBSKA-SADŁO et al., 2018), te je moguće determinirati izvorište na temelju udjela tih elemenata. Udio kobalta može varirati zbog drugih faktora kao što je opisano u GIL et al. (2015a) gdje taj udio iznosi 71 ppm. Povišeni udio kobalta, u ovom slučaju, može se objasniti prisustvom lolingita i arsenopirita koji sadrže do 7,18 tež. % kobalta. Uzorci tih nefrita porijeklom su iz rudnika zlata u Złoty Stoku, gdje se javlja Au-As mineralizacija. Uz povišeni udio kobalta u uzorku javlja se i povišeni udio aresna i povišeni udio sumpora. Determinacija na temelju udjela manganovog oksida (MnO) u cijelostijenskom uzorku je dosta problematična zbog preklapanja raspona MnO (GIL et al., 2015a). Uobičajeno dolomitni tipovi nefrita imaju niže udjele MnO nego serpentinitni, no preklapanja nisu zanemariva te nije moguće jednoznačno odrediti vrstu odnosno genezu nefrita samo na temelju udjela mangana.

Mineralni sastav nefrita varira od tremolita, aktinolita do fero-aktinolita. Nefriti čiji je sastav gotovo čisti tremolit su uglavnom bijele boje. Takvi varijeteti poznati su pod nazivom *mutton fat žad*. Bijela boja nefrita može biti i posljedica namjernog spaljivanja na temperaturama iznad 1025°C (WARD, 2008), no u tom slučaju bijelu boju nefritu daje diopsid. Nefriti koji sadržavaju aktinolit intenzivnije su zelene boje, a rijetki varijetet fero-aktinolitnog sastava crne su boje (HARLOW i SORENSEN, 2005). Pretpostavlja se da na boju nefrita najviše utječe udio Fe (GRAPES i YUN, 2010; LIU et al., 2011; KOSTOV et al., 2012;). ADAMO i BOCCHIO (2013) opisuju paranefrite pronađene 1995. godine na sjeveru Italije. Ti nefriti su većinom tremolitnog sastava s varijabilnim udjelom kalcita (do 30 tež.%). U radu se ukazuje na pozitivnu korelaciju udjela kalcita i promjenu boje iz svijetlo zelene prema bijeloj. Također, tvrdi da je za svijetlije zelenu boju uzoraka odgovoran niski udio željeza (0,01 – 0,08 tež.% FeO) u tremolitu. Sivu boju talijanskim paranefritima daju minerali molibdenit i galenit.

3. MATERIJALI I METODE

3.1. Izbor uzoraka

Vrijednost i ograničena količina arheoloških uzoraka zahtjeva poseban pristup i mnogo pažnje prilikom izvođenja analiza. Odabir primjerenih analiza vrlo je važan korak. Budući da su arheološki materijali vrijedni novčano i kulturološki, većinu uzoraka je moguće analizirati isključivo nedestruktivnim analizama što uvelike smanjuje broj primjenjivih metoda. Arheološki muzej Osijeka dostavio je približno 190 artefakata i ulomaka za analizu. Uzorci su prvo grupirani na temelju gustoće. Taj pristup je odabran zbog toga što gustoće uobičajenih stijena iz kojih se izrađuju tesle i sjekire uglavnom nisu veće od 3 g/cm³. Zbog velikog broja nalaza i vremenskih ograničenja nije bilo moguće posvetiti jednaku pažnju svim materijalima. Izdvojeni su uzorci veće gustoće, ali i neki uzorci s iznimno malom izdvojeni su i uzorci koji predstavljaju svaku od skupina gustoćom. Osim toga, makroskopski sličnih uzoraka. Izabranih 44 uzoraka dalje je analizirano rendgenskom difrakcijom. Iz te skupine uzoraka nadalje je odabrano devet uzoraka koji su bili od najvećeg interesa za analize za Arheološki muzej u Osijeku. Tih devet uzoraka moralo je zadovoljiti nekoliko kriterija. Primarno, izabrani uzorci morali su biti reprezentativni predstavnici grupe sličnih uzoraka. Također, uzorci su morali biti dovoljno veliki i sviježi kako bi rezultati analiza bili što bliži realnim vrijednostima primarne stijene. Zadnji i najvažniji kriterij je vrijednost uzorka. Uzorci koji su arheološki iznimno vrijedni ne smiju se uništavati radi analiza. To znači da su izabrani samo oni uzorci koji su procijenjeni kao manje ugledni i za koje je Arheološki muzej Osijeka dao privolu da se na njima mogu provesti destruktivne analize, ali dovoljno sviježi i veliki kako bi rezultati analiza bili reprezentativni i vjerodostojni.

3.2. Boja

Boja je važno svojstvo, no podložna je subjektivnom opisu koji može ovisiti o više faktora (GERHARZ et al., 1988). Kako bi se boja kvantificirala, korištena je Munselova ljestvica za boje. Podaci o boji uzoraka preuzeti su iz RAJKOVIĆ (2019). Čak i prilikom takvog određivanja boje može doći do subjektivne pogreške u odredbi boje, ali je vjerojatnost za to puno manja.

3.3. Gustoća

Svakom uzorku određena je gustoća prema formuli za gustoću:

$$\rho = \frac{m}{V}$$

ρ (grčki: ro)- gustoća [g/cm³]

m-masa [g]

V-volumen [mL ili cm³]

Masa uzoraka određena je u Arheološkom muzeju u Osijeku, a volumen je mjeren na Mineraloško – petrološkom zavodu. Volumen se mjeri na način da se u menzuru natoči voda i očita volumen. Nakon toga se u menzuru uranja i uzorak i očita volumen, a razlika u očitanjima je volumen o uzorka. Odstupanje od realnog volumena moguće je pri mjerenju trošnih i poroznih uzoraka. Također treba naglasiti da je očitanje volumena zbog grube skale na menzurama opterećeno greškom i može odstupati od stvarnih vrijednosti.

3.4. Rendgenska difrakcija na polikristalnim uzorcima (eng. X-ray diffraction, XRD)

Određivanje mineralnog sastava uzoraka provedeno je u rendgenskom laboratoriju na Mineraloško-petrografskom zavodu Prirodoslovno-matematičkog fakulteta u Zagrebu. Kvalitativni sastav određen je pomoću rendgenske difrakcije (XRD) metodom difrakcije na polikristalinim uzorcima. Korišteni instrument u analizama je Philips PW3040/60 X'Pert PRO difraktometar. Za stvaranje rendgenskog zračenja uređaj koristi keramičku rendgensku cijev Cu anode (CuK α zračenje je valne duljine λ =1. 54178 Å). Pri snimanju uzoraka korišteno je višeslojno parabolično rendgensko zrcalo, a zračenje Cucijevi (40 kV, 40 mA) registrirano je proporcionalnim brojačem. Difraktometar je opremljen vertikalnim goniometrom θ - θ geometrije. Brzina kontinuiranog snimanja je 0,02 °2 Θ /sek . Svi uzorci snimani su na sobnoj temperaturi. Difrakcijske slike interpretirane su pomoću programa X'Pert HighScore Plus (DEGEN et al., 2014). Rendgenska difrakcijska metoda nedestruktivna je analitička metoda koja se koristi za određivanje faznog sastava i kristalografskih značajki uzoraka. Rendgensko zračenje vrsta je elektromagnetskog zračenja visokih frekvencija i energija, te vrlo male valne duljine (od 1 Å do otprilike 200 Å). Tvari s kristalnom strukturom djeluju kao optička rešetka za rendgensko zračenje. Difrakcija zraka u kristalu može se protumačiti refleksijom zraka na skupovima mrežnih ravnina Kada je razlika u fazama zraka raspršenih na susjednim mrežnim ravninama cijeli broj, izlazno zračenje je pojačano. Braggova jednadžba opisuje geometrijske uvjete koji moraju biti zadovoljeni kako bi na nekoj mrežnoj ravnini došlo do rendgenske difrakcije:

 $2 d_{hkl} \sin \theta = n\lambda$

Braggova jednadžba

 d_{hkl} = međumrežni razmak ravnina u kristalu θ = difrakcijski kut n= razlika u hodu među valovima (cijeli broj) λ = valna duljina upadnog rendgenskog zračenja

Ovisno o stanju analiziranog materijala i vrsti podataka koje želimo dobiti, provode se metoda monokristala ili metoda praha. Svaka kristalna tvar ima karakterističnu difrakcijsku sliku neovisno o drugim tvarima u smjesi. To omogućuje analizu višefaznih uzoraka, te usporedbu difrakcijskih slika jedne tvari s difrakcijskom slikom smjese tvari. Metoda praha izvodi se tako da je λ vrijednost zračenja konstantna, a kut θ je promjenjiv. Budući da se u polikristalinom uzorku nalazi veliki broj kristalita s uređenom strukturom svih mogućih orijentacija, izvodi se generalizacija da u svakom trenutku neki od kristalita zadovoljava Braggovu jednadžbu. Mogućnosti za zadovoljenje Braggove jednadžbe još se uvećavaju rotiranjem uzorka. Dodatno metodu praha možemo prilagoditi za analizu cjelovitih krutih uzoraka ukoliko su karakteristike tog uzorka zadovoljavajuće. Poželjno je da uzorak površinom, strukturom i teksturom sličan prahu. Što znači da je poželjno da je površina uzorka ravna, da su mineralna zrna veličine nekoliko mikrona i da je sastav homogen. Uzorci su snimani na tri načina:

3.4.1. Metoda snimanja površine uzorka:

Ukupno 38 od 44 analizirana uzorka snimljeno je metodom snimanja površine. Većinu uzoraka ne smije se oštetiti u svrhu analize, zbog čega je snimana samo površina. Uzorci su snimani s istim postavkama difraktometra kao za snimanje praha. Ovakav način snimanja zahtjeva fizičku prilagodbu difraktometra. Postolje za nosač uzoraka je uklonjeno i umjesto njega u uređaj se stavlja improvizirano postolje za uzorke s mogućnošću vertikalnog pomicanja. Pored izvora i detektora zračenja postavljeni su laseri koji predstavljaju putanju rendgenskih zraka. Prilikom postavljanja uzoraka na odgovarajuću visinu oba lasera moraju obasjavati uzorak u istoj točki kako bi se osiguralo da rendgenske zrake padaju na uzorak pod odgovarajućim kutom te kako bi difraktirane zrake dolazile do detektora. Odstupanja od realnih rezultata vrlo su vjerojatna. Razlog tome je taj što je metoda rendgenske difrakcije prilagođena praškastim uzorcima homogene veličine čestica i sastava.

Nakon grupiranja po izgledu i gustoći, izabrano je 9 reprezentativnih uzoraka za koje je Arheološki muzej u Osijeku dopustio rezanje i drobljenje.

3.4.2. Metoda snimanja presjeka uzorka:

Budući da su uzorci u vrijeme neolitika bili u upotrebi, te nakon toga bili ukopani u sedimentu i izloženi procesima trošenja, na većini uzoraka su i makroskopski vidljivi tragovi trošenja. Što se očituje promjenom boje u površinskim dijelovima uzoraka i pukotinama. Metoda snimanja presjeka uzoraka vršila se zbog potrebe za usporedbom s metodama snimanja površine i praha. Cilj je vidjeti kako nehomogenost, zrnatost, te neravna i izmijenjena površina uzoraka utječe na izgled rendgenograma.

3.4.3. Metoda snimanja praha uzorka:

Devet uzoraka samljeveni su u fini prah u ahatnom tarioniku. Poželjno je da su čestice promjera nekoliko desetaka mikrometara. Tako samljeveni uzorci snimljeni su na nosaču od Si monokristala. Uzorci su rotirani prilikom snimanja. U prahu uzoraka nalazi se svježa

unutrašnjost uzorka, a ako uzorak sadrži i trošeni površinski sloj, onda se u prahu nalazi i taj dio.

3.5. Mikrofiziografske analize

Od 9 odabranih uzoraka izrađeno je 9 mikroskopskih preparata. Mikroskopski preparati su izrađeni i analizirani kako bi se na temelju sastava i strukture odredio mineralni sastav i vrsta stijene. Mikroskopski preparat izrađuje se tako da se od uzorka izreže pločica nekoliko milimetara debljine. Jedna strana pločice se polira abrazivnim prahom. Poliranje započinje brušenjem grubim abrazivnim prahom granulacije 90 kako bi se ujednačile velike neravnine na pločici. Zatim se koristi prah granulacije 250 i na kraju prah granulacije 500 kojim se vrši fino poliranje pločice. Na tako poliranu pločicu stavlja se zagrijani tekući kanadski balzam čiji je indeks loma 1,54. Daljnjim zagrijavanjem kanada balzam se zapeče. Kada se kanada balzam ohladi i stvrdne, uzorak je fiksiran na predmetno stakalce. Preparat se dalje stanjuje abrazivnim prahom do debljine oko 0,5 mm, a nakon toga polira finijim prahom do debljine pogodne za mikroskopiranje (oko 0,02 do 0,03 mm). Finalni koraci su postavljanje pokrovnog stakalca na preparate te konačno čišćenje nepotrebnih ostataka kanada balzama otapanjem u etanolu. Tako pripremljeni mikroskopski preparati, analizirani su pomoću petrografskog polarizacijskog mikroskopa marke Pro Lux.

3.6. Kemijske analize

Kemijske analize provedene su u laboratoriju Bureau Veritas Commodities Canada Ltd. Analizirani su glavni elementi, elementi u tragovima i elementi rijetkih zemalja. Metodom emisijske spektrometrije s induktivno spregnutom plazmom (eng. Inductively coupled plasma emission spectroscopy, ICP-ES) analizirani su glavni elementi, dok su elementi u tragovima analizirani masenom spektrometrijom s induktivno spregnutom plazmom (engl. inductively coupled plasma mass spectrometry, ICP-MS). Ove analize rađene su samo na 9 izabranih uzoraka. Rezultate kemijske analize korisno je upotrijebiti u kombinaciji s rezultatima drugih metoda kao što su XRD i mikroskopija optičkim mikroskopom. Uzorci su za analizu pripremljeni na mineraloško petrološkom zavodu. Prvi korak bio je rezanje uzorka kako bi se dobila što tanja pločica težine oko 10 grama. Drugi korak bio je usitnjavanje čekićem kako bi sve čestice bile približno iste veličino (1-2mm). Treći završni korak bio je usitnjavanje u ahatnom mlinu (Slika 2).

Slika 2. Ahatni mlin Fritsch pulverisette.

(izvor: https://www.pmf.unizg.hr/geol/o nama/mineralosko-petrografski zavod/oprema/priprema uzoraka)

4. REZULTATI

Svim uzorcima, analiziranim u ovom radu, određeni su gustoća, boja i fazni sastav metodom rendgenske difrakcije na polikristalnim uzorcima snimanjem površine uzorka. Izabranih 9 uzoraka L-6129, L-501, L-1542, L-5740, L-666, L-1495, L-4866, L-4217 i L-4057 podvrgnuto je kemijskim analizama, rendgenskoj difrakciji na prahu. Uz to, napravljeni su i izbrusci koji su mikroskopirani pomoću petrografskog polarizacijskog mikroskopa.

4.1. Gustoća i boja

Mase svih uzoraka kao i podaci o boji, preuzeti su iz RAJKOVIĆ (2019). Izmjeren je volumen svih uzoraka, a iz dobivenih podataka izračunata je gustoća. Podaci za izdvojenih 9 uzoraka nalaze se u tablici 1, a podaci za sve ostale uzorke nalaze se u tablici 2.

				-	-
Naziv	Volumen	Masa*	Gustoća	Boja *	Subjektivni dojam boje
uzorka	[mL]	[g]	[g/cm ³]	(Munsellova ljestvica)	površine uzorka
L-6129	40	124	3,1	10YR 8/2	Svijetlo smeđa
L-501	134	356	2,66	10Y 6/2	Zelena
L-1542	34	168	2,55	5Y 5/2	Zelena
L-5740	16	28,64	1,79	10R 5/4	Crveno smeđa
L-666	19	50,02	2,63	5Y 7/2	Svijetlo smeđa
L-1495	8	35,75	4,47	10YR 4/2	Sivo smeđa
L-4866	11,5	36,72	3,19	5Y 7/2	Svijetlo smeđa
L-4217	15	73,91	**4,93	5R 4/6	Crvena
L-4057	22	70,59	3,21	10 YR 6/2	Smeđa

Tablica 1. Volumen, masa, gustoća i boja uzoraka izdvojenih za destruktivne analize.

*Podaci o masi i boji uzoraka preuzeti su iz RAJKOVIĆ (2019).

**Podatak o gustoći uzorka je vjerojatno netočan. Preuzeti podaci o masi uzoraka provjeravali su se za prvih nekoliko uzoraka, te nakon što je bilo vidljivo da su preuzeti podaci točni, pretpostavljeno je da su i svi daljnji podaci o masi točni. Greška je uočena tek nakon što su uzorci vraćeni arheološkom muzeju u Osijeku.

Tablica 2. Vrijednosti volumena, mase, gustoće i boje uzoraka.

Naziv	Volumen	Masa*	Gustoća	Boja *
uzorka	[IIIL]	lgj	[g/cm ⁻]	ljestvica)
L-045	40	93,04	2,3	
L-046	14	42,56	3,0	5Y 7/2
L-066	19	51,62	2,7	5Y 4/4
L-067	31	71,87	2,3	
L-076	9	13,22	1,5	
L-091	71	186	2,6	5Y 5/2
L-092	31	79,07	2,6	
L-1015	2	60,97	30,5	10R 6/2
L-1128	30	79,62	2,7	10 Y 6/2
L-114	40	92,81	2,3	5Y 5/2
L-1141	2	5,84	2,9	5Y 5/2
L-1142	2	3,57	1,8	5Y 5/2
L-1143	8	19,49	2,4	10YR 5/4
L-1144	2	4,17	2,1	10Y 6/2
L-118	2	6,84	3,4	5Y 5/2
L-1182	4	11,97	3,0	5Y 8/1
L-1196	30	54,8	1,8	5YR 6/4
L-1224	1	3,02	3,0	10Y 6/2
L-1323	23	38,08	1.7	10YR 6/2
L-1359	3	6.29	2.1	5Y 7/2
L-1379	55	93.05	1.7	
L-1461	33	50,26	1.5	10YR 7/4
L-1462	24	46.51	1.9	
L-1495	8	35.75	4.5	10YR 4/2
L-1496	8	26.46	3.3	5Y 7/2
L-1497	4	10.24	2.6	5 Y 7/2
L-1541	25	65.65	2.6	5Y 7/2
L-1542	34	168	2.6	
L-1574	53	152	2.9	5Y 5/2
L-1604	20	31.07	1.6	5 YR 4/4
L-1625	12	21.4	1,0	5 YR 5/2
L-1654	10	28.95	2.9	5 B 5/1
L 1034	16	42.89	2,5	5YR 7/2
L-1977	31	84.06	2,7	10Y 6/2
L_218	40	102	2.6	10Y 6/2
L-210	2	3 77	1.0	5V 7/2
L = 2 + 12 L = 2/11/	10	25.98	26	5Y 5/2
L=2+14	10	1 25,90	13	10VP 5/A
L-2413	10	27.2	27	10TR 3/4
L-2433	20	21,2	<i>2</i> , <i>1</i>	101K 0/2 10VR 8/2
L-2343	20	16.02	1,/	101 K 0/2
L-2309	0	10,93	2,1 1 0	10K 4/2
L-2590	52 19	92,82	1,8	10K 0/2
L-2591	18	30,49	1,/	10K 5/4
L-2592	15	23,99	1,9	10K 5/4
L-2593	7	23,97	3,4	5GY 6/1

L-2594	52	92,98	1,8	5YR 5/2
L-2667	39	93,04	2,4	
L-2668	34	67,65	2,0	10R 4/2
L-2682	18	33,63	1,9	10YR 6/2
L-2735	9	22,64	2,5	
L-2829	29	56,07	1,9	5R 4/2
L-2830	24	70,9	3,0	10R 6/2
L-2870	6,5	10,74	1,7	10 YR 6/2
L-2902	46	77,29	1,7	10YR 6/2
L-2903	37	65,92	1,8	5YR 6/4
L-2914	26	58,74	2,3	5Y 5/2
L-2982	16	39,03	2,4	10 Y 6/2
L-3061	12	32,13	2,7	10R 4/2
L-3062	52	142	2,7	5Y 5/2
L-3139	31	78,59	2,5	10Y 6/2
L-3146	17	37,59	2,2	5Y 7/2
L-3258	9	28,53	3,2	10YR 7/4
L-327	31	76,18	2,5	5Y 7/2
L-3294	20	44,57	2,2	10Y 6/2
L-3301	35	60,97	1,7	10R 5/4
L-3496	11	27,84	2,5	10 YR 4/2
L-350	8	22,17	2,8	5Y 4/4
L-3558	27	70,53	2,6	5YR 5/2
L-3559	24	54,3	2,3	10R 5/4
L-3992	7	20,41	2,9	5Y 5/2
L-4005	65	170	2,6	10Y 6/2
L-4006	5	19,56	3,9	5Y 7/2
L-4014	12	24,49	2,0	10YR 6/2
L-4015	60	100	1,7	10YR 6/6
L-4055	49	88,51	1,8	10R 4/2
L-4057	22	70,59	3,2	10 YR 6/2
L-4080	19	35,53	1,9	10R 5/4
L-4098	31	85,26	2,8	10YR 6/2
L-4099	15	36,34	2,4	
L-4100	14	31,81	2,3	
L-4103	5,5	16,28	3,0	10YR 6/2
L-4217	15	73,91	4,9	5R 4/6
L-4218a	4	10,79	2,7	
L-4218b	8	17,08	2,1	10YR 6/2
L-4224	67	190	2,8	10YR 4/2
L-451	12	35,17	2,9	10YR 6/2
L-4523	61	92,93	1,5	10R 4/2
L-4524	23	44,51	1,9	5YR 6/4
L-4526	14	27,81	2,0	10YR 5/4
L-4527	57	158	2,8	5Y 5/2
L-4541	2	6,29	3,2	10Y 4/2
L-4547	30	90,23	3,0	

L-4589	17	49,45	2,9	10YR 4/2
L-4590	5	10,79	2,2	5YR 5/2
L-4596	8	20,07	2,5	5Y 5/2
L-4603	3,5	7,36	2,1	5YR 5/2
L-4702	9	23,88	2,7	10YR 4/2
L-4718	28	43,49	1,6	10YR 6/2
L-4730	44	102	2,3	5YR 3/4
L-4731	46	93,04	2,0	
L-4732	13	35,51	2,7	
L-4785	5	9,8	2,0	5YR 6/4
L-4805	4	6,57	1,6	5YR 5/2
L-4830	3	7,17	2,4	10Y 8/2
L-4841	24	41,37	1,7	10R 6/2
L-4842	2	3,59	1,8	10R 5/4
L-4852	5,5	16,7	3,0	5Y 8/1
L-4854	32	57,31	1,8	5Y 7/2
L-4863	20	50,54	2,5	5Y 5/2
L-4865	15	27,55	1,8	10YR 7/4
L-4866	11,5	36,72	3,2	5Y 7/2
L-4903	8	16,08	2,0	10R 5/4
L-501	134	356	2,7	10Y 6/2
L-5049	35	93,08	2,7	5Y 3/2
L-5050	28	56,6	2,0	10R 6/2
L-5073	4	10,28	2,6	10YR 7/4
L-5078	45	85,29	1,9	10R 5/4
L-5079	3	6,8	2,3	5YR 3/4
L-5080	27	52,34	1,9	10R 5/4
L-5133	33	54,24	1,6	10YR 6/2
L-5154	40	87,91	2,2	10R 4/2
L-5252	2,5	8,5	3,4	5Y 7/2
L-5280	1	1,84	1,8	10YR 6/2
L-548	19	35,03	1,8	10YR 6/2
L-5503	11	20,42	1,9	10R 5/4
L-559	8	20,45	2,6	5YR 6/1
L-5679	12,5	33,29	2,7	5GY 5/2
L-5680	18	53,46	3,0	N8
L-5681	19,5	39,6	2,0	10YR 6/2
L-5740	16	28,64	1,8	10R 5/4
L-5755	40	86,38	2,2	10YR 7/4
L-5756	45	87,66	2,0	10YR 6/2
L-5872	27	47,46	1,8	10R 5/4
L-5873	29	28,8	1,0	10YR 5/4
L-6044	25	76,71	3,1	5Y 7/2
L-6045	21	47,7	2,3	5Y 7/2
L-6047	11	28,29	2,6	10YR 6/2
L-6048	17	49,75	2,9	10R 4/2
L-6050	20	52,41	2,6	5Y 5/2

L-6051	68	130	1,9	10R 5/4
L-6061	40	70,03	1,8	10 YR 6/2
L-6072	12	30,6	2,6	10 YR 4/2
L-6073	20	49,72	2,5	5Y 5/2
L-6075	6	18,27	3,1	5Y 5/2
L-6076	18	23,1	1,3	5YR 7/2
L-6077	40	92,99	2,3	5Y5/2
L-6078	12	33,95	2,8	10YR 6/2
L-6079	26	77,07	3,0	5Y 6/1
L-6080	30	58,66	2,0	10R 5/4
L-6082	40	83,91	2,1	10R 6/2
L-6085	13	47,66	3,7	10YR 6/2
L-6090	15	42,71	2,9	5Y 7/2
L-6091	50	128	2,6	5Y 7/2
L-6093	27	54,5	2,0	10R 5/4
L-6095	20	48,58	2,4	10YR 8/2
L-6096	11	31,41	2,9	5Y 4/1
L-6098	29	78,09	2,7	5Y 5/2
L-6099	93	93,01	1,0	5Y 5/2
L-6101	11	30,1	2,7	5Y 7/2
L-6102	57	140	2,5	10R 2/2
L-6103	28	60,3	2,2	5Y 4/1
L-6104	38	69,45	1,8	10R 6/2
L-6106	46	93,03	2,0	10R 4/2
L-6110	15	28,43	1,9	5G 5/2
L-6129	40	124	3,1	10YR 8/2
L-6136	60	184	3,1	5YR 6/4
L-6140	23	42,92	1,9	5Y 7/2
L-6161	198	452	2,3	10R 4/2
L-6164	29	55,6	1,9	10R 5/4
L-6181	2	6,29	3,2	5Y 5/2
L-6185	39	140	3,6	10YR 7/4
L-6188	45	82,23	1,8	10YR 6/2
L-6223	8	14,04	1,8	10YR 5/4
L-632	8	19,77	2,5	5Y 5/2
L-657	125	212	1,7	5Y 5/2
L-666	19	50,02	2,6	5Y 7/2
L-776	28	48,15	1,7	
L-918	45	92,88	2,1	5Y 7/2
L-945	28	74,16	2,7	10Y 6/2
PN-646	62	172	2,8	5Y 5/2

*Podaci o masi i boji uzoraka preuzeti su iz RAJKOVIĆ (2019)

4.2. XRD analiza polikristalnih uzoraka

Rezultati analize rendgenske difrakcije podijeljeni su u dva poglavlja. U prvom poglavlju iznose se rezultati analiza izabranih 9 uzoraka L-6129, L-501, L-1542, L-5740, L-666, L-1495, L-4866, L-4217 i L-4057, a u drugom poglavlju prikazani su grupirani podaci analiza svih ostalih uzoraka.

4.2.1. XRD analiza 9 polikristalinih uzoraka izabranih za destruktivne analize

Uzorak L-6129

Površina uzorka L-6129 zadovoljava osnovne kriterije za XRD metodu snimanja površine. Što znači da je površina uzorka ravna i sitnozrnata. Prema rezultatima XRD analize, bilo je moguće odrediti tri faze u uzorku, a to su Fe-diopsid (piroksen), anortit (plagioklas) i skapolit (Tablica 3 i Slika 3).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
18,94	4,6853	5	Fe-diopsid, anortit, skapolit
21,98	4,0442	24	anortit
23,27	3,8232	12	anortit, skapolit
23,72	3,7508	16	anortit, skapolit
24,48	3,6369	14	Fe-diopsid, anortit
25,68	3,4693	20	anortit, skapolit
26,52	3,3612	13	Fe-diopsid, anortit
27,48	3,2455	32	Fe-diopsid, anortit
27,85	3,2036	69	anortit, skapolit
28,52	3,1301	25	anortit
29,11	3,0677	17	anortit, skapolit
29,82	2,9965	90	Fe-diopsid, skapolit
30,25	2,9547	24	Fe-diopsid, anortit
30,87	2,8966	21	Fe-diopsid, anortit
31,52	2,8384	10	Fe-diopsid, anortit, skapolit
32,75	2,7342	5	skapolit
33,29	2,6911	10	skapolit
33,79	2,6529	8	anortit
34,92	2,5692	22	Fe-diopsid, anortit
35,49	2,5297	100	Fe-diopsid, anortit, skapolit

Tablica 3. Rendgenografski podaci prikupljeni na površini uzorka L-6129

39,01	2,3090	10	Fe-diopsid, skapolit
40,61	2,2215	18	Fe-diopsid
42,27	2,1382	24	Fe-diopsid, anortit, skapolit
42,88	2,1090	7	Fe-diopsid, anortit, skapolit
44,26	2,0466	9	Fe-diopsid, skapolit, skapolit
45,02	2,0138	23	Fe-diopsid, anortit, skapolit
47,49	1,9146	8	anortit, skapolit
48,70	1,8700	3	Fe-diopsid, anortit, skapolit
49,65	1,8361	10	Fe-diopsid, anortit, skapolit
51,58	1,7721	8	Fe-diopsid, anortit, skapolit
51,99	1,7589	9	Fe-diopsid, anortit, skapolit
53,65	1,7085	6	Fe-diopsid, anortit, skapolit
54,74	1,6769	5	Fe-diopsid, anortit, skapolit
55,45	1,6570	4	Fe-diopsid, skapolit
56,61	1,6258	25	Fe-diopsid, skapolit
59,29	1,5587	5	Fe-diopsid, skapolit
60,46	1,5312	7	Fe-diopsid, anortit, skapolit
61,55	1,5055	13	Fe-diopsid, skapolit

Slika 3. Rendgenogram uzorka L-6129.

Snimljen je i uzorak L-6129 samljeven je u prah. Registrirani difrakcijski maksimumi (Tablica 4, Slika 4) pripadaju samo dvjema fazama, a to su Fe-diopsid i anortit. Za razliku od površinske analize ovog uzorka, na rendgenogramu praha se ne pojavljuju difrakcijski maksimumi koji pripadaju skapolitu.

Položai	d-vrijednost	Relativni intenzitet	Mineral
[020]	r Å J		i i i i i i i i i i i i i i i i i i i
[-20]	[A]	[%]	
13,68	6,4748	5	Fe-diopsid, anortit
18,89	4,6991	6	Fe-diopsid, anortit
19,85	4,4720	6	Fe-diopsid
22,00	4,0402	25	anortit
23,68	3,7574	22	anortit
24,47	3,6383	15	anortit
25,72	3,4642	18	anortit
26,52	3,3614	14	Fe-diopsid, anortit
27,48	3,2454	49	Fe-diopsid, anortit
27,83	3,2056	61	anortit
28,06	3,1799	49	anortit
28,48	3,1346	17	anortit
29,15	3,0635	11	anortit
29,82	2,9966	100	Fe-diopsid
30,17	2,9622	51	Fe-diopsid, anortit
30,84	2,8994	27	Fe-diopsid, anortit
31,50	2,8399	10	Fe-diopsid, anortit
33,83	2,6497	6	anortit
35,00	2,5639	20	Fe-diopsid, anortit
35,54	2,5258	69	Fe-diopsid, anortit
38,95	2,3122	12	Fe-diopsid, anortit
40,60	2,2220	10	Fe-diopsid
41,72	2,1650	12	Fe-diopsid, anortit
42,34	2,1346	24	Fe-diopsid, anortit
42,82	2,1117	13	Fe-diopsid, anortit
44,27	2,0460	12	Fe-diopsid
44,99	2,0152	17	Fe-diopsid, anortit
46,02	1,9724	4	Fe-diopsid
47,32	1,9211	3	anortit
48,50	1,8772	3	Fe-diopsid, anortit
49,70	1,8346	9	Fe-diopsid, anortit
50,81	1,7971	5	anortit
52,02	1,7581	16	Fe-diopsid, anortit
53,38	1,7162	4	Fe-diopsid, anortit
54,83	1,6744	4	Fe-diopsid
56,63	1,6254	21	Fe-diopsid
58,87	1,5689	6	Fe-diopsid, anortit
60,47	1,5311	11	Fe-diopsid, anortit
61,58	1,5061	6	Fe-diopsid, anortit
62,20	1,4913	7	Fe-diopsid, anortit

Tablica 4. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-6129.

Slika 4. Rendgenogram praha uzorka L-6129.

Uzorci L-501 i L-1542

Površinski izgled uzoraka L-501 i L-1542 se bitno razlikuje, no analizama je ustanovljena iznimna sličnost u gustoći, boji, te faznom i kemijskom sastavu. Zbog toga ovi uzorci prikazani su kao jedna cjelina.

Umjesto površine uzorka L-501, snimljen je prerez uzorka. Prilikom rezanja uzorka ustanovljeno je da je uzorak različite boje na površini i u unutrašnjosti. To svojstvo također je vidljivo i na uzorku L-1542. Vanjski dio uzorka je svjetliji od sviježe, tamnije, unutrašnjosti uzorka. Uzorak L-501 prerezan je kako bi se dobila pločica debljine 3mm. Ta pločica postavljena je na nosač uzorka za snimanje praha. Tako postavljena pločica snimljena je s rotacijom. Dobiveni difrakcijski maksimumi (Tablica 5) ukazuju na prisustvo kvarca, kalcita, albita i glaukonita u uzorku (Slika 5).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
13,84	6,3986	0	albit
15,07	5,8791	0	albit
19,78	4,4885	1	glaukonit
20,89	4,2534	18	kvarc
22,01	4,0390	3	albit
23,06	3,8566	1	kalcit, albit

Tablica 5. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-501

23,61	3,7687	2	albit
24,29	3,6639	2	albit, glaukonit
25,46	3,4988	2	albit
26,64	3,3459	100	albit,kvarc
27,95	3,1922	6	albit
29,48	3,0297	8	kalcit
30,44	2,9365	1	albit
31,42	2,8469	1	kalcit, albit, glaukonit
34,80	2,5780	1	glaukonit
36,02	2,4934	1	kalcit, albit
36,57	2,4569	7	albit,kvarc
37,58	2,3937	1	albit, glaukonit
39,44	2,2830	8	kalcit, albit,kvarc
39,53	2,2801	8	kalcit, albit,kvarc
40,32	2,2370	3	kvarc
42,51	2,1264	5	albit,kvarc
43,23	2,0930	2	kalcit
45,83	1,9798	3	albit,kvarc
47,19	1,9261	0	kalcit, albit
47,57	1,9117	1	kalcit
48,61	1,8731	1	kalcit
49,35	1,8467	1	albit
50,12	1,8185	11	albit, glaukonit,kvarc
50,24	1,8160	10	albit, glaukonit,kvarc
50,71	1,8003	1	albit,kvarc
51,28	1,7817	1	albit
54,89	1,6727	3	kvarc
55,39	1,6588	1	glaukonit,kvarc
56,65	1,6248	0	kalcit
57,48	1,6033	1	kalcit
59,96	1,5429	6	kvarc
60,87	1,5219	0	kalcit, glaukonit
61,52	1,5074	1	kalcit
64,00	1,4536	1	kvarc

Slika 5. Rendgenogram prereza uzorka L-501

Prerez uzorka L-1542 također je snimljen istom metodom kao i uzorak L-501. Rezultati analize (Tablica 6 i Slika 6) vrlo su slični rezultatima analize uzorka L-501. U uzorku L-1542 nalaze se tri faze: kvarc, albit i kalcit, ali za razliku od uzorka L-501, na rendgenogramu se ne može uočiti prisutnost glaukonita.

Tablica 6. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-1542

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
13,89	6,3768	1	albit
20,92	4,2464	18	kvarc
22,07	4,0269	4	albit
23,00	3,8666	2	albit, kalcit
23,58	3,7725	2	albit
24,30	3,6633	3	albit
25,46	3,4980	2	albit
26,66	3,3433	100	kvarc, albit
27,96	3,1917	9	albit
29,51	3,0274	9	kalcit
30,48	2,9327	2	albit
31,40	2,8490	1	albit, kalcit
35,01	2,5630	1	albit
36,08	2,4893	2	albit, kalcit
36,55	2,4588	7	kvarc, albit

37,67	2,3877	1	albit
39,56	2,2779	7	kvarc, albit, kalcit
40,31	2,2376	3	kvarc
42,46	2,1290	5	kvarc, albit
43,28	2,0907	2	kalcit
45,82	1,9805	3	kvarc, albit
47,58	1,9112	2	kalcit
48,56	1,8749	2	kalcit
50,17	1,8185	10	kvarc, albit
51,27	1,7818	1	albit
54,87	1,6732	3	kvarc
55,36	1,6596	1	kvarc
57,54	1,6019	1	kvarc, kalcit
59,96	1,5428	6	kvarc
61,49	1,5067	1	kalcit

Slika 6. Rendgenogram uzorka L-1542.

Uzorak L-501 samljeven je u prah i analiziran. Vrlo je bitno napomenuti da se prilikom pripreme drobio i vanjski svjetliji dio uzorka i tamniji tj. svježiji dio uzorka. Rendgenogram (Slika 7) i pripadajući difrakcijski maksimumi (Tablica 7) slični su kao i rezultati dobiveni snimanjem uzorka L-1542. Prah uzorka L-501 sadrži faze kvarc, albit, kalcit i glaukonit. Udio kalcita smanjen je u prahu u odnosu na udio kalcita u snimljenom prerezu uzorka L-501 kod kojeg se snimao samo tamni svježi dio.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
8,84	10,0003	1	glaukonit
13,94	6,3552	1	albit
15,05	5,8871	0	albit
19,73	4,4998	1	glaukonit
20,88	4,2542	19	kvarc
22,10	4,0221	2	albit
23,05	3,8579	1	albit, kalcit
23,59	3,7711	2	albit
24,29	3,6645	2	albit, glaukonit
25,57	3,4840	3	albit
26,66	3,3444	100	kvarc, albit
27,98	3,1889	6	albit
29,45	3,0330	4	kalcit
30,46	2,9345	1	albit
31,42	2,8472	1	albit, kalcit
33,97	2,6391	0	albit
34,89	2,5716	1	albit, glaukonit
36,51	2,4614	6	kvarc, albit
37,64	2,3897	1	albit, glaukonit
39,50	2,2814	7	kvarc, albit, kalcit
40,28	2,2388	3	kvarc, glaukonit
42,48	2,1281	5	kvarc, albit, glaukonit
43,24	2,0925	1	kalcit
45,83	1,9802	3	kvarc, albit, glaukonit
47,66	1,9083	1	kalcit
48,59	1,8738	1	kalcit
49,27	1,8495	1	albit
50,16	1,8186	10	kvarc, albit
51,32	1,7804	0	albit
54,87	1,6732	3	kvarc
55,38	1,6591	2	kvarc
57,47	1,6035	0	kvarc, kalcit
59,96	1,5429	6	kvarc
60,81	1,5233	0	kalcit
61,57	1,5063	0	kalcit, glaukonit
64,11	1,4514	1	kvarc

Tablica 7. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-501.

Slika 7. Rendgenogram praha uzorka L-501.

Rezultati fazne analize praha uzorka L-1542 ukazuju na prisustvo kvarca, albita, kalcita i glaukonita (Slika 8 i Tablica 8).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
8,87	9,9744	1	glaukonit
13,90	6,3716	1	albit
15,03	5,8947	0	albit
19,73	4,4998	1	glaukonit
20,86	4,2583	20	kvarc
22,07	4,0286	4	albit
23,06	3,8562	1	kalcit, albit
23,62	3,7674	4	albit
24,28	3,6654	3	albit, glaukonit
25,52	3,4910	4	albit
26,64	3,3466	100	kvarc
27,93	3,1942	11	albit
29,48	3,0303	6	kalcit
30,01	2,9777	1	albit
30,48	2,9330	2	albit
31,39	2,8501	1	kalcit,albit, glaukonit
33,89	2,6452	0	albit
34,83	2,5759	1	albit, glaukonit
36,05	2,4915	1	kalcit, albit
36,58	2,4569	7	kvarc, albit
37,53	2,3965	1	albit, glaukonit
39,49	2,2819	7	kvarc, kalcit, albit

Tablica 8. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-1542.

40,32	2,2369	3	kvarc
42,48	2,1280	5	kvarc, albit, glaukonit
43,28	2,0908	1	kalcit
45,82	1,9806	4	kvarc, albit
47,69	1,9070	1	kalcit
48,69	1,8702	1	kalcit
50,14	1,8180	11	kvarc, albit, glaukonit
50,22	1,8166	11	kvarc, glaukonit
51,28	1,7816	1	albit
54,86	1,6736	3	kvarc
55,35	1,6599	2	kvarc, glaukonit
57,52	1,6023	0	kalcit
59,98	1,5423	7	kvarc
60,94	1,5203	0	kalcit, glaukonit
61,60	1,5056	1	kalcit
64,09	1,4519	1	kvarc

Slika 8. Rendgenogram praha uzorka L-1542.

Uzorak L-5740

Uzorak L-5740 je prerezan, te je rendgenskom difrakcijom analiziran presjek uzorka. Određene su tri faze u uzorku, a to su kvarc koji je dominantan, hematit i rutil (Tablica 9 i Slika 9). Na rendgenogramu se pojavljuje nekoliko slabih difrakcijskih maksimuma koji nisu pripisani niti jednoj fazi, no može se pretpostaviti da oni pripadaju filosilikatima.

Položaj [°2θ]	d-vrijednost [Å]	Relativni intenzitet	Mineral
20,79	4,2736	15	kvarc
22,01	4,0386	1	
24,11	3,6913	1	hematit
26,63	3,3470	100	kvarc
27,93	3,1950	1	rutil
28,59	3,1224	1	
29,40	3,0386	1	
33,11	2,7053	1	hematit
34,96	2,5663	1	
36,51	2,4612	7	kvarc, rutil
37,71	2,3855	1	
38,41	2,3436	1	
39,49	2,2821	7	kvarc, rutil
40,28	2,2391	3	kvarc
42,44	2,1298	5	kvarc
50,13	1,8197	12	kvarc
54,05	1,6967	0	hematit
54,84	1,6741	4	kvarc, rutil
55,29	1,6616	3	kvarc
57,17	1,6113	0	kvarc, rutil, hematit
59,98	1,5423	7	kvarc
61,63	1,5050	1	
61,97	1,4975	0	
62,49	1,4863	0	hematit
63,07	1,4740	0	rutil
63,41	1,4669	0	rutil
63,94	1,4548	1	kvarc, hematit

Tablica 9. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-5740.

Slika 9. Rendgenogram prereza uzorka L-5740.

Uzorak L-5740 samljeven je u prah te je njegova analiza rendgenskom difrakcijom potvrdila prisustvo kvarca, hematita i rutila koji su detektirani i na površini uzorka (Tablica 10 i Slika 10). Uz te tri faze pojavljuje se još jedna nova, a to je muskovit.

Položaj [°20]	d-vrijednost	Relativni intenzitet	Mineral
8,70	10,1686	1	
12,37	7,1573	1	
20,84	4,2633	19	kvarc, muskovit
22,06	4,0291	1	
24,24	3,6718	1	hematit
26,64	3,3460	100	kvarc, muskovit
27,96	3,1913	1	muskovit
33,14	2,7035	1	hematit
35,69	2,5158	1	hematit
36,64	2,4525	6	kvarc, muskovit
38,45	2,3413	1	
39,50	2,2813	7	kvarc, rutil
40,31	2,2372	3	kvarc, muskovit
42,52	2,1260	4	kvarc, muskovit
43,81	2,0665	1	muskovit
49,55	1,8397	1	hematit, muskovit
50,21	1,8172	10	kvarc, muskovit

Tablica 10. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-5740.
54,11	1,6949	1	hematit, muskovit
54,89	1,6727	3	kvarc, rutil, muskovit
57,35	1,6067	1	kvarc, hematit, muskovit
57,81	1,5950	0	muskovit
58,43	1,5795	0	muskovit
59,94	1,5434	6	kvarc, muskovit
61,83	1,5006	1	muskovit
62,37	1,4889	1	muskovit
64,03	1,4530	1	kvarc, hematit, muskovit

Slika 10. Rendgenogram uzorka L-5740.

Uzora L-666 različite je boje na površini i unutrašnjosti te je rendgenskom difrakcijom analizirana i površina (Tablica 11 i Slika 11) i prerez (Tablica 12 i Slika 12). Površinski sloj promijenjene boje debljine je do 1 mm. Na uzorku L-666 je vrlo izražena promjena boje i teksture u površinskom sloju. Sviježi uzorak je crne boje i vrlo kompaktan, a površinski sloj je bijele boje i troši se praškasto. Površina uzorka analizirana je tako da je cjeloviti uzorak postavljen na rotirajuće postolje koje se koristi za snimanje uzoraka samljevenih u prah. Rezultati površinske analize pokazuju da je dominantna faza diopsid. Uz diopsid se nalazi još nekoliko faza, no odredba tih minerala je upitna. Postoji vjerojatnost da je jedan od tih minerala i brucit (Mg(OH)2), te su njegove vrijednosti pridružene u tablicu vrijednosti

difrakcijskih maksimuma (Tablica 11). Pridruživanjem brucita nije kompletno riješen rendgenogram, te je vidljivo da preostaje par difrakcijskih maksimuma koji ne pripadaju niti jednoj fazi, od kojih je jedan nezanemarivo visokog relativnog intenziteta (23).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
13,62	6,5026	4	diopsid
18,81	4,7179	11	diopsid
19,82	4,4800	8	diopsid
24,80	3,5908	0	
26,64	3,3461	9	diopsid
27,44	3,2502	34	diopsid
28,03	3,1834	2	
29,53	3,0250	23	
30,08	2,9705	100	diopsid
30,87	2,8965	7	diopsid
31,43	2,8463	2	diopsid
34,87	2,5733	17	diopsid
35,41	2,5347	29	diopsid
38,18	2,3575	16	diopsid, brucit
38,84	2,3187	8	diopsid
40,52	2,2262	15	diopsid
41,70	2,1661	14	diopsid
42,25	2,1393	16	diopsid
42,78	2,1137	8	diopsid
43,31	2,0891	13	diopsid
44,23	2,0479	6	diopsid
44,95	2,0168	3	diopsid
48,69	1,8701	4	diopsid
49,38	1,8456	17	diopsid
51,10	1,7874	13	diopsid
51,95	1,7601	26	diopsid
53,12	1,7243	12	diopsid
56,36	1,6326	15	diopsid
56,67	1,6244	15	diopsid
57,73	1,5970	14	diopsid
58,67	1,5735	25	diopsid, brucit
59,28	1,5589	9	diopsid
60,41	1,5323	5	diopsid
62,10	1,4935	12	diopsid, brucit

Tablica 11. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-666.

Slika 11. Rendgenogram površine uzorka L-666.

Prerez uzorka L-666 snimljen je tako da se pločica uzorka postavila na nosač za praškaste uzorke. Uzorak je prilikom snimanja rotiran. Dobiveni difrakcijski maksimumi (Tablica 12 i Slika 12) dodijeljeni su fazama diopsidu i anortitu.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
13,55	6,5345	4	diopsid, anortit
18,84	4,7114	6	diopsid, anortit
22,00	4,0409	21	anortit
22,73	3,9123	5	anortit
23,62	3,7669	16	anortit
24,57	3,6228	15	anortit
25,67	3,4704	8	anortit
26,49	3,3650	14	diopsid, anortit
27,41	3,2540	29	diopsid, anortit
27,85	3,2036	56	anortit
28,54	3,1278	17	anortit
29,84	2,9947	78	diopsid, anortit
30,84	2,8993	17	diopsid, anortit
31,58	2,8330	7	diopsid, anortit
33,79	2,6527	6	anortit
34,92	2,5698	26	diopsid, anortit
35,39	2,5364	100	diopsid, anortit
38,50	2,3385	11	anortit
40,53	2,2261	14	diopsid, anortit

Tablica 12. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-666.

42,21	2,1408	20	diopsid, anortit
44,21	2,0486	11	diopsid, anortit
44,71	2,0267	98	diopsid, anortit
45,99	1,9733	7	diopsid
49,58	1,8387	8	diopsid
51,90	1,7617	12	diopsid
54,63	1,6800	7	diopsid
55,40	1,6585	5	diopsid
56,61	1,6258	36	diopsid
60,36	1,5336	8	diopsid
61,45	1,5077	16	diopsid

Slika 12. Rendgenogram uzorka L-666 (prerez).

Uzorak L-666 samljeven je i analiziran. Prilikom pripreme uzorka samljeven je i sviježi unutrašnji i površinski dio uzorka. Difrakcijski maksimumi pripadaju fazama diopsid i anortit. Jedan difrakcijski maksimum nije dodijeljen niti jednoj fazi, a nalazi se na poziciji 47,10 °2θ što odgovara d-vrijednosti 1,9294 Å s relativnim intenzitetom 5 %. (Tablica 13 i Slika 13).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
13,65	6,4895	12	diopsid, anortit
18,85	4,7085	9	diopsid, anortit
19,78	4,4880	8	diopsid, anortit
21,98	4,0431	19	anortit
23,61	3,7677	15	anortit
24,51	3,6314	13	anortit
25,75	3,4599	7	anortit
26,48	3,3662	13	diopsid, anortit
27,44	3,2506	52	diopsid, anortit
27,86	3,2019	57	anortit
28,52	3,1298	15	anortit
29,80	2,9983	100	diopsid, anortit
30,15	2,9639	55	diopsid, anortit
30,85	2,8982	22	diopsid, anortit
31,63	2,8287	8	diopsid, anortit
33,84	2,6487	7	anortit
34,86	2,5736	33	diopsid, anortit
35,43	2,5334	68	diopsid, anortit
38,86	2,3175	12	diopsid, anortit
40,50	2,2273	8	diopsid, anortit
41,70	2,1662	12	diopsid, anortit
42,26	2,1384	28	diopsid, anortit
42,76	2,1150	13	diopsid, anortit
44,13	2,0521	11	diopsid, anortit
44,94	2,0170	16	diopsid, anortit
46,03	1,9717	4	diopsid
47,10	1,9294	5	
48,55	1,8752	4	diopsid
49,36	1,8462	8	diopsid
51,93	1,7608	20	diopsid
54,62	1,6803	5	diopsid
56,62	1,6257	19	diopsid
58,71	1,5726	5	diopsid
59,33	1,5576	6	diopsid
60,39	1,5328	9	diopsid
61,51	1,5075	7	diopsid
62,09	1,4936	8	diopsid

Tablica 13. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-666.

Slika 13. Rendgenogram praha uzorka L-666.

Površinski dio uzorka L-1495 sivo smeđe je boje, a unutrašnji dio je tamno zeleno plave boje. Nakon što je izrađen presjek uzorka ustanovljeno je da je površinski sloj zanemarive debljine. On ne izgleda kao produkt trošenja, već samo kao ostatak čestica tla na uzorku, te zbog toga nije analizirana površina. Difrakcijski maksimumi dobiveni snimanjem prereza uzorka L-1495 (Slika 14) dodijeljeni su dvjema fazama a to su aktinolit i ortoklas koji sadrži natrij u strukturi, tj. Na-ortoklas (Tablica 14).

Tablica 14 Popis difrakcijs	kih maksimuma dohiyenil	rendgenskom difrakcijom	na prerezu uzorka I -1495
raolica 14. ropis ulliakcijs	kin maksimuma uoorvenn	i tenugenskom umakerjom	na prefezu uzorka L-1495

Položaj	d-vrijednost	Relativni	Mineral
[°20]	[Å]	intenzitet	
		[%]	
9,77	9,0578	18	aktinolit
10,51	8,4141	46	aktinolit
13,72	6,4539	8	ortoklas
15,08	5,8752	8	ortoklas
17,36	5,1082	10	aktinolit
18,12	4,8957	33	aktinolit
19,65	4,5171	27	aktinolit
21,06	4,2188	69	aktinolit, ortoklas
22,00	4,0407	15	aktinolit
22,91	3,8824	24	aktinolit, ortoklas
23,53	3,7807	71	ortoklas

24,54	3,6282	13	ortoklas
25,12	3,5455	14	ortoklas
25,71	3,4655	49	ortoklas
26,31	3,3877	47	aktinolit
26,80	3,3264	100	ortoklas
27,15	3,2843	85	aktinolit, ortoklas
27,61	3,2313	83	ortoklas
28,50	3,1321	48	aktinolit
29,85	2,9931	53	aktinolit, ortoklas
30,38	2,9425	30	aktinolit, ortoklas
30,88	2,8961	27	ortoklas
33,02	2,7126	95	aktinolit
34,45	2,6037	66	aktinolit, ortoklas
35,34	2,5397	87	aktinolit, ortoklas
37,65	2,3890	16	aktinolit, ortoklas
38,36	2,3466	28	aktinolit
39,45	2,2841	24	aktinolit, ortoklas
41,69	2,1666	47	aktinolit, ortoklas
44,72	2,0267	79	aktinolit
46,01	1,9728	11	aktinolit, ortoklas
47,10	1,9296	10	aktinolit, ortoklas
50,72	1,8001	28	aktinolit, ortoklas
54,28	1,6901	14	aktinolit, ortoklas
55,59	1,6532	14	aktinolit, ortoklas
56,72	1,6229	12	aktinolit, ortoklas
58,26	1,5837	24	aktinolit
60,16	1,5381	17	aktinolit, ortoklas
61,06	1,5164	29	aktinolit, ortoklas

Slika 14. Rendgenogram prereza uzorka L-1495.

Rendgenogram dobiven analizom praha uzorka L-1495 (Slika 15) prikazuje difrakcijske maksimume dodijeljene aktinolitu, ortoklasu i kloritu (Tablica 15).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
6,21	14,2312	6	klorit
9,73	9,0893	13	aktinolit
10,50	8,4286	100	aktinolit
12,46	7,1051	5	klorit
13,60	6,5101	6	ortoklas
17,37	5,1062	5	aktinolit
18,17	4,8817	8	aktinolit
19,60	4,5284	12	aktinolit, klorit
21,04	4,2226	26	aktinolit, ortoklas
22,57	3,9389	8	ortoklas
23,55	3,7786	33	ortoklas
24,54	3,6272	5	ortoklas
25,17	3,5377	5	ortoklas klorit
25,69	3,4681	25	ortoklas
26,32	3,3867	18	aktinolit
26,85	3,3209	45	ortoklas klorit
27,16	3,2837	41	aktinolit, ortoklas
27,69	3,2219	46	ortoklas
28,52	3,1295	61	aktinolit, klorit
29,80	2,9986	27	aktinolit, ortoklas
30,37	2,9434	17	aktinolit, ortoklas
30,85	2,8981	14	ortoklas
31,83	2,8115	8	aktinolit, ortoklas
33,00	2,7143	39	aktinolit
34,44	2,6041	21	aktinolit, ortoklas
35,32	2,5414	22	aktinolit, ortoklas
37,69	2,3869	8	aktinolit, ortoklas
38,42	2,3430	16	aktinolit, ortoklas
39,48	2,2828	6	aktinolit, ortoklas
41,66	2,1680	23	aktinolit, ortoklas
42,48	2,1280	5	aktinolit, ortoklas
44,24	2,0474	5	aktinolit, ortoklas
44,87	2,0203	12	aktinolit, ortoklas
45,99	1,9735	6	aktinolit, ortoklas
47,09	1,9297	5	aktinolit, ortoklas
50,76	1,7986	14	ortoklas klorit
54,20	1,6923	4	aktinolit, ortoklas
55,59	1,6532	9	aktinolit, ortoklas
58,26	1,5837	5	aktinolit, klorit
60,26	1,5359	5	aktinolit, ortoklas
61,06	1,5177	7	aktinolit, ortoklas

Tablica 15. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-1495.

61,93	1,4985	6	aktinolit, ortoklas
64,62	1,4411	8	aktinolit, ortoklas

Slika 15. Rendgenogram praha uzorka L-1495.

Uzorak L-4866 bijele je boje s nepravilnim tankim crnim žilama. Jednolične je boje na površini i unutrašnjosti, te je analiziran samo prerez i prah uzorka. Uzorak L-4866 izbrušen je u pločicu debljine oko 4mm te je ona fiksirana na rotirajući nosač za XRD analizu. Na rendgenogramu (slika 16) vidljivo je da se na početku snimanja javlja visoki šum koji se smanjuje do približno 17,5 °2 θ te se ponovno pojačava. U uzorku je detektiran samo tremolit (Tablica 16).

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
19,63	4,5216	2	tremolit
22,88	3,8875	10	tremolit
26,36	3,3807	36	tremolit
27,19	3,2798	23	tremolit
28,62	3,1192	42	tremolit
29,49	3,0295	5	tremolit

Tablica 16. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-4866.

30,35	2,9447	39	tremolit
31,89	2,8063	9	tremolit
33,10	2,7066	100	tremolit
34,62	2,5914	37	tremolit
35,45	2,5325	68	tremolit
37,72	2,3849	7	tremolit
38,48	2,3397	30	tremolit
39,14	2,3013	16	tremolit
39,59	2,2762	27	tremolit
40,82	2,2106	12	tremolit
41,74	2,1641	36	tremolit
44,35	2,0425	18	tremolit
44,97	2,0159	24	tremolit
46,21	1,9647	7	tremolit
46,88	1,9380	5	tremolit
47,96	1,8970	5	tremolit
48,81	1,8659	14	tremolit
49,46	1,8428	8	tremolit
50,36	1,8121	3	tremolit
52,27	1,7501	6	tremolit
54,38	1,6873	19	tremolit
55,59	1,6532	19	tremolit
56,91	1,6180	12	tremolit
58,51	1,5776	23	tremolit
59,41	1,5557	5	tremolit
60,23	1,5365	11	tremolit
61,18	1,5150	25	tremolit
61,62	1,5052	17	tremolit
63,25	1,4691	4	tremolit

Slika 16. Rendgenogram uzorka L-4866 (prerez)

Difrakcijski maksimumi praha uzorka L-4866 (Tablica 17 i Slika 17) dodijeljeni su samo tremolitu.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
9,75	9,0733	37	tremolit
10,52	8,4098	89	tremolit
17,40	5,0954	18	tremolit
18,16	4,8856	29	tremolit
18,60	4,7713	8	tremolit
19,63	4,5234	32	tremolit
21,05	4,2199	12	tremolit
22,87	3,8891	20	tremolit
26,32	3,3856	50	tremolit
27,21	3,2774	53	tremolit
28,55	3,1270	96	tremolit
30,34	2,9440	44	tremolit
31,86	2,8064	14	tremolit
32,68	2,7378	25	tremolit
33,06	2,7074	100	tremolit
34,54	2,5943	34	tremolit
35,41	2,5332	48	tremolit
37,71	2,3837	9	tremolit
38,46	2,3390	34	tremolit
39,13	2,3005	16	tremolit
39,57	2,2759	18	tremolit
40,80	2,2100	6	tremolit
41,72	2,1634	34	tremolit
44,26	2,0447	13	tremolit
44,96	2,0145	23	tremolit
46,16	1,9650	7	tremolit
48,02	1,8932	9	tremolit
48,84	1,8632	12	tremolit
49,44	1,8422	5	tremolit
50,24	1,8144	6	tremolit
52,30	1,7478	6	tremolit
54,40	1,6851	14	tremolit
55,65	1,6504	25	tremolit
56,86	1,6181	11	tremolit
58,40	1,5789	14	tremolit
59,42	1,5542	6	tremolit
60,32	1,5331	13	tremolit
61,22	1,5127	17	tremolit
61,63	1,5037	15	tremolit
63,29	1,4683	4	tremolit

Tablica 17. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-4866.

Slika 17. Rendgenogram praha uzorka L-4866.

Uzorak L-4217 crvene je boje i vrlo je lagan. Rezultati analize rendgenske difrakcije (Tablica 18 i slika 18) pokazali su da uzorak sadrži faze kvarc, hematit i muskovit.

Tablica 18. Popis difrakcijskih maksimuma	dobivenih rendgenskom difrakcijom	na površini uzorka L-4217.
---	-----------------------------------	----------------------------

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
19,84	4,4751	6	muskovit
20,89	4,2516	6	kvarc, muskovit
22,93	3,8780	3	muskovit
23,97	3,7128	3	muskovit, hematit
25,50	3,4937	5	muskovit
26,68	3,3409	100	kvarc, muskovit
27,90	3,1981	7	muskovit
29,89	2,9898	8	muskovit
31,29	2,8589	9	muskovit
32,09	2,7895	9	muskovit

33,16	2,7020	19	muskovit, hematit
34,56	2,5957	32	muskovit
34,93	2,5668	51	muskovit
35,67	2,5152	10	muskovit, hematit
36,62	2,4522	10	kvarc, muskovit
37,72	2,3831	8	muskovit
39,51	2,2792	8	kvarc, muskovit, hematit
40,88	2,2057	5	muskovit, hematit
42,44	2,1280	10	kvarc, muskovit
45,75	1,9817	5	kvarc, muskovit
49,48	1,8406	5	muskovit, hematit
50,16	1,8174	15	kvarc, muskovit
54,12	1,6932	8	muskovit, hematit
60,05	1,5394	23	kvarc, muskovit
61,61	1,5041	31	muskovit

Slika 18. Rendgenogram površini uzorka L-4217. Na 35°2 θ nalazi se abnormalnost nastala zbog tehničkih problema na snimanju.

Uzorak L-4217 samljeven je u prah, a faze detektirane rendgenskom difrakcijom na prahu (Tablica 19 i Slika 19) su kvarc, hematit, muskovit i klorit.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
6,26	14,1299	7	klorit
8,84	9,9979	21	muskovit
12,55	7,0554	4	klorit
17,79	4,9846	5	muskovit
18,77	4,7288	2	klorit
19,85	4,4729	13	Muskovit, klorit
20,94	4,2426	15	kvarc, muskovit, klorit
22,88	3,8877	4	muskovit, klorit
23,81	3,7378	4	muskovit
25,49	3,4945	13	muskovit, klorit
26,65	3,3448	100	kvarc, muskovit, klorit
27,85	3,2033	6	muskovit
29,88	2,9906	6	muskovit, klorit
31,27	2,8609	4	muskovit, klorit
32,14	2,7847	3	muskovit
33,18	2,7004	9	hematit, muskovit
34,94	2,5681	15	muskovit, klorit
35,65	2,5187	7	hematit, muskovit
36,58	2,4564	8	kvarc, muskovit, klorit
37,72	2,3851	5	muskovit, klorit
39,48	2,2824	6	kvarc, hematit, muskovit, klorit
40,41	2,2320	4	kvarc, muskovit, klorit
40,89	2,2068	3	hematit, muskovit
42,43	2,1303	8	kvarc, muskovit
45,51	1,9933	7	kvarc, muskovit, klorit
49,50	1,8414	4	hematit, muskovit
50,19	1,8179	11	kvarc
54,11	1,6950	5	hematit, muskovit, klorit
54,90	1,6723	4	kvarc, muskovit, klorit
55,57	1,6538	3	kvarc, muskovit, klorit
57,54	1,6019	2	hematit, muskovit, klorit
59,96	1,5429	8	kvarc, muskovit, klorit
61,56	1,5064	6	muskovit, klorit
62,46	1,4870	3	hematit, muskovit, klorit
64,02	1,4533	4	kvarc, hematit, muskovit

Tablica 19. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-4217.

Slika 19. Rendgenogram praha uzorka L-4217.

Površina uzorka L-4057 smeđe je boje, a unutrašnjost je plavo crne boje. Površinski sloj je tanak i na nekim dijelovima uzorka ga niti nema. Pretpostavlja se da su to samo nakupine čestica tla u kojem je uzorak bio zakopan, a ne posljedica promjene sastava na površini. Snimljen je samo prerez uzorka jer je površina uzorka nepravilnog oblika, te nije bila pogodna za XRD analizu. Rezultati analize (Tablica 20 i Slika 20) ukazuju na prisustvo aktinolita, anortita i biotita.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
8,82	10,0289	38	biotit
9,76	9,0585	14	aktinolit
10,45	8,4659	100	aktinolit
17,36	5,1091	6	aktinolit, biotit
18,10	4,9016	11	aktinolit
19,59	4,5314	13	aktinolit, biotit
21,07	4,2172	8	aktinolit, biotit
21,94	4,0504	37	aktinolit, anortit

Tablica 20. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-4057.

22,84	3,8938	15	aktinolit, anortit, biotit
23,72	3,7507	28	anortit
24,51	3,6326	18	anortit, biotit
26,24	3,3963	25	aktinolit, anortit, biotit
26,57	3,3552	26	anortit, biotit
27,13	3,2867	26	aktinolit, anortit
27,81	3,2080	88	anortit
28,07	3,1792	65	anortit, biotit
28,46	3,1364	96	aktinolit, anortit, biotit
29,80	2,9981	15	aktinolit
30,30	2,9498	39	aktinolit, anortit
31,76	2,8176	13	aktinolit, anortit
32,96	2,7179	55	aktinolit, biotit
34,49	2,6003	20	aktinolit, biotit
35,28	2,5442	25	aktinolit, anortit, biotit
35,64	2,5192	22	anortit, biotit
37,66	2,3885	6	aktinolit, anortit
38,36	2,3468	19	aktinolit, anortit
39,39	2,2876	11	aktinolit, biotit
40,65	2,2196	4	aktinolit
41,65	2,1687	19	aktinolit, anortit, biotit
42,24	2,1397	8	aktinolit, anortit, biotit
44,21	2,0489	9	aktinolit
44,82	2,0222	18	aktinolit, anortit, biotit
48,57	1,8744	7	aktinolit, anortit
49,58	1,8388	6	aktinolit, anortit, biotit
51,55	1,7729	8	aktinolit, anortit, biotit
54,38	1,6871	5	aktinolit, anortit, biotit
55,52	1,6552	16	aktinolit
56,69	1,6238	8	aktinolit
58,26	1,5838	7	aktinolit, anortit, biotit
60,17	1,5380	7	aktinolit, anortit, biotit
61,23	1,5138	6	aktinolit, anortit, biotit
64,55	1,4425	15	aktinolit, biotit

Slika 20. Rendgenogram prereza uzorka L-4057.

Uzorak L-4057 samljeven je u prah, a rezultati analize (Tablica 21. i Slika 22) ukazuju na isti sastav kao i analiza presjeka. Prisutne su faze aktinolit, anortit i biotit.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
8,82	10,0289	38	biotit
9,76	9,0585	14	aktinolit
10,45	8,4659	100	aktinolit
17,36	5,1091	6	aktinolit, biotit
18,10	4,9016	11	aktinolit
19,59	4,5314	13	aktinolit, biotit
21,07	4,2172	8	aktinolit, biotit
21,94	4,0504	37	aktinolit, anortit
22,84	3,8938	15	aktinolit, anortit, biotit
23,72	3,7507	28	anortit
24,51	3,6326	18	anortit, biotit
26,24	3,3963	25	aktinolit, anortit, biotit
26,57	3,3552	26	anortit, biotit
27,13	3,2867	26	aktinolit, anortit
27,81	3,2080	88	anortit
28,07	3,1792	65	anortit, biotit
28,46	3,1364	96	aktinolit, anortit, biotit
29,80	2,9981	15	aktinolit

Tablica 21. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-4057.

30,30	2,9498	39	aktinolit, anortit
31,76	2,8176	13	aktinolit, anortit
32,96	2,7179	55	aktinolit, biotit
34,49	2,6003	20	aktinolit, biotit
35,28	2,5442	25	aktinolit, anortit, biotit
35,64	2,5192	22	anortit, biotit
37,66	2,3885	6	aktinolit, anortit
38,36	2,3468	19	aktinolit, anortit
39,39	2,2876	11	aktinolit, biotit
40,65	2,2196	4	aktinolit
41,65	2,1687	19	aktinolit, anortit, biotit
42,24	2,1397	8	aktinolit, anortit, biotit
44,21	2,0489	9	aktinolit
44,82	2,0222	18	aktinolit, anortit, biotit
48,57	1,8744	7	aktinolit, anortit
49,58	1,8388	6	aktinolit, anortit, biotit
51,55	1,7729	8	aktinolit, anortit, biotit
54,38	1,6871	5	aktinolit, anortit, biotit
55,52	1,6552	16	aktinolit
56,69	1,6238	8	aktinolit
58,26	1,5838	7	aktinolit, anortit, biotit
60,17	1,5380	7	aktinolit, anortit, biotit
61,23	1,5138	6	aktinolit, anortit, biotit
64,55	1,4425	15	aktinolit, biotit

Slika 21. Rendgenogram praha uzorka L-4057.

4.2.2. XRD analiza površine polikristalnih uzoraka

Za kvalitativnu faznu analizu uzoraka koji ne smiju biti oštećeni korištena je XRD metoda i to tako da je snimana površina bez ikakve obrade uzorka. Od 44 uzorka, njih 35 analizirano je samo ovom metodom, bez kemijskih analiza i analiza rendgenskom difrakcijom na prahu. Budući da su rezultati sastava za ove uzorke dobiveni isključivo samo ovom metodom, oni nisu 100% pouzdani. Rezultati ovih analiza biti će grupirani jer mnogo uzoraka ima isti fazni sastav.

Grupa uzoraka koji sadrže kvarc i albit

Od 34 uzorka, njih 16 je istog faznog sastava, a sadrže kvarc i albit. Kao reprezentativni uzorak za ovu skupinu izabran je uzorak L-2830. Uzorak je svijetlo smeđe boje (Slika 22). Iako je većina ostalih uzoraka smeđe boje, postoje uzorci u skupini koji se jasno razlikuju bojom i gustoćom. Uzorak je glatke i blago zakrivljene površine.

Ostalih 15 uzoraka su: L-6181, L-6090, L-6047, L-2594, L-2830, L-350, L-6096, L-3061, L-118, L-4098, L-1541, L-4863, L-4590, L-4541, L-4055 i L-5679.

Prvi detektirani refleks javlja se tek na 20,86 °2θ (Slika 23 i tablica 22), a nakon toga vidljivo je i postepeno pojačanje šuma. Uzorak, kao i većina drugih u ovoj skupini, sadrži više difrakcijskih maksimuma koji nisu dodijeljeni niti jednoj fazi. Budući da se ne može sa sigurnošću utvrditi koji su ostali minerali prisutni u uzorcima, oni ostaju nedefinirani.

Slika 22. Makroskopski izgled uzorka L-2830.

Slika 23. Rendgenogram uzorka L-2830. Plava strelica upućuje na prvi difrakcijski maksimum.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
20,86	4,2550	9	kvarc
22,06	4,0256	8	albit
23,05	3,8556	2	albit
23,62	3,7635	5	albit
24,34	3,6534	6	albit
25,48	3,4928	3	albit
26,70	3,3365	100	kvarc, albit
27,96	3,1881	24	albit
30,09	2,9677	3	albit
30,55	2,9240	5	albit
31,35	2,8512	2	albit
33,97	2,6370	2	albit
35,15	2,5507	3	albit
36,65	2,4500	9	kvarc, albit
37,53	2,3945	2	albit
38,92	2,3121	1	albit
39,53	2,2781	9	kvarc, albit
40,31	2,2354	4	kvarc
41,24	2,1873	1	albit
42,50	2,1253	8	kvarc, albit
45,88	1,9761	4	kvarc, albit

Tablica 22. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-2830.

48,08	1,8908	1	albit
49,27	1,8480	2	albit
50,17	1,8170	18	kvarc, albit
51,18	1,7833	2	albit
53,23	1,7196	1	
54,88	1,6715	5	kvarc
55,36	1,6584	3	kvarc
59,97	1,5414	11	kvarc
61,73	1,5016	1	

Grupa uzoraka koji sadrže kvarc

Analizom uzoraka L-076, L-2545, L-4718 i L-6102 određena je samo jedna faza, kvarc (Tablica23). Izabran je uzorak L-2545 kao reprezentativni uzorak ove skupine. Ovaj uzorak je svijetlo smeđe do bijele boje (Slika 24), a površina mu je zaglađena i vrlo zakrivljena. Na rendgenogramu uzorka (Slika 25) se može vidjeti izrazito povećani šum do otprilike 20°20. Niti jedan difrakcijski maksimum nije ostao nedefiniran, no vjerojatno je početni šum prikrio neke difrakcijske maksimume.

Slika 24. Makroskopski izgled uzorka L-2545.

Slika 25. Rendgenogram površine uzorka L-2545.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
20,83	4,2651	19	kvarc
26,60	3,3512	100	kvarc
36,59	2,4557	3	kvarc
39,49	2,2821	4	kvarc
40,32	2,2369	2	kvarc
42,47	2,1286	5	kvarc
45,80	1,9812	4	kvarc
50,16	1,8187	15	kvarc
54,89	1,6727	5	kvarc
55,35	1,6598	2	kvarc
59,96	1,5415	13	kvarc
20,83	4,2651	19	kvarc
26,60	3,3512	100	kvarc
36,59	2,4557	3	kvarc
39,49	2,2821	4	kvarc
40,32	2,2369	2	kvarc
42,47	2,1286	5	kvarc
45,80	1,9812	4	kvarc
50,16	1,8187	15	kvarc
54,89	1,6727	5	kvarc
55,35	1,6598	2	kvarc
59,96	1,5415	13	kvarc

Tablica 23. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-2545.

Uzorak koji sadrži kvarc i ortoklas

Uzorak L-4006 (Slika 26) je svijetlo smeđe boje, a površina mu je zaglađena, ali je blago zakrivljena. Rendgenskom analizom uzorka utvrđena je prisutnost dvije faze, a to su kvarc i ortoklas. Uz te dvije faze sigurno postoji još najmanje jedna faza u uzorku, no nije bilo moguće sa sigurnošću tvrditi koja je to faza. Rendgenogram ovog uzorka (Slika 27 i Tablica 24) razlikuje se od drugih po tome što se ne primjećuje veliki šum na početku rendgenograma te su detektirani neki difrakcijski maksimumi i prije 20 °2θ.

Slika 26. Makroskopski izgled uzorka L-4006.

Slika 27. Rendgenogram uzorka L-4006.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
18,77	4,7280	21	
20,88	4,2549	22	kvarc, ortoklas
22,07	4,0269	4	
22,52	3,9479	5	ortoklas
23,54	3,7800	13	ortoklas
25,14	3,5425	62	ortoklas
25,74	3,4616	10	ortoklas
26,55	3,3543	59	kvarc
26,67	3,3430	100	kvarc, ortoklas
27,60	3,2316	34	ortoklas
27,98	3,1890	14	
29,82	2,9958	11	ortoklas
30,84	2,8995	6	ortoklas
31,58	2,8333	11	ortoklas
32,35	2,7678	2	ortoklas
34,53	2,5977	7	ortoklas
36,60	2,4554	7	kvarc
37,67	2,3881	3	ortoklas
39,48	2,2826	5	kvarc, ortoklas
40,32	2,2371	2	kvarc, ortoklas
41,71	2,1656	4	ortoklas
42,47	2,1283	6	kvarc, ortoklas
45,03	2,0132	6	ortoklas
45,95	1,9752	4	kvarc, ortoklas
47,05	1,9316	2	ortoklas
50,17	1,8183	11	kvarc
50,77	1,7982	5	kvarc, ortoklas
52,40	1,7462	2	ortoklas
54,98	1,6701	4	kvarc, ortoklas
58,92	1,5675	5	ortoklas
59,95	1,5430	7	kvarc
61,96	1,4965	2	ortoklas

Tablica 24. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-4006.

Grupa uzoraka koji sadrže albit i muskovit

Uzorci L-4224 i L-6079 sastoje se od albita i muskovita Uzorak L-4224 je blago hrapave no ravne površine (Slika 28), zbog čega je i rendgenska analiza površine uzorka (Slika 29 i Tablica 25) bolje izvedena. Dva difrakcijska maksimuma ovog uzorka ostala su

nedefinirana, što nije neuobičajeno, ali je jedan od njih neuobičajeno velikog relativnog intenziteta (75).

Slika 28. Makroskopski izgled uzorka L-4224.

Slika 29. Rendgenogram uzorka L-4224.

Tablica 25. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-4224.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
8,78	10,0721	3	muskovit
10,53	8,4001	11	
13,87	6,3841	15	albit

17,61	5,0355	4	muskovit
19,73	4,4993	12	muskovit
20,84	4,2634	12	muskovit
22,00	4,0404	100	albit
23,06	3,8564	16	albit, muskovit
23,55	3,7783	33	albit, muskovit
24,28	3,6653	46	albit
25,43	3,5022	17	albit, muskovit
26,62	3,3456	89	albit, muskovit
26,74	3,3391	75	
27,89	3,1967	94	albit, muskovit
28,28	3,1536	68	albit, muskovit
29,83	2,9930	24	albit, muskovit
30,50	2,9283	28	albit
30,90	2,8919	27	albit
31,32	2,8539	10	albit, muskovit
31,91	2,8021	7	albit, muskovit
33,00	2,7123	9	
34,08	2,6290	13	albit
34,56	2,5934	17	muskovit
35,09	2,5553	18	albit, muskovit
36,62	2,4522	23	albit, muskovit
37,45	2,3996	12	albit, muskovit
38,85	2,3164	7	albit, muskovit
39,53	2,2780	12	albit, muskovit
41,24	2,1871	6	albit, muskovit
41,83	2,1579	6	muskovit
42,66	2,1176	6	albit, muskovit
44,99	2,0132	6	albit
48,00	1,8940	9	albit, muskovit
49,29	1,8473	10	albit, muskovit
50,17	1,8168	17	albit, muskovit
51,25	1,7812	9	albit, muskovit
52,25	1,7495	6	muskovit
56,55	1,6262	9	muskovit
57,83	1,5930	5	muskovit
58,54	1,5754	5	muskovit
60,01	1,5403	12	muskovit
61,73	1,5014	9	muskovit

Uzorak koji sadrži anortit i aktinolit

Uzorak L-2539 je sivo zelene boje i glatke ali zakrivljene površine (Slika 30). Analizom uzorka utvrđen je fazni sastav koji uključuje anortit i aktinolit (Slika 31 i tablica 26).

Slika 30. Makroskopski izgled uzorka L-2593.

Slika 31. Rendgenogram uzorka L-2593.

Tablica 26. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-2593.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
10,52	8,4128	3	Aktinolit

13,74	6,4443	2	Anortit
17,39	5,0987	7	Aktinolit
18,10	4,9012	9	Aktinolit
19,62	4,5243	12	Aktinolit
21,03	4,2253	7	Aktinolit
22,06	4,0291	21	aktinolit, anortit
22,86	3,8905	10	aktinolit, anortit
23,81	3,7375	13	Anortit
24,49	3,6355	10	Anortit
26,29	3,3895	22	aktinolit, anortit
27,15	3,2842	24	aktinolit, anortit
27,99	3,1878	100	Anortit
28,51	3,1309	73	aktinolit, anortit
29,69	3,0089	6	aktinolit, anortit
30,34	2,9460	26	aktinolit, anortit
31,83	2,8117	9	aktinolit, anortit
33,00	2,7148	46	Aktinolit
34,49	2,6007	19	Aktinolit
35,28	2,5444	21	aktinolit, anortit
37,72	2,3847	7	aktinolit, anortit
38,38	2,3454	20	aktinolit, anortit
39,48	2,2824	10	Aktinolit
41,64	2,1692	18	aktinolit, anortit
42,63	2,1208	5	aktinolit, anortit
44,85	2,0211	17	aktinolit, anortit
46,03	1,9719	6	Aktinolit
48,67	1,8709	6	aktinolit, anortit
49,90	1,8276	8	aktinolit, anortit
51,54	1,7733	5	aktinolit, anortit
52,23	1,7513	5	aktinolit, anortit
54,29	1,6898	6	Aktinolit
55,54	1,6546	16	Aktinolit
56,72	1,6230	7	Aktinolit
58,32	1,5821	9	aktinolit, anortit
60,15	1,5384	4	aktinolit, anortit
61,23	1,5126	5	aktinolit, anortit

Uzorak koji sadrži amfibol

Uzorak L-4731 je tamno plave do sive boje (Slika 32), a njegov fazni sastav određen je samo djelomično. Većina difrakcijskih maksimuma (Slika 33 i tablica 27) nije mogla biti dodijeljena nekoj fazi sa zadovoljavajućim stupnjem podudarnosti. Faza koja je detektirana je amfibol (richterit).

Slika 32. Makroskopski izgled uzorka L-4731.

Slika 33. Rendgenogram površine uzorka L-4731.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
4,09	21,6308	0	
4,34	20,3749	0	
10,39	8,5113	38	Richterite
10,53	8,4040	48	Richterite
13,87	6,3866	1	
17,57	5,0479	1	Richterite

Tablica 27. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-4731.

18,66	4,7556	3	Richterite
19,62	4,5245	2	richterite
21,07	4,2175	2	Richterite
22,06	4,0287	7	richterite
22,93	3,8781	1	Richterite
23,63	3,7657	4	
24,25	3,6704	4	
25,58	3,4822	2	
26,28	3,3909	4	Richterite
27,21	3,2779	8	Richterite
27,82	3,2072	16	
28,61	3,1203	100	Richterite
30,36	2,9441	9	Richterite
30,87	2,8963	3	
31,87	2,8079	6	Richterite
33,08	2,7077	10	richterite
34,53	2,5973	4	richterite
35,44	2,5327	3	Richterite
37,77	2,3819	5	richterite
38,41	2,3434	4	
41,73	2,1646	4	richterite
42,90	2,1080	2	
44,21	2,0485	3	richterite
44,92	2,0178	7	Richterite
48,06	1,8932	6	Richterite
50,30	1,8141	3	Richterite
51,33	1,7801	1	
55,66	1,6514	4	Richterite
58,11	1,5874	15	
61,72	1,5018	4	

Uzorak koji sadrži amfibol i kvarc

Uzorak L-3992 (Slika 34) je svijetlo smeđe do crne boje, a površina mu je relativno glatka. Moguće je uočiti mineralna zrna makroskopski. Rendgenskom analizom uzorka utvrđena je prisutnost amfibola (magneziohornblenda) i kvarca (Slika 35 i tablica 28). Dva difrakcijska maksimuma ne pripadaju niti jednoj fazi.

Slika 34. Makroskopski izgled uzorka L-3992.

Slika 35. Rendgenogram površine uzorka L-3992.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
9,73	9,0900	10	magneziohornblenda
10,48	8,4420	42	magneziohornblenda
17,39	5,0997	8	magneziohornblenda
19,59	4,5314	13	magneziohornblenda
20,85	4,2605	11	kvarc
22,86	3,8906	9	magneziohornblenda
23,83	3,7341	8	
26,68	3,3419	51	kvarc
27,21	3,2776	24	magneziohornblenda
28,57	3,1248	100	magneziohornblenda

Tablica 28. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-3992.

29,21	3,0575	12	
30,40	2,9407	12	magneziohornblenda
31,92	2,8036	12	magneziohornblenda
32,61	2,7462	43	magneziohornblenda
33,01	2,7140	65	magneziohornblenda
34,49	2,6003	15	magneziohornblenda
35,21	2,5488	26	magneziohornblenda
36,58	2,4563	14	magneziohornblenda, kvarc
37,72	2,3847	7	magneziohornblenda
38,39	2,3446	12	magneziohornblenda
41,64	2,1689	17	magneziohornblenda
44,17	2,0504	5	magneziohornblenda
44,90	2,0188	10	magneziohornblenda
50,21	1,8171	11	magneziohornblenda, kvarc
51,45	1,7760	4	magneziohornblenda
53,12	1,7242	7	magneziohornblenda
55,59	1,6534	18	magneziohornblenda
56,75	1,6222	7	magneziohornblenda
58,21	1,5850	9	magneziohornblenda
60,00	1,5420	9	magneziohornblenda, kvarc
61,74	1,5013	7	magneziohornblenda

Grupa uzoraka koji sadrže diopsid

Uzorak L-3258 (Slika 36) je svijetlo smeđe boje, hrapave no ravne površine i predstavlja grupu uzoraka kojima je detektirana samo jedna faza, diopsid (Tablica 29). Ostali uzorci ove grupe su L-5252, L-918 i L-6044. Na rendgenogramu (Slika 37) vidljiv je izraženi šum koji se javlja na početku rendgenograma, a drugi uzorci ove grupe imaju samo još izraženije nepravilnosti u rendgenogramima.

Slika 36. Makroskopski izgled uzorka L-3258

Slika 37. Rendgenogram površine uzorka L-3258.

Tablica 29	Popis	difrakcijskih	maksimuma	dobivenih	rendgenskom	difrakcijom	na površini	uzorka	L-3258.
------------	-------	---------------	-----------	-----------	-------------	-------------	-------------	--------	---------

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
18,88	4,7007	7	diopsid
19,84	4,4759	10	diopsid
27,52	3,2408	48	diopsid
29,85	2,9932	37	diopsid
30,23	2,9561	100	diopsid
30,90	2,8943	13	diopsid

34,91	2,5705	18	diopsid
35,56	2,5249	26	diopsid
38,98	2,3108	10	diopsid
41,82	2,1602	20	diopsid
42,31	2,1364	17	diopsid
42,86	2,1102	11	diopsid
44,27	2,0460	17	diopsid
44,96	2,0161	4	diopsid
48,85	1,8644	3	diopsid
49,48	1,8422	15	diopsid
51,97	1,7597	38	diopsid
54,60	1,6810	3	diopsid
56,52	1,6283	20	diopsid
57,96	1,5911	4	diopsid
58,87	1,5687	13	diopsid
59,49	1,5538	12	diopsid
60,50	1,5302	8	diopsid
62,27	1,4897	16	diopsid

Grupa uzoraka koji sadrže diopsid i ortoklas

Dva uzorka uzorka sadrže diopsid i ortoklas, a to su L-6085 i L-6185. Oba artefakta makroskopski su vrlo slični uzorku L-3258. Uzorak L-6185 također je svijetlo smeđe boje i hrapave, ali ravne površine (Slika 38). Rezultati rendgenske analize (Slika 39 i tablica 30) ukazuju na prisustvo još barem jedne faze. Naime, na popisu difrakcijskih maksimuma uzorka L-6185 javlja se jedan nedefinirani, na položaju 29,14°20 što odgovara d-vrijednosti 3,0647 Å. Takvo stanje pojavljuje se i na uzorku L-6085 s položajem 29.15°20 i d-vrijednosti 3.0630 Å.

Slika 38. Makroskopski izgled uzorka L-6185.

Slika 39. Rendgenogram površine uzorka L-6185.

Tablica 30. Por	pis difrakci	iiskih maksimuma	dobivenih re	endgenskom	difrakcijom	na površini	uzorka L-6185
		J					

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
13,67	6,4769	8	Fe-diopsid, ortoklas
18,79	4,7237	6	Fe-diopsid
19,78	4,4897	6	Fe-diopsid
21,04	4,2231	18	ortoklas
22,56	3,9411	9	ortoklas
23,58	3,7725	18	ortoklas
24,60	3,6182	6	ortoklas
25,68	3,4686	18	ortoklas
26,90	3,3147	34	ortoklas

27,56	3,2366	67	Fe-diopsid, ortoklas
29,14	3,0647	21	
29,79	2,9988	100	Fe-diopsid, ortoklas
30,16	2,9632	92	Fe-diopsid
30,89	2,8945	41	Fe-diopsid, ortoklas
34,81	2,5774	61	Fe-diopsid, ortoklas
35,41	2,5331	65	Fe-diopsid
35,53	2,5270	63	Fe-diopsid, ortoklas
38,82	2,3199	18	Fe-diopsid, ortoklas
40,71	2,2165	6	Fe-diopsid, ortoklas
41,69	2,1663	22	Fe-diopsid, ortoklas
42,25	2,1389	34	Fe-diopsid
42,79	2,1135	22	Fe-diopsid, ortoklas
44,20	2,0492	27	Fe-diopsid, ortoklas
45,00	2,0147	17	Fe-diopsid, ortoklas
46,06	1,9706	11	Fe-diopsid, ortoklas
47,52	1,9136	7	ortoklas
48,71	1,8694	7	Fe-diopsid
49,38	1,8457	13	Fe-diopsid, ortoklas
50,70	1,8005	13	ortoklas
51,91	1,7614	40	Fe-diopsid
54,75	1,6768	10	Fe-diopsid, ortoklas
56,54	1,6276	36	Fe-diopsid, ortoklas
58,76	1,5714	13	Fe-diopsid, ortoklas
59,35	1,5573	13	Fe-diopsid, ortoklas
60,36	1,5335	20	Fe-diopsid, ortoklas
62,05	1,4946	14	Fe-diopsid, ortoklas

Grupa uzoraka koji sadrže diopsid i anortit

Uzorci L-1654 i L-4103 makroskopski su različitog izgleda, ali imaju isti fazni sastav, Fediopsid i anortit (Slika 40 i tablica 31). Uzorak L-4103 sličniji je ostalim uzorcima koji sadrže diopsid. Površina mu je ravna i blago hrapava. Boja uzorka je na površini svijetlo smeđa, a kada se otkloni tanki površinski sloj, boja unutrašnjosti je bijela (Slika 41).

Slika 40. Makroskopski izgled uzorka L-4103.

Slika 41. Rendgenogram površine uzorka L-4103.

Položaj	d-vrijednost	Relativni intenzitet	Mineral
[°20]	[Å]	[%]	
19,84	4,4756	8	Fe-diopsid
21,00	4,2312	12	anortit
22,01	4,0392	11	
23,22	3,8301	14	anortit
23,60	3,7696	16	
24,50	3,6329	10	
25,10	3,5480	12	anortit

Tablica 31. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-4103.

25,68	3,4693	42	anortit
26,64	3,3468	94	Fe-diopsid
27,51	3,2421	51	Fe-diopsid
27,83	3,2057	52	
28,43	3,1393	14	
29,15	3,0639	30	anortit
29,82	2,9966	100	Fe-diopsid
30,19	2,9605	31	Fe-diopsid
30,84	2,8996	19	Fe-diopsid
31,45	2,8445	8	Fe-diopsid, anortit
33,21	2,6978	6	anortit
34,90	2,5712	44	Fe-diopsid
35,44	2,5327	82	Fe-diopsid
38,96	2,3118	8	Fe-diopsid, anortit
40,55	2,2248	11	Fe-diopsid
42,33	2,1354	24	Fe-diopsid, anortit
44,26	2,0466	19	Fe-diopsid
44,92	2,0179	15	Fe-diopsid, anortit
46,01	1,9725	11	Fe-diopsid
47,40	1,9178	13	anortit
50,13	1,8197	9	Fe-diopsid, anortit
51,94	1,7605	21	Fe-diopsid
54,71	1,6777	11	Fe-diopsid, anortit
55,45	1,6573	8	Fe-diopsid
56,66	1,6246	36	Fe-diopsid, anortit
59,40	1,5560	7	Fe-diopsid, anortit
60,47	1,5310	9	Fe-diopsid, anortit
61,58	1,5061	19	Fe-diopsid, anortit
62,20	1,4913	7	Fe-diopsid
			-

4.3. Makroskopski opis uzoraka i mikrofiziografske analize

Uzorak L-6129

Uzorak je svijetlo smeđe boje na površini (Slika 42a). Na mjestu gdje je uzorak napuknuo vidljivi su produkti trošenja narančasto ljubičaste boje (Slika 42b). Mineralna zrna nisu vidljiva na površini niti na presjeku.

Slika 42. Uzorak L-6129; a- površina, b- pukotina na površini uzorka

Unutrašnjost uzorka je sivo plave boje (Slika 43).

Slika 43. Presjek uzorka L-6129

Tekstura mikroskopskog preparata uzorka je homogena do slabo škriljava, a struktura granoblastična (Slika 44). U mikroskopskom preparatu se nalaze pirokseni (~70 vol.%), anortit (~30 vol.%) i akcesorni opaki minerali (~1 vol.%) (Tablica 32).

Slika 44. Uzorak L-6123. PPL N- (lijevo), PPL N+ (desno).

Tablica 32. Uzorak L- 6129. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	procjena volumnih udjela
(Piroksen) Fe-Diopsid	~70 vol.%
Anortit	~30 vol.%
Opaki min	~1 vol.%

Zrna piroksena (Fe-diopsid) su alotriomorfna i usmjerena. Vlastita boja zrna diopsida je svijetlo zelena (Slika 45). Reljef zrna diopsida je umjereno visok. Kut potamnjenja zrna je izmjeren i iznosi 38°. Zrna piroksena interferiraju u bojama prvog i drugog reda, uglavnom crvenom i ljubičastom bojom.

Slika 45. Uzorak L-6129. PPL N- (lijevo), PPL N+ (desno).

Anortit se nalazi u sitno zrnatoj osnovi stijene (Slika 44). Interferira u sivoj boji. U preparatu se nalazi jedno veće zrno anortita (Slika 45) koje sadrži mnogo uklopaka ostalih mineralnih faza.

Zrna opakih minerala su nepravilnih oblika i orijentirana su u istom smjeru kao i zrna piroksena i anortita (Slika 45). Točna odredba opakih minerala nije izvršena.

Na temelju mikroskopske analize, uzorak L-6129 definiran je kao hornfels.

Uzorak L-501

Na samoj površini uzorak je zelene boje (Slika 46a), no unutrašnjost je tamno plavo-zelena. Vanjski i unutrašnji dio dijeli jasni i oštri rub (Slika 46b). Granica između vanjskog i unutrašnjeg dijela je oštra (Slika 46 b). Svjetliji dio tvori ovoj debljine od 2mm do 13mm.

Slika 46. Makroskopski izgled presjeka uzorka L-501. a- površina, b- prerez.

Tekstura mikroskopskog preparata je homogena, a struktura afanitska (mikrokristalina). Promjena boje na prerezu uzorka koja je vidljiva makroskopski, u mikroskopskom preparatu se očituje kao promjena sastava stijene. Točnije, kao promjena poroznosti. Mineralni sastav vanjskog (svjetlijeg) dijela uzorka i unutrašnjeg (tamnijeg) dijela uzorka bitno se razlikuje (Tablica 33). Može se jasno uočiti da vanjski dio uzorka sadrži šupljine (22 vol. %), te u skoro istoj mjeri toliko manji udio kalcita.

Mineralni sastojci	procjena volumnih udjela	procjena volumnih udjela							
	Vanjski svjetliji dio uzorka	Unutrašnji tamniji dio uzorka							
Sitnozrnata osnova (kvarc i albit)*	63 vol.%	63 vol.%							
Šupljine	22 vol.%	0 vol.%							
Albit	5 vol.%	6 vol.%							
Kvarc	5 vol.%	5 vol.%							
Biotit	3 vol.%	3 vol.%							
Glaukonit	1 vol.%	1 vol.%							
Kalcit	1 vol.%	22 vol.%							

Tablica 33. Procjena volumnog udjela mineralnih sastojaka uzorka L-501 u vidnom polju mikroskopa.

*Mineralni sastav sitnozrnate osnove određen je pomoću rendgenske analize

Slika 47. Uzorak L-501. Jasno vidljiva granica promjene poroznosti uzorka (označeno crvenom linijom). PPL N- (lijevo), PPL N+ (desno).

Na unutrašnjem dijelu uzorka, šupljine su zapunjene kalcitom, kalcitom i kloritom, te kalcitom i kvarcom (Slika 47). U uzorku se pojavljuju i bioklasti istog sastava (Slike 48-52).

Kvarc se najvećim dijelom nalazi u sitnozrnatoj osnovi uzorka, no pojavljuje se i u nekoliko većih zrna koja se mogu identificirati (Slika 52).

Albit se također većim dijelom u sitnozrnatoj osnovi, no vidljiva su i manja trošna mineralna zrna (Slika 48).

Glaukonit se pojavljuje u manjim količinama u sitnozrnatoj osnovi, te kao ispuna šupljina i bioklasta (Slika 51). Biotit se pojavljuje uglavnom u vidu alotriomorfnih zrna (Slika 51).

Slika 48. Vanjski rub uzorka 501. Na slici je označeno zrno albita (Ab). PPL N- (lijevo), PPL N+ (desno).

Slika 49. Uzorak L-501. Crvenom kružnicom označen je bioklast u uzorku L-501. PPL N- (lijevo), PPL N+ (desno).

Slika 50. Uzorak L-501. Crvenom kružnicom označen je bioklast . PPL N- (lijevo), PPL N+ (desno).

Slika 51. Uzorak L-501. Bioklast ispunjen kalcitom i glaukonitom označen je crvenom kružnicom. Biotit (Bt) jasno pokazuje pleokroizam. PPL N- (lijevo), PPL N+ (desno).

Slika 52. Uzorak L-501. Bioklast ispunjen kalcitom i kvarcom označen je crvenom kružnicom. Lijevo: polarizirano svjetlo. PPL N- (lijevo), PPL N+ (desno).

Uzorak je definiran kao dijagenetski rožnjak (eng. chert) s reliktima primarne vapnenačke stijene i terigenom komponentom.

Uzorak L-1542

Uzorci L-501 i L-1542 su po sastavu, strukturi i teksturi skoro identični, ali makroskopski se razlikuju izgledom površine (Slika 46 i Slika 53).

Slika 53. Makroskopski izgled uzorka L-1542. a- površina, b- prerez.

Uzorak je zelene boje i glatke površine (Slika 53a). Na prerezu se vidi jasno definirani rub svijetlije boje i tamnija unutrašnjost(Slika 53b). Pojedinačna mineralna zrna nisu vidljiva. Tekstura je homogena.

Mikroskopski, uzorak je sitnozrnati, homogene teksture i afanitske (mikrokristaline) strukture. Stupanj kristaliniteta je hipokristalin/hipohijalin (Slika 54). Uzorak ne sadrži zrna preferirane orijentacije

Rub koji je vidljiv makroskopski na uzorku, vidljiv je i u mikroskopskom preparatu (Slika 54).

Slika 54. Uzorak L-1542. Vidljiva granica između zapunjenih i nezapunjenih šupljina. PPL N- (lijevo), PPL N+ (desno).

Kalcit je u rubnom dijelu zastupljen samo 1%, kao što je i slučaj kod uzorka L-501 (Tablica 35). Kvarc se najvećim dijelom nalazi u sitnozrnatoj osnovi uzorka. Uz kvarc u sitnozrnatoj osnovi se nalazi i albit. Mjestimice se mogu uočiti idiomorfni oblici albita (Slika 55).

Mineralni sastojci	procjena volumnih udjela						
	Vanjski svjetliji dio uzorka	Unutrašnji tamniji dio uzorka					
Sitnozrnata osnova (kvarc i albit)*	60 vol.%	60 vol.%					
Šupljine	23 vol.%	0 vol.%					
Albit	5 vol.%	6 vol.%					
Kvarc	5 vol.%	5 vol.%					
Biotit	5 vol.%	5 vol.%					
Glaukonit	1 vol.%	1 vol.%					
Kalcit	1 vol.%	23 vol.%					

Tablica 34. Procjena volumnog udjela mineralnih sastojaka uzorka L-1542 u vidnom polju mikroskopa.

Slika 55. Albitno (Ab) zrno u uzorku L-1542. PPL N- (lijevo), PPL N+ (desno).

Kalcit se pojavljuje kao ispuna šupljina i kao dio sastavni dio bioklasta (Slika 56.).Uglavnom su jasno vidljiva dva sustava pukotina kalavosti. Prisutna je i pseudoapsorpcija. Zbog debljine preparata s uključenim analizatorom kalcit interferira u bojama prvog reda, ali pretežito u žutoj boji.

Slika 56. Uzorak L-1542. Na slici je označen kalcit (Cal). PPL N- (lijevo), PPL N+ (desno).

Zelene nakupine glaukonita pojavljuju se u nedefiniranim oblicima u matriksu, ali je prisutan i kao bio bioklasta uz kalcit i kvarc (Slika 57). Glaukonit ne potamnjuje s uključenim analizatorom.

Slika 57. Uzorak L-1542. Na slici se nalazi jedan bioklast koji sadrži tri faze: glaukonit (Glt), kvarc (Q) i kalcit. PPL N- (lijevo), PPL N+ (desno).

Mineralna zrna biotita su listićava i dijelom difuzna (Slika 58.). Interferencijske boje su vidljive, ali zbog vlastite boje biotita one su slabije izražene.

Slika 58. Uzorak L-1542. Na slici je označeno zrno biotita. PPL N- (lijevo), PPL N+ (desno).

Uzorak L-1542 određen je kao dijagenetski rožnjak s reliktima primarne vapnenačke stijene i terigenom komponentom.

Uzorak L-5740

Uzorak je crveno smeđe boje i homogene teksture na površini (Slika 59a). Na presjeku uzorka vidljive su koncentrične zone tamnih minerala (Slika 59b).

Slika 59. Makroskopski izgled uzorka L-5740. a- površina, b- presjek

Tekstura mikroskopskog preparata je homogena, a struktura mikrokristalasta. Mineralna zrna su manja od 63 mikrona. Uzorak je iznimno porozan. Od ukupnog volumena stijene, procijenjeno je da pore zauzimaju čak 20 vol.% (Tablica 36).

Slika 60. Uzorak L-5740. PPL N- (lijevo), PPL N+ (desno).

Tablica 35. Uzorak L- 5740. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	Procjena volumnih udjela
Kvarc	60 vol.%
Šupljine	20 vol.%
Hematit	15vol.%
Rutil	2 vol.%
Cirkon	2 vol.%
Magnetit	1 vol.%

Zasebna mineralna zrna svih faza teško je izdvojiti zbog izrazite sitnozrnatosti uzorka (Slika 60). Magnetit je detektiran pomoću analize rendgenskom difrakcijom, te se pretpostavlja da su opaki minerali u uzorku zapravo zrna magnetita (Slika 61 i Slika 62). Rutil se nalazi u sitnozrnatoj osnovi uzorka kvarca i hematita.

Slika 61. Uzorak L-5740. PPL N-.

Slika 62. Uzorak L-5740. PPL N+ .

Stijena je definirana kao tufit.

Uzorak L-666

Uzorak je na površini svijetlo smeđe boje, a unutrašnjost je tamno zeleno-plavo (Slika 63). Površinski dio uzorka debljine je 1mm. Uzorak je homogene teksture, a mineralna zrna ne mogu se razaznati.

Slika 63. Makroskopski izgled uzorka L-666. Presjek se vidi na lijevoj slici (a), a površina na desnoj (b).

Tekstura mikroskopskog preparata uzorka je homogena do škriljava, a struktura je nematoblastična (Slika 64.). Uzorak je izrazito sitnozrnat. Privid većih mineralnih zrna odaju grupirana sitnija zrna istog položaja indikatrise što se može najbolje uočiti na mjestima gdje se u uzorku javljaju žile (Slika 64, crvena strelica).

Slika 64. Mikroskopski izgled uzorka L-666. Žilica oko koje se pojavljuju mineralna zrna istog položaja indikatrise označena je crvenom strelicom. PPL N- (lijevo), PPL N+ (desno).

Tablica 36. Uzorak L- 666. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	Procjena volumnih udjela
Klinopirokseni (diopsid*)	~65 vol.%
Plagioklasi (anortit*)	~30 vol.%
Opaki min	~5 vol.%

* Tip klinopiroksena i plagioklasa određeni su pomoću kemijskih i XRD analiza.

Slika 65. Uzorak L-666. Lijevo: polarizirano svjetlo. PPL N- (lijevo), PPL N+ (desno).

U sitnozrnatoj osnovi uzorka prevladavaju klinopirokseni i plagioklasi (Tablica 37). Točnija odredba klinopiroksena i plagioklasa određena je uz pomoć rezultata XRD analize. Plagioklasi su niskog reljefa i bezbojni u polariziranom svjetlu. Interferencijska boja je bijelo-siva. Vlastita boja klinopiroksena je smeđe-zelena, a reljef je umjeren do visok. Pukotine kalavosti nije moguće izmjeriti zbog izrazite sitnozrnatosti. Sukladno s time, nije bilo moguće niti pouzdano izmjeriti kut potamnjenja klinopiroksena.

Stijena je definirana kao metadijabaz.

Uzorak L-1495

Uzorak je na površini sivo smeđe boje (Slika 66a), a unutrašnjost je tamno zeleno plava i vidljiva je škriljava tekstura (Slika 66b).

Slika 66. Makroskopski izgled uzorka L-1495. a-površina, b-presjek.

Tekstura mikroskopskog preparata uzorka je homogena, a struktura ofitska (Slika 67 i 68). Uzorak je nejednolike debljine, te se zbog toga pojavljuju područja viših interferencijskih boja (Slika 67).

Slika 67. Uzorak L-1495. Mjesta viših interferencijskih boja označena su crvenim elipsama. PPL N- (lijevo), PPL N+ (desno).

Amfibol tvori glavni dio sitnozrnate osnove uzorka (Tablica 38). Relativno veća zrna amfibola nalaze se uz veća zrna ortoklasa i kvarca (Slika 69). Amfibol ima visoki reljef, a vlastita boja je blijedo zelena. Prisutnost zoisita ukazuje na moguće alteracije amfibola. Na rubovima ortoklasa (Slika 68) vidljivo je da dio amfibola urašta u zrno ortoklasa. Zoisit se pojavljuje u tragovima (<1 vol.%).

Tablica 37. Uzorak L-1495. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	Procjena volumnih udjela
Amfibol (aktinolit)	79 vol.%
Ortoklas	19 vol.%
Kvarc	2 vol.%
Zoisit	<1%

Slika 68. Uzorak L-1495. Na slici se nalaze označeni minerali ortoklas (Or), zoisit (Zo) i amfibol aktinolit (Act). PPL N- (lijevo), PPL N+ (desno).

Zrna kvarca su sviježa (Slika 69) s blagim unduloznim potamnjenjem i uklopcima amfibola. Na većini kvarcnih zrna vidljiv je bulging (Slika 70).

Slika 69. Uzorak L-1495. Na slici je prikazan kvar (Q) s uklopcima amfibola aktinolita (Act). PPL N- (lijevo), PPL N+ (desno).

Vanjski rub alatke mikroskopski je vidljiv kao tanki sloj promijenjenog mineralnog sastava, a mineralna zrna su izrazito sitna (Slika 70). Zbog toga determinacija mineralnog sastava vanjskog ruba uzorka nije moguća mikroskopskom analizom.

Slika 70. Uzorak L-1495. Na slici je prikazan ortoklas (Or) i kvarc (Q) unutar kojeg se može jasno uočiti bulging. Crvenom elipsom označen je vanjski rub alatke. PPL N- (lijevo), PPL N+ (desno).

Stijena je definirana kao metadijabaz.

Uzorak L-4866

Površina uzorka je svijetlo smeđe boje, a unutrašnjost bijele boje s tamnim žilama nepravilnog oblika (Slika 70).

Slika 71. Makroskopski izgled uzorka L-4866. a- presjek, b- površina.

Tekstura mikroskopskog preparata uzorka je homogena, a struktura nematoblastična (Slika 71). Prilikom izrade mikroskopskog preparata uočeno je da uzorak ima zrnati lom.

Slika 72. Mikroskopski preparat uzorka L-4866. PPL N- (lijevo), PPL N+ (desno).

Glavni mineral u preparatu je tremolit (94 vol.%), a sporedno se pojavljuje smjesa nedefinirane nakupine tamnih minerala u žilicama uzorka (5 vol.%) i akcesorno opaki minerali (1 vol.%) (Tablica 39). U preparatu tremolit se nalazi u vidu sitnozrnate osnove koja interferira u nižim bojama prvog reda i u vidu zrna izraženog vlaknastog habitusa koja interferiraju u višim bojama prvog reda (Slika 72.). U polariziranom svjetlu, tremolit je bezbojan, a reljef je umjereno visok. Vlastita boja tremolita na mikroskopskim fotografijama

(Slika 71-73) prividno je svijetlo smeđa zbog prigušenog svijetla mikroskopa. Pleokroizam nije vidljiv.

Tablica 38. Uzorak L-4866. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	Procjena volumnih udjela
Tremolit	94 vol.%
Tamne nakupine u žilicama	5 vol.%
Opaki minerali	1 vol.%

Zrna opakih minerala su alotriomofna (Slika 72.)

Slika 73. Uzorak L-4866. Na slici su označeni opaki minerali (Opq) u osnovnoj masi tremolita. PPL N- (lijevo), PPL N+ (desno).

Tamna područja unutar uzorka nisu definirana zbog nemogućnosti točne identifikacije. Ta područja su tamno smeđe do crne boje, nema vidljivih mineralnih zrna, a interferencijska boja je uglavnom prekrivena vlastitom (Slika 73.)

Slika 74. Uzorak L-4866. Tamna područja označena crvenim strelicama. PPL N- (lijevo), PPL N+ (desno). Stijena je definirana kao nefrit.

Uzorak L-4217

Uzorak je crvene boje i homogene teksture (Slika 75).

Slika 75. Makroskopski izgled uzorka L-4217. a-površina, b-prerez

Tekstura mikroskopskog preparata uzorka je homogena, a struktura mikrokristalasta (Slika 76). Većina preparata prekrivena je crvenom bojom koja potječe od hematita.

Slika 76. Uzorak L-4217. PPL N- (lijevo), PPL N+ (desno).

Sve faze u uzorku su sitnozrnate i nije ih moguće pojedinačno identificirati samim mikroskopiranjem. Pri odredbi mineralnog sastava za pomoć su korišteni rezultati XRD analize. U preparatu je dominantan kvarc, zatim hematit, a kao sporedni mineral prisutan je muskovit. Volumni udjeli određeni su okvirno (Tablica 40). Sama mineralna zrna hematita nisu vidljiva, a kvarc je sitnozrnat. Muskovit je prisutan u hipidiomorfnim oblicima. (Slika 77.)

Tablica 39. Uzorak L-4217. Okvirna procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	Okvirna procjena volumnih udjela					
Kvarc	60 vol.%					
Hematit	30 vol.%					
Muskovit	10 vol.%					

Slika 77. Uzorak L-4217. Na slici je označen muskovit (Ms). PPL N- (lijevo), PPL N+ (desno).

Stijena je određena kao tufit.

Uzorak L-4057

Površina uzorka je smeđe boje, a unutrašnjost plavo crne boje (Slika 78). Tekstura uzorka je homogena.

Slika 78. Makroskopski izgled uzorka L-4057. a- presjek, b- površina.

Tekstura mikroskopskog preparata uzorka je škriljava, a struktura nematoblastična (Slika 79).

Slika 79. Uzorak L-4057. PPL N- (lijevo), PPL N+ (desno).

Aktinolit se pojavljuje kao sitnozrnata osnova preparata (67 vol.%), interferira u višim bojama drugog reda i visokog je reljefa (Slika 80). Prisutan je pleokroizam od blijedo žute do zeleno žute boje. Zrna aktinolita su alotriomorfna.

Tablica 40. Uzorak L-4057. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa.

Mineralni sastojci	Procjena volumnih udjela
Aktinolit	67 vol.%
Anortit	25 vol.%
Biotit	7 vol.%
Opaki minerali	1 vol.%

Slika 80. Uzorak L-4057. Na slici su označeni aktinolit (Act), hipidiomorfni anortit (An), biotit (Bt) i opaki mineral (Opq). PPL N- (lijevo), PPL N+ (desno).

Anortit se također dijelom nalazi u sitnozrnatoj osnovi uzorka, a dio se javlja u obliku hipidiomorfnih zrna (Slika 80). Zrna biotita, koji se pojavljuje kao sporedni mineral u preparatu (Tablica 41), su blago izdužena. Opaki minerali prisutni u uzorku većinom su alotriomorfni, osim označenog mineralnog zrna na slici 80 koji je hipidiomorfnog oblika.

Stijena je definirana kao amfibolski škriljavac.

4.4. Kemijske analize

Kemijske analize napravljene su u svrhu određivanja glavnih elemenata (Tablica 42), elemenata u tragovima (Tablica 43) i elemenata rijetkih zemalja (REE + Y) (Tablica 44).

Tablica 41. Rezultati kemijske analize artefakata iz Debele Šume. Udio glavnih sastojaka izražen je u tež.%, a sporednih u ppm.

	Glavni s	Glavni sastojci [tež.%]											Sporedni sastojci			[tež.%]
													[ppm]			
Analit	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	Ва	Ni	Sc	LOI	Sum
GD*	0,01	0,01	0,04	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,002	1	20	1	-5,1	0,01
L-6129	50,93	14,63	5,52	6,15	18,59	2	0,41	0,68	0,11	0,1	0,035	88	183	16	0,5	99,74
L-501	83,36	5,45	0,85	0,31	3,24	1,59	1,38	0,09	0,04	0,15	0,002	141	22	3	3,5	99,96
L-1542	80,57	6,81	0,96	0,39	3,34	2,2	1,46	0,12	0,09	0,26	0,002	135	77	4	3,7	99,94
L-5740	85,94	5,89	2,31	0,47	0,27	0,32	0,88	0,24	0,19	0,47	0,004	351	39	6	2,9	99,96
L-666	47,79	14,19	9,24	5,27	20,98	0,86	0,07	0,65	0,15	0,19	0,032	25	182	16	0,3	99,77
L-1495	54,95	13,26	6,85	7,24	6,44	0,85	6,52	0,63	0,35	0,1	0,08	1163	423	15	2,3	99,72
L-4866	57,32	0,28	4,44	21,02	12,71	0,05	0,03	<0,01	0,08	0,1	0,101	19	845	2	3,4	99,63
L-4217	56,68	18,79	7,97	4,26	0,2	0,13	5,58	0,84	0,09	<0,01	0,014	329	42	14	5,2	99,82
L-4057	50,64	16,03	7,79	7,8	13,1	1,97	0,46	0,67	0,1	0,08	0,062	48	297	19	1	99,73

*GD = Granica detekcije (statistička vrijednost kojom se opisuje najmanji iznos analita koji se može pouzdano mjeriti)

	Sporedni elementi [PPM]																	
Analit	Ва	Ni	Sc	Be	Со	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	V	W	Zr
GD*	1	20	1	1	0,2	0,1	0,5	0,1	0,1	0,1	1	0,5	0,1	0,2	0,1	8	0,5	0,1
L-6129	88	183	16	2	19,4	0,6	17,3	3,7	11,3	11,9	3	706,1	0,9	9,6	2,2	145	1,2	134,9
L-501	141	22	3	1	5,7	1,7	5,6	1,4	7,3	108,3	2	30,4	0,9	11,8	5,2	28	1,2	39,6
L-1542	135	77	4	<1	6,1	2,1	7,3	2,1	10,4	124,2	2	29,5	1,2	16,6	5,5	23	1,4	59,8
L-5740	351	39	6	<1	10,4	3,6	6,1	1,3	3,8	38,3	<1	27,0	0,3	4,3	0,8	55	1,2	48,8
L-666	25	182	16	2	26,5	0,3	16,6	3,4	9,9	1,3	3	605,0	0,5	10,4	2,5	139	2,7	131,4
L-1495	1163	423	15	<1	35,5	16,7	12,3	3,5	9,6	347,4	5	451,1	0,6	8,8	2,0	125	0,9	133,4
L-4866	19	845	2	<1	42,0	<0,1	<0,5	<0,1	<0,1	0,2	<1	28,7	<0,1	<0,2	<0,1	25	<0,5	0,5
L-4217	329	42	14	2	9,9	7,5	22,4	3,5	21,3	229,7	5	28,8	1,3	16,5	2,3	91	2,5	137,6
L-4057	48	297	19	2	25,7	1,5	18,5	3,1	10,4	23,8	2	572,3	0,7	10,7	2,2	159	0,8	111,1

Tablica 42. Rezultati kemijske analize artefakata iz Debele Šume. Udio sporednih elemenata izražen je u ppm.

*GD = Granica detekcije (statistička vrijednost kojom se opisuje najmanji iznos analita koji se može pouzdano mjeriti).

	REE + Y [PPM]														
Analit	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
GD*	0,1	0,1	0,1	0,02	0,3	0,05	0,02	0,05	0,01	0,05	0,02	0,03	0,01	0,05	0,01
L-6129	25,2	24,5	49,2	5,59	22,3	4,63	0,96	4,74	0,76	4,59	0,93	2,82	0,39	2,56	0,36
L-501	16,3	15,8	28,8	3,32	11,9	2,31	0,32	2,41	0,39	2,40	0,54	1,71	0,26	1,79	0,26
L-1542	19,4	22,4	39,9	4,48	15,6	3,18	0,37	3,17	0,50	3,01	0,64	1,97	0,30	1,94	0,33
L-5740	12,4	17,2	40,9	3,82	14,6	2,99	0,64	2,75	0,41	2,17	0,48	1,39	0,20	1,24	0,19
L-666	24,1	31,7	58,8	6,84	25,8	5,03	1,07	4,56	0,73	4,23	0,91	2,59	0,37	2,40	0,40
L-1495	23,0	26,2	52,0	6,01	23,1	4,57	0,93	4,25	0,67	4,01	0,87	2,37	0,35	2,26	0,34
L-4866	0,5	0,8	0,8	0,10	<0,3	<0,05	0,02	0,10	0,01	0,08	<0,02	0,07	<0,01	<0,05	<0,01
L-4217	30,6	52,7	82,6	12,50	48,0	9,39	1,80	7,36	1,14	6,22	1,19	3,32	0,46	2,89	0,43
L-4057	25,4	25,5	53,8	6,13	23,7	4,70	1,05	4,53	0,72	4,20	0,93	2,78	0,41	2,59	0,40

 $Tablica \ 43. \ Rezultati \ kemijske \ analize \ artefakata \ iz \ Debele \ \check{S}ume. \ Udio \ elemenata \ rijetkih \ zemalja \ (REE + Y \) \ izražen \ je \ u \ PPM.$

*GD = Granica detekcije (statistička vrijednost kojom se opisuje najmanji iznos analita koji se može pouzdano mjeriti)

5. DISKUSIJA

5.1. XRD analize uzoraka

Neinvazivne metode određivanja sastava uzoraka vrlo su bitne kada su uzorci kulturološki vrijedni. Arheološko uzorkovanje i konzervacijske tehnike orijentirane su na očuvanje pronađenog predmeta i u većini slučajeva nije dopušteno uklanjanje površinskih slojeva trošenja (GAUTHIER i BURKE, 2011). To je u geološkim okvirima vrlo ograničavajuće jer sve uobičajene metode za analizu uzoraka zahtijevaju neki oblik razaranja uzorka. Stoga je u ovom radu uz makroskopsku odredbu koja je vrlo nepouzdana, pogotovo kod sitnozrnatih uzorka, i odredbu gustoće koja također ima bitna ograničenja jer većina stijena ima slične gustoće za analiziranje uzoraka koristila se metoda difrakcije rendgenskih zraka na polikristalnim uzorcima. XRD metoda najprimjerenija je za praškaste uzorke veličine čestica 0,001 mm, ali se može prilagoditi i za rad na površini cjelovitih uzoraka što je i napravljeno. Budući da su rezultati sastava za takve uzorke dobiveni isključivo samo jednom metodom i jednim snimanjem, oni nisu 100% reprezentativni. Vjerojatnost za odstupanje od realnog sastava je nezanemariva. Devet uzoraka bilo je moguće analizirati i tehnikom snimanja na prahu (XRD). Time je omogućena direktna usporedba rengenograma površine i praha uzoraka. Unatoč tome što se XRD analiza može izvršiti na svim uzorcima, točnost i preciznost samih rezultata ovisi o površinskom stanju uzorka, te o teksturi i strukturi uzorka. Površina uzorka mora biti ravna i glatka, što je u slučaju glačanih kamenih izrađevina i uobičajeno. Struktura uzorka trebala bi biti u rasponu od mikrokristaline do kriptokristaline (GAUTHIER i BURKE, 2011) radi veće sličnosti s česticama praškastog uzorka.

Dakle, do odstupanja u rezultatima analize površine krutih uzoraka dolazi ako:

- Površina uzorka nije savršeno ravna i glatka
- Uzorak nije optimalno postavljen unutar difraktrometra:
 - o Uzorak nije postavljen na pravilnoj visini
 - o Uzorak nije postavljen točno horizontalno

- Odabrani dio površine uzorka nije reprezentativan za cjeloviti uzorak:
 - Uzorak nije istog sastava na površini i unutrašnjosti bilo zbog alteracija bilo zbog onečišćenja tlom
 - Površina uzorka nije sasvim čista (čestice tla i minerali glina u porama poroznih uzoraka)
- Nije zadovoljen uvjet da postoji "beskonačno" mnogo čestica u svim mogućim orijentacijama veličine par mikrometara
 - Veličina minerala na površini uzoraka dosežu veličine i do 1 mm

5.1.1. Mineraloško petrografske karakteristike odabranih uzoraka

Prilikom pripreme uzoraka za snimanje presjeka i površine uočeno je da se nekim uzorcima mijenja boja od sredine prema rubu tj. površini. Iz tog razloga snimljeni su presjeci određenih uzoraka. Površine narezanih pločica snimljene su tako da su postavljene na kružni nosač koji se inače koristi u svrhu snimanja praha.

Uzorak L-6129 - hornfels

Do 20 °2θ na rendgenogramu površine uzorka L-6129 može se uočiti izostanak nekoliko difrakcijskih maksimuma i sniženi pozadinski šum (Slika 81), a razlog tome je sjena zbog neravne površine uzorka, unatoč tome što površina uzorka makroskopski izgleda ravna.

Slika 81. Usporedba rendgenograma površine (plava linija) i praha (crvena linija) uzorka L-6129. Šum je označen zelenom elipsom.

Uočena je pojava dva nova difrakcijska maksimuma na rendgenogramu površine koja se ne pojavljuju na rendgenogramu praha (Slika 82), a oni pripadaju skapolitu. Mikroskopskom analizom ustvrđeno je da se u uzorku nalaze opaki minerali u tragovima koji nisu bili detektirani rendgenskim analizama (Tablica 45).

Slika 82. Detalj iz usporednog rendgenograma površine (plava linija) i praha (crvena linija) uzorka L-6129. Plava strelica pokazuje na difrakcijski maksimum na poziciji 32.75 °20, a zelena na 33.29 °20.

Mikroskopska analiza		XRD	XRD		
		prah	površina		
(Piroksen) Fe-Diopsid	~70 vol.%	(Piroksen) Fe-Diopsid	(Piroksen) Fe-Diopsid		
Anortit	~30 vol.%	Anortit	Anortit		
Opaki min	~1 vol.%		Skapolit		

Tablica 44. Usporedni prikaz faznog sastava uzorka L-6129 na temelju mikroskopske analize, te XRD analize praha i površine uzorka.

Uzorak L-6129 određen je kao hornfels. Hornfels je metamorfna stijena bez izražene preferirane orijentacije. Naziv hornfels odnosi se najviše na teksturne i strukturne karakteristike stijene. Hornfels može biti vrlo varijabilnog sastava. To je sitnozrnata, kompaktna stijena koja se javlja u aureolama kontaktnog metamorfizma gdje su kiseli intruzivi najčešće u kontaktu s pelitima, tufom ili slejtom. Hornfels obuhvaća nekoliko metamorfnih facijesa (albit-epidot hornfels, hornblenda hornfels i piroksen hornfels facijesi) i javlja se u rasponu temperatura 540 – 800°C i tlakova 0-0,2 Gpa (WINTER, 2001). Pripada srednjem do visokom stupnju termalnog (kontaktnog/ lokalnog) metamorfizma. Zbog toga hornfels može sadržavati neke od minerala koji su karakteristični za visoko temperaturne uvijete nastanka stijene.

Tijekom neolitika hornfels je bio vrlo rasprostranjen materijal korišten za izradu kamenih artefakata na području panonske nizine, a prisutan je i na prostoru vinčanske kulture u Srbiji (NAGY et al., 2008). Najzastupljeniji je ipak na jugoistočnom dijelu panonske nizine. To se može obrazložiti činjenicom da se u Rumunjskoj, u blizini granice s Mađarskom, nalaze brojna nalazišta hornfelsa.

Uzorci L-501 i L-1542 - dijagenetski rožnjaci s reliktima primarne vapnenačke stijene i terigenom komponentom

Uzorci L-501 i L-1542 obrađeni su zajedno zbog izrazite sličnosti svih svojstava. Prilikom XRD analize, nisu bili definirani svi difrakcijski maksimumi. Glaukonit je naknadno dodan u listu faza. Naime, njegova prisutnost je primarno otkrivena mikroskopskim analizama preparata. Uspoređivanjem difrakcijskih maksimuma karakterističnih za glaukonit i difrakcijskih maksimuma dobivenih analizom uzorka, utvrđeno je da se glaukonit može s dovoljnom sigurnošću dopisati na listu faza.

Mikroskopski je još otkriven i biotit, ali njegovi se difrakcijski maksimumi nisu dovoljno preklapali s difrakcijskim maksimumima uzorka, te on nije stavljen na popis faza. Povećanom koncentracijom nakupina glaukonita u neposrednoj blizini zrna biotita, može se naslutiti da je glaukonit nastao kao produkt alteracije biotita.

Rendgenogrami se vrlo dobro poklapaju (Slika 83 i Slika 84) s obzirom na to da je jedan rendgenogram dobiven snimanjem nesamljevenog uzorka. Ono što je vrlo vjerojatno doprinijelo većoj preciznosti jest to što nije analizirana površina (u kojoj kalcita gotovo da nema) nego sviježi presjek. Neki difrakcijski maksimumi dobiveni snimanjem prereza su većeg intenziteta no oni dobiveni snimanjem praha. To je vrlo vjerojatno zbog veličine ili preferirane orijentacije čestica. Neki difrakcijski maksimumi kalcita pojačani su u odnosu na difrakcijske maksimume dobivene snimanjem praha. Takva pojava u skladu je s mikroskopiranim preparatom gdje se lako može uočiti da je većina krupnijih kristalnih zrna zapravo kalcitnog sastava.

Slika 83. Usporedba rendgenograma prereza (plava linija) i praha (crvena linija) uzorka L-501.

Usporedbom rendgenograma (Slika 84) praha i prereza uzorka L-1542 može se uočiti nekoliko promjena. Rendgenogram snimljenog prereza počinje s većim šumom i izostankom difrakcijskog maksimuma na poziciji 8,87 °2θ koji pripada glaukonitu (Slika 84, crvena strelica). Difrakcijski maksimumi albita, kvarca i kalcita izraženiji su na snimljenom prerezu L-1542 (Slika 84, plave strelice).

Slika 84. Usporedba rendgenograma prereza (plava linija) i praha uzorka L-1542 (crvena linija).

Na mikroskopskom preparatu se vidi da vanjski dio uzorka sadrži šupljine u skoro istoj mjeri koliko je manji udio kalcita. O razlozima zašto dolazi do izostanka kalcita, može se trenutno samo nagađati. Vrlo je vjerojatno da je kalcit iz ruba uzorka ispran (CaCO₃ + $CO_2 + H_2O \leftrightarrow Ca(HCO_3)_2$).

Uzorak L-501 određen je kao rožnjak. Taj naziv je općeniti termin za sitnozrnati silicijski sediment koji može biti anorganskog, biokemijskog, biogenog, vulkanskog ili hidrotermalnog porijekla. U arheologiji se pojam rožnjak često koristi kao skupni naziv za sve silicijske kamene sirovine. Rožnjak je stijena iverastog i školjkastog loma (Slika 46). Glavni sastojak rožnjaka je SiO₂ (mikrokvarc, megakvarc ili kalcedon). Mikroskopska određivanja ukazuju na vrlo mali (5%) volumni udio kvarca što ukazuje da se on, uz albit, nalazi i u sitnozrnatoj osnovi uroka (53 vol.%) (Tablica 46). Kemijskom analizom, utvrđeno je da uzorak sadrži 83,36 tež.% SiO₂ (Tablica 42).

Mikroskopska analiza		XRD	XRD
		prah	prerez
Sitnozrnata osnova	63 vol.%	Kvarc	Kvarc
(kvarc i albit)			
Kalcit	22 vol.%	Albit	Kalcit
Albit	6 vol.%	Kalcit	Albit
Kvarc	5 vol.%	Glaukonit	Glaukonit
Biotit	3 vol.%		
Glaukonit	1 vol.%		

Tablica 45. Usporedni prikaz faznog sastava uzorka L-501 na temelju mikroskopske analize, te XRD analize praha i prereza uzorka.

Uzorak L-5740 - tufit

Uzorak L-5740 crveno smeđe je boje, a od ostalih uzoraka odstupa iznimno malom gustoćom (1,79 g/cm³). Razlog tome otkriven je mikroskopskom analizom uzorka gdje je otkriveno da čak 20 vol.% uzorka zauzimaju šupljine. Mineralna zrna manja su od 63 mikrona, zbog čega se točni mineralni sastav mogao odrediti tek uz pomoć XRD analize.

Rendgenskom difrakcijom na prerezu detektirane su tri faze, a to su dominantan kvarc, te sporedni hematit i akcesorni rutil, a analizom praha kvarc, hematit, rutil i muskovit (Tablica 47). Na rendgenogramu prereza vidi se izostanak difrakcijskih maksimuma i šum do otprilike 20 stupnjeva 2 θ u odnosu na rendgenogram praha, dok je na višim kutovima vidljivo njihovo relativno dobro podudaranje (Slika 85).

Slika 85. Usporedba rendgenograma prereza (plava linija) i praha uzorka L-5740 (crvena linija).

Mikroskopska analiza		XRD	XRD
		prah	prerez
Kvarc	60 vol.%	Kvarc	Kvarc
Šupljine	20 vol.%	Hematit	Hematit
Hematit	15vol.%	Muskovit	Rutil
Rutil	2 vol.%	Rutil	
Cirkon	2 vol.%		
Magnetit	1 vol.%		

Tablica 46. Usporedni prikaz faznog sastava uzorka L-5740 na temelju mikroskopske analize, te XRD analize praha i prereza uzorka.

Uzorak L-666 – metadijabaz

Rendgenogrami uzorka L-666 savršen su primjer kako analiza rendgenskom difrakcijom, provedena isključivo na površini uzorka, može dati rezultate koji su bitno različiti od stvarnih vrijednosti. Uz uobičajene probleme koji se javljaju kod analize površine krutih uzoraka, tu je još i problem različitog sastava površine zbog površinskog trošenja.
Rendgenogrami uzorka L-666 snimljene površine, sviježeg prereza i praha prikazani su na jednom dijagramu (Slika 86). Na tom dijagramu vidi se jasna razlika u šumu (označeno plavom elipsom) i razlika u intenzitetu pojedinih difrakcijskih maksimuma.

Analizom površine utvrđena je prisutnost diopsida s vjerojatnom pojavom brucita (Tablica 48). Anortit na površini uzorka nije detektiran, iako se njegova prisutnost nedvojbeno može očitati iz analiza praha i prereza uzorka. Budući da je trošeni površinski sloj uzorka malih dimenzija (otprilike 1 mm), on je u procesu pripreme mikroskopskog preparata izgubljen, što je onemogućilo mikroskopsku analizu. Izostanak anortita najjasnije se vidi na slici 87 gdje je naznačen izostanak difrakcijskih maksimuma anortita. Na rendgenogramu površine uzorka vide se velika odstupanja u relativnim intenzitetima. Do 30 stupnjeva 2 θ to je povećani šum i smanjeni intenziteti pojedinih difrakcijskih maksimuma, a nakon toga se intenziteti postupno pojačavaju.

Rendgenogram prereza sličniji je rendgenogramu praha. Usporedbom rendgenograma površine i prereza u odnosu na rendgenogram praha uzorka, dolazimo do zaključka da je analiza sviježeg dijela prereza uzorka povoljnija iako se i tu javljaju devijacije u difrakcijskim maksimumima. Jedan intenzitet izrazito je pojačan (Slika 87, označeno plavom strelicom). On pripada i anortitu i diopsidu i zbog toga bi i trebao biti pojačan, no ne ovoliko. Vjerojatnije je da je snimljeno neko veće zrno anortita.

Uzorak L-666 određen je kao metadijabaz. Ovakve metadijabazne stijene imaju veliki otpor na udarce i na habanje, te veliku tlačnu čvrstoću (VRKLJAN i KLANFAR, 2010) što ih je činilo vrlo poželjnim materijalom za izrađevine u doba neolitika.

Slika 86. Usporedba rendgenograma uzorka L-666 snimljenih na prerezu (crvena linija), površini (plava linija) i prahu (zelena linija). Plavom strelicom označen je pojačani difrakcijski maksimum.

Slika 87. Uvećani dio usporednog rendgenograma uzorka L-666 prerez (plava linija), L-666 površina (crvena linija) i L-666 prah (zelena linija) prikazani na jednom dijagramu. Plave strelice pokazuju na mjesto gdje izostaju difrakcijski maksimumi anortita na rendgenogramu površine.

Tablica 47. Usporedni prikaz faznog sastava uzorka L-666 na temelju mikroskopske analize, te XRD analize praha, prereza i površine uzorka.

Mikroskopska analiza		XRD	XRD	XRD
		prah	prerez	Površina
Klinopirokseni	65 vol.%	Klinopirokseni	Klinopirokseni (diopsid)	Klinopirokseni
(diopsid)		(diopsid)		(diopsid)
Plagioklasi (anortit)	30 vol.%	Plagioklasi	Plagioklasi (anortit)	Plagioklasi (anortit)
		(anortit)		
Opaki min	5 vol.%			Brucit

Uzorak L-1495 – metadijabaz

Rendgenskom analizom presjeka uzorka L-1495 detektirani su aktinolit i ortoklas, a analizom praha aktinolit, ortoklas i klorit (Tablica 49).

Tablica 48. Usporedni prikaz faznog sastava uzorka L-1495 na temelju mikroskopske analize, te XRD analize praha i prereza uzorka.

Mikroskopska analiza		XRD	XRD
		prah	prerez
Aktinolit	79	Aktinolit	Aktinolit
	vol.%		
Ortoklas	19	Ortoklas	Ortoklas
	vol.%		
Kvarc	2 vol.%	Klorit	
Zoisit	<1%		

Na rendgenogramu presjeka se pojavljuje smanjenje intenziteta difrakcijskih maksimuma do otprilike 20 stupnjeva 2θ (Slika 88). Uz to, jasno je vidljiv izostanak refleksa klorita koji je detektiran analizom praha. Klorit nije uočen na mikroskopskom preparatu, ali treba naglasiti da je uzorak iznimno sitnozrnat. Zbog toga većinu manjih mineralnih zrna nije bilo moguće identificirati.

Slika 88. Usporedba rendgenograma praha (plava linija) i prereza uzorka L-1495 (crvena linija).

Kvarc i zoisit uočeni su samo mikroskopskim analizama. Izostanak kvarca i zoisita na rendgenskim analizama uzorka može se objasniti jednostavno limitom detekcije same metode.

Uzorak L-4217 – tufit

Uzorak L-4217 je izrazito sitnozrnati crveni tufit kojemu je bilo vrlo teško odrediti sastav, unatoč kombinaciji više metoda. Tufit je klastični sediment koji (prema IUGS) sadrži 75% do 25% vulkanskog pepela.

Prema rendgenskim analizama, uzorak sadrži kvarc, hematit muskovit i klorit. Rendgenogrami snimljene površine i praha uzorka L-4217 prikazani su zajedno (Slika 89) kako bi se najbolje uočile razlike i sličnosti rendgenograma. Uzorak L-4217 (površina uzorka) snimljen je u dva dijela, te spojen u jedan rendgenogram. Mjesto gdje je spojen rendgenogram označen je plavom linijom. Rendgenogram površine uzorka pokazuje velika odstupanja do pozicije oko 20 °2 θ , te se nakon toga postepeno rendgenogram površine približava izgledu rendgenograma praha. Na rendgenogramu praha uzorka plavim strelicama označena su dva difrakcijska maksimuma klorita koji se ne pojavljuju na rendgenogramu površine uzorka.

Slika 89. Usporedni rendgenogram prereza (crvena linija) i praha uzorka L-4217 (siva linija). Spoj dva rendgenograma L-4217 označen je plavom linijom. Plavim strelicama su označeni difrakcijski maksimumi filosilikata.

Tablica 49. Usporedni prikaz faznog sastava uzorka L-4217 na temelju mikroskopske analize, te XRD analize praha i prereza uzorka.

Mikroskopska analiza		XRD	XRD
		prah	prerez
Kvarc	60 vol.%	Kvarc	Kvarc
Hematit	30 vol.%	Hematit	Hematit
Muskovit	10 vol.%	Muskovit	Muskovit
		Klorit	

Uzorak L-4057 - amfibolski škriljavac

Uzorak L-4057 je amfibolski škriljavac čiji rendgenogrami praha i prereza imaju najveći stupanj generalnog poklapanja (Slika 90). Do 11° 2θ difrakcijski maksimumi praha su većeg intenziteta, a od 11° 2θ na dalje uglavnom su difrakcijski maksimumi prereza uzorka većeg intenziteta. XRD analizom praha i prereza detektirani su aktinolit, anortit i biotit (Tablica 51), a daljnjom mikroskopskom analizom otkriveni su i opaki minerali.

Slika 90. Usporedni rendgenogram prereza (plava linija) i praha uzorka L-4057 (crvena linija).

Tablica 50. Usporedni prikaz faznog sastava uzorka L-4057 na temelju mikroskopske analize, te XRD analize praha i prereza uzorka.

Mikroskopska analiza		XRD	XRD
		prah	prerez
Aktinolit	67 vol.%	Aktinolit	Aktinolit
Anortit	25 vol.%	Anortit	Anortit
Biotit	7 vol.%	Biotit	Biotit
Opaki minerali	1 vol.%		

5.2. Ostali uzorci

Uzorci na kojima je dopušteno vršit samo nedestruktivne analize, analizirani su metodom rendgenske difrakcije na površini. Rezultati tih analiza su lošije kvalitete, što je otežalo odredbu čak i glavnih faza uzoraka.

Glatka površina sitnozrnatih materijala poboljšava kvalitetu analize, no zakrivljena površina može uzrokovati povećani šum na rengenogramu. Površina uzorka L-2539 je upravo takva, glatka i zakrivljena. Zbog pojave šuma na rengenogramu (Slika 31), glavni difrakcijski maksimum aktinolita je smanjenog intenziteta (na poziciji 10,52 °2θ). Budući da se na mjestu najjačeg difrakcijskog maksimuma aktinolita nalazi maksimum s relativnim intenzitetom koji iznosi tek 3, logično je pretpostaviti da u području niskih kutova na rengenogramu nisu registrirani još neki difrakcijski maksimumi koji bi bili detektirani u slučaju da je uzorak analiziran metodom rendgenske difrakcije na prahu.

Intenzitet zračenja difraktiranog s neke mreže ravnine uvelike ovisi o veličini minerala. Uzorak L-4731 je primjer kako veličina zrna uzorka može znatno utjecati na određivanje faznog sastava. Na uzorku su makroskopski vidljiva mineralna zrna, što nije slučaj kod većine drugih uzoraka. Iako je površina uzorka glatka i ravna, bilo je moguće utvrditi samo prisutnost jedne faze, amfibola (richterit).

5.3. Nefrit (uzorak L-4866)

Uzorak L-4866 je nefrit bijele boje, a izdvojen je od ostalih uzoraka zbog netipično visoke gustoće (3,19g/cm³) za svijetlo obojeni uzorak. Izmjerena gustoća kao i odstupanje po specifičnoj bijeloj boji od ostalih bijelih uzoraka, presudilo je pri odabiru ovog uzorka za detaljnije analize. Makroskopskim opažanjima, uzorak nije sa sigurnošću mogao biti definiran kao nefrit. Analizom rendgenske difrakcije na površini i prahu uzorka utvrđena je prisutnost tremolita.. Bijela boja tipična je za nefrite koji su po svom sastavu gotovo čisti tremolit. Po tremolitnom sastavu, boji i crnim žilicama koje presijecaju uzorak, moguće je usporediti ovaj uzorak sa varijetetom nefrita koji je poznat pod nazivom *chicken bone jade*.

Tanke crne žilice bez preferirane orijentacije (Slika 91) presijecaju cijeli uzorak.

Slika 91. Prikaz presjeka uzorka L-4866. Na fotografiji su vidljive crne žile koje presijecaju cijeli uzorak bez preferirane orijentacije.

Iako je i makroskopski očito da je u uzorku prisutna još barem jedna faza u crnim žilicama u uzorku, difrakcijskih maksimuma za tu fazu nema (Tablica 52).

Na rendgenogramima prereza i praha uzorka (Slika 92) uočavaju se velike razlike, do 23 °2θ u intenzitetima difrakcijskih maksimuma i pozadinskom šumu, a od 23 do 34 °2θ rendgenogrami se postupno ujednačuju te se nakon 34 °2θ rendgenogrami vrlo dobro preklapaju. Tipičan je izostanak difrakcijskih maksimuma na niskim kutovima.

Slika 92. Usporedba rendgenograma prereza (plava linija) i praha uzorka L-4866 (crvena linija).

Tablica 51. Usporedni prikaz faznog sastava uzorka L-4866 na temelju mikroskopske analize, te XRD analize praha i prereza uzorka.

Mikroskopska analiza		XRD	XRD
		prah	prerez
Tremolit	94 vol.%	Tremolit	Tremolit
Netopivi ostatak	5 vol.%		
Opaki minerali	1 vol.%		

Odredba tipa nefrita otežana je zbog male količine podataka nedostatnih za kvalitetnu statističku obradu U svrhu odredbe tipa nefrita (S ili D) rezultati kemijske analize (Tablica 53) naneseni su na dijagrame za njihovu diskriminaciju koji se temelje na sadržaju elemenata Ni/Cr i Co/Cr (Slika 93 i Slika 94). Povišene vrijednosti Ni, Co i Cr ukazuju na S tip nefrita. Točna granica između vrijednosti koje pripadaju jednom ili drugom tipu nije striktno definirana. Približna granica vrijednosti na oba grafa određena je okvirno, po uzoru na ADAMO i BOCCHIO (2013) i GIL et.al (2015b). Vrijednosti za uzorak L-4866 odstupaju od vrijednosti analiza drugih uzoraka, no unatoč tome moguće je zaključiti da je uzorak L-4866 S-tip nefrita. On u odnosu na druge nefrite S-tipa sadrži manje udjele Cr, Ni i Co. To se može objasniti generalnom nehomogenošću nefritnih tijela. Budući da nefriti S-tipa

nastaju zoni kontakta serpentinita i kiselog intruziva, moguće je da se uzorak L-4866 nalazio bliže intruzivu no serpentinitu.

Tablica 52. Vrijednosti kemijskih analiza uzoraka nefrita iz drugih radova (označeno slovima a-f) i vrijednosti kemijske analize uzorka L-4866.

Vrijednosti	Serpentinitni tip	Dolomitni tip	Uzorak L- 4866
Cr [ppm]	$\begin{array}{c} 1420^{a} & 1430 \\ 1400^{a} & 1220 \\ 1436^{a} & 1420 \\ 1620^{a} & 1780 \\ 1890^{a} & 1710 \\ 719^{b} & 900^{b} \\ 1113^{b} & 1539,45 \\ 1662,61^{c} & 2812,07 \\ 2784,70^{c} & 1505,24 \\ 1505,24^{c} \\ 1220^{e} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	691*
Ni [ppm]	1411 ^a 1367 ^a 1246 ^a 1395 ^a 1414 ^a 1199 ^a 1469 ^a 1484 ^a 1465 ^a 1417 ^a 1623 ^b 1887 ^b 1898 ^b 1131,6 ^c 1005,9 ^c 1108 ^c 1304,5 ^c 1021,6 ^c 958,7 ^c 1408 ^e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	845
Co [ppm]	204 ^b 260 ^b 207 ^b 53,01 ^c 43,65 ^c 42,00 ^c 45,85 ^c 45,85 ^c 42,78 ^c 47 ^e	$\begin{array}{c} 1,18^{\circ} 2,23^{\circ} \\ 4,94^{\circ} 2,45^{\circ} \\ 4,77^{\circ} 3,58^{\circ} \\ 3,01^{\circ} 3,60^{\circ} \\ 1,35^{\circ} 2,52^{\circ} \\ 3,47^{\circ} 0,470^{\circ} \\ 1,18^{\circ} 0,698^{\circ} \\ 9,83^{\circ} 2,64^{\circ} \\ 1,24^{\circ} \\ 71^{d} < 10^{d} \end{array}$	42
Fe/(Fe + Mg)	0,092° 0,097° 0,085° 0,118° 0,101° 0,064° 0,084°	0,019° 0,02° 0,052° 0,023° 0,043° 0,025° 0,013° 0,001° 0,006° 0,007° 0,003° 0,004° 0,004° 0,007° 0,003° 0,008° 0,003° 0,008°	0,096

*= preračunato iz tež.% Cr₂O₃

a= **GRAPES and YUN (2010)** – tekst opisuje semi-nefrit (neškriljavi nefrit, tj. stijeni još nedostaju usmjerena vlaknasta struktura da bi bio nefrit u pravom smislu riječi) sa područja Novog Zelanda. Amfibol koji se nalazi u ovom serpentinitnom tipu semi-nefrita je aktinolit (blizu granice tremolit/aktinolit). Boja stijene se mijenja od unutrašnjosti prema rubu. U unutrašnjosti prevladava tamno zelena boja s izmjenama slojeva svijetlo zelene i bijele boje, a prema rubu boja prelazi iz svijetlo zelene u smeđu. Podaci navedeni u tablici odnose se na jedan uzorak nefrita analiziran od unutrašnjosti prema rubu.

b=**KOSTOV et al. (2012)** – U radu se analiziraju nefritni artefakti s područja arheoloških nalazišta u jugozapadnoj Bugarskoj, te nalazi s geoloških lokaliteta gdje su pronađeni nefriti. U tablici su navedeni samo podaci za uzorke s geoloških lokaliteta (Sajanske planine u Rusiji, Jordanow u Poljskoj i Južni otok u Novom Zelandu). Svi uzorci su zelene boje.

c= **SIQIN et al. (2012)**- Analizirano je 19 nefrita s raznih lokaliteta diljem Kine i 4 uzorka koji su s područja Bajkalskog jezera u Rusiji, Britanske Kolumbije u Kanadi i Milford Sounda u Novom Zelandu. Od toga je 17 uzoraka dolomitnog porijekla i 6 uzoraka serpentinitnog porijekla. Sve vrijednosti preračunate su iz težinskih postotaka oksida u količinu elementa u ppm (parts per million tj. 1 dio na 10⁶ dijelova ili vrijednost 10⁻⁶). Fe/(Fe + Mg) omjer kod nefrita D-tipa ne prelazi vrijednost 0,060 osim u slučaju najtamnijeg tamnozelenog nefrita koji ima vrijednost omjera 0,074.

d= **GIL et al. (2015a)** = U radu su analizirana i opisana dva uzorka nefrita dolomitnog porijekla s područja Złoty Stok u Poljskoj.

e= GIL et al., (2015b) - U ovom radu, autori opisuju porijeklo nefrita S-tipa s područja Jordanowa u Poljskoj. Boja nefrita varira od bijele, svijetlo zelene do tamno zelene i zeleno plave.

f= **LIU et al. (2011)** - U radu su opisani nefriti dolomitnog tipa s područja Xinjiang u Kini. Nefriti su pretežito tremolitnog sastava, bijele su do svijetlo zelene boje i nastali si u kontaktu granodiorita s dolomitnim mramorom.

Slika 93. Cr-Ni dijagram za razlikovanje S i D tipova nefrita prema ADAMO i BOCCHIO (2013). Na dijagram su ucrtane vrijednosti Cr [ppm] i Ni [ppm] pronađene u literaturi (Tablica 53) i vrijednosti uzorka L-4866. Graf je izrađen u programu GCDkit.

Slika 94. Cr-Co dijagram za razlikovanje S i D tipova nefrita prema ADAMO i BOCCHIO (2013). Na dijagram su ucrtane vrijednosti Cr [ppm] i Co [ppm] pronađene u literaturi (Tablica 53) i vrijednosti uzorka L-4866. Graf je izrađen u programu GCDkit.

Porijeklo nefrita najzanimljivije je pitanje koje se javlja uz ovaj uzorak. Unatoč tome što je uzorak nefrita detaljno analiziran, pitanje njegovog porijekla ostaje otvoreno. Naime, iz tablice 53 vidljivo je da podaci uzorka L-4866 ne pokazuju sličnost s drugim nefritima za koje postoji dostupna kemijska analiza. Jedan od razloga koji bi se mogao navesti jest atipična boja uzorka. Zeleni primjerci nefrita su češće analizirani, te za bijele nefrite ne postoji toliko izvora podataka. Drugi razlog definitivno je nehomogenost izvorišta nefritnih tijela zbog čega je moguće da uzorci iz istog izvorišta imaju različit kemijski sastav.

Prva pretpostavka je da je izvorište uzorka u Hrvatskoj. U Hrvatskoj nije poznat lokalitet na kojem je dokazana prisutnost nefrita. Što ne mora strogo značiti da nefritnog tijela nije bilo jer nefritna tijela mogu biti relativno malog volumena zbog čega ih se lako može iscrpiti.

Druga pretpostavka je da je nefrit "uvezen". Na području Hrvatske pronađen je još jedan nefritni artefakt kod Crnog Vrila u blizini Zadra, a kao moguće porijeklo tog nefrita (BURIĆ et al., 2004), navode se Bosna i Italija. U slučaju ovog uzorka, Italija nije vjerojatni izvor jer se na izvorištu Val Malenco u Italiji nalazi D-tip nefrita (ADAMO, 2013). Pretpostavlja se da nefritni artefakti pronađeni na području Poljske, Švicarske, Italije i Bugarske potiču iz Poljske (GIL, 2013). U Poljskoj se nalaze dva važna izvorišta nefrita, a to su tremolitni nefriti iz Jordanowa i manje poznati lokalitet aktinolitnih nefrita Zloty Stok. Nefriti iz Jordanowa su S-tip nefrita, a sadrže karakteristične minerale uz tremolit kao što su diopsid, hidrogrosular, grosular, titanit, apatit i cirkon. U uzorku L-4866 detektiran je samo tremolit i nedefinirana faza tamnih minerala u žilicama, što je mikroskopski najsličnije artefaktu pronađenom u Mađarskoj na području Balatonőszöda (Temetői dűlő). Kao najvjerojatniji izvor tog artefakta navodi se Jordanow (PÉTERDI et al., 2014) koji je udaljen čak 450km od Balatonőszöda, unatoč tome što postoje i bliži izvori nefrita (Švicarska, Italija, Francuska, Njemačka).

6. ZAKLJUČAK

Prvi cilj ovog rada bio je odrediti mineraloške i petrološke karakteristike glačanih kamenih izrađevina. Samo fazni sastav određen je za 35 uzoraka, a kompletna odredba mineraloških i petroloških karakteristika izvršena je na dodatnih 9 uzoraka. Ono što je zajedničko svim uzorcima je izrazita sitnozrnatost što je s jedne strane olakšalo analizu rendgenskom difrakcijom na površini uzoraka, a s druge strane je znatno otežalo mikropetrografsku analizu.

U procesu odredbe vrste uzoraka otkriven je nefrit bijele boje. Budući da je nefrit arheološki vrijedan materijal, izvršena je odredba tipa nefrita kako bi se ustanovilo izvorište materijala. Nefrit je određen kao S-tip nefrita, no izvorište nije ustanovljeno.

Ostalih osam uzoraka određeni su kao hornfels (L-6129), čert (l-1542 i L-501), tufit (L-5740 i L-4217), metadijabaz (L-1495 i L-666), amfibolski škriljavac (L-4057). Zbog relativno velike geološke rasprostranjenost tih materijala otežana je precizna odredba njihove provenijencija te je najveća pažnja posvećena nefritu.

Drugi cilj ovog rada bio je ustanoviti razliku u kvaliteti rezultata XRD analiza dobivenih snimanjem površine uzoraka, dakle bez ikakve prethodne obrade, i onih dobivenih snimanjem uzoraka zdrobljenih u prah. Usporedbom rengenograma snimljenih na istim uzorcima uočavaju se pojave karakteristične za većinu uzoraka. Na većini rendgenograma jasno je izraženi šum i smanjeni intenziteti ili kompletni izostanka difrakcijskih maksimuma do otprilike 20 stupnjeva 2 θ što je posljedica neravne površine uzorka. Dok je kod sitnozrnatih uzoraka do odstupanja dolazilo u manjoj mjeri, kod krupnije zrnatih uzoraka odstupanja su bila povećana. Značajna odstupanja u sastavu površine u odnosu na unutrašnjost uzorka uočena su samo kod jednog uzorka (L-666). U tom slučaju rezultat površinske analize bio je znatno drugačiji. Može se zaključiti da su površinske XRD analize prihvatljive za sitnozrnate uzorke, ravnih i glatkih površina bez znatnih znakova trošenja površine.

7. LITERATURA

7.1. Publicirani radovi

ADAMO, I. i BOCCHIO, R. (2013). Nephrite Jade from Val Malenco, Italy: Review and Update. Gems & Gemology, 49(2), str. 2-10.

ARTIOLI G. (2010) Scientific Methods and Cultural Heritage. An Introduction to the Application of Materials Science to Archaeometry and Conservation Science, Artioli G (Oxford Univ Press, Oxford).

BURIĆ, M., BALEN, D., TEŽAK-GREGL, T., KURTANJEK, D. i TIBLJAŠ, D. (2004): A preliminary contribution to the petrography of the polished stone tools of Croatia. Atti della Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia, Trieste, XIV/2003, 149-156.

DEGEN, T., SADKI, M., BRON, E., KÖNIG, U. i NÉNERT, G. (2014). The HighScore suite. *Powder Diffraction*, 29(S2), str.S13-S18.

GAUTHIER, G. i BURKE, A. (2011). The effects of surface weathering on the geochemical analysis of archaeological lithic samples using non-destructive polarized energy dispersive XRF. Geoarchaeology, 26(2),str. 269-291.

GERHARZ, R.R., LANTERMANN, R. & SPENNEMANN, D.R. (1988): Munsell color charts: A necessity for archaeologists? Australian Historical Archaeology, 6, 88-95.

GIL, G. (2013). Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland). Geological Quarterly, 57(3), str. 95-404.

GIL, G., Barnes, J., BOSCHI, C., GUNIA, P., RACZYŃSKI, P., SZAKMÁNY, G., BENDŐ, Z. i PÉTERDI, B. (2015a). nephrite from złoty stok (sudetes, sw poland): petrological, geochemical, and isotopic evidence for a dolomite-related origin. The Canadian Mineralogist, 53(3), str. 533-556.

GIL, G., BARNES, J., BOSCHI, C., GUNIA, P., SZAKMÁNY, G., BENDŐ, Z., RACZYŃSKI, P. i PÉTERDI, B. (2015b). Origin of serpentinite-related nephrite from Jordanów and adjacent areas (SW Poland) and its comparison with selected nephrite occurrences. Geological Quarterly, 53(3), str. 457-472.

GRAPES, R. i YUN, S. (2010). Geochemistry of a New Zealand nephrite weathering rind. New Zealand Journal of Geology and Geophysics, 53(4), str. 413-426.

HARLOW, G. i SORENSEN, S. (2005). Jade (Nephrite and Jadeitite) and Serpentinite: Metasomatic Connections. International Geology Review, 47(2), str. 113-146.

KOSTOV, R., PROTOCHRISTOV, C., STOYANOV, C., CSEDREKI, L., SIMON, A., SZIKSZAI, Z., UZONYI, I., GAYDARSKA, B. i CHAPMAN, J. (2012). Micro-PIXE Geochemical Fingerprinting of Nephrite Neolithic Artifacts from Southwest Bulgaria. Geoarchaeology, 27(5), str. 457-469.

KORYBSKA-SADŁO, I., GIL, G., GUNIA, P., HORSZOWSKI, M. i SITARZ, M. (2018). Raman and FTIR spectra of nephrites from the Złoty Stok and Jordanów Śląski (the Sudetes and Fore-Sudetic Block, SW Poland). Journal of Molecular Structure, 1166, str. 40-47. LEAKE, B., WOOLLEY, A., ARPS, C., BIRCH, W., GILBERT, M., GRICE, J., HAWTHORNE, E., KATO, A., KISCH, H., KRIVOVICHEV, V., LINTHOUT, K., LAIRD, J., MANDARINO, J., MARESCH, W., NICKEL, E., ROCK, N., SCHUMACHER, J., SMITH, D., STEPHENSON, N., UNGARETTI, L., WHITTAKER, E. i YOUZHI, G. (1997). Nomenclature of amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3), str. 623-651.

LIU, Y., DENG, J., SHI, G., YUI, T., ZHANG, G., ABUDUWAYITI, M., YANG, L. i SUN, X. (2011). Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. Journal of Asian Earth Sciences, 42(3), str. 440-451.

NAGY, I., WEISZBURG, T., SZAKMÁNY, G, VARGA i G., KASZTOVSKY, Z. (2008) Mineralogical, petrographic and geochemical study of neolithic polished axes from Micula (NW Transylvania, Romania). Archeometriai Műhely, 2008/2, str.37-46.

PÉTERDI, B., SZAKMÁNY, G., JUDIK, K., DOBOSI, G., KASZTOVSZKY, Z., SZILÁGYI, V., MARÓTI, B., BENDŐ, Z. i GIL, G. (2014). Petrographic and geochemical investigation of a stone adze made of nephrite from the Balatonőszöd – Temetői dűlő site (Hungary), with a review of the nephrite occurrences in Europe (especially in Switzerland and in the Bohemian Massif). Geological Quarterly, 58(1), str. 181-192.

RAJKOVIĆ, D. (2019). Glačane kamene izrađevine u životu starčevačke i sopotske populacije na prostoru istočne Hrvatske (doktorska disertacija). Sveučilište u Zagrebu-Filozofski fakultet, Zagreb, 314.

SIQIN, B., QIAN, R., ZHUO, S., GAN, F., DONG, M. i HUA, Y. (2012). Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments. International Journal of Mass Spectrometry, 309, str.206-211.

VRKLJAN, D. i KLANFAR, M. (2010) "Tehnologija nemetalnih mineralnih sirovina", RGN-fakultet, Zagreb, str.1-32.

WARD, G. (2008). The Grove encyclopedia of materials and techniques in art. New York: Oxford University Press, str. 303-304.

WINTER, J. D. (2001): An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, 697 p.

7.2. Internetski izvori

Slika Ahatnog mlina Fritsch Pulverisette. Preuzeto 20.04.2019. sa stranice Sveučilišta u Zagrebu, Prirodoslovno-matematičkog fakulteta, Geološki odsjek: https://w.ww.pmf.unizg.hr/geol/o_nama/mineralosko-petrografski_zavod/oprema/priprema_uzoraka

8. Popis slika

Slika 1. Položaj nalazišta Stari Perkovci-Debela šuma	3
Slika 2. Ahatni mlin Fritsch pulverisette.	. 12
Slika 3. Rendgenogram uzorka L-6129.	. 19
Slika 4. Rendgenogram praha uzorka L-6129.	. 21
Slika 5. Rendgenogram prereza uzorka L-501	. 23
Slika 6. Rendgenogram uzorka L-1542.	. 24
Slika 7. Rendgenogram praha uzorka L-501.	. 26
Slika 8. Rendgenogram praha uzorka L-1542.	. 27
Slika 9. Rendgenogram prereza uzorka L-5740.	. 29
Slika 10. Rendgenogram uzorka L-5740.	. 30
Slika 11. Rendgenogram površine uzorka L-666.	. 32
Slika 12. Rendgenogram uzorka L-666 (prerez).	. 33
Slika 13. Rendgenogram praha uzorka L-666.	. 35
Slika 14. Rendgenogram prereza uzorka L-1495.	. 36
Slika 15. Rendgenogram praha uzorka L-1495.	. 38
Slika 16. Rendgenogram uzorka L-4866 (prerez)	. 39
Slika 17 Rendgenogram praha uzorka L-4866	41
Slika 18. Rendgenogram površini uzorka L-4217. Na 35°2 θ nalazi se abnormalnost nastala zbog tehničkih	י י בי ו
nrohlema na snimaniu	42
Slika 19 Rendgenogram praha uzorka L-4217	44
Slika 20. Rendgenogram prereza uzorka L -4057	46
Slika 21. Rendgenogram proba uzorka L-4057	47
Slika 22. Makroskonski izgled uzorka L-2830	48
Slika 23. Rendgenogram uzorka I -2830. Playa strelica unućuje na prvi difrakcijski maksimum	49
Slika 24. Makroskonski izgled uzorka L-2545	50
Slika 25. Rendgenogram površine uzorka I -2545	51
Slika 26. Makroskonski izgled uzorka L-4006	52
Slika 27. Rendgenogram uzorka L-4006	52
Slika 28 Makroskonski izgled uzorka L-4000	54
Slika 29. Rendgenogram uzorka L-4224	54
Slika 20. Makroskonski izgled uzorka L-2293	56
Slika 31. Rendgenogram uzorka L-2593	56
Slika 32 Makroskonski izgled uzorka L-1731	58
Slika 32. Niakioskopski izgled uzorka L-4751	58
Slika 34. Makroskopski izglad uzorka I. 3002	60
Slika 35. Rendgenogram površine uzorka I. 3002	60
Slika 35. Kenugenogram povisne uzorka L-3992.	62
Slika 30. Makioskopski izgleu uzoika L-3238.	. 02 62
Slika 37. Kelugehogiani povisnie uzorka L-5236.	. 02 64
Slika 30. Makioskopski izgleu uzoika L-6185.	. 04 64
Slika 39. Kendgenogram povisine uzorka L-0185.	. 04
Slika 40. Makioskopski izgled uzorka L-4103	. 00
Slika 41. Kendgenogram povišine uzorka L-4105.	. 00
Slika 42. Uzorak L-0129; a- povisina, b- pukouna na povisini uzorka	. 00
Slika 43. Presjek uzorka L-6129	. 68
Slika 44. Uzorak L-0123. PPL N- (lijevo), PPL N+ (desno)	. 69
Slika 45. Uzorak L-0129. PPL N- (lijevo), PPL N+ (desno)	. 69
Slika 40. Makroskopski izgled presjeka uzorka L-501. a- povrsina, b- prerez	. /U
Siika 47. Uzorak L-501. Jasno viaijiva granica promjene poroznosti uzorka (označeno crvenom linijom). P	'PL
IN- (IJEVO), PPL IN+ (desno).	. /1
Slika 48. vanjski rub uzorka 501. Na slici je označeno zrno albita (Ab). PPL N- (lijevo), PPL N+ (desno).	72
SIIKA 49. UZOTAK L-501. Crvenom Kruznicom oznacen je bioklast u uzorku L-501. PPL N- (lijevo), PPL N-	+
	. 72
Slika 50. Uzorak L-501. Crvenom kružnicom označen je bioklast . PPL N- (lijevo), PPL N+ (desno)	.72

Slika 51. Uzorak L-501. Bioklast ispunjen kalcitom i glaukonitom označen je crvenom kružnicom. Biotit ((Bt)
jasno pokazuje pleokroizam. PPL N- (lijevo), PPL N+ (desno)	. 73
Slika 52. Uzorak L-501. Bioklast ispunjen kalcitom i kvarcom označen je crvenom kružnicom. Lijevo:	
polarizirano svjetlo. PPL N- (lijevo), PPL N+ (desno)	. 73
Slika 53. Makroskopski izgled uzorka L-1542. a- površina, b- prerez	. 74
Slika 54. Uzorak L-1542. Vidljiva granica između zapunjenih i nezapunjenih šupljina. PPL N- (lijevo), PP	'L
N+ (desno)	. 74
Slika 55. Albitno (Ab) zrno u uzorku L-1542. PPL N- (lijevo), PPL N+ (desno)	. 75
Slika 56. Uzorak L-1542. Na slici je označen kalcit (Cal). PPL N- (lijevo), PPL N+ (desno)	. 75
Slika 57. Uzorak L-1542. Na slici se nalazi jedan bioklast koji sadrži tri faze: glaukonit (Glt), kvarc (Q) i	
kalcit. PPL N- (lijevo), PPL N+ (desno).	. 76
Slika 58. Uzorak L-1542. Na slici je označeno zrno biotita. PPL N- (lijevo), PPL N+ (desno)	. 76
Slika 59. Makroskopski izgled uzorka L-5740. a- površina, b- presjek	. 77
Slika 60. Uzorak L-5740. PPL N- (lijevo), PPL N+ (desno)	. 77
Slika 61. Uzorak L-5740. PPL N	. 78
Slika 62. Uzorak L-5740. PPL N+	. 79
Slika 63. Makroskopski izgled uzorka L-666. Presjek se vidi na lijevoj slici (a), a površina na desnoj (b)	. 79
Slika 64. Mikroskopski izgled uzorka L-666. Žilica oko koje se pojavljuju mineralna zrna istog položaja	
indikatrise označena je crvenom strelicom. PPL N- (lijevo), PPL N+ (desno)	. 80
Slika 65. Uzorak L-666. Lijevo: polarizirano svjetlo. PPL N- (lijevo), PPL N+ (desno)	. 80
Slika 66. Makroskopski izgled uzorka L-1495. a-površina, b-presjek	. 81
Slika 67. Uzorak L-1495. Mjesta viših interferencijskih boja označena su crvenim elipsama. PPL N- (lijev	ю),
PPL N+ (desno).	. 82
Slika 68. Uzorak L-1495. Na slici se nalaze označeni minerali ortoklas (Or), zoisit (Zo) i amfibol aktinoli	t
(Act). PPL N- (lijevo), PPL N+ (desno).	. 82
Slika 69. Uzorak L-1495. Na slici je prikazan kvar (Q) s uklopcima amfibola aktinolita (Act). PPL N-	
(lijevo), PPL N+ (desno).	. 83
Slika 70. Uzorak L-1495. Na slici je prikazan ortoklas (Or) i kvarc (Q) unutar kojeg se može jasno uočiti	
bulging. Crvenom elipsom označen je vanjski rub alatke. PPL N- (lijevo), PPL N+ (desno)	. 83
Slika 71. Makroskopski izgled uzorka L-4866. a- presjek, b- površina	. 84
Slika 72. Mikroskopski preparat uzorka L-4866. PPL N- (lijevo), PPL N+ (desno)	. 84
Slika 73. Uzorak L-4866. Na slici su označeni opaki minerali (Opq) u osnovnoj masi tremolita. PPL N-	
(lijevo), PPL N+ (desno).	. 85
Slika 74. Uzorak L-4866. Tamna područja označena crvenim strelicama. PPL N- (lijevo), PPL N+ (desno)).85
Slika 75. Makroskopski izgled uzorka L-4217. a-površina, b-prerez	. 86
Slika 76. Uzorak L-4217. PPL N- (lijevo), PPL N+ (desno)	. 86
Slika 77. Uzorak L-4217. Na slici je označen muskovit (Ms). PPL N- (lijevo), PPL N+ (desno)	. 87
Slika 78. Makroskopski izgled uzorka L-4057. a- presjek, b- površina	. 87
Slika 79. Uzorak L-4057. PPL N- (lijevo), PPL N+ (desno)	. 88
Slika 80. Uzorak L-4057. Na slici su označeni aktinolit (Act), hipidiomorfni anortit (An), biotit (Bt) i opak	ci
mineral (Opq). PPL N- (lijevo), PPL N+ (desno)	. 88
Slika 81. Usporedba rendgenograma površine (plava linija) i praha (crvena linija) uzorka L-6129. Šum je	
označen zelenom elipsom	. 95
Slika 82. Detalj iz usporednog rendgenograma površine (plava linija) i praha (crvena linija) uzorka L-612	9.
Plava strelica pokazuje na difrakcijski maksimum na poziciji 32.75 °20, a zelena na 33.29 °20	. 95
Slika 83. Usporedba rendgenograma prereza (plava linija) i praha (crvena linija) uzorka L-501	. 98
Slika 84. Usporedba rendgenograma prereza (plava linija) i praha uzorka L-1542 (crvena linija)	. 99
Slika 85. Usporedba rendgenograma prereza (plava linija) i praha uzorka L-5740 (crvena linija)	101
Slika 86. Usporedba rendgenograma uzorka L-666 snimljenih na prerezu (crvena linija), površini (plava	
Innja) i prahu (zelena linija). Plavom strelicom označen je pojačani difrakcijski maksimum.	103
Slika 8/. Uvećani dio usporednog rendgenograma uzorka L-666 prerez (plava linija), L-666 površina (
crvena linija) i L-666 prah (zelena linija) prikazani na jednom dijagramu. Plave strelice pokazuju na mjest	0
gdje izostaju ditrakcijski maksimumi anortita na rendgenogramu površine.	103
Slika 88. Usporedba rendgenograma praha (plava linija) i prereza uzorka L-1495 (crvena linija)	105

Slika 89. Usporedni rendgenogram prereza (crvena linija) i praha uzorka L-4217 (siva linija). Spoj dva
rendgenograma L-4217 označen je plavom linijom. Plavim strelicama su označeni difrakcijski maksimumi
filosilikata
Slika 90. Usporedni rendgenogram prereza (plava linija) i praha uzorka L-4057 (crvena linija) 107
Slika 91. Prikaz presjeka uzorka L-4866. Na fotografiji su vidljive crne žile koje presijecaju cijeli uzorak bez
preferirane orijentacije
Slika 92. Usporedba rendgenograma prereza (plava linija) i praha uzorka L-4866 (crvena linija) 110
Slika 93. Cr-Ni dijagram za razlikovanje S i D tipova nefrita prema ADAMO i BOCCHIO (2013). Na
dijagram su ucrtane vrijednosti Cr [ppm] i Ni [ppm] pronađene u literaturi (Tablica 53) i vrijednosti uzorka
L-4866. Graf je izrađen u programu GCDkit
Slika 94. Cr-Co dijagram za razlikovanje S i D tipova nefrita prema ADAMO i BOCCHIO (2013). Na
dijagram su ucrtane vrijednosti Cr [ppm] i Co [ppm] pronađene u literaturi (Tablica 53) i vrijednosti uzorka
L-4866. Graf je izrađen u programu GCDkit

9. Popis tablica

Tablica 1. Volumen, masa, gustoća i boja uzoraka izdvojenih za destruktivne analize	13
Tablica 2. Vrijednosti volumena, mase, gustoće i boje uzoraka	13
Tablica 3. Rendgenografski podaci prikupljeni na površini uzorka L-6129	18
Tablica 4. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-6129	20
Tablica 5. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-501.	21
Tablica 6. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-1542	2 23
Tablica 7. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-501	25
Tablica 8. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-1542	26
Tablica 9. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-5740	0.28
Tablica 10. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-5740). 29
Tablica 11. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-66	6.
	31
Tablica 12. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-666	6.32
Tablica 13. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-666	34
Tablica 14. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-149	95
	35
Tablica 15. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-1495	6.37
Tablica 16. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-486	66.
	38
Tablica 17. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prahu uzorka L-4866). 40
Tablica 18. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-42	
T_{1}	41
Tablica 19. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na pranu uzorka L-421/	. 43
Tablica 20. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na prerezu uzorka L-403	57.
	44
Tablica 21. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na pranu uzorka L-405/	. 40
Tablica 22. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na povrsihi uzorka L-28	30. 40
Tablica 22 Dania difrakajiakih makaimuma dabiyanih randganakam difrakajiam na navržini uzarka L 25	49 :45
Tablica 25. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na povrsihi uzorka L-25	43. 51
Tablica 24 Dania difrakajishih makajmuma dabiyanih randganakam difrakajiam na navržini uzarka I 40	31
raonea 24. ropis unrakcijskih maksimuma uoorvenih renugenskom unrakcijom na povrsim uzorka L-40	52
Tablica 25 Ponis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom, na površini uzorka L 42	55 171
raonea 25. ropis unrakcijskih maksimuma uoorvenih renugenskom unrakcijom na povisih uzorka L-42	,∠+. 5∄
	+

Tablica 26. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-2593.
Tablica 27. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-4731.
Tablica 28. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na površini uzorka L-3992.
Tablica 29. Popis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom na povrsini uzorka L-3258.
Tablica 30. Ponis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom, na površini uzorka I. 6185
raonea 50. ropis unrakcijskih maksinuma uoorvenih rendgenskom unrakcijom na povisih uzorka L-0185.
Tablica 31 Ponis difrakcijskih maksimuma dobivenih rendgenskom difrakcijom, na površini uzorka I -/103
faonea 51. Fopis unfakcijskih maksimuma uoorvenin tenugenskom unfakcijom na povisini uzorka E-4105.
Tablica 32 Uzorak I - 6129 Prociena volumnog udiela mineralnih sastojaka u vidnom poliu mikroskona 69
Tablica 33. Prociena volumnog udjela mineralnih sastojaka uzorka I -501 u vidnom polju mikroskopa. 71
Tablica 35. Procjena volumnog udjela mineralnih sastojaka uzorka L 1542 u vidnom polju mikroskopa
Tablica 35. 1 Tocjena volumnog udjela mineralnih sastojaka uzorka L-1542 u vlutom polju mikroskopa 75 Tablica 36. Uzorak I. 5740. Prociona volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa. 78
Tablica 30. Ozorak L- 5740. Froejena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa 78 Tablica 27. Uzorak L- 666. Prociena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa 90
Tablica 37. Uzorak L- 000. Flocjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa 80 Tablica 29. Uzorak L- 1405. Drogione volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa
Tablica 38. Uzorak L-1495. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa 82
Tablica 39. Uzorak L-4800. Procjena volumnog udjela mineralnih sastojaka u vlunom polju mikroskopa 85
Tablica 40. Uzorak L-4217. Okvirna procjena volumnog udjela mineralnih sastojaka u vidnom polju
mikroskopa
Tablica 41. Uzorak L-405/. Procjena volumnog udjela mineralnih sastojaka u vidnom polju mikroskopa 88
Tablica 42. Rezultati kemijske analize artefakata iz Debele Sume. Udio glavnih sastojaka izražen je u tež.%,
a sporednih u ppm
Tablica 43. Rezultati kemijske analize artefakata iz Debele Sume. Udio sporednih elemenata izražen je u
ppm
Tablica 44. Rezultati kemijske analize artefakata iz Debele Sume. Udio elemenata rijetkih zemalja (REE + Y
) izražen je u PPM
Tablica 45. Usporedni prikaz faznog sastava uzorka L-6129 na temelju mikroskopske analize, te XRD
analize praha i povrsine uzorka
Tablica 46. Usporedni prikaz faznog sastava uzorka L-501 na temelju mikroskopske analize, te XRD analize
100 Tabli 47 March 19 Final Andrew
Tablica 47. Usporedni prikaz faznog sastava uzorka L-5740 na temelju mikroskopske analize, te XRD
analize praha i prereza uzorka
Tablica 48. Usporedni prikaz faznog sastava uzorka L-666 na temelju mikroskopske analize, te XRD analize
104 raha, prereza i površine uzorka.
Tablica 49. Usporedni prikaz faznog sastava uzorka L-1495 na temelju mikroskopske analize, te XRD
analize praha i prereza uzorka
Tablica 50. Usporedni prikaz faznog sastava uzorka L-4217 na temelju mikroskopske analize, te XRD
analize praha i prereza uzorka
Tablica 51. Usporedni prikaz faznog sastava uzorka L-4057 na temelju mikroskopske analize, te XRD
analize praha i prereza uzorka
I ablica 52. Usporedni prikaz faznog sastava uzorka L-4866 na temelju mikroskopske analize, te XRD
analize prana i prereza uzorka
I ablica 53. Vrijednosti kemijskih analiza uzoraka nefrita iz drugih radova (označeno slovima a-f) i
vrijednosti kemijske analize uzorka L-4866

10. Korištene kratice

ICP-MS	Inductively coupled plasma mass spectrometry //
	Masena spektrometrija s induktivno spregnutom plazmom
ICP-ES	Inductively coupled plasma emission spectroscopy //
	emisijska spektrometrija s induktivno spregnutom plazmom
XRD	x-Ray Diffraction/ Rendgenska difrakcija
GD	Granica detekcije (statistička vrijednost kojom se opisuje najmanji iznos analita koji se može pouzdano mjeriti)
PPL	Polarizirano svjetlo (eng. plain polarized light)
N+	Promatranje mikroskopom sa uključenim analizatorom
N-	Promatranje mikroskopom sa isključenim analizatorom
Q	Kvarc
Cal	Kalcit
An	Anortit
Ab	Albit
Pl	Plagioklas
В	Biotit
Glt	Glaukonit
Mag	Magnetit
Hem	Hematit
Rt	Rutil
Zrn	Cirkon
Срх	Klinopiroksen
Opq	Opaki minerali
Ort	Ortoklas
Zo	Zoisit
Act	Aktinolit
Or	Ortoklas
Tr	Tremolit
Ms	Muskovit